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Abstract

A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear

banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that

formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the

composite with larger particles. To characterize this size-dependent deformation localization behavior of particle

reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The

result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in

MMCp.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Narrow bands of intense shear deformation are commonly observed during high strain rate plastic
deformation of various materials, such as metals, polymers and geological materials, in such situations as

impact of projectiles and vehicles, high speed materials processing and forming. These bands are known as

adiabatic shear bands. Under favorable conditions, the formation of adiabatic shear bands is often fol-

lowed by ductile fracture. Hence, an in-depth understanding of the mechanisms leading to the formation

and development of adiabatic shear localization is of great practical interest.

Early observations of adiabatic shear bands can be traced back to Henri Tresca (1878) and Harold

Massey (1921) who described them as ‘‘adiabatic heat lines’’. Later, the adiabatic shear banding phe-

nomenon was dramatically demonstrated by Zener and Hollomon (1944) who noted that an increase of the
strain rate tends to change the deformation conditions from isothermal to adiabatic and macroscopically

homogeneous plastic deformation becomes unstable if the slope of the adiabatic stress-strain curve becomes

negative. Since then, extensive research efforts have been made to understand adiabatic shear banding, see

e.g, some review papers and monographs (Rogers, 1979; Shawki and Clifton, 1989; Bai and Dodd, 1992;

Meyers, 1994; Ramesh, 1994; Meyer et al., 1994; El-Magd, 1997; Perzyna, 1998; Wright, 2002). It is well
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recognized that the primary mechanism for the formation of adiabatic shear localization is the thermo-

mechanical mechanism. Due to interactions of microstructures of materials, the initial uniform plastic

deformation may become inhomogeneous. At high loading rates, the lack of time for global heat con-

duction combined with inhomogeneous plastic deformation will induce inhomogeneous heating which in
turn leads to local material softening and additional plastic deformation so that localized shear bands are

finally formed. Also, recent research works from Meyers and co-workers (Meyers et al., 2001; Xue et al.,

2002) have demonstrated that adiabatic shear bands often exhibit a self-organization pattern.

A number of authors have attempted to determine the critical conditions for the onset of adiabatic shear

banding. Since analytical solutions for initial boundary-value problems of dynamic simple shear are

available only for a limited number of special deformations and constitutive relations, the linear stability

analysis has been a useful tool for examining sufficient conditions and/or necessary conditions for adiabatic

shear instability. Clifton (1980, 1984) and Bai (1981, 1982) have proposed instability criteria derived from
one-dimensional linear stability analyses for simple shear plastic flow. Burns (1985) used a two-timing

asymptotic expansion, for a particular constitutive model, to include the time dependence of homogeneous

solution in the stability analyses. Anand et al. (1987) have presented a three-dimensional generation of the

linear perturbation analysis for the onset of shear localization. Molinari and Clifton (1987) and Shawki

(1992) obtained the critical conditions of adiabatic shear band formation for some particular cases by using

the non-linear stability analysis approach. Fressengeas and Molinari (1987) introduced a relative pertur-

bation method for adiabatic shear instability. In a series of works, Wright and co-workers (Wright and

Ockendon, 1996; Wright, 2003; Schoenfeld and Wright, 2003) developed scaling laws for adiabatic shear
banding.

Although the extensive research activities and a great progress in understanding adiabatic shear banding

have been made during the past several decades, it is noted that the great majority of the aforementioned

efforts were focused on monolithic materials. However, relatively limited works have been made to address

adiabatic shear banding in metal matrix composites (Lee et al., 1993; Dai et al., 2000). It is well known that

the microstructures of materials have a significant influence on the onset and evolution of adiabatic shear

band. This is especially true for composite materials. The different combinations of thermomechanical

properties constitute an environment for thermomechanical coupling between the phases and provide a
driving force for inhomogeneous deformation. For particle reinforced metal matrix composites (MMCp),

recent experimental investigations have demonstrated that the formation of adiabatic shear band exhibit a

strong size-dependent behavior. By making use of the split Hopkinson pressure bar (SHPB), Ling et al.

(1994, 2000) performed a series of impact compressive tests for 2124 aluminum matrix composites rein-

forced with three sizes of SiC particles. Their experimental results have shown that the formation of adi-

abatic shear bands in the composite reinforced with smaller particles is more readily observed than that in

the composite with larger particles for a fixed particle volume fraction. Furthermore, significant inhomo-

geneous plastic deformation patterns and steep plastic strain gradients across the localized zones in the
matrix were observed. This size-dependent adiabatic shear banding phenomenon was also demonstrated by

Zhou (1998a,b) in his numerical investigations on adiabatic shear banding in tungsten composites. All these

have naturally raised the following questions: what are the physical origin and mechanisms of this size-

dependent adiabatic shear banding behavior in MMCp? What is the role of the particle size or the strain

gradient in the formation of adiabatic shear banding in MMCp? Obviously, the previously developed

adiabatic shear banding theories that are based on the classical constitutive relations containing no internal

length scales, cannot answer these questions.

To address the size-dependent adiabatic shear banding behavior, the strain gradient term is required to
be incorporated into the conventional constitutive equation. Motivated by this point, Aifantis (1984, 1992,

1999), Zbib and Aifantis (1992), Zhu et al. (1995), and Sluys et al. (1993, 2000) developed some phe-

nomenological strain gradient plasticity theories by incorporating higher strain gradients (the terms of

Laplacian strain terms) into the flow stress or the yield function to examine the effect of the strain gradient
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on shear banding. Moreover, Batra (1987, 1990, 1999) generalized Green et al.’s (1968) work for dipolar

elastic–plastic materials to simple shear deformations of dipolar thermoviscoplastic materials to investigate

the strain gradient effect on the onset of shear bands. It is noted that the aforementioned investigations were

concentrated on monolithic materials. However, how to understand the effect of the strain gradient or the
reinforcing particle size on adiabatic shear banding in two-phase MMCp is still remained.

The objective of this paper is to elucidate the effect of the reinforcing particle size or the strain gradient

on the onset of adiabatic shear banding in particle reinforced metal matrix composites (MMCp). To this

end, the formation of adiabatic shear band in 2024 aluminum matrix composites reinforced with 15%

volume fraction of 3.5, 10, and 20 lm SiC particles, respectively, is investigated by using single-pulse split

Hopkinson torsion bar (SSHTB). To understand the experimentally observed size-dependent adiabatic

shear banding behavior, the linear stability analysis is made by making use of the strain gradient dependent

constitutive equation which was recently developed by Liu et al. (2003). From these experimental and
theoretical investigations, the effect of the reinforcing particle size or the strain gradient on the formation of

adiabatic shear banding in MMCp is revealed.
2. Experimental approach

2.1. Materials description and specimen preparation

The materials used in this study were 2024 aluminum alloy reinforced with 15% volume fraction of 3.5,

10, and 20 lm SiC particles respectively, which were processed by the powder metallurgy method. These

materials were in the form of cylindrical bar with a diameter of 20 mm. Before testing, the composites were

solution heat treated, i.e., heated up to 530 �C and kept this constant temperature for 55 min, then

quenched in cold water. Then, the materials were machined into thin-walled tubular specimens for dynamic

torsional testing.

2.2. Dynamic torsional shear tests

Because of the remarkable advantages of the split Hopkinson torsion bar (SHTB), such as the simple

stress state within a specimen, no wave dispersion and friction, this technique is the most widely used to
investigate adiabatic shear banding in various materials. For adiabatic shear band study, a critical need is to

reveal how the microstructure of materials evolves during the shear banding process and how this

microstructure evolution affects the macroscopic response of materials. However, the standard SHTB

cannot provide required quantitative post-mortem observation of the deformed microstructure due to its

loading wave reverberation. The stress wave reverberation resulting from the reflection of the loading wave

in the bar system imposes multiple loadings on the specimen and destroys the real deformed microstructure

after the first loading pulse. In order to solve this problem, a standard SHTB was modified in our labo-

ratory by Xue et al. (1995a,b) to eliminate the effect of loading reverberation. The main modification in-
volves two unloading bars attached to the two ends of the original main bar system, a new loading head and

a couple of specially designed clutches. Thus, the secondary loading waves were wholly trapped in the two

unloading bars and a complete single-pulse is introduced in the new bar system. In comparison with the

standard SHTB, we call the modified bar system as a single-pulse split Hopkinson torsion bar (SSHTB).

For our present study, the SSHTB was used to investigate the effect of particle size on the formation of

adiabatic shear banding in SiCp/2024 Al matrix composites. The schematic diagram of the SSHTB is shown

in Fig. 1. Before testing, calibration was carried out to examine the ability of SSHTB to eliminate wave

reverberation. The calibrating stress wave profiles on the standard SHTB and SSHTB are shown in Figs. 2
and 3, respectively. From Fig. 3, one can clearly see that only a single stress pulse is introduced in SSHTB.
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Fig. 2. A calibrating oscillogram of a standard split Hopkinson torsion bar (SHTB).
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Fig. 1. Schematic diagram of the single-pulse Hopkinson torsion bar (SSHTB).
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In the experiment, the short thin-walled tubular specimen, as shown in Fig. 4, was sandwiched between the
input and output bars, 25 mm in diameter. At first, a hydraulic pump was actuated to twist the front

portion of the input bar in order to store torsional energy between the rotating head and the clamp. The

twisting torque was monitored by a static shear strain gauge as shown in Fig. 1. As the clamp is abruptly

released, a torsional impulse propagates through the input bar and loads the specimen. At the interface, a

part of the torsional wave is reflected back to the input bar and the other part is transmitted into the output

bar. According to the elastic properties of the bars and the recorded wave profiles, the dynamic shear

stress–strain in the specimen can be measured.

The incident, reflected and transmitted pulses were measured by two sets of 90� rosette strain gauges
mounted on the input and output bars, respectively. Signals from the input and output bars were condi-

tioned by dynamic strain amplifiers, and a digital oscilloscope was used for data acquisition. Therefore, the

average shear stress, strain, and shear strain rate can be calculated according to the wave forms of
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Fig. 3. A calibrating oscillogram of single-pulse split Hopkinson torsion bar (SSHTB).

Fig. 4. Schematic description of the thin-walled tubular specimen.
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the incident torque, MiðtÞ, and the reflected torque, MrðtÞ measured by the gauges on the input bar and the

transmitted torque, MtðtÞ measured by gauges on the output bar as follows:
s ¼ MtðtÞ
2pr2sd

ð1Þ

_c ¼ 2rsC0

lsJbGb

ðMiðtÞ �MtðtÞÞ ð2Þ

c ¼ 2rsC0

lsJbGb

Z t

0

ðMiðtÞ �MtðtÞÞdt ð3Þ
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where ls, rs, d are the gauge length, mean radius, and thickness of the specimen, respectively. In addition,

C0, Jb, Gb are elastic wave speed, the polar moment of inertia, and the shear modulus of the bars,

respectively.

In the present work, a series of tests were performed on the SSHTB system under the same loading
duration and strain rate. The duration of the incident wave pulse was kept about 600 ls. The dynamic

strain rate was fixed at �1000 s�1. After testing, samples were cut for microscopic observations.
2.3. Experimental results

Dynamic shear stress-strain curves of both SiCpP/2024Al matrix composites and unreinforced 2024 Al

alloy are shown in Fig. 5. One of the prominent features in these curves is that, the shear flow stress of the

composites exhibits a size-dependent behavior. The smaller the SiCp particles are, the higher the shear flow

stresses of composites are. Among them, the composite containing 3.5 lm SiCp particles is of the highest
shear flow stress and the matrix material, 2024 Al alloy, is of the lowest shear flow stress under the same

loading condition. Furthermore, one can find from Fig. 5, the maximum shear strain for the composite with

3.5 lm SiCp particles is about 0.4, over which the stress–strain curve drops down and the specimen seems to

undergo failure. But at this shear strain, specimens of other three kinds of materials do not show any

evidence of macroscopic failure according to the stress–strain curves. This phenomenon demonstrates that

the small SiCp has not only increased the stress but also decreased the ductility of the composites. The

observation is only one aspect of the problem, from the microscopic observations of deformed samples we

found another aspect of the problem.
To investigate the formation of adiabatic shear band, we marked some well-proportioned lines on the inner

walls of the specimens before testing. After tests, the outside walls of the thin-walled tube specimens were cut

according to the distortion of the marked lines, and then finely polished and eroded to form observable planes

for microscopic examinations. Corrosive solution is 2.5%HNO3+1.5%HCl+ 1%HF+95%H2O. A close-up

observation of loaded samples was carried out using NEOPHOT-21 optical microscope. The typical

microscopic pictures are shown in Fig. 6. The micrographs demonstrate that under the identical loading

condition, the incorporation of reinforcing particles could block the deformation of matrix. Furthermore, one
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Fig. 5. A comparison of predicted shear stress strain curves with the experimental results for SiCp/2024 Al matrix composites under a

strain rate of 1000 s�1.



Fig. 6. Micrographs of deformation patterns in SiCp/2024 Al composites: (a) 3.5 lm SiC particle; (b) 10 lm SiC particle and (c) 20 lm
SiC particle.
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can find from the micrographs that the formation of adiabatic shear band in SiCp/2024Al matrix composites

depends strongly on the reinforcing particle size. Fig. 6a is a microscopic picture of the composite reinforced

with 3.5 lm SiC particles. From the picture, large plastic flow was localized in a very limited region and shear

band was obviously formed. In the shear band, a part of aligned particles has oriented along the large flow
direction. However, under the same magnification, the microscopic deformations in the other two composites
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containing SiCp particles of 10 lm and 20 lm do not show obvious localized shear bands, as shown in Fig. 6b

and c, respectively. In the composites containing SiCp particles of 10 lm, several small plastic flow regions

and localized flow trends were observed, but shear band was not formed finally. In the composites containing

SiCp particles of 20 lm, neither localized plastic flow trends nor shear bands were observed. Recent exper-
imental investigation from Ling et al. (1994, 2000) on SiCp/2124Al composites and the numerical simulations

form Zhou (1998a,b) on tungsten composites have also demonstrated that adiabatic shear bands can readily

be observed in a composite reinforced with smaller particles.

For MMCp, the incorporation of reinforcing ceramic particles (e.g. SiC particles) into the metal matrix

will induce an inhomogeneous plastic deformation in the matrix and this inhomogeneous deformation can

be characterized by plastic strain gradient. Our previous attempts have demonstrated that the smaller the

particle size, the higher the strain gradient. The size effect of MMCp can thus be characterized by the strain

gradient effect (Dai et al., 1999, 2001; Liu et al., 2003). According to this understanding, the aforementioned
experimental observation implies that the small reinforcing particles act as a deformation localization

stimulator, and a high strain gradient is a strong driving force for the onset of adiabatic shear banding in

MMCp. In next section, a linear stability analysis will be made to investigate the effect of the strain gradient

on the onset of adiabatic shear banding in MMCp. The role of the strain gradient in the strengthening

behavior of MMCp have been discussed before (Dai et al., 1999, 2001; Liu et al., 2003).
3. Linear stability analysis and discussions

3.1. Governing equations

It is noted that a strain gradient term is required to be incorporated into the equation of the flow stress

for characterizing the size-dependent adiabatic shear banding behavior of MMCp. Assume the strength-

ening for MMCp is mainly attributed to the deformation resistance induced by the reinforcing particles.

According to Taylor’s dislocation strengthening relation and the geometrically necessary dislocation

concept (Ashby, 1970; Meyers and Chawla, 1983), a strain gradient dependent constitutive equation for

two-phase MMCp was developed by Dai et al. (1999) and Liu et al. (2003). The form of this strain gradient

dependent constitutive equation is written as
rc ¼ rmð1þ l̂gÞm ð4Þ
where rm and rc are the flow stresses of the matrix and MMCp, respectively, m is a dimensionless constant,

and l̂ ¼ 3a2bðlm=rmÞ2 is a material length, a is dimensionless parameter, b Burgers vector, lm is the shear

modulus of the matrix material. While g is the effective strain gradient and its general expression is given by

(Fleck and Hutchinson, 1997; Gao et al., 1999a)
g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1giikgjjk þ c2gijkgijk þ c3gijkgkji

p
ð5Þ
where the three effective strain gradient constants ðc1; c2; c3Þ scale the three quadratic invariants for the

incompressible third rank strain gradient tensor gijk. From continuum plasticity point of view, the effective

strain gradient g measures the density of geometrically necessary dislocations that are required for com-

patible deformation of various parts in materials (Gao et al., 1999b). For MMCp, these three constants

were determined by three dislocation models consisting of pure torsion, plain strain bending, and two-
dimensional axisymmetric cell and given by (Liu et al., 2003)
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dp
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þ 1

6
;

ð6Þ
where fp and dp are the volume faction and diameter of particles respectively, and l is a geometrical factor

of unit order with length scale. One can see clearly from Eqs. (5) and (6) that both the size and the volume

fraction of the reinforcing particles exert an influence on the strain gradient, and the smaller the particle size
(particle diameter dp) is, the higher the strain gradient is. If fp ¼ 0, the result given by Eq. (6) is turned

back to that of monolithic materials case (Fleck and Hutchinson, 1997; Gao et al., 1999), i.e., c1 ¼ c3 ¼ 0,

c2 ¼ 1
4
. It is noted that if the strain gradient independent flow stress of the matrix ðrmÞ is known, the strain

gradient-dependent flow stress of two-phase MMCp ðrcÞ can readily be obtained from Eq. (4). It is

seen from Eqs. (4)–(6) that the strengthening effect due to introducing the particles into the metal matrix

can be characterized by ðrc=rmÞ, which is controlled by the strain gradient g and the characteristic

microstructural length l̂. Furthermore, for MMCp with a fixed volume fraction of reinforcing particles, one

can find that the smaller the particle size is, the higher the strain gradient is and the higher the strengthening
effect is.

For uniaxial compression case, the utility of Eqs. (4)–(6) was verified in our previous study (Liu et al.,

2003) by comparing the predicted stress–strain curves with the uniaxial-compression experimental results

for SiCp/2124Al and SiCp/A356 Al matrix composites. For the present torsional shear case, the comparison

of the predicted stress–strain curves obtained using the constitutive equations (4)–(6) and (20) with the

experimental results for SiCp/2024 Al matrix composites is shown in Fig. 5. From this figure, one can find

that the predicted results are slightly lower than those of the experimental results. However, the relative

errors at all strain graining points were less than 10%. These relatively low predicted values may be due to
the fact that some other secondary contributions to the strengthening, namely, the strain rate dependent

size effect, the thermal mismatch between particles and the matrix, are not incorporated into the model. In

spite of this, it is seen from the comparison that the predicted results are in agreement with the experimental

data quite well.

Now, we consider the dynamic thermomechanical deformation of a strain gradient-dependent ther-

movicoplastic two-phase MMCp under the following one-dimensional simple shearing:
x ¼ uðx; yÞ þ X
y ¼ Y
z ¼ Z

9=
; ð7Þ
where u is displacement, x; y; z are Eulerian and X ; Y ; Z are the Lagrangian coordinates. The governing

equations for the present problem can be written as
s ¼ f ðh; c; _c; gÞ ð8Þ

o2s
oy2

¼ q
o2c
ot2

ð9Þ

Ks
oc
ot

¼ qcv
oh
ot

� k
o2h
oy2

ð10Þ
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where Eq. (8) is the strain gradient dependent constitutive equation of MMCp, Eq. (9) is the motion

equation, Eq. (10) is the energy equation; with q is density, cv the specific heat, k the thermal conductivity, K
Taylor–Quinney coefficient, and g the effective shear strain gradient. In comparison with the classical

thermoplastic shear instability analysis presented by Bai (1982), the key issue involved in the present scheme
is that the strain gradient term is incorporated into the constitutive equation. Hence, the effect of the strain

gradient on adiabatic shear banding can be investigated.

3.2. Linear stability analysis

We examine the effect of the strain gradient on the onset of adiabatic shear instability of MMCp

characterized by Eqs. (8)–(10). To this end, the linear perturbation method is used for this system of

governing equations. Following Bai (1982), we impose a perturbation ðc0; s0; h0Þ on the smoothly developing
homogeneous state ðc0; s0; h0Þ, which is a solution of Eqs. (8)–(10), such that
fc; s; hg ¼ fc0 þ c0; s0 þ s0; h0 þ h0g ð11Þ

fc0; s0; h0g ¼ fc�; s�; h�geatþiky ð12Þ
and assume that ðc0; s0; h0Þ vary very slowly with time as compared to ðc0; s0; h0Þ. Whereas ðc0; s0; h0Þ are the
fluctuation quantities departing from the uniform state, and ðc�; s�; h�Þ are the magnitudes of the pertur-

bation, a is the rate of growth and k is the wave number. It is well known that the onset of adiabatic shear

instability is determined by the sign of the real part of a (Bai, 1982; Zhu et al., 1995).
Substituting Eqs. (11) and (12) into Eqs. (9) and (10) and differentiating the constitutive equation (8)

leads to
½qa2 þ ðQ0 þ R0aþ ikS0Þk2�c� � P0k2h� ¼ 0

½Ks0aþ K _c0ðQ0 þ R0aþ ikS0Þ�c� � ½K _c0P0 þ qcvaþ kk2�h� ¼ 0

�
ð13Þ
where
Q0 ¼
os
oc

� �
0

R0 ¼
os
o _c

� �
0

P0 ¼ � os
oh

� �
0

S0 ¼
os
og

� �
0

9>>>=
>>>;

ð14Þ
The condition that the determinant of the coefficients of Eq. (13) should be equal to zero leads to the

following characteristic equation:
~a3 þ ½C þ ð1þ AÞ~k2�~a2 þ ½A~k2 þ 1� Bþ D�~k2~aþ ð1þ DÞ~k4 ¼ 0 ð15Þ
where the dimensionless variables are defined as
~a ¼ ka
cvQ0

~k2 ¼ k2k2

qc2vQ0

A ¼ cvR0

k
B ¼ Ks0P0

qcvQ0

C ¼ KkP0 _c0
qcvQ0

D ¼ ikS0
Q0

9>>>>>>>>=
>>>>>>>>;

ð16Þ
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It is clearly seen from Eq. (15), that if the strain gradient effect is neglected, i.e. D ¼ 0, the problem is

reduced to the strain gradient-independent thermoplastic shearing investigated by Bai (1982) and the

instability condition B > 1 is derived.

For the present strain gradient-dependent case, first, let us discuss the two extreme situations:
(i) For long wavelength ðk ! 0Þ, the solutions of the characteristic equation (15) are
a ¼ 0

a ¼ �KP0 _c0
qcv

)
ð17Þ
For this case, shear deformation is stable.

(ii) For short wavelength ðk ! 1Þ, the real part of the solution is
ReðaÞ ¼ �Q0

R0

ð18Þ
Obviously, ReðaÞ < 0, shear deformation is again always stable. However, there is a negative term

�ðB� DÞ~k~a2 in the spectral equation (15), the instability may occur at a specific set of wave numbers or

wavelengths. It is noted that the root of Eq. (15) with the largest positive real part will govern the instability

of the homogeneous solution, and is hereafter referred to as the dominant instability mode. For a fixed

strain gradient g, the real parts of the roots of Eq. (15) are functions of the wave number. To seek the

dominant instability mode, the wave number for which the corresponding ReðaÞ > 0 is maximum is needed

to be determined first. This can be solved by numerical calculations according to the given constitutive

equation of MMCp.
As an example, the SiCp/2024 Al matrix composites investigated in the present study is used as a model

material. SiCp particles remain elastic in the course of deformation, while 2024 aluminum matrix is as-

sumed to be a strain gradient-independent thermoviscoplastic material. According to our present experi-

mental results and the suggestion made by Li and Jones (1999), the constitutive behavior of 2024 aluminum

matrix can be characterized by the following Johnson–Cook type constitutive equation:
sm ¼ 1

�
� h� hr
hm � hr

�
rm0ffiffiffi
3

p
�

þ Eh

3
c

�
1

0
@ þ _cffiffiffi

3
p

D0

 !1=p
1
A ð19Þ
According to Eq. (4), the strain gradient-dependent thermoviscoplastic constitutive equation for MMCp can

be written as
s ¼ 1

�
� h� hr
hm � hr

�
rm0ffiffiffi
3

p
�

þ Eh

3
c

�
1

0
@ þ _cffiffiffi

3
p

D0

 !1=p
1
Að1þ l̂gÞm ð20Þ
where rm0 is the uniaxial tensile yield stress, and Eh is the plastic strain hardening modulus which can be

obtained by fitting the experimental result of the matrix. Data of the material to be used in numerical

calculation are: rm0 ¼ 255 MPa, Eh ¼ 145:2 MPa, D0 ¼ 6500 1/s, hm ¼ 638 �C, hr ¼ 20 �C, q ¼ 2800 kg/m3,

cv ¼ 921 J/kgK, k ¼ 121 W/mK, p ¼ 4, m ¼ 0:56. The verification of Eqs. (19) and (20) was shown in Fig. 5.

In our numerical analysis, the nominal shear strain rate _c0 ¼ 2000 1/s was used. As was discussed previ-

ously, we need to seek the wave numbers governing the largest real part of the root of Eq. (15). Fig. 7
presents the typical variations of ReðaÞ with wave numbers for three levels of strain gradients. It is seen

from Fig. 7 that there exists a specific wave number for which the corresponding ReðaÞ takes a peak value.
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Then, this specific wave number is incorporated into the characteristic equation (15) and the critical

instability strain can be calculated for the given strain gradient and characteristic length scale. Changing

the values of the strain gradient and the characteristic length scale and repeating the aforementioned

calculating process, the effects of the strain gradient g and the characteristic microstructure length scale l̂ on
the critical instability shear strain cc can be investigated. The calculated results are shown in Fig. 8. One can

see from Fig. 8 that the critical shear strain for the strain gradient-independent 2024 aluminum matrix

material is 0.50, which is very close to the experimental value, 0.52. As discussed above, incorporating the

reinforcing particles into the metal matrix will induce an inhomogeneous plastic deformation which is

characterized by the strain gradient, and the smaller the particle size is the higher the strain gradient is in the

material. From Fig. 8, one can furthermore find that the critical shear strain decreases as the strain gradient

increases. This means that the strain gradient provides a driving force for the onset of adiabatic shear

instability in a two-phase MMCp. Apparently, this analytical result is in accordance with the aforemen-
tioned experimental observations.

Now, let us discuss the role of the strain gradient in the formation of adiabatic shear banding in strain

gradient-dependent thermoviscoplastic MMCp. In the continuum mechanics viewpoint, it is well known,

for the usual gradient-independent thermoplastic adiabatic shear banding, the onset of the instability is the

outcome of the competition among the strain hardening, the strain rate hardening, and the thermal soft-

ening. For the strain gradient-dependent MMCp, the strain gradient joins the competition. Both the

experimental observation and the analytical result demonstrate that high strain gradient will promote the

onset of adiabatic shear instability in MMCp reinforced with small particles (dp < 10 lm). The reason is
that the composite with small particles is of higher flow stress than that for the large particle composite and

its dissipated plastic work is thereby greater than the large particle cases. This, in turn, causes a rapid

increase in temperature and produces thermal softening and promotes the onset of adiabatic shear banding.

In a dislocation dynamics viewpoint, Hirth and co-workers (Hirth, 1992; Kamat et al., 1991) proposed the

model of discontinuous tilt wall of edge dislocations, and predicted the effective stress to drive the for-

mation and propagation of shear band in MMCp. They found that the driving shear stress is inversely

proportional to the particle spacing. Whereas the average edge–edge spacing between particles in the

MMCp with small particles is smaller than that in MMCp with large particles if the volume fraction of the
reinforcing particle is kept fixed (Kamat et al., 1991, Dai et al., 1999). This means that the driving force for

the formation and propagation of shear band in MMCp with small particles is higher than that in MMCp

with large particles. Obviously, both viewpoints predict an identical role of reinforcing particles in the

formation of shear banding in MMCp.

According to the aforementioned discussions, we, therefore, conclude that small reinforcement particles

play a two-fold role in the deformation behavior of MMCp: strengthening flow stress and promoting the

onset of adiabatic shear banding. So, as an important engineering material, choosing a suitable size of

particles as the reinforcement is a key issue for the manufacture and the application of MMCp to high
speed deformation.
4. Conclusions

In this paper, the effect of the reinforcing particle size on the formation of adiabatic shear banding in

MMCp was investigated using a single-pulse Hopkinson torsion bar (SSHTB) and the linear stability

analysis was also made to capture the size-dependent adiabatic shear banding behavior. The results

demonstrate that the onset of the adiabatic shear banding depends strongly on the particle size and adi-

abatic shear band can be readily found in the composite reinforced with small particles. The analysis shows

that this size-dependence behavior can be characterized by the strain gradient effect, and the high strain
gradient provides a strong driving force for the formation of adiabatic shear banding in MMCp.
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