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Abstract 
 

In this paper, a new computational scheme for solving flows in porous media was proposed. The 
scheme was based on an improved CE/SE method (the space-time Conservation Element and Solution 
Element method).We described porous flows by adopting DFB (Brinkman-Forchheimer extended 
Darcy) equation. The comparison between our computational results and Ghia’s confirmed the high 
accuracy, resolution, and efficiency of our CE/SE scheme. The proposed first-order CE/SE scheme is 
a new reliable way for numerical simulations of flows in porous media. After investigation of effects 
of Darcy number on porous flow, it shows that Darcy number has dominant influence on porous flow 
for the Reynolds number and porosity considered. 
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INTRODUCTION Darcy effects of form-drag and boundary 

resistance have been studied extensively 
through the use of the Brinkman-Forchheimer 
extended Darcy model (DFB). One of the first 
papers to deal with these extensions was Vafai 
(1984). In recent years, the flow in porous 
media formulated by the DFB model was 
successfully used in a wide variety of flow 
conditions, including forced convection pipe 
flow (Alkman et al., 1998), natural convection 
in vertically layered porous media (Hadim, 
2006), and double-diffusive natural convection 
(Wang et al., 2008). Numerical simulations 
for non-Darcy flows have improved 
immensely as a result of major progress in 

 
Models for flow in porous media have been 

developed since 1856, when Darcy postulated 
his well-known equation. Vafai et al. (1980) 
pointed out the limitations of Darcy’s law. For 
porous media with high permeability, both the 
viscous effects (frictional drag at  the 
boundary) and the inertia (form-drag) effects 
within the porous matrix are significant. 
Consequently for Newtonian fluids, the non- 
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both computational methods and available 
computer facilities. 

Deiber and Bortolozzi (1998) applied 
vorticity-stream function scheme to study 
natural convection in a porous annulus. Rees 
(2002) analyzed the onset of Darcy-Brinkman 
convection in a porous layer by using an 
asymptotic analysis method. Sman (2002) 
numerically solved the DFB model with 3D 
finite element solver (FIDAP). Costa et al. 
(2004) used a two-dimensional laminar 
version of the control volume based finite 
element method to simulate non-Darcian 
flows through spaces partially filled with a 
porous media. Reis et al. (2004) applied the 
finite volume method to simulate the impact 
of liquid droplets on porous surfaces, using 
DFB model. However, this type of flow poses 
a major phenomenological and modeling 
challenge. 

In this presentation, a CE/SE (space-time 
conservation element and solution element) 
scheme with first-order accuracy for porous 
flows is established by applying new 
structures of CEs (conservation element) and 
SEs (solution element) (Zhang et al., 2001). 
The DFB model is used to represent the fluid 
transport within the porous medium. 
Governing partial differential equations are 
transformed to algebraic ones by CE/SE, and 
the pressure-velocity coupling problem is 
solved by using artifical pressure method over 
structured and staggered grids. We conduct 
DFB-based flow simulations for single phase 
flow through a 2D (two-dimensional) porous 
medium. A benchmarking problem is 
simulated numerically and computational 

results are carefully compared with that from 
other literature. Influences of Darcy numbers 
upon porous flows are investigated.  

 
ANALYSIS AND MODELING 
 

The continuity equation and the momentum 
equation for 2D incompressible and viscous 
flow in porous medium can be summarized as 
follows (Reis et al., 2004). 
Continuity: 
 

0=⋅∇ ∗∗ U  (1a) 
 
Momentum balance of fluid: 
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here all constants and variables are defined w

in the nomenclature. Eq. (1a) and Eq. (1b) 
form the full set of equations used to model 
flows in porous media. Eq. (1b) contains the 
usual balance of forces between viscosity and 
pressure gradient known as Darcy’s law (the 
3rd and 5th terms), which is extended through 
the further inclusion of terms modeling in turn 
advective inertia (the 1st and 2nd terms), 
boundary effects (the 4th term: the Brinkman 
term) and form-drag (the 6th term: 
Forchheimer inertia). Quantities have been 
rendered dimensionless with respect to the 
characteristic length L, and the characteristic 
velocity uo, using the definitions: 
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Eq. (1a) and Eq. (1b) take the forms 
 

0=⋅∇ U  (3a) 
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where ,Q E , ,  are vectors of primary 
variable, flux in x-direction, flux in y-direction 
and source, respectively. This set of equations 
describes the conservation of density

F S

ρ , 
momenta )v,u(v ρρρ =

r . The original two-
dimensional CE/SE method (Chang et al., 
1999) is complicated as the special design of 
CEs and SEs. Zhang et al. (2001) proposed an 
improved CE/SE method by adopting general 
hexahedrons mesh to construct CEs and SEs, 
as shown in Fig. 1(b) and Fig. 1(c). The 
structure of CEs and SEs simplifies the 
process of scheme derivation. In this study, we 
deduce the two-dimensional CE/SE scheme 
with first-order accuracy for flows in porous 
medium. Let  denote a set of space-
time mesh points, where 

),n,( j k
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here ),( vuU = , P , , t α and denote 
velocity vector, pressure, time , viscosity ratio 
and Darcy number, respectively. The 
nondimensional coefficients Re and  
correspond to the Reynolds number and form-
drag inertia term, respectively. Flow in porous 
media governed by Eq. (3b) is characterized 
by the porosity and three non-dimensional 
parameters: Reynolds number, Darcy number, 
and viscosity ratio.  

Da

bF

The governing Eq. (3a) and Eq. (3b) can be 
rewritten as the Euler equation 
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 (4) 

,0=k for y. A SE is defined as 

the vicinity of a mesh point and the whole 
space-time region is divided into non-
overlapping CEs. Assume that the physical 
variables in every SE are approximated by the 
Taylor’s expansions at the mesh point 
associated with the SE, and the conservation 
Eq. (4) is satisfied in every CE. Let 

xx =1 , x y=2 , tx =3

coordinates of a Euclidean space 
 be considered as the 

. By 
means of the Gauss’ divergence theor , Eq. 
(4) is rewritten in form of  
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em

∫=⋅
V

V
d

)(Ω
⋅dVSsH  (5) ∫
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 (7) 

 
Eq. (6) and Eq. (7) imply that the variables 
quired in computation are Q  and Qy. 

In

ting Eq. (6
into Eq. (4), we obtain 
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tegrating Eq. (5) on the surfaces of CE( P′ ) 
and applying source item linearization method 
(Wang et al., 2008) , we obtain 
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 is the time derivative of StS . Using the 

ontinuity conditions at points , , E ′   A′ C ′c
and G′ , the derivatives of Q  w  respect to ith
x  and y  are obtained  
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The weighted equation is =−+ ],,[ αxxW  

αα

αα
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+−−+ + xxx
, and 

+ xx
x

α  is a constant (α  = 2 

(Chang 1995; Chang e  al., in this study)  t
1999). 
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Using the time operator splitting method 

(Jue, 2000) to split pressure item in 
momentum Eq. (13), we obtain 
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(a) 

 

(b) 

 
(c) 

Fig. 1. Mesh construction of the improved 
CE/SE method. (a) Mesh points projection on 
xy  plane, (b) Conservation element CE(P′  (c) 
Solution element SE(P

),
′) . 

 
Eq. (15a) and using CE/SE method, 1+mP  can 

. 

Substituting 1+mP  into Eq. (15b), 1+mU  is 
obtained. The above procedure is rep for 
 number of iteration, convergence is achieved 

m

eated 

than

at ti

a
when mm UU −+1  become less  a 
prescribed value (10-6) at all grid points. After 
convergence,  can be obtained e 
step 1

 1+nU
+n . These governing equations are 

discretized on staggered orthogonal grid (as 
shown in Fig. 1(a) which eliminates the 
possibility of a checkerboard pressure pattern. 
 
NUMERICAL VALIDATION AND 
DISCUSSION 
 
Numerical Validation 

Here, we focus on the 2

ark problem

D  
 

n cavity is a we wn 
enc  for numerical me

e simple geom
co

 square, lid-driven

ll-kno
thods for 
etry and 

cavity filled with fluid-saturated porous
medium. The drive
b hm
laminar flows due to th

mplicated flow behaviors. We apply the 
improved CE/SE method to the fluid flow in a 
square cavity filled with a porous medium. 
The flow condition is the same as that of lid-
driven flow problem (Guo et al., 2002) as 
shown in Fig. 2(a). At the left, right and down 
boundaries, no-slip condition holds at the wall, 
respectively. While, at the upper boundary, the 
horizontal velocity is specified and held fixed. 
Hence, in Fig. 2(a), 0.1=u . The 
computational domain covered 202 × 202 grid 
used for the calculations. We set Da  = 104, φ  
= 0.9 and Re  = 100 and 1000. In Fig. 2 and 
Fig. 3, the velocity profiles through the cavity 
center are plotted. The benc lutions 
(Ghia et al., 1982) are also included for 
comparison. It is seen that the CE/   

hmark 

S s

so

E solutionbe calculated at iteration step 1+m
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(a) (a) 

  
(b) (b) 

Fig. 3. Velocity profiles through the cavity 
center. Solid lines are CE/SE solutions, and 
symbols are benchmark solutions by Ghia. (a) 
u component along the vertical line through 
the cavity center, (b) v component along the 

 

horizontal line through the cavity center (φ  = 
0.9, Da  = 104,  Re = 100).  
 
agree well with the benchmark solutions for 
the cases considered. Fig. 4 shows the eddies 
of the cavity for Re  = 1000 and 1 0, 
respectively. A expected

(c) 
Fig. 2. Velocity profiles through the cavity 
center. Solid lines are CE/SE solutions, and 
symbols are benchmark solutions by Ghia. (a) 
Grid schematic for the boundary conditions, (b) 
u component along the vertical line through 

0
s , the vortex has 

omewhat strengthened with the increase in s
Reynolds number. It is inferred that the effects 
of Darcy’s law and form-drag in the DFB 
model on the porous flows are neglectable for 
Da  = 104 and φ  = 0.9 considered. 

the cavity center, (c) v component along the 
horizontal line through the cavity center (φ  = 
0.9, Da  = 104, Re  = 1000). 
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(a) 

 
(b) 

Fig. 4. Stream lines for φ  = 0.9, = 104 at 
(a)  = 1000, (b)  = 100. 
 
Discussion 

In this case, study rried out for

Da
Re Re

is ca  φ  = 0.1 
-4. 

 fo 10-1, 
0-2, 10-3 and 10-4 is shown in Fig. 5. It can be 

at by the reduction of Darcy 
nu

cti
 sh

and Re  = 10 and Da = 10-1, 10-2, 10-3 and 10
Variation of u and velocityv- r Da  = 
1
observed th

mber from 10−1, the velocities get reduced 
due to the obstru on for the flow, which 
resulted from the solid matrix. As own in 
Fig. 5(b), by the reduction of Darcy number 
from 10-1 to 10-4 the boundary layer near the 
moving lid becomes thinner and the vortex 
becomes weaker and tends to move up, 
towards the lid. The effect of Darcy number 

forφ  = 0.1 and Re  = 10 is shown in Fig. 6. 
Considering a Darcy number of 10-1, it is 
noted that formation of two secondary vortices 
takes place at the left bottom and right bottom 
corners. These vortices slowly diminish and 
vanish with further reduction of Darcy number. 
It’s proved that the lid-driven cavity flow in 
porous medium is significantly influenced by 
Darcy number for the Reynolds number and 
porosity considered. 

 

 
(a) 

 
(b) 

Fig. 5. Velocity profiles through the cavity 
center for different Darcy number (  = 10-1, 
10-2, 10-3 and 10-4). (a) v com
vertical line through the cavity center, (b) u 
component along the horizontal line through 
the cavity center (

Da
ponent along the 

φ  = 0.1,  = 10). Re
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 (a) (b) 

   
 (c) (d) 

Fig. 6. Stream lines for φ  = 0.1,  = 10: (a)  = 10-1, (b) = 10-2, (c)  = 10-3, (d)  = 10-4. 

An improved two-dimensional CE/SE 
 extended to DFB model to 

mulate flows in porous medium. The 
ac

-2) nd gle
near to the  Darcy
number. The proposed first-order CE/SE 

ject” of China (2006CB705802). The 

Re Da Da Da Da

 
SUMMARY 
 

and 10  diminish a  lead to sin  vortex 
 lid by the reduction of  

scheme has been
si

curacy of the new CE/SE scheme is 
validated by comparing the numerical results 
of lid-driven cavity flow with the 
corresponding results by Ghia et al. (1982) It 
is observed for the Reynolds number and 
porosity considered, as the Darcy number is 
reduced the primary vortex becomes weaker 
and tends to move towards the lid. Secondary 
vortices formed at higher Darcy numbers (10-1 

scheme is a new reliable way for numerical 
simulation of flows in porous medium. Further 
work will be required to improve CE/SE 
computational efficiency by using multi-grid 
method. 
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