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Stress intensity factor histories of a steadily propagating crack
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Abstract. Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane
crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered.
The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories
of a general loading system are written out in terms of superposition integrals. The methods used here are the
Laplace transform methods in conjunction with the Wiener–Hopf technique.
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Introduction

Some data on dynamic fracture measurements show that a number of three-dimensional effects
are of sufficient importance to warrant further investigation. Freund (1971) first investigated
the reflection of Rayleigh waves traveling on the faces of a crack and obliquely incident on the
crack edge. Achenbach and Gautesen (1977) solved the elastodynamic steady-state problem
for a semi-infinite crack under 3-D loading. Freund (1987) dealt with the case of incident
stress-wave loading, and some extensions have also been considered by Ramirez (1987) and
Champion (1988). Most recently, Li Xiang-Ping and Liu Chun-Tu (1994; 1995) published a
series of papers for 3-D elastodynamic crack problems. They presented the method that will
be employed in this paper to deal with the coupled Wiener–Hopf equations.

In this paper, a combined mode loading problem is considered. That is, the dynamic stress
intensity factor histories for a half-plane crack extending uniformly in an otherwise unbounded
elastic body under a combined loading system are to be found. This problem is the three-
dimensional analogue of the plane strain problems solved by Fossum and Freund (1975). Due
to the fact that the phenomena under II and III loading are combined in 3-D problems, II and
III loading cases cannot be easily treated separately in three-dimensional problems. One may
note in the results of this paper that both the II and III loading can lead to both II and III
responses.

In the fundamental problem the crack is subjected to two pairs of suddenly applied point
loading, which are time independent and tend to tear and shear open the crack. The problem
yields two coupled Wiener–Hopf equations, which will be treated via the aforementioned
method used by Li et al. (1994). Finally, the stress intensity factors for general loading are
obtained by means of superposed integrals.
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Figure 1. The geometry of the elastic body.

Fundamental Solution

1. Statement of problem

Consider the elastic body containing a half-plane crack depicted in Figure 1. The body is
initially stress free and at rest. At time t = 0, two pairs of point forces appear on the crack
tip tending to slide and tear open the crack separately. Then, while the crack tip moves in the
x-direction, the forces remain acting at the origin.

Two coordinate systems are employed in this paper as shown in Figure 1. It is assumed
that the crack tip passes x = 0 at time t = 0. The moving o0 � �yz system translates at speed
v(v < cR) in the x or � direction, and the crack edge is on the z-axis of the moving coordinate
system. The relation between these two coordinate systems is:

� = x� �t; y = y; z = z:

Because this problem is antisymmetric about the plane y = 0, attention is restricted to the
upper half-space y > 0. The boundary conditions in terms of displacements and stresses in
the o� xyz coordinate system are:

�yy(x; 0; z; t) = 0;

�xy(x; 0; z; t) = P1H(t)�(x)�(z); x < vt;

�yz(x; 0; z; t) = P2H(t)�(x)�(z); x < vt;

ux(x; 0; z; t) = 0; x > vt;

uz(x; 0; z; t) = 0; x > vt;

(1)

where H(t) is the Heaviside step function and �(z) is the Dirac delta function. The boundary
conditions listed above are valid for z 2 (�1;1) and t 2 (0;1).

All the initial conditions are zero.
This problem can be expressed in terms of the scalar dilatational wave potential � and

the vector shear wave potential  = ( x;  y;  z) (see Appendix A). The potentials � and  
satisfy the following wave equations

r2�� a2@
2�

@t2
= 0;

r2 � b2 @
2 

@t2
= 0; for y > 0;

r � = 0;

(2)
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where a = 1=cd; b = 1=cs; cd and cs are the velocities of dilatational wave and shear wave,
respectively.

It proves convenient to work with the moving coordinate system. Let d = 1=v, and
Equations (2) become, in the coordinate system (�; y; z):

@2�

@y2 +
@2�

@z2 +

 
1� a2

d2

!
@2�

@�2 + 2
a2

d

@2�

@�@t
� a2 @

2�

@t2
= 0;

@2 

@y2 +
@2 

@z2 +

 
1� b2

d2

!
@2 

@�2 + 2
b2

d

@2 

@�@t
� b2@

2 

@t2
= 0;

@ y

@y
+
@ z

@z
+
@ x

@�
= 0:

(3)

After being extended to the full range of � the boundary conditions take the following
forms in the o0 � �yz system:

�

 
@2�

@�2 +
@2�

@y2 +
@2�

@z2

!
+ 2�

 
@2�

@y2 +
@2 x

@y@z
� @2 z

@y@�

!
= 0;

�

 
2
@2�

@y@�
+
@2 z

@y2 � @2 z

@�2 � @2 y

@y@z
+
@2 x

@�@z

!
= P1H(t)�(� + vt)�(z) + �+xy;

�

 
2
@2�

@y@z
+
@2 x

@z2 � @2 x

@y2 � @2 z

@�@z
+
@2 y

@�@y

!
= P2H(t)�(� + vt)�(z) + �+yz;

@�

@�
+
@ z

@y
� @ y

@z
= u�x (�; z; t);

@�

@z
+
@ y

@�
� @ x

@y
= u�z (�; z; t);

(4)

where �; � are the positive Lamé elastic constants. The superscripts + and � are used at this
point to indicate the half �-plane on which the superscribed function is non-zero. �+xy and
�+yz are the unknown stresses on the half-plane y = 0; � > 0. u�x and u�z are the unknown
displacements on the half-plane y = 0; � < 0. In the following parts of this article these
symbols are carried over into the transformed domain, where they are used to designate a
particular half-plane of analyticity.

2. Transform techniques

Transform techniques are used here to solve this problem. The following equations are written
out in terms of the dilatational wave potential �. The shear wave potential can be worked out
in the same way.

First, the one-sided Laplace transform over time is introduced. The parameter is s, and the
transformed function is denoted by a superposed hat

b�(�; y; z; s) = Z
1

0
�(�; y; z; t) e�st dt: (5)
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For the present, s may be considered as a real positive parameter.
Second, the dependence on z is suppressed by introducing a two-sided Laplace transform

with parameter s� . The transformed function is denoted by a superposed bar, i.e.

b�(�; y; &; s) = Z
1

�1

b�(�; y; z; s) e�s&z dz: (6)

Finally, a two-sided transform over � is taken with a parameter s�

�(�; y; &; s) =

Z
1

�1

b�(�; y; &; s) e�s�� d�: (7)

The domain of this transform is (see Appendix B)

�a2 < Re(�) < a1 (8)

in which

a2;1 =
�a2d+ d[a4 + (a2 � &2)(d2 � a2)]1=2

d2 � a2 (9)

and

�a0 < & < a0; a0 = ad=(d2 � a2)1=2: (10)

In obtaining the above transform domain, s and � are considered to be real for convenience.
The transform can be analytically continued in the complex s and � planes.

The governing equations for the potentials are transformed into the following ordinary
differential equations

d2�

dy2 � s2�2� = 0;
d2	

dy2 � s2�2	 = 0; (11)

where

�2 = a2
�

1� �

d

�2

� �2 � &2; �2 = b2
�

1� �

d

�2

� �2 � &2: (12)

Noting that the wave functions should be bounded as y ! +1, the solutions to Equations (11)
are

�(�; y; &; s) =
A(�; &; s)

s3 e��sy; 	(�; y; &; s) =
B(�; &; s)

s3 e��sy; (13)

where B(�; &; s) = (Bx; By; Bz).
The boundary conditions and the equation r � 	 = 0 are altered into

[b2(1� �=d)2 � 2�2 � 2&2]A� 2�&Bx + 2��Bz = 0;

�2��A+ �&Bx + �&By + (�2 � �2)Bz =
1
�
(��xy +�+xy);

2�&A+ (�2 � &2)Bx + ��By + �&Bz = � 1
�
(��yz +�+yz);

�A� �Bz � &By = U�x (�; &; s);

&A+ �By + �Bx = U�z (�; &; s);

�Bx � �By + &Bz = 0;

(14)
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where

P
+

xy = s
R
1

0 b�+xy(�; &; s) e�s�� d�;
P
+

yz = s
R
1

0 b�+yz(�; &; s) e�s�� d�;

U�x = s2
Z 0

�1

bu�x (�; &; s) e�s�� d�; U�z = s2
Z 0

�1

bu�z (�; &; s) e�s�� d�;

P
�
xy = � P1d

��d ;
P
�
yz = � P2d

��d :

(15)

The transformation over t and z are implicated here in the functions b�+xy; b�+yz ; bu�x and bu�y . Set
& = i
 with 
 is real, we obtain

E+ + E� = � �

�2 � 
2 X(�)D(�)X(�)U�; (16)

where

E+ =

"
�+xy

�+yz

#
; E� =

"
��xy

��yz

#
;

U� =

"
U�x

U�z

#
; X(�) =

"
� i


i
 ��

#
;

D(�) =

2
64

R(�; i
)

�(�2+�2�
2)
0

0 �

3
75 ;

R(�; i
) = 4�(�; i
)�(�; i
)(�2 � 
2) + [b2(1� �=d)2 � 2�2 + 2
2]2:

(17)

(16) is the vector form of the two coupled Wiener–Hopf equations.

3. Wiener–Hopf technique

In this section the Wiener–Hopf technique is employed to solve the Wiener–Hopf equations
obtained in the previous section.

Function R is factored as (see Appendix C)

R(�; i
) = ��(� � c1)(� + c2)(� � d)2S+(�; i
)S�(�; i
); (18)

where

S�(�; i
) = exp

(
� 1
�

Z b2;1

a2;1

arctg

 
4 j�(��; i
)j j�(��; i
)j (�2 � 
2)

b2(1� �=d)2 � 2�2 + 2
2

!
d�

� � �

)
;

c2;1 =
�c2d+ d[c4 + (c2 + 
2)(d2 � c2)]1=2

d2 � c2 ;

b2;1 =
�b2d+ d[b4 + (b2 + 
2)(d2 � b2)]1=2

d2 � b2 ;

� = � Lim
�!1

R(�; i
)

�4 = 4(1� a2=d2)1=2(1� b2=d2)1=2 � (2� b2=d2)2:

(19)

frac4099.tex; 5/12/1997; 8:52; v.7; p.5



52 Liu Chun-Tu et al.

�(�; i
) can be factored as

�(�; i
) =

s
d2 � b2

d2

q
b1(i
)� �

q
b2(i
) + �: (20)

Noting the factorization of (18) and (20), one completes the Wiener–Hopf factorization (see
Appendix D)

1
� � j
jB

+E� � �+ + 1
� � j
jfB+E+ � (B+E+)j�=j
jg

= ��A�U� � 1
� � j
j (B

+E+)j�=j
j � �+; (21)

where

E� = � d

� � d
P; P =

"
P1

P2

#
;

B+ = [D+(�)]�1X(�); A� =
1

� � j
jD�(�)X(�);

D+ =

2
64
W1


(�)
0

0 �W2
p
b2 + �

3
75 ;

D� =

2
64
W1(c1 � �)S�(�; i
)p

b1 � �
0

0 �W2
p
b1 + �

3
75 ;

W1 =
d
p
k

b 4
q

1� b2

d2

; W2 = � 4

s
1� b2

d2 ; 
(�) =

p
b2 + �

(c2 + �)S+(�; &)
;

�+ = � d

� � d

"
B+

� � j
j

#�����
�=d

P� d

� � j
j

"
B+

� � d
]

�����
�=j
j

P:

(22)

Now the left and right sides of this equation are analytic in the planes Re(�) > �a2 and
Re(�) < a1, respectively. As already noted, each side is the unique analytic continuation of
the other into a complementary half-plane, and together the two sides represent a single entire
function. After some asymptotic analysis on each side of Equation (21), one can find that both
sides approach zero as � ! 1 in the respective half-plane. Hence, by Liouville’s theorem,
the entire function represented by each side of Equation (21) is zero. Thus, one obtains

8>>><
>>>:
��A�U� =

1
� � j
j(B

+E+)jn=j
j + �+;

1
� � j
jB

+E+ =
1

� � j
j (B
+E+)j�=j
j + �+ �

1
� � j
jB

+E�:
(23)

frac4099.tex; 5/12/1997; 8:52; v.7; p.6



Stress intensity factor histories 53

As already known, U� is analytic in the half-plane Re(�) < a1, so the singular point at
� = �j
j must be removed.

After some analysis similar to that employed by Li et al. (1994; 1995), one finds that

U� = � 1
�

B�

� + j
j

�
1

� � j
j (B
+E+)j�=j
j + �+

�
; (24a)

E+ = A+
"

1
� � j
j

2j
je2 � (�+)j�=�j
j
e2 � e1

e1 + �
+ � 1

� � j
jB
+E�

#
; (24b)

in which

e1 =

"
M2

i sgn(
)M1

#
; M1 =

W1


(j
j) ; M2 = �W2

q
b2 + j
j;

e2 = [�N2; i sgn(
)N1]; B� = X(�)[D�(�)]
�1;

N1 =W1
(c1 + j
j)S�(�j
j; i
)p

b1 + j
j
; N2 = �W2

q
b1 + j
j:

(25)

4. Stress intensity factor histories

Because the problem is antisymmetric to the plane z = 0 if P1 = 0 and symmetric to the
plane z = 0 when P2 = 0, attention is restricted to the half-space z > 0 in this section.

The stress intensity factor histories along the crack edge can be written out as

KII(z; t) = Lim
�!0+

p
2���xy(�; 0; z; t);

KIII(z; t) = Lim
�!0+

p
2���yz(�; 0; z; t);

(26)

The transformed stress intensity factors are

cKII(
; s) = Lim
�!0+

[b�xy(�; 0; 
; s)p2��];

cKIII(
; s) = Lim
�!0+

[b�yz(�; 0; 
; s)p2��]:
(27)

Using Abel’s theorem on the asymptotic properties of transformed terms one gets

cKII(
; s) =
1
s

Lim
�!1

[
p

2s� �+xy(�; 0; 
; s)];

cKIII(
; s) =
1
s

Lim
�!1

[
p

2s� �+yz(�; 0; 
; s)]:
(28)

Thus, utilizing a similar technique used by Li et al. (1994; 1995), one obtains0
@ cK II(
; s)cK III(
; s)

1
A =

s
2
s

"
W1 0

0 W2

#
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�
*

2j
je1

e2 � e1
e2 �

0
@ B+�=d
j�j+ d

�
B�
�=j
j

2j�j

1
AP� (B+�=d � B+

�=j
j
)P

+

� d

d� j
j : (29)

After relaxing the constraint that 
 is real, the inversion of the above transformed stress
intensity factors over z gives

" cKII(z; s)cKIII(z; s)

#
=

s

2�

Z
1+
0i

�1+
0i

2
4 cK II(
; s)

cK III(
; s)

3
5 exp(is
z) d
; (30)

where 
0 2 (�b0; b0).
Then, one obtains

cKII =
1
�

r
s

2

Z
1

b0

�

8>><
>>:2 Re

2
664

2ud
�

b2
0
d + ib0

b

q
u2 � b2

0 + iu

�
b(d� iu)g(iu)

f(u)

3
775

+2 Im

2
664 d

d� iu

r
b2

0
d + ib0

b

q
u2 � b2

0 + d�
c2

0
d
+ c0

c

q
c2

0 � u2 + d

�
S+(d;�u)

(dP1 � uP2)

3
775
9>>=
>>; e�suz du;

(31a)

cKIII =
1
�

r
s

2

Z
1

b0

�

8>><
>>:2 Im

2
664

2ud
�

c2
0
d
+ c0

c

q
c2

0 � u2 + iu

�
b(d� iu)g(iu)

S+(iu;�u)

s
�b

2
0

d
+
ib0

b

q
u2 � b2

0 + iu

� f(u)

3
775

+ 2 Im

2
664 d

d� iu

(uP1 + dP2)r
b2

0
d + ib0

b

q
u2 � b2

0 + d

3
775
9>>=
>>; e�suz du; (31b)
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where

f(u) = �
b(1� b2=d2)

�
� b2

0
d + ib0

b

q
u2 � b2

0 + iu

�
�
c2

0
d
+ c0

c

q
c2

0 � u2 + d

�
S+(d;�u)(d + iu)

s
b2

0

d
+
ib0

b

q
u2 � b2

0 + d

� (dP1 � uP2)

�
i d2�

�
� c2

0
d
+ c0

c

q
c2

0 � u2 + iu

�
S�(�iu;�u)(uP1 + dP2)

b(d+ iu)

r
b2

0
d
+ ib0

b

q
u2 � b2

0 + d

; (32a)

g(iu) = (1� b2=d2)(b1 + iu)(b2 + iu)

+
d2�

b2 (c1 + iu)(c2 + iu)S+(iu;�u)S�(�iu;�u) (32b)

and b0 = db=
p
d2 � b2 and c0 = cd=

p
d2 � c2.

In order to be able to apply the convolution theorem for Laplace transforms, cKII and cKIII

must be written out as the products of two such transforms. One must introduce two other
functions to rectify the order of s8>><
>>:
KII(z; t) =

@H2(z; t)

@t
; H2(z; t) = 0;

KIII(z; t) =
@H3(z; t)

@t
; H3(z; t) = 0;

(33)

Thus,

cKII(z; s) = s bH2(z; s); cKIII(z; s) = s bH3(z; s): (34)

If let

g1(�) = �b02
 

1
d02

+

�
1
b0

p
�2 � 1 + �

�2
!

+
d02�

b02

 
� c2

0

db0
+
c0

c

p
c02 � �2 + i�

!

�
 
c2

0

db0
+
c0

c

p
c02 � �2 + i�

!
S+(i�; �)S�(i�; �) (35a)

f1(�) = �
b02
�
� 1

d0 +
i
b0

p
�2 � 1 + i�

�q
1
d0 +

i
b0

p
�2 � 1 + d0�

c2
0

db0
+ c0

c

p
c02 � �2 + d0

�
S+(d0;��)

(d0P1 � �P2)
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�id
02�

b02

�
� c2

0
db0

+ c0
c

p
c02 � �2 + i�

�
S�(�i�;��)(�P1 + d0P2)q

1
d0 +

i
b0

p
�2 � 1 + d0

; (35b)

where d0 = d=b0; b
0 = b=b0 and c0 = c0=b0.

KII and KIII can be written out as

KII =

p
2

(�jzj)3=2

@

@T

Z T

1

�

8>><
>>:Re

2
42d0�

�
1
d0 +

i
b0

p
�2 � 1 + i�

�
(d02 + �2)g1(�)

f1(�)

3
5

+Im

2
664 d0

d0 � i�

q
1
d0 +

i
b0

p
�2 � 1 + d0(d0P1 � �P2)�

c2
0

db0
+ c0

c

p
c02 � �2 + d0

�
S+(d0;��)

3
775
9>>=
>>;

� d�p
T � �

H(T � 1); (36a)

KIII =

p
2

(�jzj)3=2

@

@T

Z T

1

�

8>><
>>: Im

2
664

2d0�
�

c2
0

db0
+ c0

c

p
c02 � �2 + i�

�
S+(i�;��)

(d02 + �2)g1(�)
f1(�)

3
775

+Im

2
4 d0

d0 � i�

(�P1 + d0P2)q
1
d0 +

i
b0

p
�2 � 1 + d0

3
5
9>>=
>>;

� d�p
T � �

H(T � 1); (36b)

where

T =
t

b0jzj
; � =

u

b0jzj
:

(36) is valid for z > 0. In order to get the stress intensity factors for those points that
satisfy z < 0, one should utilize the symmetric and antisymmetric condition mentioned at the
beginning of this section.
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5. Results and discussion

One can note in the Equations (36a,b) that the responses of P1 and P2 are coupled together.
That is, II and III responses cannot be separated in 3-D problems.

One useful check on the results obtained is that they should reduce to the stress intensity
factor histories for the two-dimensional line load problem solved by Fossum and Freund (1975)
and Freund (1990) when integrated over the range �1 < z <1. (Here we should mention
again that II and III responses can be separated only in these 2-D problems.) If this integration
is performed on (30) the results are

 cKIIcKIII

!
= �

s
2
s

2
64

d� cp
d� b

P1

S+(d; 0)

P2
p
d� b

3
75 : (37)

Then invert (37) over time

 cKII(z; t)cKIII(z; t)

!
= �

s
2
�t

2
64

d� cp
d� b

P1

S+(d; 0)

P2
p
d� b

3
75 : (38)

This agrees with the results obtained by Fossum and Freund (1975) and Freund (1990).
A numerical integration of the SIF is now carried out. Before the calculation, the functions

S+(�; i
) and S�(�; i
) are written out in a more convenient way. Taking the substitutions

w2 = (v2 � 
2)=(1� v=d)2; (39)

leads to

S�(�; i
) = exp

(
� 1
�

Z b0

a0

tan�1

"
4w2(w2 � a2)1=2(b2 � w2)1=2

(b2 � 2w2)2

#
f(w; i
) dw

)
; (40)

where

f(w; i
) =
dw(d2 � e(w; i
))2

e(w; i
)(d2 � w2)(d(e(w; i
) � w2)� �(d2 � w2))
; (41)
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Figure 2a. The scaled stress intensity factor histories K2 = (�jzj)3=2KII=
p

2 and K3 = (�jzj)3=2KIII=
p

2 vs.
T = t=(b0jzj) for the fundamental solution when P1 = 1; P2 = 0 for a relatively short period of time.

in which

e(w; i
) =
q
w2(d2 � 
2) + d2
2: (42)

In this paper the scaled stress intensity factor histories (�jzj)3=2KII=
p

2 and (�jzj)3=2KIII=
p

2
are calculated and plotted against scaled time T = t=b0jzj for various values of c=d with
Poisson’s ratio � = 0:3 (b = 1:87a; c = 2:02a).

From Figure 2 one can find that, for any value z > 0, the stress intensity factors are zero
up until the arrival of the first shear wave. The first dilatational wave has no contribution to the
stress concentration factors because the contribution from the first dilatational waves traveling
in the upper and lower half-spaces are canceled out in the case along the crack front. The
reason for this is that the driving forces for these waves are in opposite direction.

The energy that first Rayleigh wave carries is so large that it causes a singular change in the
stress level upon its arrival at the crack front. One may notice that the integrands in Equations
(36a, b) have an order of 1=� , therefore the singularity that the stress intensity factors have is
logarithmic singularity.

Upon the arrival of the Rayleigh wave the curves turn down sharply. The so-defined scaled
stress intensity factors K2 andK3 change about 0:2� 1:1 in just about 0.02 normalized time.
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Figure 2b. The scaled stress intensity factor histories K2 = (�jzj)3=2KII=
p

2 and K3 = (�jzj)3=2KIII=
p

2 vs.
T = t=(b0jzj) for the fundamental solution when P1 = 0; P2 = 1 for a relatively short period of time.

After that, the curves gradually rise. The factors will go to zero as time approaches infinity,
but this property varies largely with the ratio c=d. In some cases the curves go to zero much
slower, while in other cases they go somewhat quicker. That is, the velocity at which the crack
travels and the property of the material in conjunction have an important influence on the SIF
histories in this problem.

The curves of this problem have some different properties from those of the I loading
case for 3-D problem solved by Champion (1988) and the II and III loading cases in the 2-D
problems obtained by Fossum and Freund (1975) and Freund (1990). In the I loading case of
the 3-D problem, the curve has no downward movement at the moment of the arrival of the
Rayleigh wave. It continues to rise behind it and in time returns to zero. In the 2-D problems
the singular points at the arrival of the Rayleigh wave have disappeared anyway and the curves
go on smoothly after the first shear wave.

General Loading

Similar to those obtained by Freund (1972) for the mode I plane strain problem, the solutions
for general combined mode loading are written out as a superposition integral of those
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Figure 2c. The scaled stress intensity factor histories K2 = (�jzj)3=2KII=
p

2 and K3 = (�jzj)3=2KIII=
p

2 vs.
T = t=(b0jzj) for the fundamental solution when P1 = 1; P2 = 1 for a relatively long period of time.

obtained in the previous section, with the fact that the effects under II and III loading are
coupled together.

Suppose that the crack is stationary for t < 0 under equilibrium loading, with a stress
distribution given by

(
�xy(x; 0; z) = �P1(x; z)

�yz(x; 0; z) = �P2(x; z)
(43)

on the half-plane y = 0 ahead of the crack. Beginning at time t = 0, the crack moves in the
positive x-direction at speed v, and creates new stress-free surfaces. Then, the results may be
considered by superposing a dynamic field created by imposing tractionPi(x; z) (i = 1; 2; 0 <
x < �t;�1 < z < 1) on the newly created crack faces and a static field corresponding
to the equilibrium load. The solution to the dynamic field can be obtained as follows in the
integral form.
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If the distribution Pi(x; z)(i = 1; 2) is known, the full dynamic stress intensity factors can
be written out as

KPII(z; t) =

Z
1

�1

Z vt

0
K22(z � z0; t� x0=v)P1(x

0; z0) dx0 dz0

+

Z
1

�1

Z vt

0
K23(z � z0; t� x0=v)P2(x

0; z0) dx0 dz0;

KPIII(z; t) =

Z
1

�1

Z vt

0
K32(z � z0; t� x0=v)P1(x

0; z0) dx0 dz0

+

Z
1

�1

Z vt

0
K33(z � z0; t� x0=v)P2(x

0; z0) dx0 dz0:

(44)

Here KPII(z; t) and KPIII(z; t) are the stress intensity factor histories of this general loading
distribution. And Ki(z; t) (i = 22; 23; 32; 33) provide weights for the general impact loads
defined above.

This formulation may be useful for the numerical computation for a given stress distribution.
However, if a calculation for a specific distribution is desired, it is advisable to get alternative
integral forms for (44).

Now consider a specific traction distribution

"
P1(x; z)

P2(x; z)

#
=

"
p1

p2

#
for 0 < x < vt;�z0 < z < z0; (45)

where p1 and p2 are constants.
The stress concentration factors of this particular traction distribution can be written out as

KPII(z; t) = p1k22(z; t) + p2k23(z; t);

KPIII(z; t) = p1k32(z; t) + p2k33(z; t):
(46)

The solution to this problem can be obtained by superposing the concentrated line loads, i.e.

ki(z; t) =

Z vt

0
K�

i (z; t� x0=�) dx0; i = 22; 23; 32; 33; (47)

where K�
i (z; t) is the stress intensity factor for the unit line load of finite length passing

through the crack tip at time t = 0. And K�
i (z; t) may be written out as

K�
i (z; t) =

Z z0

�z0

Ki(z � z0; t) dz0: (48)

Using (30) one can get

cK�
i (z; s) =

1
�i

�
s

2

�1=2

I(z; s); (49)
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Figure 3.

where

I(z; s) =
1
s
[J(z + z0; s)� J(z � z0; s)];

J(x; s) =

Z &0+1i

&0�1i

Q(&)

&
es&x d&; Q(&) =

r
s

2
cKi(&; s):

(50)

Then, after some calculation, one obtains

J(x; s) =

(
2�iQ(0)� 2iJ1(x; s); x > 0;

2iJ1(�x; s); x < 0;
(51)

where

J1(x; s) =

Z
1

b0

Im
�
Q(u+ i0)

u

�
e�sxu du: (52)

As in the previous section one only needs to take care of the part in z > 0

cK�
i (z; s) =

8>>>><
>>>>:

1
�

�
2
s

�1=2

f�Q(0)� J1(z + z0; s)� J1(z0 � z; s)g; z < z0;

1
�

�
2
s

�1=2

fJ1(z � z0; s)� J1(z0 + z; s)g; z > z0:

(53)

It is very clear that there is a jump in cK�
i at z = z0

�cK�
i (z0; s) =

1
�

�
2
s

�1=2 �
2
Z
1

b0

Im
�
Q(u+ i0)

u

�
du� �Q(0)

�
(54)

but by considering the integration of
H
(Q(&)=&) d& on the contour of Figure 3, one knows that

�cK�
i = 0.

Inverting Equation (53) one obtains

ki(z; t) =

8>>>><
>>>>:

v

�

s
2
�
(�Q(0)

p
t� J2(z0 � z; t)� J2(z0 + z; t)); z < z0; (55a)

v

�

s
2
�
(J2(z � z0; t)� J2(z0 + z; t)); z > z0; (55b)
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Figure 4a. The dimensional integrals Ji(�) vs. � when c=d = 0:2.

where

J2(x; t) = 2
p
x

Z t=x

b0

Im
�
Q(u+ i0)

u

�q
t=x� u du: (56)

Here, we define a non-dimensional integral Ji(�) in the following form

Ji(�) =
J2(x; t)

2
p
xb0

; � =
t

xb0
; i = 22; 23; 32; 33: (57)

Let us analyze Equation (55) in some more detail. The first term in (55a) represents the stress
intensity factor history for a distribution of the same strength p1 and p2 with infinite extent in
the z-direction. The second and third terms are corrections which take into account the finite
distribution of the traction in the z-direction – they may be considered to correspond to waves
emanating from the boundaries z = �z0 of the traction distribution on the crack edge. For
z > z0; ki may be thought of as the superposition of two waves centered at the points z = �z0

on the crack line.
In Figure 4 the integrals Ji(�) (i = 22; 23; 32; 33) are plotted against � for different values

of c=d with Poisson’s ratio � = 0:3 (b = 1:87a; c = 2:02a). We can see that, unlike the
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Figure 4b. The dimensional integrals Ji(�) vs. � when c=d = 0:4.

results in the previous section, there is no singular point in the stress intensity factor when the
Rayleigh wave reaches the fixed point z (here also z > 0).

The results for the points z < 0 can be obtained by the symmetric or antisymmetric
conditions. This completes the analysis of the three dimensional stress intensity factor histories
for the particular applied traction distribution (45). For a number of other traction distributions
results could be derived in the same way.

Conclusion

Utilizing the Laplace transform methods together with the Wiener–Hopf technique, we solved
the II and III combined mode constantly propagating crack problem. In dealing with the two
coupled Wiener–Hopf equations, we utilized a method that was used by Li et al. (1994).

We found out that the first dilatational wave has no contribution to the stress intensity
factors KII andKIII. The reason for this is that the first dilatational waves caused by the point
forces in the upper and the lower half-spaces are canceled along the crack front. The stress
intensity factors are zero up until the arrival of the first shear wave. In the case of point forces,
upon the arrival of the Rayleigh wave, when the curves turn down sharply, the stress intensity
factors have a logarithmic singularity. This singularity is caused by the great energy that the
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Rayleigh wave carries. After that the curves gradually rise. The factors will go to zero as time
approaches infinity.

After the fundamental solution, a particular traction distribution for the same crack problem
was analyzed. We found that, unlike the results in the point forces loading problem, there is
no singular point in the stress intensity factor for the distributed loading problem.
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Appendix A

The motion of the body is governed by Navier’s equation:

�ru+ (�+ �)rr � u = �
@2u
@t2

; (A.1)

where � and � are Lamẽ constants.
Based on the Stokes–Helnholtz resolution theorem the displacement field can be decom-

posed as follows

u = r�+r� (A.2)

and  should satisfy

r � = 0: (A.3)

Substituting (A.2) into (A.1) one obtains

r
 
c2
dr2�� @2�

@t2

!
+r�

 
c2
sr2 � @2 

@t2

!
= 0: (A.4)

If we choose � and  as solutions to Equation (2), the above equation will be satisfied
identically. The completeness of such a solution to Equation (A.1) was given by Somigliana
(1892) and Duhem (1898; 1900) independently.

Appendix B

It is sufficient to take � as the following function in considering the convergence of the Laplace
transform (6)

�(�; y; z; t) = H[t2=a2 � (� + vt)2 � y2 � z2]: (B.1)

Considering the transform of this function, one finds that the convergent domain of this
transform is

�a0 < Re � < a0: (B.2)

Then consider � as a real parameter in this range at present. The transform may be continued
into its convergent domain in the complex � plane when necessary.
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After taken the transform (7), utilizing the step function defined above, one may find out
the convergent domain of (7) is (8).

Appendix C

Function R has four roots in the transformed domain. These roots are d; d;+c1;�c2.
Consider a function S defined by

S(�; i
) = � R(�; i
)

�(� � c1)(� + c2)(� � d)2 : (C.1)

Function S has neither poles nor zeros in the �-plane. The only singularities it has are those
branch points of functions � and �. One may note that the branch cuts of all functions
considered here are taken to lie on the real axis outside of the strip of analyticity, �a2 <
Re(�) < a1, of the transforms. Function S approaches unity as j�j ! 1. Because S has all
these properties, it can be factored as

S(�; i
) = S+(�; i
)S�(�; i
): (C.2)

Thus, R was factored as Equation (18).

Appendix D

The Wiener–Hopf factorization can be completed as follows.
Using the factorization (18) and (20) one may obtain

E+ + E� = ��A+A�U�; (D.1)

in which

A+ =
1

� + j
jX(�)D+(�): (D.2)

Multiplying Equation (D.1) with matrix [A+]�1 gives

1
� � j
j [B

+E� + fB+E+ � (B+E+)j�=j
jg]

= ��A�U� � 1
� � j
j (B

+E+)j�=j
j: (D.3)

Then one gets

1
� � j
jB

+E� � �+ + 1
� � j
jfB+E+ � (B+E+)j�=j
jg

= ��A�U� � 1
� � j
j (B

+E+)j�=j
j � �+: (D.4)
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des Sciences Physiques et Naturelles de Bordeaux (5)3, 316.
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