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a b s t r a c t

Effects of wall temperature on stabilities of hypersonic boundary layer over a 7� half-cone-angle blunt
cone are studied by using both direct numerical simulation (DNS) and linear stability theory (LST) anal-
ysis. Four isothermal wall cases with Tw=T0 ¼ 0:5;0:7;0:8 and 0:9, as well as an adiabatic wall case are
considered. Results of both DNS and LST indicate that wall temperature has significant effects on the
growth of disturbance waves. Cooling the surface accelerates unstable Mack II mode waves and deceler-
ates the first mode (Tollmien–Schlichting mode) waves. LST results show that growth rate of the most
unstable Mack II mode waves for the cases of cold wall Tw=T0 ¼ 0:5 and 0:7 are about 45% and 25% larger
than that for the adiabatic wall, respectively. Numerical results show that surface cooling modifies the
profiles of q dut

dyn
and temperature in the boundary layers, and thus changes the stability characteristic

of the boundary layers, and then effects on the growth of unstable waves. The results of DNS indicate that
the disturbances with the frequency range from about 119.4 to 179.1 kHz, including the most unstable
Mack modes, produce strong mode competition in the downstream region from about 11 to 100 nose
radii. And adiabatic wall enhances the amplitudes of disturbance according to the results of DNS,
although the LST indicates that the growth rate of the disturbance of cold wall is larger. That because
the growth of the disturbance does not only depend on the development of the second unstable mode.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Prediction of laminar–turbulent transition of hypersonic
boundary layer is very important in aerodynamic designs of hyper-
sonic vehicles. However, although decades researches, there is still
no reliable mathematical model to accurately predict locations of
transition. And the mechanism of hypersonic boundary layer tran-
sition is still unclear. The most widely used transition prediction
method is eN method, which suggests that the transition occurs
when the amplitude of most unstable disturbance increased to eN

times. The quantity N is obtained by integrating the linear growth
rate from the first neutral-stability point at a location somewhere
downstream on the body, but eN represents nothing more than an
amplitude ration. Here N usually is a number from experiment,
which belongs to [9,11] for incompressible boundary layer. How-
ever, the limit of eN method is that it does not consider the initial
generation of disturbance, in fact the transition process depends on
the initial disturbance which is the area of receptivity study. As ad-
dressed in Reed and Saric [1], the role of receptivity, not accounted
for in linear stability theory, is key to the overall process as it de-
fines the initial disturbance amplitude at the first neutral-stability

point. In order to improve transition prediction method, it is
important to study the mechanism of receptivity. Saric [2–4] and
Mack [5,6] reviewed the historical progress in the research of
receptivity, boundary layer stability and discussed the importance
of these works in the study of transition.

Generally the process of boundary layer transitions in external
flow can be divided into fours stages, which are receptivity linearly
growth, nonlinearly growth, transition and full development. And
the first two stages play important roles in transition prediction,
because the last two stages are much shorter than the first two
ones. In the case of enough strong forcing environment distur-
bance, the above process turns into bypass type transition [7],
and the first one stage, even first two stages, will be bypassed.
Receptivity research, which study how the forcing environmental
disturbances enter into boundary layer and produce unstable wave
that further to develop and induce typical unstable wave in bound-
ary layer, is of importance to understand and predict transition
[7–10]. The process of hypersonic boundary layer receptivity to
free-stream disturbance is much more complex than incompress-
ible or subsonic boundary layer receptivity [5,11,12]. The later
one has been relatively well understood, while the former is not
so clear and still an active research [2,4]. At present, investigation
on stability and transition of hypersonic boundary layer is mainly
based on the linear stability theory (LST) [6] which mainly
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considers the growth and decay of normal modes in hypersonic
boundary layer. According to LST, the transition is a result of expo-
nential growth of the most unstable normal modes, which is foun-
dations of eN method [5,13–15]. Mack [6] found that the
hypersonic boundary layer stability different from that in low
speed flows, and transition prediction for hypersonic boundary
layers is much more difficult than that for low speed ones. There
is only one unstable mode (T–S waves) in low speed boundary
layer. With the increasing of the free-stream Mach number, high
frequency modes appears, and the Mack II mode becomes the most
unstable disturbance wave when free-stream Mach number is high
enough [5,16]. Tumin [17] has proposed a numerical method to
solve a Cauchy problem based on the linear disturbance equations
with local parallel flow approximation. He has decomposed pertur-
bations into modes of continuous and discrete spectra, which helps
to elucidate underlying mechanisms that are important in lami-
nar–turbulent transition scenarios.

Recently, Zhong et al. [18–23] have completed a series of
numerical studies of receptivity of supersonic and hypersonic
boundary layer over flat plate and blunt cone by using both LST
and numerical simulation with high-order shock-fitting method
[18]. Zhong et al. investigated the linear instability characteristics
of the boundary layer wave modes and their mutual resonant
interaction. They thought that the stable wave modes, which
are not Mack modes, play critical roles in transferring wave en-
ergy between the acoustic wave and the unstable second Mack
mode. They proposed a resonant mechanism numerically that fi-
nally leads to unstable Mack mode in boundary layer, and further
applied this opinion to study the boundary layer receptivity of
Mach 7.99 to free-stream acoustic waves flow over a blunt cone
[23]. In Zhong et al.’s studies, only adiabatic wall is considered.
However, in many cases the wall is proximately isothermal or be-
tween adiabatic and isothermal. Effects of wall temperature to
instability of disturbance waves is also of great importance in
transition prediction and controls of hypersonic boundary layer
transition.

Wall temperature produces a notable effect on disturbance
waves. Mack [5] has pointed out that the effect of cooling wall
could be regarded as disturbance source in flat plate. Also for
hypersonic Mach number, the unstable second mode can promote
instability amplification over the whole temperature range. Stet-
son [24–27] has performed a series experiments on hypersonic
over a cone. For effect of wall temperature, he draw a conclusion
that cooling the surface stabilized the first mode disturbance and
destabilized the second mode disturbance, as predicted by LST.
The second mode disturbance growth rates on the water-cooled
cone (Tw=T0 ¼ 0:42, Tw: wall temperature, T0: total temperature)
were approximately 50% larger than those on the uncooled cone
ðTw=T0 ¼ 0:82Þ. The transition Reynolds number changed from
approximately 4:4� 106 (uncooled) to approximately 3:2� 106

(cooled). Stability of hypersonic boundary layer on a cone is much
different from that on a plane according to relevant hypersonic
wind tunnel experiments [26], so it is necessary to complete more
investigation on this area. However, it is still lack of systematic
numerical simulation of boundary layer stability over blunt cones
with wall temperature effects.

This paper presents a numerical study on the stability of bound-
ary layer for hypersonic flow, mainly considering the effect of wall
temperature. The aim of this paper is to investigate some new
physics phenomena in high Mach number flows that can lead to
transition. The flow conditions were duplicated from the experi-
ments of Stetson and Kimmel [25]. Two critical problems are dis-
cussed in this paper. The first one is attempt to interpret how the
wall temperature influences mean flow profile in hypersonic
boundary layer. And the second one is how the wall temperature
influences the evolution of disturbance waves.

2. Governing equations and numerical methods

Before introducing the governing equations and flow condi-
tions, we prefer to describe the conception of subscript and super-
script used in present paper. Subscripts ‘w’ denote the wall
condition, ‘o’, total conference condition, ‘1’, free-stream and ‘e’,
outer edge of boundary layer. Superscript ‘�’ denotes the dimen-
sional flow variable. In this paper, the dimensionless flow variables
are denoted by the same dimensional notation, but without the
superscript ‘�’.

The three-dimensional Navier–Stokes equations for steady and
unsteady hypersonic flow computation are transformed into the
general curvilinear coordinates ðn;g; fÞ from the Cartesian coordi-
nates ðx; y; zÞ as

@ðJ�1UÞ
@t

þ @E0

@n
þ @F 0

@g
þ @G0

@f
þ @E0v
@n
þ @F 0v
@g
þ @G0v

@f
¼ 0; ð1Þ

where

E0 ¼ Enx þ Fny þ Gnz þ Unt

J
; F 0 ¼

Egx þ Fgy þ Ggz þ Ugt

J
;

G0 ¼ Efx þ Ffy þ Gfz þ Uft

J
; E0v ¼

Evnx þ Fvny þ Gvnz

J
;

F 0v ¼
Evgx þ Fvgy þ Gvgz

J
; G0v ¼

Evfx þ Fvfy þ Gvfz

J
:

We non-dimensionalize the flow velocities by the free-stream
velocity U�1, length scales by the nose radius r�n, density by q�1, pres-
sure by q�1U�21 , temperature by T�1, time by r�n=U�1.

In present investigation, the amplification of disturbance waves
in the free-stream is as small as order of 10�4. In order to resolve
such small disturbance and improve compute precision, a high-or-
der-accurate shock-fitting finite difference method is applied
which is based on the fifth-order upwind compact schemes, the
sixth-order central schemes and the third-order Runge–Kutta
schemes. The grid surface g ¼ 1 is body surface, and g ¼ gmax is
the bow shock as the outer boundary. For the blunt cone, the grid
surface of g is unsteady and the grid-lines turn to be shorter or
longer with time, but the grid surfaces of n and f are fixed during
computation. The unsteady flow is simulated by using the moving
grid method, in which gt and @ðJ�1Þ=@t are not zero. The present
shock-fitting method is much different from that of Zhong’s [18]
in resolving of the characteristic compatibility relation formula.
The details of the numerical methods can be found in paper [28].

3. Flow conditions

The flow conditions in present paper are the same as those of
Stetson and Kimmel [25] experiment, where the data of laminar
boundary layer stability on a cone with half-angle 7� at Mach
7.99 are proposed. The specific flow conditions [23] are:

M1 ¼ 7:99, T�0 ¼ 750 K, p�0 ¼ 4� 106, p�1 ¼ 413 Pa,
Re1=ft ¼ 2:5� 106, Rern ¼ q�1U�1r�n=l�1 ¼ 31;250,
c ¼ 1:4, Pr ¼ 0:72, gas constant ¼ 286:94 Nm kg�1 K�1,
Blunt cone half-angle: h ¼ 7�, zero flow angle of attack,
Spherical nose radius: r�n ¼ 3:81� 10�3 m,
Parameters in Sutherland’s viscosity law: T�0 ¼ 288 K,
C ¼ 110:33 K, l�0 ¼ 0:17894� 10�4 kg ms�1,

where T�0 and p�0 are free-stream total pressure and free-stream
total temperature, respectively. The total length of the cone of
the present experimental mode is l� ¼ 1:143 m. The corresponding
Reynolds number at this length is Rel ¼ 9:375� 106.
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Further more, before introducing the boundary conditions, we
prefer to interpret recovery temperature, Tr , on the cone for adia-
batic wall in our computation. Tr was computed by

Tr ¼ Te 1þ c� 1
2

M2
e

ffiffiffiffiffi
Pr
p� �

: ð2Þ

Te and Me, the temperature and Mach number on outer edge of
boundary layer, are equal to about 1.34 and 6.8, respectively, and
Tr equal to about 646 K for adiabatic wall with above flow condi-
tions. So the wall temperature Tw over total temperature T0 equal
to 0.5, 0.7, 0.8, 0.9 are identical with the wall temperature Tw over
recovery temperature Tr equal to 0.58, 0.81, 0.93, 1.05, respectively.
So the first three wall temperature conditions denote the cooling
wall and the last one denoted the heating wall, however heated
slightly. And the former expression is employed in present paper.
No-slip boundary conditions are used on the body surface.

In this paper, the origin of the Cartesian system ðx; y; zÞ is lo-
cated at stagnation point of the nose spherical cone, where the x-
coordinate points from left to the right along the centreline of
the axis-symmetric cone. Meanwhile, a natural coordinate s corre-
sponding to x is used to measure the dimensionless curve length of
a surface location started from the stagnation point. The non-
dimensional s and x, which are normalized by the nose radius r�n,
are related to each other by the following relation:

x ¼
1� cosðsÞ s 6 p

2 � h

s� p
2 þ h

� �
cosðhÞ � sinðhÞ þ 1 s > p

2 � h

(
; ð3Þ

where h is the radian of the half-angle of the cone.

4. Numerical results and discussion

4.1. Numerical methods test

Before our computation, some computational results were car-
ried out to compare with results of Ma and Zhong [23] to verify
the validity of the present numerical method. Moreover, the re-
sults of Ma and Zhong agree well with those of experiments
[25] and Herbert and Esfahanian [31]. The computational surface
is 2D axis symmetrical blunt cone with adiabatic wall and
Rern ¼ 33;449, while the other computational parameters are set
as same as those in last section. Fig. 1 shows the position of
bow shock and the comparison of numerical vorticity jump with

theoretical value along the bow shock. It clearly indicates that the
numerical results agree well with theoretical values of vorticity
jump. It also shows that the current numerically computed bow
shock agrees very well with the solution of Ma and Zhong.
Fig. 2(a) shows the wall pressure along the cone surface, which
indicates that the present numerical results agree well with
Zhong’s. The figure shows that the wall pressure decreases shar-
ply from the maximum value at stagnation point when s increas-
ing from 0 to about 15, and then increases when s increasing
from about 15 to 80 as follow expands around nose region. The
wall pressure is almost a constant for about s > 80. Due to the
surface curvature discontinuity, flows show overexpansion in
the junction region between the spherical nose and the straight
cone, and go through a recompression region along the down-
stream cone surface. As a result, there is slight adverse pressure
gradient along the surface location after the junction. Meanwhile
there exist similar change of wall temperature which only has
slightly adverse temperature gradient and sharply decreases at
nose region. This can be found in Fig. 2(b). Generally, the present
method can give a quite well surface value. Fig. 3 shows the com-
parison of the tangential velocities profiles across the boundary
layer at a surface location of s ¼ 94 and 128. These comparison
indicate that the current numerical results agree very well with
those obtained by Zhong’s calculation, so the present computa-
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Fig. 1. Shock position and comparison of vorticity jump.
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Fig. 2. (a) Steady pressure and (b) temperature distributions along the cone surface.
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tion also can obtain well results through the boundary layer, thus
satisfied the accuracy requirement of computation.

4.2. Steady flow for different wall temperature conditions

From this part, the computing parameters showed in Section 3
are adopted. Fig. 4 shows the comparison of the tangential velocity,
obtained under adiabatic wall and cooling wall ðTw=T0 ¼ 0:7Þ con-
ditions, respectively, at different surface location. This figure shows
that boundary layers for adiabatic wall are thicker than that of the
cold wall ðTw=T0 ¼ 0:7Þ at the same locations. According to Mack
[6], the wavelength of the most unstable wave is approximately
twice the boundary layer thickness, and the change of boundary
layer thickness due to difference wall temperature leads to the
change of instability characteristic. After interacting with shock-
wave, the disturbance entering into boundary layer induces the
disturbances, which further to interact with boundary layer and fi-
nally to generate the most unstable mode dominating the transi-
tion position. Su and Zhou [29] has calculated transition location
of Mach 6 flow over a blunt-cone with 5� half cone angle by using
eN method. Their results indicated that the wall temperature has
significant effects on the transition, and transition location of the

boundary layer with adiabatic wall is 60% larger than that of the
cooling wall.

q dut
dyn

is one of the several parameters to characterize the entropy
layer which come into being after the bow shock and near the nose
region. Fig. 5 shows the contours of the q dut

dyn
computed with adia-

batic wall condition. A obvious peak exists in the contour lines out-
side the boundary layer. Fig. 6 shows the profiles of q dut

dyn
.

Furthermore the positions where dðq dut
dyn
Þ=dy ¼ 0 are called general-

ized inflection points(GIPs). Lees and Lin [30] showed that exis-
tence of a GIP is a necessary condition for the inviscid instability
in a compressible boundary layer.

Fig. 6 demonstrates the values of the q dut
dyn

and positions of the
GIPs effected by wall temperatures. The difference of profiles out-
side the boundary layer are slight for different wall temperature,
however distinctive inside the boundary layer. In Fig. 6(a)–(c),
the peaks outside the boundary layer are clearly showed on the
profile of q dut

dyn
from the nose region to downstream location at

about s ¼ 32:87 where the peak outside the boundary layer has
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Fig. 4. Effects of wall temperatures on tangential velocity profiles along the wall-
normal direction.
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been swallowed by the boundary layer. Fig. 6(a) shows the profiles
in favorable pressure gradient region, while (b)–(d) in adverse
pressure gradient region. Fig. 6(a) indicates that firstly, the value
of q dut

dyn
on the wall are affected seriously by wall temperature,

which is about 110% higher at Tw=T0 ¼ 0:5 and 50% higher at
Tw=T0 ¼ 0:7 than that for adiabatic wall. Secondly, two GIPs exist
in boundary layer in favorable pressure gradient region for adia-
batic wall conditions. Indeed, for heating wall ðTw=T0 ¼ 0:9Þ, it is
similar to the results for adiabatic wall. Further down streamwise,
after the flow enter into adverse region at about s > 19, the profiles
of q dut

dyn
appear some new changes. Fig. 6(b)–(d) shows that exis-

tence of adverse pressure gradient contribute to the progress of
forming two GIPs in boundary layer for cold wall ðTw=T0 ¼ 0:7Þ,
meanwhile, only one GIP exists in boundary layer for adiabatic wall
and heating wall. In other word, one GIP disappears from favorable
to adverse pressure gradient region for adiabatic and heating wall.
Additionally, there is no GIP for cold wall at Tw=T0 ¼ 0:5 for about
s < 32:67 in boundary layer. It indicates that the flow is stable in
this region according to theory of Lees and Lin [30]. When about
s > 71:77, Fig. 6(e) and (f) shows that only one GIP exists in bound-
ary layer for wall temperature cases of Tw=T0 ¼ 0:8, 0.9 and adia-
batic wall condition, but there still exist two GIPs for cold walls
at Tw=T0 ¼ 0:5, 0.7. The similar phenomena in the flat plate bound-
ary layer on Mach 3 has been reported by Mack [5]. Generally
speaking, cooling the surface leads to two GIPs which produce
some instable factors to the development of disturbance in bound-
ary layer and increases uncertainty and complex to stability
analysis.

4.3. Linear stability theory(LST)

LST based on the assumption of local parallel flow has obtained
satisfied results in incompressible flow and subsonic flat plate
flow. That can be used to identify the main components of stability
characteristics of boundary layer disturbances. Because of neglect-
ing increase of boundary layer along streamwise, such increase is
markedly in some special flow, for instance, the flat plate with an-
gle, flow around a cone, therefore LST can not provide additional
information produced by nonparallel effect. In this section, we
introduce a length scale of the boundary layer thickness
L� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�1s�=q�1u�1

p
, where s� ¼ r�ns. A local Reynolds number, based

on the L�, is defined as R ¼ q�1u�1L�=l�1. Dimensionless angular fre-
quency x and wave number a which are normalized by u�1 and L�

are defined as a ¼ a�L� and x ¼ x�L�=u�1, respectively. And the
relation between the dimensionless frequency F and x is
x ¼ 10�6FR. The linear fluctuations of flow variables are decom-
posed into the following normal mode form:

f 0 ¼ f̂ ðynÞexp½iðas�xtÞ�; ð4Þ

where the variable f stands for any of the independent flow variable
u, v, w, p, q, T. a ¼ ar þ iai is a streamwise complex wavenumber,
f̂ ðynÞ is the complex shape-function of the disturbance, n and s are
the local natural coordinates along the wall-normal and surface
directions, respectively. In a spatial linear stability analysis, for a gi-
ven frequency x, a and f̂ ðynÞ are computed as eigenvalue and eigen-
function of the stability equation. The real and imaginary parts of a,
ar and ai represent the spatial wave number and growth rate of a
wave mode, respectively. A linear wave mode is unstable when ai

is negative.
Fig. 7 compares the present growth rates computed with differ-

ent wall temperatures with the results of Herbert’s [31], Malik’s
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[13] and Zhong’s obtained under adiabatic wall condition, while
the other parameters are the same as ours. The present results of
the growth rate of Mack II mode computed with adiabatic wall
agrees well with that of Herbert’s, Malik’s and Zhong ’s et al. (Rey-
nolds number in Zhong’s paper is Rern ¼ 33;449 which is about 7%
larger than present value of 31,250. In fact, such difference can not
lead notable difference in hypersonic flow at Ma ¼ 7:99). In gen-
eral, the amplification rates computed with adiabatic wall well
agree with other’s. As showed in Fig. 7, the maximum value of
the growth rates of Mack II mode are �0.0064, �0.0054,
�0.0049, �0.004 and �0.0046 corresponding to Tw=T0 ¼ 0:5, 0.7,
0.8, 0.9 and adiabatic wall at surface location about s ¼ 175,
respectively. The comparison indicates that cooling the surface
promotes the instability and accelerates the growth of the unstable
Mack II mode. Meanwhile, the maximum value of the growth rates
of the first mode are �0.0001, �0.0003, �0.0005 and �0.0004 cor-
responding to Tw=T0 ¼ 0:7, 0.8, 0.9 and adiabatic wall, respectively.
It indicates that cooling the surface decreases the growth of the
first mode, but adiabatic and heating wall promote it. Moreover,
the cold wall at Tw=T0 ¼ 0:5 restrains the growth of the first unsta-
ble mode completely at above mentioned location. So it can be

concluded that cooling the surface accelerates the growth of unsta-
ble Mack II mode and restrains the first mode and the value of
growth rate of Mack II mode is much greater than that of the first
mode. So Mack II mode is a dominant unstable mode in hypersonic
boundary layer over a cone according to LST.

Fig. 8 compares the maximum growth rate curves of Mack II
mode along the streamwise for different wall temperature. This
indicates the relationship between the wall temperature and
the evolution of most unstable mode in boundary layer. Lines de-
note the different results computed with different wall tempera-
ture and each symbol on each line denotes a surface location. The
results indicate that, firstly, the growth rate of most unstable
Mack II mode continuously increase with increasing s. Secondly,
the growth rate of most unstable Mack II for cold wall is larger
than that of adiabatic wall at any same location through all
streamwise. Thirdly, the larger growth rate for the second unsta-
ble mode can be produced by decreasing wall temperature. Addi-
tional, the wavelength of the Mack II mode increases (or
frequency decrease) with increasing s and the wavelength of
the first mode is relative unchanged with increasing s according
to present computation.
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Neutral curve which acts critical roles in stability analysis pro-
vides the growth interval of unstable mode in 2D cases It is the first
step to predict transition by using eN method. Fig. 9 compares the
neutral curves obtained by adopting different wall temperature. It
indicates that the neutral curve depended on the wall temperature
closely. Fig. 9 indicates that the starting location where the distur-
bance wave access to the neutral curve for cooling wall is larger
than that for adiabatic wall. The starting locations for the first
mode are about s = 250, 149, 128, 108 and 118 corresponding to
Tw=T0 ¼ 0:5;0:7;0:8;0:9 and adiabatic wall, respectively. This dif-
ference leads to the disturbance growth for adiabatic wall, which
is earlier than that for cooling wall. Meanwhile, the difference of
such starting positions for the Mack II mode is not so obviously,
about s from 64 to 72. But the unstable interval starting from this
point is very short and mainly affects on high frequency wave (at
about f � > 1:7� 105) which can not obtain enough growth. An-
other notable difference is that the neutral curve expands to high
frequency at Tw=T0 ¼ 0:5, and 0.7. What effect will be produced
by such expansion is not clear at present.

The eigenfunction (shape-function) reflects the shape of distur-
bance wave and its distribution along normal direction to the wall
surface. Fig. 10 compares temperature eigenfunction for different
wall temperatures at four surface locations. The figures show that
the temperature eigenfunction of cold wall has much difference
from that for adiabatic wall. Fig. 10(a)–(c) indicates that the fluctu-
ation of the eigenfunction is closer to the wall surface at
Tw=T0 ¼ 0:5 than that for adiabatic wall for about s < 136:78.
And the real part and imaginary part of eigenfunction for cold wall
are much difference from that for adiabatic wall for s ¼ 215:35. So
the wall temperature affect the distribution of the disturbance
wave, which leads to different stability characteristic.

The present LST analysis indicates that stability of a blunt cone
at Ma ¼ 7:99 with zero attack angle and 7� half cone angle is sen-
sitive to the wall temperature. Cooling surface accelerates the
growth of the second unstable mode and decreases or even re-
strains the first mode. Especially the significant difference of tem-
perature eigenfunction indicates that the changes of the thermal
conductive characteristic can affect on the evolution of disturbance
significantly in boundary layer in hypersonic flow.

4.4. Growth of unstable mode in boundary layer

In order to investigate the spatial evolution of disturbance
waves along streamwise in boundary layer, a set of free-stream
forcing waves with a mixture of 15 independent planner fast
acoustic waves of different frequency are introduced at shock wave
boundary. These fast acoustic wave frequencies are

f �n ¼ nf �1; ðn ¼ 1;2; . . . ;15Þ; ð5Þ

where the lowest frequency f �1 ¼ 14:92ðkHzÞ ðF1 ¼ 9:04Þ and the
remaining 14 frequencies are multiples f �1 given by (5). So the high-
est frequency of the fast acoustic wave is f �15 ¼ 223:8 kHz
ðF15 ¼ 135:5Þ. These fast acoustic waves, including relative ampli-
tude, frequencies and phase angle of each disturbance wave chosen
according to Stetson’s experiment [25] are listed in Table 1. This
data also can be found in [23]. The total amplitude of forcing distur-
bance is e ¼ 6:2578� 10�4, a sufficiently small value to guarantee
the receptive process falls in the linear regime. And the amplitudes
of forcing wave for low frequencies are about one order higher than
that of high frequencies.

4.4.1. Development of disturbance in boundary layer
Fig. 11 shows the distribution of the wall pressure disturbance

in streamwise. For different wall temperature conditions, the
changes of pressure disturbance are similar to a certain extent.

Generally, the disturbance contains broad frequency range in front
of the cone body. But most part of wave components decay gradually
with down streamwise. Finally, the unstable wave only contains a
special range of frequencies after a sufficient long evolution in
boundary layer. In this case, a series of wave packages appear when
about s > 150 and the total amplitude of disturbance wave grows
exponentially in this range. The disturbance wave shapes have some
difference for four cases of wall temperature conditions. Such evolu-
tion process agrees with traditional viewpoint of evolution of distur-
bance in boundary layer. Fig. 11 indicates that the amplitude of wall
pressure disturbance for cold wall is not larger than that for adia-
batic wall. According to Fig. 9, the starting points where the unstable
waves enter into neutral curve are not same for different wall tem-
perature conditions. This starting point for adiabatic wall is prior
to that of cold wall, which leads to ahead growth of the disturbance
waves. As a result, the amplitude of cold wall is smaller than that of
adiabatic wall in certain streamwise range, although the growth rate
is larger. For isothermal wall, the total amplitude decreases with
declining wall temperature, which can be proved in Fig. 11(a)–(c).
Amplitude for Tw=T0 ¼ 0:5 is the smallest, and heating surface is
helpful to increasing amplitude of disturbance in boundary layer.

Fig. 12 shows the pressure disturbance along the wall surface at
different intervals in streamwise. Fig. 12(a) indicates that before
entering into neutral curve, the amplitudes of cold wall and adia-
batic wall are almost same, (b) indicates that at the early stage
after entering into the neutral curve, the amplitude of adiabatic
wall exceed that of cold wall gradually, (c) indicates that after
growth for a certain interval, the amplitude of adiabatic wall com-
pletely exceed the cooling wall, and (d) indicates that such situa-
tion remains to the rear of the wall surface.

Generally, cooling the surface decreases the growth of distur-
bance in boundary layer,while heating the surface enhances the
growth of disturbance, as well as adiabatic wall case.

4.4.2. Evolution characteristic of disturbance wave
In order to study the evolution of the 15 independent distur-

bance waves, twelve detecting points which are used to record
the time evolution of the disturbance variables on the wall surface
are distributed along the streamwise. These points reflect the
changing pattern of disturbance in boundary layer. Fig. 13 shows
the Fourier frequency spectral analysis (FFSA) of time evolution
of the pressure disturbance on these detecting points for the cold
wall with Tw=T0 ¼ 0:7. In present DNS, the similar analysis has
been done for the other four cases of wall temperatures. Because
of similar results of FFSA (with some small difference in values),
the result of Tw=T0 ¼ 0:7 is demonstrated as typical one.
Fig. 13(a) shows that the low frequency waves have high ampli-
tudes within a nose radius. This mainly because of the normal

Table 1
Forcing acoustic wave components of 15 frequencies in the free-stream.

n An Fn f � (kHz) /n (rad)

1 0.7692 9.035 14.92 2.4635e�6
2 0.4162 18.07 29.84 0.1600
3 0.2827 27.11 44.77 2.2149
4 0.2065 36.14 59.68 4.1903
5 0.1707 45.18 74.61 6.0510
6 0.1406 54.21 84.53 5.2671
7 0.1132 63.25 104.5 2.1070
8 0.097164 72.28 119.4 5.7511
9 0.1081 81.31 134.3 5.0005
10 0.090781 90.35 149.2 5.2319
11 0.077722 99.39 164.1 2.1679
12 0.058428 108.4 179.1 5.4738
13 0.050729 117.5 194.0 0.5649
14 0.076987 126.5 208.9 5.5812
15 0.057108 135.5 223.8 4.4043
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shock wave enlarges the forcing disturbance which have different
amplitude in free-stream. Such enlargement is enhanced continu-
ously in the shock layer where a strong oscillating wave move back
and forth between normal shock and nosetip. As showed in
Fig. 13(a)–(e), the FFSA amplitudes of low frequency range are lar-
ger than that of high frequency range. The low frequency compo-
nents dominates disturbance development in boundary layer.
Fig. 13(f)–(h) indicates that the occupancy of low frequency com-
ponents and high frequency components exchange in the interval
100 6 s 6 137. During this period, some disturbance wave are fil-
tered and seldom to grow, even to decay. The FFSA amplitude of
the disturbance with frequency range from about 84.53 to
134.3 kHz are almost less than 10�5. When about s > 137, the FFSA
amplitude of some high frequency components increase quickly
and finally dominate the disturbance development, meanwhile
the low frequency components almost are restrained to grow.
Fig. 13(i)–(l) shows that the low frequency range about
f � < 134 kHz and the high frequency range about f � > 194 kHz
are very weak when about s > 181:41, meanwhile the moderate
frequency range from about 149.1 kHz to 179.1 grows sufficiently.

In order to study the wall temperature effect on evolution of
unstable mode, the similar analysis need to be done for the other

four cases of wall temperature. Fig. 14 compares the FFSA ampli-
tudes vs s for four wall temperature cases. Fig. 14(a) and (b) indi-
cates that the amplitudes of low frequency disturbance wave at
f � < 134:3 kHz does not increase markedly along the streamwise.
These low frequency disturbance waves belong to the first mode
T–S wave which has very low growth rate. Fig. 14(c) and (d) indi-
cates that the amplitudes increase significantly when about
s > 100 in frequency range from about 134.3 to 179.1 kHz. These
disturbance waves belong to the second unstable Mack II mode,
which has larger amplitude. Fig. 14(d) and (e) indicates that the
amplitudes seldom to increase along the streamwise for a high fre-
quency range about f � > 180 kHz. Some zigzag structures with
very small value may caused by numerical errors. As showed in
Fig. 9, these disturbance waves do not have access to the neutral
curve. Based on previous analysis, the amplitude for adiabatic wall
is larger than that of cold wall which can be found clearly in
Fig. 14(c). Furthermore, the results of the DNS consider the whole
process of disturbance development from upstream, starting from
shock wave boundary, to downstream, ending at the rear of cone
body, which includes the receptivity, linear growth and nonlinear
growth stage. So the more accurate data reflecting the evolution
of disturbance can be obtained from the DNS.
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Fig. 11. Wall disturbance pressure for different wall temperature.
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Besides, the evolution of the disturbance along the streamwise
can be divided into three intervals, S1 (about 0 < s < 11:34), S2
(about 11:34 < s < 100) and S3 (about s > 100). In the S1, the
amplitudes decrease sharply from 10�1 order to 10�3, even to
10�4. In the S2, the amplitudes of disturbances are so close to each
other and change slowly. Such phenomena is regarded as mode
competition. Such mode competition which exist in the frequency
range from about 59.68 to 179 kHz acts important roles in recep-
tivity of hypersonic flow in a cone. The detailed analysis of such
problem will be given in the subsequent paper. Kachanov [7–9],
Fedorov and Khohklov [10] have proposed detail investigation in
physics mechanism. In the S3, the disturbances start to grow fol-
lowing its own growth pattern markedly. Fig. 14(c) and (d) shows
that the amplitudes of frequency range from about 134.3 to
179.1 kHz are larger than that of other’s, which also are demon-
strated in Fig. 13(j)–(l). Such frequency range is almost belong to
the most unstable Mack II mode according to Fig. 9.

4.5. Discrepancy between results of the LST, DNS and experiment

Indeed, results of the LST indicate that cooling the surface accel-
erates the growth of the second unstable mode (Mack II mode)
which dominates the disturbance development in boundary layer

according to traditional opinion, while results of the DNS shows that
the adiabatic wall enhances amplitudes of disturbances. Malik [32]
has drawn the conclusion that location of the transition with adia-
batic wall is dominated by the unstable first oblique T–S mode for
free-stream Mach numbers up to about 7 for shape cones. For cold
wall, the second unstable mode controls the growth of disturbances
according to present DNS results and cooling the surface stabilizes
the disturbance, which is the same as the results of the experiment
[24–27,33]. So the stability mechanisms are different for cold wall
and adiabatic wall, which require more investigation to clarify.

5. Conclusion

This paper proposes the effect of wall temperature on mean
flow and disturbance evolution on hypersonic boundary layer over
a 300 times spherical nose radius length cone with Mach number
7.99 by applying high-order shock-fitting method, and obtains
some new results, as well as draws some significant conclusions.

Firstly, the number and distribution of GIPs along wall-normal
are so different for cold wall and adiabatic wall (including heated
wall). Especially they are significant different in favorable and ad-
verse pressure gradient region. Those lead to different stability
characteristic in boundary layer.
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Fig. 12. Disturbance pressure for different wall temperature at different surface location for cooling and adiabatic wall.
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Secondly, For isothermal wall, cooling the surface accelerates
the growth of Mack II, meanwhile constrains the growth of the first
mode. Although cooling the surface enlarges frequency range of

the disturbance to high frequency, the disturbance with very high
frequency ðf � > 179 kHzÞ can not produce dominate action in
boundary layer. And cooling the surface affects the distribution
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Fig. 13. Fourier frequency analysis of pressure disturbance at different surface location.
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of the disturbance wave along the normal direction. For the adia-
batic wall, the growth of the disturbance does not only depend
on the development of the second unstable mode.

Thirdly, the results of DNS show that mode competition exists
within the disturbance with the mediate frequency range from
about 59.68 to 179 kHz in the interval about 11 < s < 100 for four
wall temperature cases. Then, the disturbance with the frequency
range from about 134.3 to 179.1 kHz dominate the growth of
unstable wave and form the most unstable the Mack II mode.
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