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Abstract. Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane
crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered.
The fundamental solution, which isthe response of point loading, isobtained. Then, stressintensity factor histories
of a general loading system are written out in terms of superposition integrals. The methods used here are the
Laplace transform methods in conjunction with the Wiener—Hopf technique.
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I ntroduction

Some dataon dynamic fracture measurements show that anumber of three-dimensional effects
are of sufficient importance to warrant further investigation. Freund (1971) first investigated
thereflection of Rayleigh wavestraveling on the faces of acrack and obliquely incident on the
crack edge. Achenbach and Gautesen (1977) solved the elastodynamic steady-state problem
for a semi-infinite crack under 3-D loading. Freund (1987) dealt with the case of incident
stress-wave loading, and some extensions have also been considered by Ramirez (1987) and
Champion (1988). Most recently, Li Xiang-Ping and Liu Chun-Tu (1994; 1995) published a
series of papers for 3-D elastodynamic crack problems. They presented the method that will
be employed in this paper to deal with the coupled Wiener—Hopf equations.

In this paper, a combined mode |loading problem is considered. That is, the dynamic stress
intensity factor historiesfor ahalf-plane crack extending uniformly in an otherwise unbounded
elastic body under a combined loading system are to be found. This problem is the three-
dimensional analogue of the plane strain problems solved by Fossum and Freund (1975). Due
to the fact that the phenomenaunder Il and 111 loading are combined in 3-D problems, 11 and
I11 loading cases cannot be easily treated separately in three-dimensional problems. One may
note in the results of this paper that both the Il and 111 loading can lead to both Il and 11
responses.

In the fundamental problem the crack is subjected to two pairs of suddenly applied point
loading, which are time independent and tend to tear and shear open the crack. The problem
yields two coupled Wiener—Hopf equations, which will be treated via the aforementioned
method used by Li et al. (1994). Finally, the stress intensity factors for general loading are
obtained by means of superposed integrals.
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Figure 1. The geometry of the elastic body.

Fundamental Solution

1. Statement of problem

Consider the elastic body containing a half-plane crack depicted in Figure 1. The body is
initially stress free and at rest. At time ¢ = 0, two pairs of point forces appear on the crack
tip tending to slide and tear open the crack separately. Then, while the crack tip movesin the
z-direction, the forces remain acting at the origin.

Two coordinate systems are employed in this paper as shown in Figure 1. It is assumed
that the crack tip passesz = O at time ¢ = 0. The moving o’ — £yz system trandlates at speed
v(v < cg) inthez or ¢ direction, and the crack edgeis on the z-axis of the moving coordinate
system. The relation between these two coordinate systemsis:

E=z—vt, y=y, z=2z.

Because this problem is antisymmetric about the plane y = 0, attention is restricted to the
upper half-space y > 0. The boundary conditions in terms of displacements and stresses in
the o — zyz coordinate system are;

oyy(2,0,2,t) =0,

ouy(2,0,2,t) = PLH (t)0(x)0(2), = < vt,

0y.(2,0,2,t) = P2H(t)0(2)d(2), =z <wt, 1)

tug(2,0,2,t) =0, x> vt,

uy(z,0,2,t) =0, x> vt,
where H (t) is the Heaviside step function and 6(z) is the Dirac delta function. The boundary
conditions listed above are valid for z € (—o0, 00) andt € (0, c0).

All theinitial conditions are zero.

This problem can be expressed in terms of the scalar dilatational wave potential ¢ and

the vector shear wave potential ¥ = (15, 1y,1,) (sSee Appendix A). The potentials ¢ and v
satisfy the following wave equations

0%
2 2
V¢—a WZO,

2 2
vzz/;—b?%T’f:o, for y > 0, @
V- =0,
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wherea = 1/¢q,b = 1/¢q, ¢q and ¢, are the velocities of dilatational wave and shear wave,
respectively.

It proves convenient to work with the moving coordinate system. Let d = 1/v, and
Equations (2) become, in the coordinate system (¢, v, 2):

2 2 2 2 2
‘9"5+8"5 (1 >8¢+2—ﬂ—a@=o,

o2 ' 022 062 1 T d otot ot?

Py Py 0% Vo 0% 3)
52 "oz T\ ") e 2 Vo = O

Oy | O, Oy

By +5, v : =0.

After being extended to the full range of ¢ the boundary conditions take the following
formsintheo’ — {yz system:

%  Pp P Pp P Pp.\
A(agz o T oz 2) + 2 (a " oyo- 8y8§> =0

(2 P P . Oy P

Oyo¢ + D2 0€? dy0z 8§3z> = P H(t)6(¢ + vt)o(z )+Umy’

2% 0%, 0%, 0%, 9%, @
(28@32’ o2 T Oy2 90z + 3585> = PH()3(E +v1)0(2) + oz,
op O, Oy  _
85 + (9 Oz = Uy ({,z,t),
09 Oy Oy
+8—§_ ay —Uz (é-JZJt)J

where i, A are the positive Lamé elastic constants. The superscripts + and — are used at this
p0|nt to indicate the half £-plane on which the superscribed function is non-zero. a+ and

o, are the unknown stresses on the haf-planey = 0, > 0. u, and u; arethe unknown
displacements on the half-plane y = 0,£ < 0. In the following parts of this article these
symbols are carried over into the transformed domain, where they are used to designate a
particular half-plane of analyticity.

2. Transform techniques

Transform techniquesare used here to solvethis problem. Thefollowing equationsare written
out in terms of the dilatational wave potential ¢. The shear wave potential can be worked out
in the same way.

First, the one-sided L aplace transform over time isintroduced. The parameter is s, and the
transformed function is denoted by a superposed hat

Hey o) = [ T e,y 2ty e dt. (5)
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For the present, s may be considered as areal positive parameter.
Second, the dependence on z is suppressed by introducing a two-sided Laplace transform
with parameter s¢. The transformed function is denoted by a superposed bar, i.e.

Hewes) = [ ey e d ©
Finally, atwo-sided transform over £ istaken with a parameter sn

(,y,,8) = | B(&,y, 5, 5) e de. @)
The domain of thistransform is (see Appendix B)

—az < Re(n) < a1 (8)
inwhich

+a2d + dla* + (a? — ¢?)(d? — az)]l/2

az1 = 72 ©)
and

—ap < ¢ < ag; ag = ad/(d2 — a2)1/2‘ (20)

In obtaining the above transform domain, s and ¢ are considered to be real for convenience.
The transform can be analytically continued in the complex s and ¢ planes.

The governing equations for the potentials are transformed into the following ordinary
differential equations

2P P
((jj? — §202® =0, ?j? — $*6°® =0, (11)
where
2 2
Oéz :az (1— g) —7’]2—§2, /62: bz <1— g) —7’]2—§2. (12)

Noting that the wave functions should bebounded asy — + o0, the solutionsto Equations(11)
are

A(n73g7 5) efasy’
S

where B(7,<,s) = (B, By, B).
The boundary conditions and the equation V - & = 0 are altered into

[b%(1 — n/d)? — 2n* — 2¢°|A — 23<B, + 260 B, = 0,

B(n,s,5) 44
(I)(T/ayagas) = w(ﬁay,GaS) = %e A Y, (13)

1
—277aA + 7]ng + B§By + (,62 - 772)Bz = E(E;y + E;y)u

1
206 A + (02 — *) B, + 1By + 15 B, = —;(E;Z +35), (14)

77A - 6BZ - §By = U.’;(nvgas)a
SA+nBy + BB, =U; (n,5,3),
nBy — ﬁBy +¢B, =0,
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where

Z;y =S fooo giy(§7 Sy S) e—sﬂ§ d§7 ZJZ =S foOO g;z (57 ) S) e—s77§ d§7

o _ o _
Up =2 [ Tesseid, Uo=2 [ Tgoge i, (9
— Pid — Pod
Yo = 1% =

Thetransformation over ¢ and ~ areimplicated here in the functions E;y, 5;, a, anda, . Set
¢ = iy with y isreal, we abtain

Ef+E = —ﬁX(mD(n)xm)u—, (16)
where
RS I
E+:[E+y], E :[E_y], R(n, i)
v v D(n) = | B(B2+1P—~?)

0 5| an

T B B
iy 1

R(n,iy) = da(n,iv)B(n,i7) (1> —¥?) + (1 = n/d)? — 20 + 29?2,
(16) isthe vector form of the two coupled Wiener—Hopf equations.

3. Wiener—Hopf technique

In this section the Wiener—Hopf technique is employed to solve the Wiener—Hopf equations
obtained in the previous section.
Function R is factored as (see Appendix C)

R(n,iy) = —k(n — c1)(n + c2)(n — d)?S4(n,i7)S— (n, iv), (18)

where

o 1 [ Ala(Fn,iv)| |B(Fn,17)| (0¥ =92\ dv
S(n, i) _eXp{_;/az,l arCtg< (1t v/d)2 — 202 + 272 vEn|’

+c2d 4 d[c¢* + (P + 7?) (d? — ?)]|Y?
€21 = P2 _ 2 ’

(19)
£b2d + d[b* + (b* + ~?)(d? — b?)]M/?
b2,l = d2 —_ bz )

k= — Lim R(”—’f’” = 41— a®/d®)Y2(1 — b2/d®)Y/2 — (2 — b?/d?)2.

n—00 77
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B(n,iv) can be factored as

B(n,iv) = \/%\/bl(m) —n\/bz(iv) + 1. (20)

Noting the factorization of (18) and (20), one completes the Wiener—Hopf factorization (see
Appendix D)

1 1
BTE™ — 3" + BTEt — (BTE™)|,_
n— | n—lvl{ ( =i}
1
= AU — BYEY)|,_., — A, (21)
A T e
where
P
E-——%p P,
n—d P,
+ -1 - 1
BT =[Di(n)] " X(m), A = —(m)X(n),
n =l
[ W1
D, = | ©n) ,
0 —Wa/ba+n
[ Waler —n)S—(n, iv) 0 (22)
D_: \/bl_T] s
L 0 —Way/b1+1
e WE e P g Vet
g = R CEEIERURS
N d B+ d B+
gr=-——" - ]
n—dn—=Wll_, n-hlln-d7 _

Now the left and right sides of this equation are analytic in the planes Re(n) > —ay and
Re(n) < a1, respectively. As already noted, each side is the unique analytic continuation of
the other into a complementary half-plane, and together the two sidesrepresent asingle entire
function. After some asymptotic analysis on each side of Equation (21), one can find that both
sides approach zero asn — oo in the respective half-plane. Hence, by Liouville's theorem,
the entire function represented by each side of Equation (21) is zero. Thus, one obtains

1
n— 1l

—pATUT = (BYE")|n=jy + 87,

1 +E+ — 1
n— vl n— vl

(23)

(BYE)|ypy + B — BTE".

1
n— 1l
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As dready known, U~ is analytic in the half-plane Re(n) < a1, so the singular point at
—|y| must be removed.
After some analysis similar to that employed by Li et al. (1994; 1995), one finds that

1 B { 1
_ = B+E+ _ + + , 24a
pn+ |yl n—lvl( Nl + 8 (249
2lvles - (BT)],—_
E+:A+l 1 2hle- (B ey 4 gt — L B+E], (24b)
7] &-e n— 1l
in which
1
e = , My = —Way /b2 + |7,
[ noan oy Mem Wil
& = [-Nz,isgn(7)N1, B~ =X(n)[D_(n)] 4, (25)
(1 + |vDS= (=], 87) L
Ni=W; , Ny = —Wa\/b1 + |7].
Vb1 + 7]

4. Stressintensity factor histories

Because the prablem is antisymmetric to the plane z = 0 if P, = 0 and symmetric to the
plane z = Owhen P, = 0, attention isrestricted to the half-space z > 0 in this section.
The stress intensity factor histories along the crack edge can be written out as

K||(Z,t) = gl-_igl V Zﬂfaxy(f,o,z,t),

(26)
Kyi(z,t) = Lim /2n0,.(£,0,2,1),
£—0t
The transformed stress intensity factors are
Ku(y,5) = Lim[5(£,0,, 5)v/2r€),
£—0t
_ - (27)
Kui(v,s) = Lim[5y.(£,0,v,s)v/2r¢].
£—0t
Using Abel’s theorem on the asymptotic properties of transformed terms one gets
= 1 .
Ki(y,s) = = Lim [ V251 Z;y(na 0,7, 3)]7
§ N—00 (28)

= 1 .
K|||(’)’,S) = gnl-_'g‘o[v 2377 Egz(naoava 3)]

Thus, utilizing asimilar technique used by Li et a. (1994; 1995), one obtains

(E\Il(v,s)>:\ﬁlwl 0]
Kui(v,s) sL 0 W

fFrarmAN00 +aoav: 1197/ 1007 Q- E9 1 7 n 7
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2lyled B;r:d B;:|’Y|

: - P—(Bf, —B", )P
X<ez-elez (In|+d 2] ) P Brea = Bl
_d

d— |yl

(29)

After relaxing the constraint that v is real, the inversion of the above transformed stress
intensity factors over z gives

R\H(Z,S) —i 00+70t [?||(’)/,3)] o
[I/(\m(z,s)] 2 /oomi [E”(%S)J exp(isyz) dy, (30)

where Yo € (—bo, bo).
Then, one obtains

— 1 /s [
Ki = =/
I 7r\/;/bo
2 .
2ud<%°+%\/u2—bg+iu>
x < 2Re

b(d — iu)g(iu)

2
P e
d—iu <%§+C_£\/cg_7+d> Si(d, —u)

f(w)

+21Im (dPl — uPz) e *“* du,

(314)
— 1 [s [
Ky = ;\/;/bo
2ud< \/c —u —i—zu)
21
e b(d —iu)g(in)
. bO ZbO 2 .
S (iu, —u)\/ 1T —/u? — b§ + iu
X f(uw)
+21m (uPy + dP%) e 5% du, (31b)

d
d—iu [p2
\/%+zbo / —b2+d
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where
b(L = /) (% + B fu2 = B i)
flu) = —
(5 +2/F—w+d) Ssd,—u)(d+ in)

N

b
! oy/uz—bz—i-d

W—"
N (AP — uPy)

2
i 2k (—%’ + 9\ /cd—u?+ zu) S_(—iu, —u)(uPy + dP)

— , (329)
b(d + iu)\/ + %o fu2 — 3 +d
g(iv) = (1 —b%/d?) (b + iu)(ba + iu)
db22 (c1 + iu)(c2 + iu) Sy (iu, —u) S_(—iu, —u) (32b)

and by = db/v/d? — b2 and cp = cd/ vV d? — 2.

In order to be able to apply the convolution theorem for Laplace transforms, I/(\” and I?...
must be written out as the products of two such transforms. One must introduce two other
functionsto rectify the order of s

Ku(zt) = 22250 =0
8H8t t 33
K|||(Z7t) = 3('2’ )7 H3(Z7t) =0,
ot
Thus,
Ki(z,s) = sHa(z, ), Kii(z,s) = sHa(z, s). (39
If let
Mﬂ:_w<w <” +0>
d"?k
+ 2 dbo . v 2447
2
(;l? Y 'LT) Si(ir,m)S_(iT,T) (35a)
o ¢

b’2 (——+b,\/ +w) \/d—l,+bl,\/72—1+d'
<dbo + CO\/7+d'> Si(d's—7)

falr) = (d'Py — 7P)
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2
,d’zla; <_dc_l?0 + C—COVC'2 — 72 +i7‘> S_(—iT,—T)(TPl + d’Pz)
—1
2 -
v JE+ a1+

whered' = d/bo, b = b/bo and ¢ = Co/bo.
K and K, can be written out as

v2 o T
K = 732—/
(ml2])%2 0T Jy

2d' T (d—l, + ﬁm—k iT)
x ¢ Re (T

: (35b)

(d? +72)g1(7)

¢ NFiVP o1+ ddP—1P)
1 __ 5 2
d —ar (dc—,fo'*—c—fm"‘d') S (d,—7)

+Im

dr
T—1T1

/I
Ky = —32—/
(m]2])3/2 0T Ja

2
2r (i + 9VET=r +ir) 8,67,
(d”? + 72)g1(T)

X

H(T — 1), (363)

X< Im

fa(7)

d (tP1+ d'Pz)

+Im I .
_ZT\/d—l,—l-#\/Tz—l—i-d’

X

——H(T 1), (36b)

where

t U
= — T pr— .
bo| 2|’ bo| |

(36) is valid for z > 0. In order to get the stress intensity factors for those points that
satisfy z < 0, one should utilize the symmetric and antisymmetric condition mentioned at the
beginning of this section.
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5. Resultsand discussion

One can note in the Equations (36a,b) that the responses of P, and P, are coupled together.
That is, I1 and I11 responses cannot be separated in 3-D problems.

One useful check on the results obtained is that they should reduce to the stress intensity
factor historiesfor thetwo-dimensional lineload problem solved by Fossum and Freund (1975)
and Freund (1990) when integrated over therange —oo < z < oo. (Here we should mention
againthat Il and Il responses can be separated only in these 2-D problems.) If thisintegration
is performed on (30) the results are

7 d—c P

(A” ) _ 2| Vd=b5(d0) | (37)

S
KIII P2 /d_b
Theninvert (37) over time

f{\ " d—c Pl

(A”(z’ )>:— 2 | Vd=05+d,0) |, (38)
Ki(z,1) mt PoJd—D

This agrees with the results obtained by Fossum and Freund (1975) and Freund (1990).
A numerical integration of the SIF is now carried out. Before the calculation, the functions
S (n,ivy) and S_(n, i) are written out in amore convenient way. Taking the substitutions

w? = (v¥ = 7%) /(L £ v/d)?, (39)
leadsto
b 20,02 _ 2\1/2(32 _ . 2\1/2
si(n,w):exp{—% [ [4“’ ] ]f(w,m)dw}, (40)

where

dw(d? + e(w,iv))?

(o, (@ — w2)(d(elw,i7) = v?) £ 7( — wd) 4D

f(wv if)’) =

FrarmAN00 +av: /11971007 Q- LE9 1 7 nmn 11
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Figure 2a. The scaled stress intensity factor histories K, = (7|z|)¥ 2Ky /v2 and K3 = (7|z|)¥*Ku/V/2 vs.
T = t/(bo|z|) for the fundamental solution when P1 = 1, P, = O for arelatively short period of time.

inwhich

e(w, i) \/w ) + d?2. (42)

In this paper the scaled stressintensity factor histories (7| z|)¥2 Ky /v/2 and (|2|)¥/? K1 /v/2
are calculated and plotted against scaled time 7' = ¢/bg|#| for various values of ¢/d with
Poisson’'sratio v = 0.3 (b = 1.87a, ¢ = 2.02a).

From Figure 2 one can find that, for any value z > 0, the stress intensity factors are zero
up until thearrival of thefirst shear wave. Thefirst dilatational wave has no contribution to the
stress concentration factors because the contribution from thefirst dilatational wavestraveling
in the upper and lower half-spaces are canceled out in the case along the crack front. The
reason for thisis that the driving forces for these waves are in opposite direction.

Theenergy that first Rayleigh wave carriesis so large that it causesa singular changeinthe
stresslevel uponitsarrival at the crack front. One may notice that the integrandsin Equations
(363, b) have an order of 1/7, therefore the singularity that the stressintensity factors haveis
logarithmic singularity.

Upon the arrival of the Rayleigh wave the curvesturn down sharply. The so-defined scaled
stressintensity factors K» and K3 change about 0.2 — 1.1 in just about 0.02 normalized time.
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Figure 2b. The scaled stress intensity factor histories K, = (7|z|)¥2Ki/v2 and K3 = (7|z|)**Ku/V/2 vs.
T = t/(bo|z|) for the fundamental solution when P1 = O, P, = 1 for arelatively short period of time.

After that, the curves gradually rise. The factorswill go to zero astime approachesinfinity,
but this property varies largely with the ratio ¢/d. In some cases the curves go to zero much
slower, whilein other casesthey go somewhat quicker. That is, the velocity at which the crack
travels and the property of the material in conjunction have an important influence on the SIF
historiesin this problem.

The curves of this problem have some different properties from those of the | loading
case for 3-D problem solved by Champion (1988) and the Il and 111 loading casesin the 2-D
problems obtained by Fossum and Freund (1975) and Freund (1990). In the | loading case of
the 3-D problem, the curve has no downward movement at the moment of the arrival of the
Rayleigh wave. It continues to rise behind it and in time returns to zero. In the 2-D problems
the singular pointsat the arrival of the Rayleigh wave have disappeared anyway and the curves
go on smoothly after the first shear wave.

General Loading

Similar to those obtained by Freund (1972) for the mode | plane strain problem, the solutions
for general combined mode loading are written out as a superposition integral of those

fFrarmAN00 +av: /11971007 Q- E9 v 7 nmn 19
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Figure 2c. The scaled stress intensity factor histories K> = (|z|)¥2Ku/v2 and K3 = (|z])¥ 2K /2 vs.
T = t/(bo|z|) for the fundamental solution when P, = 1, P, = 1 for arelatively long period of time.

obtained in the previous section, with the fact that the effects under Il and 111 loading are

coupled together.
Suppose that the crack is stationary for ¢ < 0 under equilibrium loading, with a stress

distribution given by

ny(a;,O, 2,’) = _Pl(.’I),Z)
{ 0yz(2,0,2) = —Pa(x, 2) (43)

on the half-plane y = 0 ahead of the crack. Beginning at time ¢ = 0, the crack movesin the
positive z-direction at speed v, and creates new stress-free surfaces. Then, the results may be
considered by superposingadynamicfield created by imposing traction P;(z, z) (1 = 1,2,0 <
x < vt,—o0 < z < o0) on the newly created crack faces and a static field corresponding
to the equilibrium load. The solution to the dynamic field can be obtained as follows in the

integral form.
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If thedistribution P;(x, z) (i = 1, 2) isknown, the full dynamic stressintensity factors can
be written out as

o0 vt
KPy(z,1t) :/ /0 Kyp(z — 2t —2' fv)Pr(2, 2") da’ d2’

00 vt
—1—/ / Ky(z — 2t — 2’ Jv)Pa(2', 2') d2’ d7/,
—00 J0
00 vt (44)
KPy(z,t) = / /0 Kap(z — 2t — 2’ Jv)Pr(2, 2") da’ d2’

00 vt
—1—/ / Ka3(z — 2/t — ' Jo)Pa(a', 2") da’ d2'.
—o0 J0

Here K P (z,t) and K P (z, t) arethe stressintensity factor histories of this general loading
distribution. And K;(z,t) (i = 22,23, 32,33) provide weights for the general impact |oads
defined above.

Thisformulation may beuseful for the numerical computation for agiven stressdistribution.
However, if acalculation for aspecific distribution is desired, it is advisable to get aternative
integral formsfor (44).

Now consider a specific traction distribution

Py(z,
l 1 2’)]:[?1] for 0 <z < wt,—2zp < 2z < 20, (45)
Pz(fE,Z) p2

where p; and p, are constants.
The stress concentration factors of this particular traction distribution can be written out as

K Py (z,t) = p1ikoa(z,t) + pok2s(z,t),

(46)
KPy(z,t) = p1kz(z,t) + pokas(z, t).

The solution to this problem can be obtained by superposing the concentrated line loads, i.e.
vt
ki(z,t) = / K (2t —a' [v)de!, i—22 23,3233 (47)
0

where K (z,t) is the stress intensity factor for the unit line load of finite length passing
through the crack tip at time ¢ = 0. And K7 (z,t) may be written out as
Kizt) = [ Ki(z—#,t)d. (48)

—20

Using (30) one can get

Rilz,s) = = (f)muz,s), (49)

i \ 2
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£,
N

Figure 3.
where
1
I(z,s) = ;[J(z + 20,8) — J(z — =0, s)],
. (50)
so+001 —
I = [T Wewa, g =[5 Rilss)
Sp—00t S 2
Then, after some calculation, one obtains
2m1Q(0) — 2iJ1(x, s), > 0,
J(z,s) = ?ZQ( )~ 2ihles), @ (51)
2iJ1(—x, s), xz <0,
where
Ji(z,5) = / Im [M] e gy, (52)
bo U
Asin the previous section one only needsto take care of thepartin z > 0
1/2 1/2
N - <;> {mQ(0) — J1(z + z0,8) — J1(z0 — 2,5)}, 2z < 20,
K/ (z,) = 1 on1/2 (53)
p <g> {J1(z — 20, 8) — J1(z0 + 2, 5)}, z > 20.
Itisvery clear that thereisajumpin I/(\Z* az =z
— 1/2 ) ;
AR (20,5) = ~ <3> {2/ Im {M} du—wQ(O)} (54)
T \S bo U

but by considering theintegration of ¢(Q(<)/s) ds on the contour of Figure 3, one knows that
AK; =0.
Inverting Equation (53) one obtains

%\/E(WQ(O)\/E — J2(20 — z,1) — J2(20 + 2, 1)), 2 < 20, (553)
ki(zat) =
%\/E(JZ(Z_ZOJ) —J2(Zo+Z,t)), z > 20, (55b)
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Figure4a. Thedimensional integrals J;(\) vs. A when ¢/d = 0.2.

where
t/w Q(u +10)
=2 Im|——————=|\/t/z — .
Jo(z, ) VT . m [ " ] t/z —udu (56)
Here, we define anon-dimensional integral .J;(A) in the following form
sy = 2@t 5 330 33, (57)

- 2Jxzbo | zbo’

Let us analyze Equation (55) in some more detail. Thefirst term in (55a) represents the stress
intensity factor history for a distribution of the same strength p1 and p, with infinite extent in
the z-direction. The second and third terms are corrections which take into account the finite
distribution of thetraction in the z-direction —they may be considered to correspond to waves
emanating from the boundaries z = +zq of the traction distribution on the crack edge. For
z > 20, k; may bethought of asthe superposition of two waves centered at the pointsz = +zg
on the crack line.

InFigure4theintegrals J;(\) (i = 22,23, 32, 33) are plotted against A for different values
of ¢/d with Poisson’s ratio v = 0.3 (b = 1.87a,c¢ = 2.02a). We can see that, unlike the
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Figure 4b. Thedimensional integrals J;(\) vs. A whenc/d = 0.4.

resultsin the previous section, there is no singular point in the stressintensity factor when the
Rayleigh wave reaches the fixed point z (herealso z > 0).

The results for the points z < 0 can be obtained by the symmetric or antisymmetric
conditions. Thiscompletesthe analysisof the three dimensional stressintensity factor histories
for the particular applied traction distribution (45). For anumber of other traction distributions
results could be derived in the same way.

Conclusion

Utilizing the Laplace transform methods together with the Wiener—Hopf technique, we solved
thell and 11l combined mode constantly propagating crack problem. In dealing with the two
coupled Wiener—Hopf equations, we utilized a method that was used by Li et al. (1994).

We found out that the first dilatational wave has no contribution to the stress intensity
factors K, and K);;. Thereason for thisisthat the first dilatational waves caused by the point
forces in the upper and the lower half-spaces are canceled aong the crack front. The stress
intensity factors are zero up until the arrival of thefirst shear wave. In the case of point forces,
upon the arrival of the Rayleigh wave, when the curves turn down sharply, the stressintensity
factors have alogarithmic singularity. This singularity is caused by the great energy that the
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Rayleigh wave carries. After that the curves gradually rise. The factorswill go to zero astime
approachesinfinity.

After thefundamental solution, aparticular traction distribution for the same crack problem
was analyzed. We found that, unlike the results in the point forces loading problem, there is
no singular point in the stress intensity factor for the distributed loading problem.
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Appendix A
The motion of the body is governed by Navier's equation:

d9%u

where A and ;. are Lamé constants.
Based on the Stokes—Helnholtz resolution theorem the displacement field can be decom-
posed as follows

u=Vep+Vxy (A.2)
and 1) should satisfy
V- =0. (A.3)

Substituting (A.2) into (A.1) one obtains

¢ R,
v (cgvz - W) +V x <c§v2 — 5z | =0 (A.4)

If we choose ¢ and 1 as solutions to Equation (2), the above equation will be satisfied
identically. The completeness of such a solution to Equation (A.1) was given by Somigliana
(1892) and Duhem (1898; 1900) independently.

Appendix B

It issufficient to take ¢ asthefollowing function in considering the convergenceof the Laplace
transform (6)

$(&,y, 2,t) = H[t?/a® — (£ + vt)® — y* — 27]. (B.1)

Considering the transform of this function, one finds that the convergent domain of this
transformis

—ag < Re( < ap. (B.2)

Then consider ¢ asarea parameter in this range at present. The transform may be continued
into its convergent domain in the complex ¢ plane when necessary.
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After taken the transform (7), utilizing the step function defined above, one may find out
the convergent domain of (7) is (8).
Appendix C

Function R has four roots in the transformed domain. Theserootsare d, d, +c1, —co.
Consider afunction S defined by

R(n,iv) (1)

) = = e+ el — 7

Function S has neither poles nor zeros in the n-plane. The only singularities it has are those
branch points of functions « and 3. One may note that the branch cuts of all functions
considered here are taken to lie on the real axis outside of the strip of analyticity, —a, <
Re(n) < a1, of the transforms. Function S approaches unity as || — co. Because S has all
these properties, it can be factored as

S(n,1y) = S4(n,i7)S-(n, 7). (C.2)
Thus, R was factored as Equation (18).

Appendix D

The Wiener—Hopf factorization can be completed as follows.
Using the factorization (18) and (20) one may obtain

ET+E =-—pATA U, (D.1)
inwhich
1
t— = X(n\D.(n). (D.2)

Multiplying Equation (D.1) with matrix [A*]~1 gives

1 _
— [BYE™ +{BTE" — (BYE")|;—y }]
= AU ! BTET D.3
Then one gets
1 B-I-E— + 1 B-I-E-I- B-I-E-I-
n—l ATt = (BT =i}
o 1
=—pA U — = |’Y| (B+E+)|n:|7| — ﬂ+. (D.4)
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