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Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are
promising candidates for several technical applications ranging from nanoelectronic devices to compos-
ites. Young’s modulus holds the special status in material properties and micro/nano-electromechanical
systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of
CNTs’ behavior by applying a variety of theoretical methods. Here, three representative numerical meth-
ods, i.e., Car–Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular
dynamics (MD), were applied to calculate Young’s modulus of single-walled carbon nanotube (SWCNT)
with chirality (3,3). The comparative studies showed that the most accurate result is offered by time con-
suming DFT simulation. MD simulation produced a less accurate result due to neglecting electronic
motions. Compared to the two preceding methods the best performance, with a balance between effi-
ciency and precision, was deduced by CPMD.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction Empirical Brenner potentials were employed by Robertson et al.
After first discovery, due to their excellent physical, chemical
and mechanical properties, carbon nanotubes (CNTs) [1] continue
to be one of the hottest research areas more than 18 years. These
properties support CNTs to be the suitable element for transistors,
quantum dots, hydrogen storage devices, chemical and electrome-
chanical sensors, field emission, etc. [2–4]. The mechanical applica-
tions of CNTs would be also the biggest large-scale application for
the material. The extremely high Young’s modulus and low specific
weight make the CNT become the potential reinforcement in high-
performance composites.

There existed significant differences among Young’s moduli ob-
tained from different theoretical methods [5–9]. Structural rigidi-
ties of CNTs were first predicted theoretically by Overney et al.
[5], using an empirical Keating Hamiltonian with parameters
determined from first principles. Using molecular dynamics (MD)
simulations and fitting them for the elastic shell theory, Yakobson
et al. [6] calculated the Poisson ratio m = 0.19, effective wall thick-
ness h = 0.66 Å, and Young’s modulus Y = 5.5 TPa, respectively.
ll rights reserved.
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[7] to examine the energetics and elastic properties of CNTs with
radii less than 9 Å. The Young’s moduli of CNTs were found to be
close to that for in-plane single-crystal graphite, about 1.06 TPa.
Using MD simulations with universal force field (UFF), Yao and Lor-
di reported Young’s moduli of CNTs were about 1 TPa [8]. Qin et al.
predicted that the moduli of (5,5) and (9,0) SWCNTs were around
0.6–0.7 TPa, whereas the Lennard-Jones and the TB-G2 potentials
were employed [9].

As noted from the above works, the large numbers of numerical
studies on CNT dynamics were based on MD simulations. In the
classical MD simulations, all degrees of freedom due to the elec-
trons are ignored, as well as quantum effects. So a more accurate
description is needed, i.e., potentials between electron–electron,
electron–ion as well as ion–ion interactions should be considered.
In this respect, the ab initio density functional theory (DFT) and
Car–Parrinello molecular dynamics (CPMD) [10] were used in the
study. DFT calculation, which is known as time consuming and
considering more details about the electrons and the ions, can give
more interactions and corrections about electron–electron, elec-
tron–ion and ion–ion, which are disregarded in classical MD. Con-
sidered these corrections, the simulated Young’s moduli of CNTs
would be more credible. But it can only simulate the static state.
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CPMD, which combines the MD simulation with quantum mechan-
ics, treats the electronic degrees of freedom in the framework of
DFT. It makes a balance between efficiency and precision, while
considering the dynamic effect. However, the dynamic processes,
performing in the CPMD still restricted to small system which is
a main disadvantage of CPMD. We compendiously compared the
three different methods in Table 1.

In this paper, we presented Young’s moduli of CNTs calculated
by CPMD, classical MD and DFT. By comparing the results of differ-
ent methods, calculation errors could be estimated, the advantages
and disadvantages of different methods would be revealed. This
work would be helpful to choose an appropriate method to simu-
late some other nanomaterials.

2. Method

CPMD is an ab initio molecular dynamics method which is the
combination of first principles electronic structure methods with
MD based on Newton’s equations of motion. Grand-state electronic
structures were described according to DFT within plane-wave
pseudopotential framework. The use of electronic structure meth-
ods to calculate the interaction potential between atoms over-
comes the main shortcomings of the otherwise highly successful
pair potential approach. There have been plenty of excellent refer-
ence books on MD and DFT, and some simulation tricks can be
found [11–14]. Here, some more details about CPMD which are dif-
ferent from the traditional classical MD and DFT will be discussed.

In CPMD, considering the parameters {wi}, {RI}, {av} in energy
function
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was introduced, where the wi are subject to the holonomic
constraints:X
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In Eqs. (1) and (2), wi are orbitals for electrons, RI indicate the
nuclear coordinates and av are all the possible external constraints
imposed on the system, w*(r) is the complex conjugate of wave-
function w(r), �h is the reduced Planck constant, m is the mass of
electron and n(r) = Ri |wi(r)|2 is the electron density; the dot indi-
cates time derivative, MI are the physical ionic masses, and l, lv

are arbitrary parameters of appropriate units. Then, the equations
of motion can be written as
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Table 1
Brief comparison of three different methods.
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Kik are Lagrange multipliers introduced in order to satisfy the con-
straints in Eq. (3). Then the equation of kinetic energy
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is obtained [10]. Based on the technique mentioned, CPMD extends
MD beyond the usual pair-potential approximation. In addition, it
also extends the application of DFT to much larger systems.

In our work, a three-dimensional (3D) periodically repeated tri-
clinic supercell was used and the cell was large enough to avoid the
interactions between the CNTs’ atoms. The interactions of the ion
core with the valence electrons were described by S. Goedecker
(SG) norm-conserving pseudopotential given by Goedecker and
his co-workers [15]. The electronic wave functions were expanded
in plane-wave basis set with the energy cutoff of 80 Ry. Local den-
sity approximation (LDA) was used and the Brillouin zone was
sampled at Gamma point. The CPMD source code, version 3.13.2
[16], can be downloaded with permissions free of charge for non-
profit organization.

In the MD simulation, CNT was parameterized within the con-
sistent valence force field (CVFF) developed by Hagler et al. [17].
The most commonly used functional forms are

E ¼ Epair þ Ebond þ Eangle þ Edihedral þ Eimproper; ð8Þ

where Epair is van der Waals interaction which can be expressed as
the best well known Lennard-Jones 12-6 function,
Epair ¼ 4e½ r

r

� �12 � r
r

� �6�; r < rc , here r is the distance at which the in-
ter-atom potential is zero and e is the depth of the potential well, r
is the distance between atoms. Ebond = Kb (r�r0)2 is the interaction
between pairs of bonded atoms, Eangle = Ka (h�h0)2 is the interaction
of valence angles in the molecule. These two equations represent
the harmonic potential that gives the increase in energy as the bond
length r deviates from the reference value r0, h is the bond angle and
the reference value h0. Kb, Ka are the stiffnesses of the bond and the
bond angle, respectively. Edihedral = Kd [{1 + dd cos (nd /)], Eimpro-

per = Ki [{1 + di cos (ni /)] describe dihedral and improper interac-
tions between quadruplets of atoms. Kd, Ki are often referred to as
the energy barrier height of dihedral angle and the improper angle.
dd, di whose value is �1 or +1, just represent the direction of the an-
gle. nd, ni are the multiplicities. The parameters used for CNTs in this
force field are listed in Table 2.

All MD runs were carried out by using the large-scale atomic
molecular massively parallel simulator (LAMMPS) developed by
Sandia National Laboratories. LAMMPS is a classical MD open-
source code [18] which is distributed under the terms of the
GNU Public License. More details can be obtained from http://lam-
mps.sandia.gov/.

Our first principles energy calculations were performed using
DFT implemented in a CASTEP package [19], based on the plane-
wave pseudopotential method. This numerical technique had been
ks

o static states of small systems; slow and expensive

n chemical reaction (bond breaking/forming); empirical potentials are used which
low accuracy
o dynamic process of small systems

http://lammps.sandia.gov/
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Table 2
Parameters used for CNTs calculation in CVFF.

Parameters

Bond coefficients Angle coefficients Pair coefficients Dihedral coefficients Improper coefficients

Kb r0 Ka h0 e r Kd dd nd Ki di ni

480.000 1.340 90.000 2.094 0.148 3.617 3.000 �1.000 2.000 0.370 �1.000 2.000
kcal�(mol�1 Å�2) Å kcal mol�1 rad kcal mol�1 Å kcal mol�1 – – kcal mol�1 – –
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proved to give the correct equilibrium structure and to be accurate
enough to describe the ground state properties of CNTs [20–22]. In
our calculation, the exchange correlation functional was treated
under the generalized gradient approximation (GGA) with Per-
dew–Burke–Ernzerhof (PBE) functional [23]. Ultrasoft pseudopo-
tentials and an energy cutoff of 400 eV, representing the number
of plane wave basis sets, were used for all cases. The special points
sampling integration over the Brillouin zone was employed by
using the Monkhorst–Pack method [24] with a grid of
4 � 4 � 2 k-point. Self-consistent field procedure was carried out
with a convergence criterion of 10�6 a.u. on energy and electron
density for all single point energy calculations.

The whole structure of simulated SWCNT and the repeated unit
are shown in Fig. 1. Considering the computational complexity and
time consuming in CPMD and DFT, a small but typical SWCNT with
chirality (3,3) was adopted into calculation. The mechanical prop-
erties of SWCNTs with other chirality would be similar to (3,3)
SWCNT. There are 12 atoms in each cell and the nanotube diameter
is 4.07 Å. The dashed line cell is the repeated triclinic supercell
used in the simulation. In all of calculations, the wall thickness of
SWCNT was assumed to be 3.4 Å.
Fig. 1. The SWCNT model with triclinic cell
3. Results and discussion

Here, different measures were adapted to deal with the results
obtained from different methods. The deformation energy would
be used to calculate Young’s modulus in CPMD and DFT simulation.
The stress–strain curve was used in dealing with MD’s result.

The SWCNT was pulled step by step and the potential energy at
every state was obtained. The step increase in CPMD simulation
was 0.01 Å. Initial length of the SWCNT’s cell was 2.4595 Å. The
curve of potential energy versus step increase was shown in
Fig. 2. Then, the Young’s modulus can be calculated by the formula

Y ¼ DE
A � Dl

� 1
e
; ð9Þ

where DE is the increment of the potential energy, A is the cross
sectional area of SWCNT, Dl is the increment of the length, and
e = Dl/l0 is the strain of SWCNT. The Young’s modulus of (3,3)
SWCNT was 1.4923 ± 0.0263 TPa.

MD simulations were performed in the canonical ensemble at a
temperature of 0.01 K using the Nose–Hoover thermostat [25].
Since the target temperature T cannot be 0.0 K, which is not al-
lowed in the Nose–Hoover formulation, here 0.01 K was used to
and chirality (3,3) used in calculation.



Fig. 2. Potential energy vs. step increase using CPMD method. Fig. 4. Potential energy and step increase using DFT method.
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achieve similar conditions as that in CPMD and DFT simulations.
The equations of motion were integrated using the velocity-Verlet
algorithm [26] with a timestep of 1 fs. The system was equilibrated
for 50 ps before data collection. After the equilibrium, the SWCNT
was stretched along the axis with one end fixed. The strain rate
was 2 � 109 s�1, that is, 1.0% strain was imposed each time and
then the SWCNT is dynamically relaxed for 5 ps to obtain the
microscopic equilibrium configuration. During the simulation, the
stress tensor of the SWCNT was calculated in the form

rab ¼ 1
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where the summation is over all the atoms occupying the total vol-
ume X, the first term and the second term in the square brackets
are a kinetic energy contribution for atom i and a potential one,
respectively. mi and mi are the mass and velocity of atom i, Fij are
the forces between atoms i and j, and the indices a and b denote
the Cartesian components. ra

ij are the projection of the inter-atomic
distance vectors along coordinate a.

The stress–strain relationship was shown in Fig. 3. The square
dots in Fig. 3 denoted the value of the average stress along the
stretching direction. The Young’s modulus was obtained by linear
fit to these data. The result was 1.0819 ± 0.0084 TPa. The curve
did not go through the origin because we used an initial configura-
Fig. 3. Stress–strain relation of CNTs using MD method.
tion without relaxation which would not affect the slope of the
curve.

Similar to the CPMD simulation, DFT simulations computed the
energy of static state of CNT. Fig. 4 depicted the CNT energy with
respect to the step. The Eq. (9) was used to compute the Young’s
modulus and the modulus was 2.1216 ± 0.4536 TPa, which is high-
er than the other two methods.

Among the three results, the DFT result is the highest one. The
MD result is the lowest. We considered the approaches employed
in potentials used in MD and the pseudopotentials used in CPMD
affect the interactions between atoms. In the CPMD scheme, only
the valence electrons were treated quantum-mechanically, while
the atomic cores were considered as classical particles. The interac-
tions between the valence electrons and the atomic cores were
represented by the pseudopotentials. To a certain extent, these
pseudopentials would weaken the interactions between the cores
of atoms and the electrons. As well the quality of the pseudopen-
tials which are necessary inputs for any ab initio simulations is
an important issue for CPMD calculation. The empirical force fields
used in MD simulation, taking some specific equations to describe
the forces act on the atoms, are difficult to manifest the interac-
tions in the atomic system fully. Therefore, the differences between
the three results are comprehensive and reasonable.

Additionally, in the MD simulation, we utilized another force
field named adaptive intermolecular reactive empirical bond order
(AIREBO) which is similar to Qin’s work [9] in simulating intramo-
lecular junctions between different CNTs to parameter the SWCNT
and the obtained moduli are approximately equal to Qin’s results.
This force field dependent phenomenon reveals that the force
fields utilized in simulation would also affect the final result.

In the simulation process, we also compared the time consum-
ing for the same system. We found that CPMD is more time con-
suming compared with MD but less than DFT. CPMD would be
30 times more time consuming than MD. We used a single CPU
(2 cores, master frequency is 2.60 GHz), MD method used up 2 h
in simulation, while for CPMD it was up to 3 days to finish the
same task. Some researchers compared the time consuming be-
tween the CPMD and MD simulation in their works [27] also dem-
onstrated similar results.

4. Conclusion

In this work, we compared the Young’s modulus of chirality
(3,3) SWCNT calculated by three different methods: CPMD, MD
and DFT, systematically. The results given by the methods are in
accord with the experiments performed by Treacy [28] and Krish-
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nan [29]. This work firstly compared three different methods
which were adopted in nano-scale researches. CPMD, which is a
typical ab initio MD, still has the difficulties in studying signifi-
cantly larger systems. A novel ab initio MD method, suitable for
simulating more atoms, is desirable. Classical MD allows calcula-
tions on systems containing significant numbers of atoms in a rel-
atively long duration. However, current empirical potential
functions are not accurate enough to reproduce the dynamics of
molecular systems. DFT is expected to be applied in a larger system
in the further. In conclusion, we hope that the present work would
be helpful for sorting an appropriate method in simulating other
nanomaterials.
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