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Abstract Rayleigh–Marangoni–Bénard instability in a
system consisting of a horizontal liquid layer and its
own vapor has been investigated. The two layers are
separated by a deformable evaporation interface. A lin-
ear stability analysis is carried out to study the convec-
tive instability during evaporation. In previous works,
the interface is assumed to be under equilibrium state.
In contrast with previous works, we give up the equi-
librium assumption and use Hertz–Knudsen’s relation
to describe the phase change under non-equilibrium
state. The influence of Marangoni effect, gravitational
effect, degree of non-equilibrium and the dynamics of
the vapor on the instability are discussed.

Keywords Rayleigh–Marangoni–Bénard · Instability ·
Evaporation

Introduction

Convection occurring in an horizontal liquid layer has
received extensive attention (Rayleigh 1916; Block
1956; Pearson 1958; Nield 1964) since Bénard (1900)
observed hexagonal roll cells upon onset of convec-
tion in molten spermaceti with a free surface. A more
complicated problem is the Rayleigh–Marangoni con-
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vection in a liquid layer with an evaporation interface.
Evaporative convection is of great interest in engineer-
ing because of its importance in modern technologies
such as thin-film evaporators, boiling equipments and
heat pipes. During evaporation, an essential mech-
anism is that evaporation leads to intensive cooling
of the liquid–vapor interface. When the temperature
drop induced by evaporation across the liquid layer
exceeds a critical value, convective instability occurs.
This instability has been studied by many previous
investigators. Miller (1973) examined the instabilities
of an isothermal evaporating interface associated with
a moving boundary. Prosperetti and Plesset (1984)
studied the stability of an evaporating liquid surface.
In their analysis, the viscosity of the vapor and the
liquid is neglected and the depth of the vapor and the
liquid is infinite. Palmer (1976) investigated the hydro-
dynamic stability of rapidly evaporating liquids at re-
duced pressure in an infinite depth liquid–vapor system.
Burelbach et al. (1988) investigated the nonlinear sta-
bility of evaporating and condensing liquid films. Va-
por recoil, thermocapillary and rupture instabilities are
discussed in their works.

In most of previous works, studies on convective
instability were carried out for one-side models, and the
vapor phase adjacent to the liquid layer was considered
to be passive or infinitely deep. In this case, the dynam-
ics of vapor was assumed to have little influence on the
instability of the liquid layer, consequently the dynam-
ics of the vapor was neglected. Ozen and Narayanan
(2004) question the assumption that the vapor is pas-
sive. They suggested that the active vapor layer plays a
major role in determining the stability of system. They
proposed a two-side model and focused on the physics
of evaporative instability taking into account the effect
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of a finite-depth active vapor. In their model, interfacial
chemical potential equilibrium assumption is used, i.e.,
the temperature of the liquid is at its saturation value
with respect to the vapor pressure. This assumption is
questionable. Indeed, a more general relation like the
Hertz–Knudsen relation (Colinet et al. 2001) should
be used in place of the chemical potential equilibrium
assumption.

In previous literatures, it is conventional to require
thermal equilibrium between liquid and vapor (con-
tinuity of temperature) at the interface. However, a
temperature discontinuity at the liquid–vapor interface
has been reported by several investigators. Moreover,
Fang and Ward (1999) have confirmed the existence of
interfacial temperature discontinuity by experiments.
Margerit et al. (2003) used new interfacial constitutive
relations to describe the interfacial heat and mass trans-
fer. Several interfacial coefficients was used in their
analysis. These relations generalize the interfacial non-
equilibrium and temperature discontinuity. However,
the interfacial coefficients was only determined for wa-
ter at 0◦C. So, such a model is difficult to be used for
other systems.

In this paper, we focus on the non-equilibrium effect
of evaporation. For this reason, we neglect the temper-
ature discontinuity as most of early works. The goal
of this paper is to construct a relatively more rigor-
ous analysis without making assumptions in which the
vapor is passive and the interface is under interfacial
chemical equilibrium.

The structure of this paper is the following. In
“Mathematical Model” the governing equations are es-
tablished, and boundary conditions taking into account
the interfacial non-equilibrium effect are discussed in
detail. In “Numerical Method”, a linear stability analy-
sis is presented. In “Results and Discussion”, the in-
fluence of physical parameters on the instability of the
system is discussed. Finally, conclusions are drawn in
“Conclusion”.

Mathematical Model

We propose a two layer model with a deformable inter-
face, as shown in Fig. 1. The system consists of a liquid
of depth dl underling its own vapor of depth dv . The
system is infinite in the horizontal directions. The top
wall and the bottom wall are considered as rigid per-
fectly conducting boundaries. The top wall is a porous
medium, through which the vapor can be evacuated.
The phase change rate at the interface can be controlled
by a pump that can adjust the vapor pressure. The
depth of the liquid is assumed constant by suitably

Fig. 1 Physical model

adjusting the liquid feed back. In unperturbed state,
the liquid is evaporating at a constant rate. However,
the local evaporating velocity is not constant as it can
change upon perturbation. Hertz–Knudsen’s equation
(Kennard 1938; Colinet et al. 2001) predicts a mass flux
at the interface.

Governing Equations and Boundary Conditions

The fluid is assume to satisfy the Boussinesq approx-
imation, i.e., all fluid properties are assumed to be
independent of temperature, except density which de-
creases linearly with the temperature. The govern-
ing equations for each fluid layer are the continuity
equation, the Navier–Stokes equation and the energy
equation:

∇ · ui = 0 (1)

∂ui

∂t
+ ui · ∇ui

= − 1

ρi
∇ pi + [1 − βi(Ti − T0)]g + νi∇2ui (2)

∂Ti

∂t
+ ui · ∇Ti = κi∇2Ti (3)

In the equations above, u, p and T are velocity, pres-
sure and temperature. ρ, ν, κ are the density, kinematic
viscosity, and the thermal diffusivity. The subscript i =
v, l denote the vapor and the liquid, respectively. Note
that ρ is the density at a certain reference temperature.
Further more, the variation of the density is only taken
into account in the body force term of the Navier–
Stokes equation.

The bottom and top walls are perfectly conducting
boundaries, so that

Tv(dv) = Tu, Tl(−dl) = Tb (4)

The no-slip condition along the bottom plate:

ul(−dl) = 0, wl(−dl) = 0 (5)

here u and w are the horizontal and vertical compo-
nents of u. The permeable condition of the vertical
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velocity and no-slip condition of the horizontal velocity
along the top plate:

uv(dv) = 0, wv(dv) = wv0 (6)

At the deformable interface, the position of the
interface can be described by its variable height z =
η(x, t). If uint denotes the interfacial velocity, a kine-
matic relation between uint and η(x, t) is obtained by
wint = dz/dt and uint = dx/dt. Thus

wint = ∂η

∂t
+ uint

∂η

∂x
(7)

The mass balance equation at the interface z = η(x, t)
is

J = ρv(uv − uint) · n = ρl(ul − uint) · n (8)

Here J is the evaporation flux.
The normal momentum and the tangential momen-

tum balance equations at the interface are:

J[u]l
v · n + [p − P · n · n]l

v = −2σ H (9)

[P · n · t ]l
v = 1

N
∂σ

∂T

(
∂T
∂x

+ ∂η

∂x
∂T
∂z

)
(10)

here N = [1 + (∂η/∂x)2]1/2. σ is the surface tension.
In general, the surface tension is assumed to depend
on temperature only. σ = σ0 − σT(T − T0). −σT is the
surface tension variation with temperature.

The energy balance equation at the interface is:

J[|u − uint|2]l
v + ql − qv − [P · (u − uint) · n]l

v

= JL (11)

Here L is the latent heat, q is the heat conduction,
P is the viscous strain tensor with the components
Pi, j = μ( ∂ui

∂x j
+ ∂u j

∂xi
). q is the heat flux defined as χn · ∇T,

in which χ is the thermal conductivity. [ f ]l
v denotes

fl − fv .
The temperatures are continuous at the interface:

Tv = Tl (12)

The Hertz–Knudsen relation describes the evaporation
flux and the difference between the saturate pressure
and the vapor pressure at the interface:

J = β

√
M

2π RT
[ps(T) − pv] (13)

Here β is the evaporation accommodation coefficient,
M is the molecular weight of vapor, ps(T) is the sat-
uration pressure at interfacial temperature T, pv is
the vapor pressure just beyond the interface, R is the
universal gas constant.

The relation between the saturate pressure and in-
terfacial temperature is described by the Clausius–
Clapeyron relation:

ps(T) = p0 exp

[
L
R

(
1

T
− 1

T0

)]
(14)

The tangential velocities of the liquid and vapor layer
are equal:

uv · t = ul · t (15)

In these equations, n is the unit normal vector, t is the
unit tangential vector.

n = − − ∂η

∂x ex + ez

(1 + (
∂η

∂x )2)1/2
(16)

t = ex + ∂η

∂x ez

(1 + (
∂η

∂x )2)1/2
(17)

2H is the surface mean curvature.

2H =
∂2η

∂x2

[1 + (
∂η

∂x )2]3/2
(18)

Unperturbed State Solution of the System

In the unperturbed state there is no flow in the liquid
layer and the evaporation rate is a constant, i.e. ul0 =
wl0 = 0 and uv0 = 0, wv0 = J0/ρv . Here, the subscript 0
denotes the unperturbed state. The unperturbed tem-
perature fields satisfy these equations:

κv

d2Tv0

dz2
= wv0

dTv0

dz
(19)

d2Tl0

dz2
= 0 (20)

From these equations, we obtain:

Tv0 = C1 exp

[
wv0

κv

z
]

+ C2, Tl0 = C3z + C4 (21)

at the bottom wall z = −dl:

Tl = Tb (22)

at the interface z = 0:

Tv0 = Tl0 = Tint (23)

− J0 L + χv

dTv0

dz
= χl

dTl0

dz
(24)
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Given the temperature at the interface and the bottom
wall, we can decide the coefficients C1, C2, C3, C4.

C1 = κv

χvwv0

(
J0L + χl

Tint − Tb

dl

)

C2 = Tint − κv

χvwv0

(
J0 L + χl

Tint − Tb

dl

)

C3 = Tint − Tb

dl
, C4 = Tint (25)

Perturbation Equations

To nondimensionalize the controlling equations, we
chose the following scales νl/dl, d2

l /νl, dl and �T for
velocity, time, length and temperature, respectively.
Here �T = Tb − Tint. The perturbations of velocity,
pressure and temperature are decomposed into normal
modes proportional to exp[λt + ikx]. Here λ is the time
growth rate, k is the wave number. Using Ui, Wi, 
i and
Pi are the amplitudes of horizontal velocity, vertical
velocity, temperature and pressure, and introducing
spatial normal perturbations into the linearized full
governing equations and boundary conditions, we ob-
tain the normal mode equations in dimensionless forms:

ikUv + DWv = 0 (26)

λρ∗Uv + wv0 DUv = −ikPv + ν∗ρ∗∇2Uv (27)

λPrρ∗Wv + Prwv0 DWv =
− PrDPv + Prν∗ρ∗∇2Wv + ρ∗β∗ Ra
v (28)

λPr
v + Pr
∂Tv0

∂z
Wv + Prwv0 D
v = κ∗∇2
v (29)

ikUl + DWl = 0 (30)

λUl = −ikPl + ∇2Ul (31)

λPrWl = −PrDPl + Pr∇2Wl + Ra
l (32)

λPr
l + Pr
∂Tl0

∂z
Wl = ∇2
l (33)

Boundary conditions at the top wall (z = h):

Uv = Wv = 
v = 0 (34)

and the bottom wall (z = −1):

Ul = Wl = 
l = 0 (35)

Boundary conditions at the interface (z = 0):

ρ∗(Wv − λη) = Wl − λη (36)

2J0(Wl − Wv) + Pl − Pv − 2DWl + 2μ∗ DWv

=
[

k2 1

PrCa
+ (1 − ρ∗)

Ga
Pr

]
η (37)

Pr(DUl + ikWl) − Prμ∗(DUl + ikWl)

= −ikMa
(


l + dTl0

dz
η

)
(38)

E(Wl − λη) − χ∗ d
v

dz
+ d
l

dz
= 0 (39)

Ul = Uv (40)


l + ∂Tl0

∂z
η = 
v + ∂Tv0

∂z
η (41)

Wv − Wl = E2

[
E−1

1

(

l + ∂Tl0

∂z
η

)
− Pv

]
(42)

The depth ratio is h = dv/dl. The dimensionless ra-
tio of the physical properties are κ∗ = κv/κl (thermal
diffusivity), β∗ = βv/βl (volumetric expansion coeffi-
cient), χ∗ = χv/χl (thermal conductivity), μ∗ = μv/μl

(dynamic viscosity), ρ∗ = ρv/ρl (density) and ν∗ = νv/νl

(kinematical viscosity), respectively. The subscripts v

and l refer to the vapor and liquid layers respectively. D
is the dimensionless differential operator d/dz, ∇2 the
operator D2 − k2, and dTi0/dz the temperature gradi-
ent of fluid-i in the unperturbed state. wv0 is the dimen-
sionless evaporation velocity in the unperturbed state.
Ma is the Marangoni number defined as σT�Tdl/(μlκl),
Ca is the capillary number defined as Ca = μlκl/σ0dl,
Ga is defined as Ga = gd3

l /νlκl, E is defined as E =
ρlνl L
χl�T ,E1 is defined as E1 = ρlν

2
l T0

ρvh2
l L�T

, E2 is defined as

E2 = β

√
M

2π RT
ρl−ρv

ρv

νl
hl

, Pr is the Prandtl number defined
as νl/κl.
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Numerical Method

The perturbed equations and the boundary conditions
comprise a 13th-order eigenvalue system. We use a N
order Chebyshev polynomial to expand each variable,
the system of equations is required to solve for 8N + 1
unknowns, including 8N spectral coefficients and an
interface deflexion η. A Chebyshev Tau method is used
to solve the general eigenvalue problem. Details of the
numerical procedure to solve the problem can be found
in our previous work (Liu and Liu 2006) or Orzag’s
work (Orzag 1971). We have checked our calculation
procedure and computational program by comparing
our result with the analytical result reported by Pearson
(1958) for the classical Marangoni problem. Our result
is in good agreement with pearson’s (Pearson 1958).

Results and Discussion

The goal of this paper is to investigate the influence
of evaporation on the instability of the system. In
order to do this, we will seek the Marginal curve
of the Marangoni number versus the wave number.
We chose the system consisting of a water layer in
contact with its own vapor at 100◦C. The depth of
the water layer is 1 mm. The physical parameters are
the same with Ozen’s (Ozen and Narayanan 2004).
The ratios of physical properties are ν∗ = 71.72, ρ∗ =
6.25×10−4, χ∗ = 3.68 × 10−2, κ∗ = 0.118. The Prandtl
number Pr = 1.78.

The physics of evaporation is complicated. The
interfacial equilibrium degree, Rayleigh effect and
Marangoni effect will play role in determining the in-
stability of the system. When investigating the problem,
we will look at different aspects of the problem sepa-
rately whenever possible.

Influence of Accommodation Coefficient β

In order to focus on effect of the interfacial equilibrium
degree on the Marangoni convection, we leave out the
influence of gravitation. So, in the computations we set
the acceleration of gravity g = 0 and the evaporation
velocity wv0 = 0.

We begin by presenting the physics of evaporation
and the Marangoni convection. A fluctuation of tem-
perature will result in a local surface tension gradient.
Surface tension gradients at the interface act as tan-
gential stress on adjacent fluids. The thermocapillarity
provides a coupling of temperature and velocity at the
interface. The interface relaxes at the point where a
positive temperature disturbance created and the asso-

ciated tangential stresses then induce radially divergent
surface fluid motion. Continuity of the fluid requires a
vertical ascending flow below the point. If the fluid is
heated from below, the lower fluid is hotter than that
near the interface. The uprising fluid driven by the sur-
face tension will make the interfacial temperature in-
crease. Consequently, the surface tension at that point
keeps on decreasing, thus the convection is sustained.
Considering a perturbed evaporation at the hot point,
local latent heat consumption leads to intensive cooling
of the liquid interface. Consequently, the positive tem-
perature disturbance is reduced by local evaporation
and the system gets more stable. For a larger β, this
cooling effect is more intense and significantly stabilize
the system.

Figure 2 shows the marginal curves of the Marangoni
number versus the wave number for different accom-
modation coefficients. Non-volatile case (β = 0) is the
non-equilibrium limit. In this case, the system reduces
to the classical Marangoni case without evaporation.
The Marginal curve of β = 0 is similar to the classical
Marangoni curve for a pure liquid. In the case of β > 0,
a new branch presents in the long wave region. Such a
long wave branch corresponds the interfacial instability
induced by evaporation effect. For the non-equilibrium
limit (β = 0), the interfacial instability disappears. As
show in Fig. 2 for β > 0, the long wave instability
is more unstable than the short wave instability cor-
responding to Marangoni convection. However, this
long wave instability can be avoided in many physical

wavenumber

M
a

0 2 4 6 8 10
0

2000

4000

6000

β=0
β=0.0001
β=0.0005
β=0.001
β=0.005
β=0.01
β=0.1

Fig. 2 The vapor liquid depth ratio is 1:10,the critical Marangoni
number versus the wave number for various evaporation coeffi-
cients, g = 0
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Fig. 3 The critical Marangoni number versus evaporation coeffi-
cients in the short wave range, the vapor depth ratio is 1:10, g = 0

situations that involve a liquid layer with finite horizon
dimensions. Since our interest focuses on the influence
of evaporation on the Marangoni convection, the inter-
facial instability is not discussed in detail in this paper.
For Marangoni convection, the system is most unstable
for β = 0. Physically speaking, the accommodation ef-
ficient β presents the cooling ability of evaporation at
the interface. Evaporation will lead to intensive cooling
of the interface. This cooling mechanism reduces the
temperature fluctuation at the interface and makes the
system more stable. Figure 3 shows that the critical
Marangoni number in the short wave branch and the
accommodation coefficient have approximatively a lin-
ear relation. The greater is β, the more temperature
difference across the liquid layer is need to sustain the
Marangoni convection.

Two Typical Coupling Modes

For β = 0, the system reduces to the non-volatile case.
No evaporation occurs at the interface, so the liquid
and the vapor are coupled only by heat conduction and
surface tension. Figure 4a shows the convection pattern
of Marangoni mode. The Marangoni convection initi-
ates in the liquid layer. Near the interface, the vapor
responds by being dragged, generating counter-rotating
rolls in each layers.

For β = 0.01, evaporation disturbance can occur at
the interface. Figure 5a shows convection pattern of
the evaporation mode. The liquid evaporates from the
hot point and the vapor condenses at the cool point.
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(b)

Fig. 4 Marangoni convective mode: Streamline pattern and
velocity field (a) and temperature pattern (b) for β = 0, h = 0.1

Although the vapor may be dragged by liquid near the
surface, evaporation and condensation are dominant in
the vapor layer. Consequently, in the vapor layer the
stream lines start from a hot point and end to a cool
point. In this case, convective circulation does not occur
in the vapor layer.

The temperature patterns of the Marangoni mode
and the evaporation mode are shown in Fig. 4b and
Fig. 5b, respectively. In Fig. 4b, the isothermal lines
penetrate the combined layers. The center of isother-
mal pattern locates near the interface. This result in-
dicates that for non-evaporation case, the maximum
temperature disturbance occurs near the interface
when Marangoni convection occurs. Whereas, as shown
in Fig. 5b, the temperature disturbance is near zero in
the vapor layer and the center of temperature pattern
locates beneath the interface. The temperature distur-

Microgravity Sci. Technol (2009) 21 (Suppl 1):S233–S240S238



X

z

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

(a)

X

z

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

(b)

Fig. 5 Velocity field for β = 0.01, h = 0.1 (a, b)

bance at the interface is reduced by evaporation, so a
greater temperature difference is needed to sustain the
convection when evaporation occurs.

The Influence of the Gravity

In many laboratory situations, gravity plays an impor-
tant role. Gravity has dual effects on the instability of
the system, i.e. the Rayleigh effect (buoyancy-driven)
and the interfacial effect. Buoyancy-driven convection
occurs when a fluid is subjected to a temperature gradi-
ent perpendicular to the interface. The Rayleigh effect
will destablilize the system. However, this effect can be
avoid when the liquid layer is very thin. In this case,
gravity simply pulls the perturbed interface back to its
original position. In consequence, gravity reduces the
interfacial instability and makes the system more stable.

In order to investigate the influence of gravity on the
instability of a system under non-equilibrium evapora-
tion, we consider three similar physical situations. In
the first case, the gravity is left out and the Marangoni
effect is retained. In this case, the convection can only
be caused by the Marangoni effect and the evaporation.
In the second case, the Rayleigh effect is taken into
account and the interfacial effect of gravity is left out.
In the third case, both the Rayleigh effect and the
interfacial effect of gravity are taken into account. In
order to compare the instability of these three systems,
we define two parameters.

R1 = MaRa/Ma, R2 = Mag/Ma (43)

Ma, MaRa and Mag are the Marangoni numbers for the
first, the second and the third cases, respectively.

In Fig. 6 R1 and R2 merge in the long wave and small
wave regions. In the long wave region, R1 and R2 are
greater than 1. This result indicates that the interfacial
effect of gravity mainly plays role in the long wave
region and makes the system more stable. In the range
2.0 − 8.0, R1 � 1 and R2 is less than 1. This means that
the Rayleigh effect mainly operatives at medium wave
region. In short wave region, R1 and R2 converge to
1. This result indicates that the interfacial effect has no
influence on the instability of the system in short wave
region.

Ozen and Narayanan (2004) investigated the influ-
ence of gravity on the instability for a quasi-equilibrium
system. In their work, the minimum of R2 is about 0.6.
In our result, the minimum of R2 is 0.9. This difference

wavenumber

R
at

io

2 4 6 8 10
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

R1

R2

Fig. 6 The ratios R1 and R1 versus wavenumber, the depth ratio
is 1:10, accommodation coefficient β = 0.01
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shows that the Rayleigh effect is more obvious for an
equilibrium system.

Conclusion

The influence of evaporation on the Rayleigh–
Marangoni convection is investigated in the framework
of linear instability analysis. We investigate the in-
fluence of the Marangoni effect, the Rayleigh effect,
the dynamics of the vapor,and the degree of non-
equilibrium at the interface on the instability of the
system. It is shown that for a vapor-liquid system, long
wave interfacial instability will occur when β > 0. Only
in the non-volatile limit (β = 0), the interfacial insta-
bility disappears. In the case of β > 0, the minimum
of the long wave branch is smaller than that of the
short wave branch which corresponding to Marangoni
convection. However, such a results does not mean the
Marangoni convection will not occur in real situations.
We should note that the horizontal domain is assumed
to be infinite in this paper. In real conditions, finite
horizontal geometry may prevent the long wave mode
instability and the Marangoni mode may be preferred.

When β > 0, the flow pattern is different to the non-
volatile case. The liquid evaporates at the hot point and
condense at the cool point. Whereas, for non-volatile
case, the vapor circulates in the upper domain.

Our results show that the gravity have dual effects
on the system. The Rayleigh effect will destabilize the
system and the interfacial effect of the gravity will
stabilize the system.
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