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ABSTRACT 

Recovery from stroke is based on the capability of the brain to reorganize its structure and 

function after lesion. An acute stroke triggers a cascade of time-dependent metabolic and 

physiological reactions, which enable changes in the organization and function of widespread 

cortical regions. A wide range of studies, using various functional imaging methods, have 

thrown light on the reorganizational changes after stroke. However, less is known about the 

temporal evolution of these changes and their correlation to clinical recovery. 

 
In this thesis, different aspects of neurophysiological changes related to sensorimotor 

recovery were studied in 18 patients with first-ever stroke in the middle cerebral artery 

territory, affecting upper limb motor function. Follow-up recordings of somatosensory evoked 

fields (SEF) and spontaneous rhythmic brain activity were performed with whole-head MEG 

within 1 week (T0), 1 month (T1), and 3 months (T2) after stroke with concomitant evaluation 

of clinical outcome. MEG suits stroke studies especially well, as it is independent from 

hemodynamic alterations, and the signals are practically unaffected by morbid tissue. 

 
The results indicated that the hand representation in the primary somatosensory cortex (SI) in 

the affected hemisphere (AH) was transiently enlarged at T1 and returned to normal size 

concomitantly with clinical improvement of hand function (Study I). Study II showed that the 

activation in the contralateral secondary somatosensory cortex (cSII) was decreased in the AH 

at T0 and increased during follow-up. The strength of cSII activation paralleled the recovery 

of hand function during the 3 months follow-up, suggesting that cSII may be an important 

region in mediating the somatosensory input to the motor cortex. The results in Study III 

indicated that afferent-input-modulated motor cortex excitability was increased in the AH in 

the acute phase after stroke and decreased during follow-up in association with recovery of 

hand function. Study IV showed that the ~10-Hz oscillations were enhanced in the AH at T1 

and T2. Moreover, pathological perilesional low-frequency oscillations were detected in 7/16 

patients at T0, and the low-frequency oscillations persisted for at least 3 months in 4 patients. 

These 4 patients had a worse clinical outcome at T2 than the rest of the patients. 

 

The results indicate that even small lesions can cause widespread neurophysiological changes 

in the cortical network. Certain brain regions, such as SII, seem to be specifically important 

for the recovery of hand function. The results underline the importance of parallel recovery of 

the somatosensory and motor systems for fluent hand function. The most evident 
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neurophysiological changes were observed within 1 month after stroke in parallel with 

steepest improvement of clinical recovery, suggesting that the first 4 weeks are critical for 

functional recovery.  
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1 INTRODUCTION  

Stroke is one of the leading causes of permanent disability in western countries. In recent 

years, therapeutic interventions such as thrombolysis have been developed to treat acute 

stroke. However, due to the short time window (within 4.5 hours from onset of symptoms) of 

this treatment, it still reaches the minority of stroke patients, and even then only half of the 

occluded vessels are re-canalized (Rha and Saver, 2007). Hence, for most patients intensive 

rehabilitation is the only way to minimize impairment and to regain lost function. 

 
Rehabilitation is based on the capability of the central nervous system to reorganize and to 

adjust to environmental needs. Studies in animals have shown reorganization of the cerebral 

cortex both after peripheral deafferentation (Merzenich et al., 1984, Pons et al., 1991) and 

after central lesions (Frost et al., 2003, Nudo and Milliken, 1996, Xerri et al., 1998). In 

animals, cortical reorganization has been linked to changes in cortical inhibition (Jacobs and 

Donoghue, 1991). 

 

Consistently, different aspects of cortical reorganization have also been observed in patients 

after stroke. Enlargement of cortical motor or somatosensory representation areas (Calautti et 

al., 2001, Rossini et al., 1998a, Rossini et al., 2001, Ward et al., 2003a, Ward et al., 2003b) 

and alterations in the cortical excitability (Butefisch et al., 2003, Liepert et al., 2000b, 

Manganotti et al., 2002, Ward and Cohen, 2004) have been detected in patients after stroke. 

However, the functional significance of these findings is not thoroughly understood. 

 

Although plastic changes allow functional recovery, plasticity is not necessarily a solely 

positive phenomenon. For example, focal dystonia in musicians has been linked to an over 

activation of the primary sensorimotor cortex (Pujol et al., 2000), and prolonged pain in 

patients with complex regional pain syndrome (CRPS; Juottonen et al., 2002, Maihofner et 

al., 2003) and in patients suffering from phantom limb pain (Flor et al., 1995) has been linked 

to maladaptive plasticity. 

 

The aim of this thesis was to study recovery of the somatosensory and motor cortices after 

acute stroke, and to correlate the observed neurophysiological changes with clinical recovery. 

To achieve this, we performed follow-up measurement of somatosensory evoked fields and 

spontaneous brain activity in 18 patients with first-ever stroke in the middle cerebral artery 
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territory. The motivation of this thesis was to better understand the mechanisms and temporal 

behavior of plastic changes after stroke, and to find objective parameters to monitor recovery 

after stroke. 
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2 REVIEW OF THE LITERATURE 

 

2.1 Anatomy and physiology of the somatosensory system 

2.1.1 Somatosensory pathways, touch  

Somatosensory sensation comprises four major modalities: touch, proprioception, 

nociception, and temperature sense. These submodalities are mediated through two major 

pathways (dorsal column-medial lemniscus system and anterolateral system) to the brain 

(Kandel and Jessel, 1991). Discriminative touch is required to recognize the size, shape, 

weight, and texture of objects.  

Touch is mediated via four types of mechanoreceptors which lie in the skin and underlying 

tissue. The rapidly adapting receptors (Meissner’s corpuscles in the superficial skin and 

Pacinian corpuscles in the deeper tissue) detect changes in texture, whereas slowly adapting 

receptors (Merkel`s cells in the superficial skin and Ruffini’s corpuscles in the deeper tissue) 

respond to sustained touch and pressure (Kandel and Jessel, 1991).  

The information from these four receptor types is conveyed by axons of nerve cells in the 

dorsal root ganglia to the spinal cord. The majority of the central axons of the dorsal root 

ganglia neurons ascend in the ipsilateral dorsal column, which relays both tactile and 

proprioceptive information in a topographic arrangement, to the junction of the spinal cord 

and the medulla, where they synapse with second-order neurons in two dorsal column nuclei 

(nuclei cuneate and gracilis; Figure 1). The axons of the second-order neurons cross the 

midline in the medulla oblongata and ascend in the lemniscus medialis to the thalamus, where 

they synapse in the ventral posterior lateral nucleus (VPL) and to a lesser extent in the 

posterior nuclei with third-order neurons. Some tactile information is also relayed in the 

anterolateral system together with information about pain and temperature. Thus patients with 

dorsal column lesions retain some crude tactile sensibility (Kandel and Jessel, 1991). 

The axons of third-order neurons relaying information from the cutaneous mechanoreceptors 

mainly terminate in Broadmann area 3b in the primary somatosensory cortex (SI), lying in the 

posterior wall of the central sulcus in the parietal lobe. From there, neurons project to 

Broadmann areas 1 and 2 in the primary somatosensory cortex, to the posterior parietal cortex 
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(PPC), and to the secondary somatosensory cortex (SII). Thalamic neurons also project 

directly to Broadmann areas 1 and 2 as well as to the PPC and SII. 

The topographic arrangement of receptors in the skin is preserved throughout the whole 

somatosensory pathway, and the somatosensory cortex consists of several somatotopically 

organized maps of the body surface.  

 

 
Fig.1. Diagram of the ascending somatosensory pathways. The dorsal column-medial lemniscus system relays 
tactile sensations and arm proprioception (modified from Martin and Jessel, 1991). 
 

2.1.2 Primary somatosensory cortex (SI) 

SI is located in the parietal lobe, in the posterior bank of the central sulcus and in the 

postcentral gyrus (Figure 2). It consists of Broadmann areas 3a, 3b, 1, and 2. Most thalamic 

fibers terminate in areas 3a and 3b. Areas 3b and 1 receive information from cutaneous 

mechanoreceptors, whereas areas 3a and 2 receive proprioceptive information from muscles 

and joints (Kandel and Jessel, 1991). All of these four areas are interconnected extensively. 

The information flows mainly in the anteroposterior direction from areas 3a and 3b to areas 1 

and 2; at each stage of somatosensory processing, the size of the receptive field becomes 

larger and the feature-detecting properties become more complex (Hyvarinen and Poranen, 

1978). Area 3b receives mainly information about simple stimulus-related properties, such as 
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intensity and site of stimulation, whereas areas 1 and 2 input are concerned with properties 

such as direction of movement on the skin and the three-dimensional perception of objects.  

 

 

Fig.2 a) The anatomical locations of the three major divisions of the somatosensory cortices from a lateral 
perspective of the cortical surface. b) SI is subdivided into four cytoarchitectonic areas (Broadmann’s areas 3a, 
3b,1, and 2; modified from Gardner and Kandel, 2000). 

 

The somatosensory projection from the body is somatotopically organized in SI. This means 

that each body part has its own representational area. Actually, each area in SI (Broadmann 

3a, 3b, 2, and 1) has its own, completely independent body map, with the foot area lying most 

medially and the face area most laterally (Kaas et al., 1979). Each body part is represented 

according to its innervation density (Penfield and Jasper, 1954). Areas of the body that are 

densely innervated and important for tactile discrimination, such as the fingertips and lips, 

have a disproportionally large representation compared with areas with less extensive 

innervation, such as the trunk. This means that the receptive fields of cortical neurons 

innervating the fingertips are much smaller than the ones innervating the trunk. Although the 

general medial-to-lateral somatotopical organization is similar in all individuals, the sizes of 

representation area of different body parts are not fixed, but they vary between individuals 

and change by use (Clark et al., 1988, Jenkins et al., 1990). For instance, in monkeys who 

were trained to touch a rotating disk with their fingertips, the fingertip representations in 
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cutaneous area 3b were expanded after several weeks of touching the disk (Jenkins et al., 

1990). In accordance, the representations of the left hand digits of string players have been 

shown to be larger than those in non-musicians (Elbert et al., 1995).  

It is suggested that afferent connections to neurons in the somatosensory cortex are formed on 

the basis of correlated firing. In monkeys, increased correlation of afferent input, obtained by 

connecting surgically two adjacent fingers, fused the representation areas of these two fingers 

(Clark et al., 1988). In line with this study, in two patients who were studied before and after 

surgical separation of webbed fingers, the postsurgical hand representation was considerably 

larger than the presurgical hand representation, correlating with the new functional status of 

the separated fingers (Mogilner et al., 1993).  

 

2.1.3 Secondary somatosensory cortex (SII) 

SII, located in the parietal operculum along the superior bank of the lateral sulcus, was first 

described by Adrian in electrophysiological studies in cats (Adrian, 1941). Since then, it has 

been described in many other animals including primates (Woolsey, 1946). In humans, the SII 

region was first described by Penfield and Jasper (1954) by means of electrical stimulations of 

the lateral sulcus during neurosurgery. The first noninvasive observations of activation in the 

SII region were described in magnetoencephalographic recordings (Hari et al., 1984). The 

definition of the boundaries and connections of SII has been challenging; the smaller size and 

the location of SII render it much more difficult to study than SI (Burton, 1986). Moreover, a 

variety of different adjacent regions to SII with responsiveness to somatosensory stimuli have 

been found in different species, but the boundaries of these regions have been difficult to 

determine (Burton, 1986). Microelectrode recordings in monkeys (Krubitzer et al., 1995) and 

fMRI in humans (Disbrow et al., 2000) have revealed at least two somatotopically organized 

areas in the parietal operculum: the SII cortex, and rostral to it, the parietal ventral area (PV), 

which have mirror symmetric maps of the body surface and share common boundaries at the 

representations of the face, hands and feet. The activation patterns within SII and PV have 

been shown to be highly variable across subjects (Disbrow et al., 2000), which has further 

hampered the exact determination of the boundaries of SII. 

 

SII shows somatotopical organization, with cranial parts of the body located anterolaterally 

and caudal parts posteriomedially. In general, the receptive fields of neurons in SII are larger 
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and more overlapping than in SI (Burton, 1986, Mazzola et al., 2006). It appears that the 

spatial differentiation of the body map in SII is sufficiently developed to provide a resolution 

capable of identifying the body part that has been touched, but the spatial discrimination is not 

as good as in SI (Burton, 1986).  

 

In contrast to SI, SII is bilaterally activated to unilateral stimulation and neurons in SII have 

been shown to have bilateral receptive fields (Whitsel et al., 1969, Robinson and Burton, 

1980, Mazzola et al., 2006). In accordance with the relatively large, overlapping, and bilateral 

receptive fields of SII, the functional role of SII in primates has been suggested to be critical 

for coordinating sensorimotor tasks involving multiple body parts, such as the digits of the 

hand or the two hands (Simoes and Hari, 1999, Disbrow et al., 2000).  

 

In rhesus monkeys, ablation of the SII region led to impairment of discrimination of the shape 

and texture of objects (Murray and Mishkin, 1984). Accordingly, in humans, lesions of SII 

have been suggested to be associated with tactile agnosia (Caselli, 1993). However, this view 

was challenged by a subsequent study showing consistently abnormal somatosensory evoked 

potentials (SEPs) in SI in patients with tactile agnosia (Mauguiere and Isnard, 1995). In 

agreement with the latter findings, impaired SII activation was always associated with 

abnormal SI responses in the damaged hemisphere of chronic stroke patients (Forss et al., 

1999). 

 

2.1.4 Other somatosensory cortices 

The posterior parietal cortex (PPC) is located posterior to area 2 in SI. In humans, the PPC 

stretches over Broadmann areas 5 and 7. However, the borders of PPC are not strictly 

delineated. In addition to dense connections with ipsi- and contralateral SI and SII, PPC is 

connected with the visual, auditory, and motor cortices. Thus, PPC is not a pure 

somatosensory association area; rather, it combines somatosensory information from personal 

body parts with extrapersonal spatial information and serves higher-level cognitive functions 

related to movement (Andersen and Buneo, 2002, Hyvarinen, 1982). Thus, lesions of PPC 

cause complex defects such as disturbances in spatial perception, visuomotor integration, and 

selective attention. Probably the most well-known consequence of a lesion in the right PPC is 

neglect syndrome, a deficit in the visuospatial perception of the left side of the body as well as 

the environment on the left side. 
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Parts of the mesial cortex are also activated during somatosensory processing (Caselli, 1993, 

Forss et al., 1996, Penfield and Jasper, 1954). This area is known as the supplementary 

sensory area, and it probably stretches over the mesial area 5 and anterior portion of mesial 

area 7 (Caselli, 1993). Extensive lesions of this area caused disruption of somesthetic 

processing and apraxia (Caselli, 1993). Activation in the mesial cortex in response to 

somatosensory stimuli has been shown to be attention dependent (Forss et al., 1996). 

 

2.1.5 Cortical connections of somatosensory areas  

Studies in monkeys have shown dense, topographically specific, reciprocal connections from 

all four areas in SI (3a, 3b, 1, and 2) to SII (Jones et al., 1978). Input from the different areas 

appear to converge within SII in the representation of a given body part (Friedman et al., 

1980). SI also has efferent projections to areas 5 and 7 in the ipsilateral PPC. In addition to 

intrahemispheric connections, SI has transcallosal connections to homotopical areas in the SI 

of the opposite hemisphere. These connections are sparse between areas 3b and relatively 

dense between areas 2 (Killackey et al., 1983). Moreover, transcallosal connections between 

hand and foot representations within each field are much less dense than those between face 

and trunk representations; in area 3b they are practically non-existent (Killackey et al., 1983). 

SI also has transcallosal connections to somatotopically-related areas in the contralateral SII 

(Burton, 1986). However, the functional significance of these connections is not well known. 

In stroke patients, an SII response ipsilateral to the stimulated impaired hand was found in all 

patients regardless of the responsiveness of the contralateral SI and/or SII, suggesting that 

ipsilateral SII may be activated mainly directly through thalamocortical connections (Forss et 

al., 1999). 

 

Area SII has shown to have connections to the insular cortex and to area 7 in the PPC 

(Burton, 1986). Moreover, SII is connected in a topographical fashion to contralateral SII via 

transcallosal connections (Burton, 1986). 

 

2.2 Motor function and sensorimotor integration  

Voluntary movements require a complex interaction of cortical motor areas and an integration 

of sensory input with motor programs. The motor cortices, divided into the primary motor 
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cortex (MI) and the premotor areas, are located anterior to the central sulcus, occupying 

approximately the posterior third of the frontal lobes. MI is located in the precentral gyrus and 

in the anterior wall of the central sulcus (Broadmann area 4). The somatototopical 

organization of MI resembles the organization of SI: the foot area is located most medially 

and the face area most laterally. Body parts such as the face, hands, and fingers that are used 

in motor tasks requiring precision and fine control have disproportionally large 

representations.  

 

The premotor areas, comprising Broadmann’s area 6 anterior to MI consist of two major 

areas: medially, the supplementary motor area (SMA) and laterally, the premotor cortex (PM). 

The premotor areas project to MI and to subcortical structures (striatum and thalamic nuclei)  

as well as directly to the spinal cord. Stimulation of the premotor areas often evoke complex 

movements involving multiple joints and bilateral body parts (Krakauer and Ghez, 2000).  

 

2.2.1 Cortical connections between somatosensory and motor cortices  

Discriminative touch and proprioception are essential for the execution of fine, skilled 

movements. Although some direct thalamocortical afferent connections to MI exist (Asanuma 

et al., 1979), the modulatory afferent input to the motor cortex is mediated mainly via cortico-

cortical connections from SI and SII (Chen et al., 1999, Disbrow et al., 2000, Hinkley et al., 

2007). Studies in monkeys have shown direct connections from areas 1 and 2 in SI to area 4 

in ipsilateral MI, whereas direct connections between the main cutaneous area 3b and MI have 

shown to be sparse or even non-existent (Jones et al., 1978). In contrast, area SII has been 

shown to have strong anatomical connections to area 4 in ipsilateral MI and to SMA (Jones 

and Wise, 1977).  

 

 
Fig.4 Ipsilateral connections between somatosensory cortices and the primary motor cortex. 
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2.2.2 Sensorimotor integration 

Fluent motor performance requires an integration of afferent somatosensory input with motor 

programs to adjust the strength, speed, and range of movements. For example, in monkeys, a 

combined removal of the dorsal column and SI led to permanent severe deficits of hand 

dexterity (Asanuma and Arissian, 1984). Accordingly, a patient with severe peripheral 

sensory neuropathy and intact motor circuits was relatively unable to use his hands in daily 

life, as he could not automatically correct or maintain movements without visual feedback 

(Rothwell et al., 1982). 

  

In addition to anatomical connections between SII and MI (Jones and Wise, 1977), functional 

imaging studies have shown a close interaction between SII activation and motor functions. 

Navigated transcranial magnetic stimulation (nTMS) of the SII region has been shown to 

facilitate motor performance in healthy subjects (Raij et al., 2008). Deficient activation of SII 

has been observed in patients with impaired hand dexterity due to Unverricht-Lundborg type 

epilepsy or focal dystonia (Butterworth et al., 2003, Forss et al., 2001). Taken together, SII 

seems to play an essential role in sensorimotor integration, especially in tasks involving 

multiple, functionally-related body parts (Disbrow et al., 2000, Hinkley et al., 2007).  

 

 

It has been proposed that afferent somatosensory input mediates its effect on motor functions 

by modulating the excitability of motor cortex neurons before and during movement 

(Asanuma and Arissian, 1984, Favorov et al., 1988). Accordingly, reduced afferent input due 

to transient ischemic block of cutaneous afferents or transient immobilization of a limb has 

been shown to cause motor cortex disinhibition (Brasil-Neto et al., 1992, Todd et al., 2006). 

In line with these findings, in a TMS study, decreased inhibition of the ipsilesional motor 

cortex was observed in stroke patients with defective somatosensory input due to lesions in SI 

or VPL (Liepert et al., 2004).  

 

Taken together, the integration of afferent somatosensory input from multiple body parts, 

such as the two hands or the fingers of a hand, with motor functions, may be mainly mediated 

via SII. The integration of afferent somatosensory input with motor programs may function by 

changing the excitability of motor cortex neurons. Thus, defective sensorimotor functioning 

may result from insufficient somatosensory feedback due to somatosensory system 
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dysfunction or from defective sensorimotor integration due to altered afferent modulation of 

motor cortex neuron activity. 

 

2.3 Spontaneous brain oscillations 

Neurons of the cerebral cortex exhibit intrinsic oscillations (Llinas, 1988). The synchronous 

oscillations of neuronal populations form the basis of cerebral cortical rhythms. Various 

cortical brain regions in the healthy human brain exhibit their own intrinsic, frequency-

specific rhythms with modality-specific reactivity. The best known cortical rhythms of the 

human brain are the alpha rhythm, detected over the posterior parts of the brain, and the mu-

rhythm, detected over the rolandic regions. These rhythms and their modulation are well 

detectable with electroencephalographic (EEG) and MEG recordings (Salmelin and Hari, 

1994a, Steriade et al., 1990). The thalamus has been suggested to play an essential role in 

driving cortical rhythmic activity (Hughes and Crunelli, 2005, Steriade and Llinas, 1988), and 

thalamic lesions have been shown to attenuate cortical rhythmic activity (Makela et al., 1998).  

Over the last few years, cortical rhythms have attracted new widespread interest. For decades, 

cortical rhythms were interpreted to reflect an idling state of the neurons (Pfurtscheller et al., 

1996), but the differences in spatial and temporal occurrence, as well as in modality-specific 

reactivity of these rhythms, suggest that these rhythms have higher functional significance 

(Salmelin et al., 1995). However, the exact functional role of cortical rhythms is still under 

debate. Cortical rhythms have been suggested to have an important role in cognitive 

processing (Llinas and Ribary, 1993, Jensen et al., 2002, Haegens et al., 2010, Palva et al., 

2005) and in perceptual binding of distributed neural activity (Fries, 2005, von der Malsburg, 

1995). Moreover, changes in the amplitude or frequency of brain rhythms may reveal 

pathological phenomena of the brain (Lewine et al., 1999, Pfurtscheller et al., 1981, Tecchio 

et al., 2007, Van Huffelen et al., 1984). 

 

2.3.1 Posterior alpha rhythm  

The posterior alpha rhythm, first described by Hans Berger in 1929 (for a review see 

Niedermeyer, 1999), is the best known cortical rhythm. It occurs during wakefulness in the 

frequency range of 8–13 Hz over the posterior region of the brain. This rhythm is blocked by 

eye opening and re-appears with eye closure. Alpha rhythms with the same peak frequency 
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have been recorded from both the visual thalamus (lateral geniculate and pulvinar nuclei) and 

from the visual cortex (Lopes Da Silva and Storm Van Leeuwen, 1977). Although 

simultaneously-recorded alpha rhythms from the thalamus and from the cortex have been 

shown to be partly coherent, the coherence between alpha rhythms recorded between closely 

spaced electrodes in the cortex has been shown to be much stronger than thalamocortical 

coherence (Lopes Da Silva and Storm Van Leeuwen, 1977). The genesis of the alpha rhythm 

is still not thoroughly understood. It has been assumed that there are several generator areas of 

alpha rhythms in the cerebral cortex and that the rhythm spreads from these areas in different 

directions (Lopes Da Silva and Storm Van Leeuwen, 1977, Steriade et al., 1990). However, so 

far there has been no evidence of a synchronizing mechanism for the alpha rhythm at the 

cortical level (Steriade et al., 1990), whereas the thalamic reticular nucleus has been 

suggested to play an essential role in the synchronization of thalamic oscillations (Steriade 

and Deschenes, 1984). Thus, it is assumed that there are both thalamocortical and cortico-

cortical systems which interact in the generation of these rhythms (Steriade et al., 1990). 

 

Alpha oscillations have been suggested to play an important functional role in cognitive 

processing (Jensen et al., 2002, Palva et al., 2005) and in orienting attention (Foxe et al., 

1998, Handel et al., 2011). Occipital alpha is supposed to reflect inhibition of task-irrelevant 

areas, thus directing the sensory inflow to task-relevant areas (Jensen and Mazaheri, 2010). 
 

2.3.2 Rolandic mu rhythm  

The features of the cortical rhythm detected over the rolandic regions were first described in 

detail by Gastaut et al. in 1952 (for a review see Niedermeyer, 1999). The rhythm consists of 

a slower alphoid (~10 Hz) and a faster beta (~20 Hz) component. Relatively independent mu 

rhythm generating systems exist in both hemispheres (Storm van Leeuwen et al., 1976).  The 

alphoid component of the rolandic mu rhythm has been suggested to be generated mainly in 

the postcentral gyrus in the primary somatosensory cortex  (Salmelin et al., 1995, Salmelin 

and Hari, 1994b), whereas the beta component has been shown to have its main generator 

areas in the primary motor cortex (Pfurtscheller et al., 1996, Salmelin and Hari, 1994b). The 

beta rhythm has been shown to be coherent with the simultaneously recorded EMG signal 

from an isometrically contracted limb muscle (Conway et al., 1995, Salenius et al., 1997a), 

which further supports the association of the beta rhythm with motor functions.  
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The reactivity of the rolandic mu rhythm indicates that it is closely related to sensorimotor 

functions. The mu rhythm is suppressed by movement execution, observation or even motor 

imagery (Hari et al., 1998, Neuper and Pfurtscheller, 1996, Salenius et al., 1997b, Salmelin 

and Hari, 1994b). The rhythm is suppressed already 1-2 s before movement and subsequently 

increased (rebound) 0.5-2.5 s after movement termination (Pfurtscheller, 1992, Salmelin and 

Hari, 1994b). In addition to motor activation, afferent somatosensory input, such as peripheral 

tactile or electric stimulation, also elicits an initial suppression followed by a rebound of the 

mu rhythm (Salenius et al., 1997b, Salmelin and Hari, 1994b). The reactivity of the rhythm is 

bilateral to unilateral movement or somatosensory stimulation, but the reactivity in the 

contralateral hemisphere to the site of the movement/somatosensory stimulation is more 

pronounced (Salenius et al., 1997b, Salmelin and Hari, 1994b). Both alphoid and beta 

components of the mu rhythm display movement-related reactivity, but the reactivity, 

especially the rebound, is faster and stronger for the beta component than for the alphoid 

component (Pfurtscheller, 1992, Salenius et al., 1997b, Salmelin and Hari, 1994b).  

 

It has been suggested that there are at least two distinct beta rhythms with different 

frequencies and different functional roles (Hall et al., 2011, Jurkiewicz et al., 2006, 

Pfurtscheller et al., 1997, Szurhaj et al., 2003). These different beta components have been 

reported to behave differently in their reactivity to movement, with the lower beta (~15 Hz) 

component contributing more to the movement-related rebound and the higher beta (~20 Hz) 

component displaying quite a similar pattern of reactivity than the alphoid component 

(Pfurtscheller et al., 1997). In line with these findings, the suppression and rebound of the 

beta rhythm have been suggested to have different generator areas: the rebound has its main 

sources in MI in the precentral gyrus (Jurkiewicz et al., 2006, Salmelin et al., 1995), whereas 

the sources of suppression have been more variable (Feige et al., 1996, Jurkiewicz et al., 

2006).  

 

The rebound of the beta rhythm is dampened by motor cortex activation due to movement 

execution, observation or motor imagery (Hari et al., 1998, Salenius et al., 1997a, Schnitzler 

et al., 1997), and it has been suggested to reflect deactivation, removal of excitation 

(Pfurtscheller, 1992, Salmelin et al., 1995), or active inhibition of the motor cortex (Chen and 

Hallett, 1999, Franzkowiak et al., 2010). Accordingly, decreased motor cortex excitability has 

been detected with TMS from 200 ms to 1000 ms after digit or median nerve stimulation, a 

time course comparable to the beta rebound (Abbruzzese et al., 2001, Chen et al., 1999). A 
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combined MEG and magnetic resonance spectroscopy study showed a linear relation between 

the beta rebound strength and the inhibitory neurotransmitter γ-Aminobutyric acid (GABA; 

Gaetz et al., 2011), further strengthening the inhibitory role of the beta rebound. Consistently, 

the beta rebound has been shown to be attenuated in disorders with suspected motor cortex 

hyperexcitability or disinhibition such as Unverricht-Lundborg type epilepsy or complex 

regional pain syndrome (Juottonen et al., 2002, Silen et al., 2000, Visani et al., 2006, 

Kirveskari et al., 2010).  

 

2.3.3 Other cortical rhythms 

In addition to the well known occipital alpha and rolandic mu rhythms, a less well known tau 

rhythm in the the 8–10 Hz range has been observed in the temporal-lobe (Tiihonen et al., 

1991). This rhythm is not dampened by opening the eyes, but it is transiently suppressed by 

auditory stimuli (Lehtela et al., 1997). The sources of this rhythm cluster to the supratemporal 

cortex, close to the generator sites of auditory evoked fields (Lehtela et al., 1997). In addition, 

a sigma rhythm in the 7–9 Hz range has been observed in the parietal operculum, most likely 

in the SII (Narici et al., 2001). The sources of this rhythm were observed clearly lateral to the 

sources of the sensorimotor mu rhythm and superior to the sources of the tau rhythm. The 

sigma rhythm has been shown to react bilaterally to median nerve stimulation with an initial 

suppression and a subsequent rebound of the rhythm (Della Penna et al., 2004). 

 

2.3.4 Pathological low-frequency oscillations  

Injured neuronal tissues generate abnormal cortical low-frequency oscillations in the 

frequency range below 4 Hz. These oscillations were first classified as “delta-waves” in 1936 

by Grey Walter, who localized cerebral tumors due to pathologic low-frequency oscillations 

(for a review see Amzica and Lopes da Silva, 2011). However, nowadays the delta term is 

also related to physiological cortical activities during sleep and anesthesia, and it is defined as 

oscillations in a frequency band between 0–4 Hz (IFSECN, 1974), thus the delta term does 

not reveal the mechanism underlying these oscillations.  

 

Studies in animals have suggested that partial cortical deafferentation may play a pivotal role 

in the generation of pathological low-frequency oscillations. These low-frequency oscillations 
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have been suggested to have a role in guiding axonal sprouting after brain lesions (Carmichael 

and Chesselet, 2002), thus promoting recovery.  

 

In humans, pathological low-frequency oscillations have also been detected after traumatic 

brain injury (TBI) and stroke (Butz et al., 2004, Huang et al., 2009, Lewine et al., 1999, 

Vieth, 1990). In a study combining MEG and diffusor tensor imaging (DTI), pathological 

low-frequency oscillations were found in co-occurrence with axonal injury in patients with 

TBI (Huang et al., 2009). A combined MEG and proton magnetic resonance spectroscopic 

imaging study suggested an association between pathological low-frequency oscillations and 

abnormal metabolic activity in preserved but dysfunctioning cortical neurons adjacent to an 

ischemic lesion (Kamada et al., 1997). In TBI patients, low-frequency activity has been linked 

to certain cognitive symptoms (Huang et al., 2012), whereas no correlations with clinical 

parameters and low-frequency oscillations have been found in stroke patients (Butz et al., 

2004).  

 

2.4 Stroke  

According to the World Health Organization, stroke is defined as “ rapidly developing clinical 

signs of focal (at times global) disturbance of cerebral function, lasting more than 24 h or 

leading to death with no apparent cause other than that of vascular origin” (Hatano, 1976). 

The definition does not distinguish between the causes of stroke, but includes intracerebral 

and subarachnoid hemorrhage, and ischemic cerebral infarction. Around 75 % of all strokes 

are ischemic (Thrift et al., 2001). The sudden interruption of the blood supply to the brain 

results in neurological deficits such as sensorimotor impairment, inability to produce or to 

understand speech, or defects in the visual field. 

 

2.4.1 Epidemiology 

Stroke causes approximately 10 % of all deaths worldwide and is the second most common 

cause of death after ischemic heart disease (WHO, 2008, Lopez et al., 2006). Globally, the 

incidence of stroke was estimated at approximately 9 million in the year 2004 (WHO, 2008), 

and in Finland there were approximately 10500 incident hospital-treated stroke patients each 

year from 1999 to 2007 (Meretoja et al., 2011). In high-income countries, stroke is the 
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second leading cause of disability, as measured by disability adjusted life years (DALY), after 

ischemic heart disease (Lopez et al., 2006). Only around one third of patients recover fully 

from stroke (WHO, 2002), the remaining surviving patients suffer from permanent disability. 

Stroke causes a significant burden on the society in developed countries. As a diagnostic 

entity, stroke is ranked 6th place, consuming around 3 % of total health care costs (Evers et al., 

2004). It has been suggested that stroke mortality is decreasing more rapidly than stroke 

incidence, which will place increased demands on the health-care system (Donnan et al., 

2008). 

 

2.4.2 Risk factors 

The most important risk factor for stroke is advanced age. Other non-modifiable risk factors 

are male sex, black race, and family history of stroke. The most important modifiable risk 

factor is hypertension. Other modifiable risk factors are dyslipidemia, smoking, diabetes, 

obesity, physical inactivity, and atrial fibrillation (Goldstein et al., 2011) . 

 

2.4.3 Treatment of stroke 

Stroke is an emergency situation in which rapid re-supplement of the cerebral blood flow can 

minimize damage of brain tissue and thus prevent severe neurological deficits. In the last few 

years, considerable progress in the treatment of acute stroke has been made (Donnan et al., 

2008). Thrombolysis therapy with the recombinant tissue plasminogen activator alteplase, 

when used within 4.5 hours, enhances the chance of favorable outcome. However, the benefit 

of the treatment decreases the longer the treatment is delayed from stroke onset (Lees et al., 

2010). Efforts have been made to develop additional interventions to treat acute stroke, among 

others the enhancement of thrombolysis with low-frequency ultrasound or mechanical 

thrombectomy with special devices (Donnan et al., 2008). 

Despite the progress in acute treatment, stroke is still the most common cause of permanent 

disability among elderly people (Donnan et al., 2008). Thus, for most patients, intensive 

rehabilitation is the most efficient way to regain lost function. Clinical experience has shown 

that early systematic treatment by an interdisciplinary team improves the prospects of 

successful rehabilitation. However, the effectiveness of rehabilitation varies among patients 
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and it declines with time. No clear evidence of the benefit of rehabilitation continued after one 

year post stroke exists (Aziz et al., 2008). In the last few years, efforts have been made to 

better understand the mechanisms underlying recovery of function, with the target to develop 

new effective therapeutic strategies (Ward and Cohen, 2004). 

 

2.5 Plasticity and functional reorganization after stroke 

2.5.1 Neuroplasticity 

According to the Oxford English dictionary, plasticity refers to the quality of being easily 

shaped or moulded. The term plasticity was first introduced to neuroscience in 1890 by 

William James in reference to the tendency of human behavior to be modifiable (for a review 

see Pascual-Leone et al., 2005). Plasticity is not an occasional occurrence in the central 

nervous system; rather, it is ongoing, allowing the central nervous system to reorganize and to 

adjust to environmental needs throughout an individual’s life (Pascual-Leone et al., 2005). 

At the functional and structural level, plasticity comprises, e.g., the reorganization of 

representational maps in the cerebral cortex. Such reorganization occurs, e.g., after changes in 

afferent input, motor learning or after loss of function due to lesions in the central nervous 

system (Merzenich et al., 1984, Nudo and Milliken, 1996, Nudo et al., 1996a). On one hand, 

plasticity is a mechanism for development and learning. For instance, the cortical 

representation of the reading finger in Braille readers has been shown to be enlarged as a 

result of intensive training (Pascual-Leone and Torres, 1993). On the other hand, plasticity 

can also be maladaptive and a cause of pathology. Thus, in amputees, the reorganization of 

the cerebral representation area of the amputated limb has shown to be associated with 

phantom limb pain (Flor et al., 1995). 

 

At the cellular level, neuroplasticity comprises, e.g., the unmasking of previously existing 

silent connections (Jacobs and Donoghue, 1991) which lead to a rapid modulation of cortical 

representational maps that can occur within minutes (Braun et al., 2001). Changes over longer 

periods of time involve additional mechanisms such as axonal and dendritic sprouting, and 

formation of new and strengthening of pre-existing synapses (Carmichael et al., 2001, 

Stroemer et al., 1995). All these plastic changes are driven by both behavioral changes and 

mediated by local molecular changes. 



 

20 
 

2.5.2 Reorganization of representational maps after stroke  

A study in monkeys showed that after photothrombotically induced small lesions to distal 

forelimb representation areas in MI, the remaining forelimb representation areas adjacent to 

the stroke also shrank without training, and the monkeys did not regain lost function (Nudo 

and Milliken, 1996). In contrast, in monkeys who received training, these areas were spared 

or they even enlarged concomitantly with recovery of function (Nudo et al., 1996b). In 

humans, in addition to enlarged motor- and somatosensory representation areas within the 

primary sensorimotor cortices (Rossini et al., 2001, Rossini et al., 1998b, Weiller et al., 1993, 

Ward et al., 2003b), more large-scale changes have also been observed after stroke. Motor 

tasks have been shown to activate secondary motor areas such as the SMA, PM, and even 

contralesional primary and secondary motor areas after stroke (Weiller et al., 1993, Ward et 

al., 2003b). Both enlarged representation areas in the primary sensorimotor cortices (Rossini 

et al., 2001, Rossini et al., 1998b) and recruitment of secondary association areas (Rossini et 

al., 2001, Rossini et al., 1998b, Ward et al., 2003b) have been associated with poor clinical 

outcome.  

 

Longitudinal studies have shown that, in patients with good recovery, the neuronal activation 

pattern may initially be enlarged and include non-primary motor regions, but re-focuses 

towards more normal contralateral activation patterns in parallel with recovery, while in 

patients with residual impairment the recruitment of secondary motor areas remains  (Calautti 

et al., 2001, Ward et al., 2003a). A study with patients who received constraint-induced 

movement therapy demonstrated that during therapy the cortical representation of the affected 

hand in MI in the affected hemisphere (AH) enlarged in parallel with recovery of hand 

function. In follow-up examinations up to 6 months after treatment, the motor performance of 

the affected hand had remained good, although the cortical representation in the AH had 

returned to normal (Liepert et al., 2000a). Studies in monkeys have suggested that 

reorganization of cortical representations is learning-dependent and not simply use-dependent. 

Enlargement of cortical maps was observed in monkeys in parallel with new motor skill 

acquisition, whereas corresponding changes were not observed in monkeys who simply 

repeated a task that they performed optimally from the initial exposure of the task (Nudo et 

al., 1996a, Plautz et al., 2000). Taken together, reorganization of cortical representation maps 

occurs after stroke, and this reorganization may be related to re-learning of motor skills. 
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2.5.3 Changes in excitation/inhibition balance after stroke 

Several studies in humans and animals have indicated hyperexcitability both in the affected 

and unaffected hemispheres after stroke (Buchkremer-Ratzmann and Witte, 1997, Butefisch 

et al., 2003, Domann et al., 1993, Liepert et al., 2000b, Manganotti et al., 2002). Changes in 

cortical excitability have been linked to unmasking of silent connections and thus to 

reorganization of cortical representations (Jacobs and Donoghue, 1991). On the other hand, a 

normalization of cortical excitability has been associated with good recovery of stroke 

patients (Calautti et al., 2001, Swayne et al., 2008). In line with these findings, 

hyperexcitability of the motor cortex has been linked to impaired motor performance in 

several other neurological disorders such as Unverricht-Lundborg Type Epilepsy or focal 

dystonia (Abbruzzese et al., 2001, Silen et al., 2000).  

 

Motor cortex activity depends on the balance between the influences of several different 

excitatory and inhibitory systems. These influences range from effects of local corticocortical 

inhibitory circuits to effects of interhemispheric and afferent connections. TMS allows a 

segregation of several different types of excitatory and inhibitory circuits. However, the 

different excitatory and inhibitory influences are complex even in healthy subjects, and the 

interaction of these is not well known (Chen, 2004). Most TMS studies on stroke patients 

have applied intracortical inhibition (ICI) and intracortical facilitation (ICF) paradigms 

(Liepert et al., 2005, Liepert et al., 2000b, Manganotti et al., 2002). The effect of afferent 

input on motor cortex excitability after stroke is less studied. A previous TMS study evaluated 

changes in both ICI and afferent inhibition after stroke (Di Lazzaro et al., 2012). They found 

that changes in afferent inhibition correlated well with long-term recovery, but no correlations 

with recovery and ICI were found. This study further corroborates earlier findings that 

cortical excitability modulated by afferent input is driven by different circuits than those 

mediating ICI or ICF (Sailer et al., 2002). 

 

2.6 FUNCTIONAL BRAIN IMAGING IN STROKE   

2.6.1 Magnetoencephalography (MEG) 

MEG is a totally noninvasive method which measures, from outside the skull, the magnetic 

fields produced by neuronal currents. MEG has an excellent temporal resolution on the 
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millisecond scale and the locations of underlying neuronal activity can be estimated from the 

measured signals under suitable conditions with a spatial accuracy of a few millimeters. MEG 

is especially suitable for stroke studies, as it is independent from hemodynamic alterations 

and as the presence of morbid tissue does not significantly affect the distribution of the 

neuronal signals (Huang et al., 1990).  

 
The first MEG signals were measured in 1968 by David Cohen using induction coils as the 

detector (for a review see Hari and Kaukoranta, 1985). The subsequent development of 

SQUID (superconducting quantum interference device) sensors by James Zimmermann led to 

the rapid development of MEG instrumentation (for a review see Hämäläinen et al., 1993).  

 

Present-day MEG devices are designed with a helmet-shaped sensor array that covers the 

whole head and allows the recording of neuronal activation over the whole brain. Thus it 

enables investigations of simultaneous activation of multiple cortical sites forming a neuronal 

network. 

 

2.6.1.1 Neural basis of MEG signals 

When neurons are activated they produce time-varying electrical currents. We can distinguish 

between two main types of currents, the fast action potential (AP) and the more protracted 

postsynaptic potential (PSP). An AP lasts only for ~1 millisecond and it produces two 

oppositely-directed dipoles. The quadrupolar field produced by these dipoles diminishes 

rapidly with distance. In contrast, a PSP forms one single current dipole whose magnetic field 

decays much more slowly as a function of distance than that of a quadrupole. Moreover, a 

PSP lasts tens of milliseconds, allowing the summations of several simultaneous PSPs 

(Hämäläinen et al., 1993). MEG measures mainly the magnetic fields produced by PSPs in 

the apical dendrites of pyramidal cells in the cerebral cortex. The apical dendrites lie 

perpendicular to the cortex and in parallel with each other, which allows the summation of 

magnetic fields of tens of thousands of neurons, hence producing a signal strong enough to be 

measured from outside the skull.  
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2.6.1.2 Instrumentation 

The magnetic field generated by neuronal currents is typically around 50–500 fT outside the 

head, which is 109 times weaker than the earth’s steady magnetic field (Hämäläinen et al., 

1993). Therefore, MEG measurements are, in general, performed in a magnetically shielded 

room to avoid contamination of the cerebral signals with artifacts caused by external magnetic 

noise.  

 
The magnetic fields are measured with SQUID sensors which are embedded in liquid helium 

(-269 º C) to maintain superconductivity. The magnetic fields are coupled to the SQUIDS 

with pickup coils, which convert the magnetic signals into electric currents. The present 

device (Elekta Neuromag®, Helsinki, Finland), used both in the Brain Research Unit, Aalto 

University and in the BioMag Laboratory, HUCH, consists of 102 triple sensor elements, each 

comprising two orthogonal planar gradiometers and one magnetometer. The design of the 

pickup coils is important for the sensitivity of the SQUID to different source currents and 

artifacts. A gradiometer is figure-eight shaped and it consists of two coils which are wound in 

opposite directions. With this design, signals originating from the background noise produce 

practically homogeneous fields in the coils and are thus canceled out. In contrast, signals 

coming from nearby sources in the brain produce a net change in the output of the coils. 

Because the field gradient of a dipolar source is steepest just above the source, planar 

gradiometers give strongest signals just above the cortical sources. A magnetometer consists 

of only one single pick-up loop; it is sensitive to magnetic signals from the brain but also 

much more sensitive to environmental noise than a gradiometer (Hämäläinen et al., 1993, 

Hari, 2011). 

 

2.6.1.3 Source analysis  

MEG measures non-invasively magnetic fields produced by neuronal currents. In principle, 

several current distributions can produce identical magnetic field patterns outside the head. 

Thus, there is no unique solution for the reconstruction of the sources underlying the 

measured signals. This is called the inverse problem. However, with accurate prior knowledge 

of the anatomy and physiology of the brain, the MEG signals can be constrained to 

meaningful solutions (Hämäläinen et al., 1993) . 
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In MEG analysis, the head is typically modeled as a spherical homogeneous conductor. This 

model approximates the head geometry around the sensorimotor cortex, the area of main 

interest in our studies, reasonably well (Hämäläinen et al., 1993). In a spherical conductor 

model, radially orientated currents do not produce measurable magnetic fields outside the 

conductor, because the intracellular currents and the simultaneously produced opposing 

volume currents cancel each other out. Thus, MEG measures mainly activity from neurons in 

the fissures of the cortex, which produce currents tangential to the head surface (Hämäläinen 

et al., 1993). Luckily, the main cortical areas of the sensorimotor system are located within 

the fissures and are thus easily detected with MEG. 

 

2.6.1.4 Comparison of MEG and EEG 

MEG and EEG are closely related to each other, as the primary currents causing the signals 

are the same. The main advantage of MEG over EEG is that the skull and other tissues 

surrounding the brain practically do not affect the magnetic fields, whereas they substantially 

distort the electric potentials measured by EEG. Thus, the spatial resolution of MEG is much 

better than that of EEG. In contrast to EEG, MEG is reference-free, which makes the 

interpretation of source locations of magnetic signals more straightforward (Hari, 2011). The 

advantage of EEG is the much cheaper and more flexible instrumentation, which enables 

telemetric, long-term, and bed-side recordings. 

 

MEG is mainly sensitive to tangential currents, whereas EEG also detects radial currents. 

Moreover, EEG is more sensitive to very deep sources. Simultaneous MEG and EEG 

recordings may be advantageous because the acquired information can complement each 

other (Hari, 2011). 

 

2.6.2 Other functional imaging methods  

Over the past few years, there has been growing interest in the study of functional 

reorganization of the cerebral cortex after stroke. Considerable efforts have been made to 

better understand the underlying mechanisms promoting or prohibiting stroke recovery. In 

addition to MEG and EEG, functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), and transcranial magnetic stimulation (TMS) have been widely used for 

functional brain imaging after stroke. 
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PET and fMRI rely on the assumption that changes in neuronal activity are closely coupled to 

changes in cerebral blood flow (CBF) due to an increase in metabolism. PET is a nuclear 

imaging technique, in which the distribution of a radioactive tracer is measured to make 

assessments of CBF, oxygen consumption, and glucose metabolism in the brain tissue 

(Eliassen et al., 2008). Most fMRI studies use blood oxygenation level dependent (BOLD) 

imaging techniques. The BOLD signal is based on the different magnetic properties of 

oxygenated and deoxygenated hemoglobin. In regions with increased CBF, the concentration 

of oxygenated and deoxygenated hemoglobin changes, which can be detected as changes in 

the BOLD signal (Ward, 2007). 

 

TMS is a tool which allows the noninvasive stimulation of the cerebral cortex using a rapidly 

changing magnetic field. Among other things, it can be used to investigate or manipulate the 

physiology of the motor system. The response of motor cortices to stimulation is determined 

by measuring the size, latency, and required stimulus intensity of motor-evoked responses in a 

target muscle. These measures have been widely used in stroke recovery studies to probe the 

motor system physiology and to detect changes in intracortical and interhemispheric 

excitation/inhibition balance. 

 

All these imaging techniques have certain limitations. Given the complexity of the 

mechanisms underlying recovery from stroke, the best understanding of the functionality of 

the cerebral cortex after stroke could potentially be achieved by combining these methods 

(Eliassen et al., 2008). 

 

2.7 SOMATOSENSORY EVOKED RESPONSES  

Somatosensory evoked potentials (SEPs) and somatosensory evoked fields (SEFs) can be 

used to investigate the physiology and functional  organization of the somatosensory system. 

In clinical use, alterations in strength, latency, generator areas and morphology of 

somatosensory evoked responses can reveal pathological phenomena. 

 
Single cortical responses to external stimuli are difficult to distinguish from background 

noise. Thus, SEPs and SEFs are typically studied by averaging responses time-locked to the 

stimulus to improve the signal-to-noise ratio. Electric stimuli to peripheral nerves have been 
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widely used to study the somatosensory system since they are easy to apply and produce clear 

and strong responses. However, electric stimulation activates a large variety of fibers 

innervating both muscle and skin (Burke et al., 1981). In contrast, tactile stimulation, used in 

our studies, is a more natural stimulus and it selectively activates rapidly adapting cutaneous 

mechanoreceptors and elicits clear responses in cytoarchitectonic area 3b, the main cutaneous 

area of SI (Forss et al., 1994b). 

 

SEPs can be recorded directly from the cortex during surgery or with implanted intracranial 

electrodes, or noninvasively from the scalp. Scalp SEPs are widely used since they are easy to 

measure. However, the skull and other extracerebral tissues differ in their electric 

conductivities, thus they smear the electric potentials and weaken the spatial resolution of 

EEG. 

 
The earliest cortical SEP responses to electric median nerve stimulation are observed as a 

surface negative deflection (N20) over the contralateral parietal cortex at about 20 ms after 

the stimulus, followed by a surface positive deflection (P30) at about 30 ms. A waveform 

with similar latencies but opposite polarity (P20, N30) is recorded from the frontal scalp, and 

an intermediate waveform (P25,N35) is recorded near the central sulcus (Allison et al., 1991). 

Several scalp and intracecebral SEP studies in healthy subjects as well as lesion studies in 

humans and monkeys have suggested that these potentials are generated by one tangential 

source in area 3b and one radial source in area 1 in contralateral SI (Allison et al., 1991). 

However, some studies have suggested that the radial source  may be generated in the 

precentral cortex (Desmedt and Cheron, 1981, Mauguiere et al., 1983). 

 

2.7.1 Somatosensory evoked fields (SEFs) 

SEFs were first described by Brenner et al. who studied the somatotopical organization of 

generator areas of the magnetic signals to thumb and little finger stimulation in SI (Brenner et 

al., 1978). Since then, many others have reported similar findings for SEFs (Hari et al., 1984, 

Okada et al., 1984). Compared with SEPs, SEFs have the advantage of a much better spatial 

resolution. By measuring SEFs in response to somatosensory stimuli applied to different parts 

of the body, it is possible to reproduce quantitatively the entire somatosensory homunculus in 

the primary somatosensory cortex (Nakamura et al., 1998). One of the most interesting 

applications in the study of somatotopically-organized SEFs is the reorganization of 
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representation areas in SI, as discussed in sections 2.1.2 and 2.4. In addition to functional 

mapping of cortical representation areas, SEFs can be used to study the functional 

organization of the whole cortical somatosensory network (Forss et al., 1994a, Hari et al., 

1983). Thus, alterations at different levels of the cortical sensory processing stream can be 

investigated totally noninvasively. 

 
The earliest response to electric median nerve stimulation (N20m) peaks at about 20 ms, and 

the corresponding equivalent current dipole (ECD) points anteriorly in the contralateral SI. 

The next deflection (P35m) peaks at 30–35 ms, and the corresponding ECD is also located in 

the contralateral SI but has approximately opposite polarity (Tiihonen et al., 1989). The 

earliest response to tactile somatosensory stimulation of the digits using balloon diaphragms 

driven by compressed air is elicited over the contralateral SI at 50‒60 ms; the corresponding 

ECD is oriented posteriorly, corresponding to the P35m response (Mertens and Lutkenhoner, 

2000). The differences in latencies can be explained by differences in the rise time of the 

stimuli, the different stimulation sites, and the transduction from mechanical stimulation to a 

neural response. The longer rise time of the tactile stimulus results in a temporally-smeared 

input to the somatosensory cortex, which produces an insufficient early synchronization of the 

SI neural population (Mertens and Lutkenhoner, 2000). This insufficient early 

synchronization together with the smaller number of stimulated afferent fibers probably 

explains the lack of a correlate of the N20m response after tactile stimulation. 

 

Later responses to somatosensory stimulation are detected at around 100 ms in bilateral 

parietal opercula at locations corresponding to the SII region (Hari et al., 1983, Hari et al., 

1984). In general, the SII response contralateral to the stimulated hand peaks slightly earlier 

and more strongly than the SII response ipsilateral to the stimulated hand (Hari et al., 1983, 

Hari et al., 1984). In addition, activation has been observed at 70‒110 ms in the contralateral 

PPC (Forss et al., 1994a) and in the mesial cortex (Forss et al., 1996). Latencies in the later 

responses do not significantly differ between tactile and electrical stimulation (Forss et al., 

1994b). 

 

Averaged SEF amplitudes depend on the interstimulus interval (ISI; Forss et al., 1994a, Hari 

et al., 1993, Tiihonen et al., 1989, Wikstrom et al., 1996). Long-latency responses, generated 

outside of SI, may be conveyed through polysynaptic pathways and typically have a longer 

recovery cycle than short-latency responses (Forss et al., 1994a, Hari et al., 1990). Such long-
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latency responses are best detected at ISIs greater than 1 s and require ISIs around 3 s to be 

optimally recorded. An ISI of 1 s, however, is sufficient to record optimal short-latency 

responses (Wikstrom et al., 1996, Hari et al., 1983, Huttunen et al., 1992, Mertens and 

Lutkenhoner, 2000).  

 

The amplitudes of SI responses, generated mainly in area 3b, to median nerve stimulation, 

have been shown to increase almost linearly with increasing stimulus intensity up to 3 times 

sensory perception threshold (Jousmaki and Forss, 1998, Lin et al., 2003), emphasizing  the 

crucial role of SI in encoding the somatosensory stimulus intensity. The PPC and SII 

responses have been shown to saturate at a stimulus intensity 2 times sensory perception 

threshold (Lin et al., 2003) corresponding to stimulation intensity slightly above motor 

threshold (Jousmaki and Forss, 1998). These later responses have been shown to be strongly 

modulated by selective attention (Mima et al., 1998, Mauguiere et al., 1997, Hamada et al., 

2003). The modulation by attention together with the strong convergence of  afferent 

somatosensory input and connections to other association cortices suggest that  SII and PPC 

are involved in higher-order processing of somatosensory signals (Jousmaki and Forss, 1998, 

Lin et al., 2003).  
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3 AIMS OF THE STUDY  

The aim of this thesis was to study noninvasively alterations in the sensorimotor network in 

the acute phase after stroke and during recovery, and to correlate these changes with recovery 

of hand function. The specific aims were the following: 

 

 
1. To correlate the reorganization of the SI hand representation area with recovery of hand 

function to find out if representational changes are associated with functional recovery after 

stroke (Study I). 

 

2. To evaluate how changes in the activation of the somatosensory cortical network are 

associated with motor recovery after stroke (Study II). 

 

3. To study how afferent somatosensory input modulates motor cortex excitability after stroke 

and how it is associated with recovery of hand function (Study III). 

 

4. To investigate how alterations in spontaneous brain activity and presence of pathological 

low-frequency oscillations correlate with functional recovery after stroke (Study IV). 
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4 MATERIALS AND METHODS 

4.1 Subjects 

4.1.1 Stroke patients  

Twenty-three patients with first-ever stroke in the middle cerebral artery territory were 

initially recruited within 3 days from stroke onset from the Department of Neurology, 

Helsinki University Central Hospital (HUCH). Exclusion criteria were earlier neurological 

diseases, neurosurgical operations or head traumas, severe psychiatric disorder, unstable 

cardiovascular condition and poor general condition. Four patients were excluded from the 

study after the first measurement, three because MRI revealed prior silent strokes and one 

because of a re-infarction after the first measurement. One patient’s MEG data could not be 

reliably analyzed due to large artifacts, and was thus excluded from further analysis. Thus, the 

follow-up data of 18 patients (9 females; age 44‒84 years, mean 66 ± 2 years; all right 

handed) were used for further analysis (Table I). One patient refused to participate in the third 

measurement because of claustrophobia; the rest successfully underwent all three 

measurements. Five of the patients received thrombolysis therapy in the acute phase. Nine 

patients were rehabilitated individually at a rehabilitation hospital and six at an outpatient 

clinic. No specific rehabilitation was needed for five patients. All patients gave written 

informed consent. 

 

Table 1 Clinical data of the patients 

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Sex M F M F F M F M M M M F F F M F F M 
Age 60 72 74 84 55 68 72 44 62 57 67 67 68 74 78 72 48 61 
AH R L L R R L R L L R R L L R L L L R 
Site C C C C CS CS CS CS CS CS S S S S S S S S 
Size 0.1 0.3 0.4 1 70 48 24 34 5 106 7 1 3 5 10 3 1 4 

AH, affected hemisphere. C, cortical. CS, cortico-subcortical. S, subcortical. Size, lesion volume in cm3.  
 

4.1.2 Control subjects 

For Studies I, III, and IV, ten healthy control subjects (5 females, mean age 61 ± 2 years, all 

right-handed) were recruited for the study. In Study II, the data of 18 control subjects (11 

females, mean age 55 ± 2 years) were used for analysis. All control subjects gave written 

informed consent. 
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4.2 CLINICAL TESTING 

The patients underwent clinical examination within 1 week (T0), at 1 month (T1), and at 3 

months (T2) after stroke. A neurologist from the research team performed National Institutes 

of Stroke Scale (NIHSS) scoring to evaluate stroke-related deficits, and Barthel Index (BI) 

and modified Rankin scale (mRs) scoring to evaluate the patients’ ability to cope in daily life. 

Tactile sensitivity (light and sharp touch) was categorized into two groups: normal or 

decreased (as compared with the healthy hand). To evaluate hand motor function and fine 

motor skills, a physio- or ergotherapist performed the Action Research Arm Test (ARAT; 

Koh et al., 2006) and the 9-hole peg board test (Peg; Heller et al., 1987). In ARAT, gripping, 

pinching, arm lifting, and picking objects is tested in four subtests. The performance is 

evaluated from 0 to 57 points, with 57 being the best score. In Peg, nine pegs have to be 

removed and replaced one at a time into nine holes as quickly as possible. The time needed to 

finish the task is measured. In our studies, 120 s was set as the maximum time, and this value 

was given if the task could not be performed faster. 

 

4.3 STIMULATION 

Balloon diaphragms driven by compressed air (Mertens and Lutkenhoner, 2000) were used to 

deliver tactile stimuli (duration 141 ms, peak 50 ms) to the fingertips. The stimulus intensity 

was kept constant for all patients and control subjects to allow exact comparisons of the 

results during recovery. All subjects were able to detect the stimulus as light touch. The 

patients wore ear plugs to avoid perception of any stimulus-related sound. The thumb and 

little finger of both hands were stimulated alternately with an ISI of 1005 ms to define the 

extent of the hand representation area in the SI cortex (Study I). To evaluate changes in the 

activation of the somatosensory network (Study II) and the effect of afferent input on motor 

cortex excitability (Study III), both index fingers were stimulated alternately with an ISI of 

3005 ms. 

 

4.4 MAGNETOENCEPHALOGRAPHIC RECORDINGS 

The MEG recordings were performed with a 306-channel helmet-shaped neuromagnetometer 

(Elekta Neuromag®, Helsinki, Finland) and carried out in the BioMag laboratory, HUCH, in 

a magnetically-shielded room. Before the measurements, four indicator coils were placed on 

the scalp. Magnetic signals produced by tiny currents fed into the coils were detected in the 
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beginning of each measurement to align the exact head position with respect to the sensor 

array. During the recordings, the subjects were either in a sitting or supine position with the 

head supported against the helmet-shaped sensor array. Raw-data and evoked responses (~120 

responses to thumb and little finger stimulation of both hands in the first session and ~60 

responses to stimulation of both index fingers in the second session) were recorded. In a third 

session, spontaneous brain activity with eyes open and eyes closed was recorded for three 

minutes each. Eye movements were monitored with a vertical electro-oculogram, and MEG 

epochs that coincided with eye movements were automatically rejected from the data. The 

patients were instructed to relax, to keep their head and fingers in constant position, and not to 

pay any attention to the stimuli. A nurse inside the magnetically shielded room observed the 

patients for their general condition and for any possible movements. The signals were band-

pass filtered between 0.03‒308 Hz and digitized at 941 Hz. 

 

4.5 DATA ANALYSIS 

4.5.1 Preprocessing of the data 

To suppress artificial signals caused by interfering sources, the signal space separation 

method (SSS; Taulu et al., 2004) or its temporal extension (tSSS; Taulu and Simola, 2006) 

implemented in the MaxFilterTM software was applied. The SSS method efficiently suppresses 

external magnetic artifacts from the measured data. The method relies on Maxwell equations 

and divides the signals into components arising from inside the sensor array and from the 

environment surrounding the sensor array (Taulu et al., 2004). SSS is a purely spatial method 

and the interference rejection factor grows with increasing distance from the interference 

source. The SSS method is not able to efficiently extract artifacts caused by sources lying 

very close to the sensor array (e.g. dental work or other magnetic components in the body). 

tSSS, however, also suppresses artifacts caused by nearby sources, in addition to distant 

interference,  by utilizing the temporal behavior of the signals (Taulu and Simola, 2006). 

Similar temporal patterns in both internal and external SSS subspaces suggest that a nearby 

artifact source has generated the field, and those signals are removed from the data. Earlier 

studies have successfully applied both SSS and tSSS methods to clinical MEG data 

(Nevalainen et al., 2008, Park et al., 2009, Tanaka et al., 2009). In Studies I and II, either the 

SSS or tSSS method was applied, depending on the data quality, to preprocess the data of the 
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patients and the control subjects. In Studies III and IV, all data were preprocessed with the 

tSSS method. 

 

In Study IV, a signal space projection (Uusitalo and Ilmoniemi, 1997) was applied to remove 

the cardiac artifacts from the data. The signal space characteristic of cardiac artifacts was 

estimated by averaging the MEG signals with respect to the magnetocardiographic signal, 

applying principal component analysis to the average, and selecting the two components 

associated with the highest singular values. These components were projected out from the 

tSSS-processed continuous data. 

 

4.5.2 Dipole modeling 

To identify the sources of SEFs, equivalent current dipoles (ECDs) best describing the local 

source currents were calculated with a least-squares method (Studies I and II). Deflections 

exceeding the noise level in averaged signals were visually detected to divide the data into 

time periods of interest. In each time period, the ECD best describing the most dominant 

source was chosen using a subset of channels (10‒18) over the response area. The 

calculations resulted in single dipoles, located three-dimensionally (x, y, z) in a spherical 

conductor model. The goodness of fit (g) was calculated to determine in percentage how 

much of the measured field variance the dipole accounted for. Only ECDs with a g > 85 % at 

the selected time period were accepted. Single dipole fitting sufficiently explained the 

activation in SI (Study I), and the source strengths of the responses were measured at the peak 

amplitude of the single ECDs. In Study II, the number of ECDs found varied from 0 to 6. 

After identifying single dipoles, the analysis period was extended to the entire time period of 

the signals, and all channels were taken into account in computing a time-varying multidipole 

model. The validity of the multidipole model was evaluated by comparing the measured 

signals with responses predicted by the model. If signals of any brain region were left 

inadequately explained by the model, the data were re-evaluated to find a more accurate 

estimation for the generator areas. In Study II, the source strengths of the responses were 

determined from the peak amplitudes of the ECDs in the multidipole model. 

 

The Euclidean distance between the sources of the earliest responses to thumb and little finger 

stimulation were calculated to determine the size of the hand representation area in the SI 

cortex (Study I). 
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4.5.3 Temporal-spectral-evolution method (TSE) 

The temporal-spectral-evolution (TSE) method (Salmelin and Hari, 1994b) gives a reliable 

measure of the amount of event-related rhythmic activity with respect to time. The TSE 

method was applied to evaluate stimulus-related changes in rhythmic beta activity (Study III). 

Before TSE calculations, the dominant beta peaks were defined from amplitude spectra 

calculated from spontaneous brain activity (eyes open), and the frequency range of strongest 

modulation of beta activity was determined from time-frequency representations (TFRs; 

Tallon-Baudry et al., 1997) in each subject. Thereafter, the averaged SEFs were subtracted 

from the raw data, which were then band-pass filtered through an individually-chosen 

frequency range. The frequency ranges were 10 Hz in width and between 12 and 26 Hz. Next, 

the filtered signals were rectified and time-locked averaged to the stimulus. The analysis 

period was 3.5 s with a pre-stimulus baseline of 300 ms. Event-related modulation 

(suppression and rebound) of rhythmic beta activity was quantified using 2–4 MEG channels 

(1–2 channels over each hemisphere) showing the strongest modulation. The absolute 

suppression/rebound values, determined from the peak amplitude of deflection, were 

converted into relative values by calculating the increase/decrease of the rhythm with respect 

to the pre-stimulus baseline. 

 

4.5.4 Analysis of spontaneous brain activity 

4.5.4.1 Spectral analysis 

To determine the amount of rhythmic brain activity in different frequency ranges, amplitude 

spectra were calculated (separately for eyes open and eyes closed) by applying Fast Fourier 

Transformations (FFTs) with a sliding window and 50 % overlap (Studies III and IV). 

Windowing minimizes the spectral leakage. To evaluate the amplitudes of rhythmic brain 

activity in the 5‒90 Hz range, a flat-top window of 2048 samples giving a frequency 

resolution of ~0.5 Hz was used, and spectral peaks were quantified from the channels 

showing strongest deflections. A flat-top window was chosen as it gives accurate amplitude 

estimation, given that amplitude strengths were of particular interest. To search for potential 

pathological low-frequency oscillations in the <4 Hz range (Study I), a Hanning window of 

8192 samples yielding a frequency resolution of ~0.1 Hz was applied. A Hanning window 
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gives a better frequency separation than the flat-top window, which is especially important in 

identifying low-frequency oscillations.  

 

4.5.4.2 Minimum current estimate in the frequency domain (fdMCE) 

The sources of spontaneous oscillatory activity were localized using L1-norm based 

frequency domain minimum current estimation  (fdMCE; Jensen and Vanni, 2002). As in 

spectral estimation, in fdMCE, the data are windowed into subsections of time and Fourier 

transforms are calculated for each window. To identify sources of ~10-Hz oscillations, an 

individual frequency range around the ~10-Hz peak, detected in the spectra, was defined for 

each subject and Hanning-windowed, half-overlapping FFTs with a 0.46 Hz frequency 

resolution were computed across the recording. To identify sources of pathological low-

frequency activity, the same procedure was applied with a 0.23 Hz frequency resolution for a 

<4 Hz range. Thereafter, source localizations were estimated using L1 minimum norm 

estimation for the transformed data.  A boundary element model (BEM) of a standard brain 

was used to restrict the search volume to the brain and a spherical conductor model was used 

for forward computations. The source locations were projected to the BEM surface and the 

strength of oscillatory activity was defined over each hemisphere over a standard (~10-Hz 

oscillations) and an individually-selected (low-frequency oscillations) region of interest 

(ROI).  

 

4.5.5 Statistical analysis 

Repeated measures ANOVAs with within subjects factors time (T0, T1, T2) and hemisphere 

(affected, unaffected) were used to analyze the differences in the MEG parameters and in the 

hand function tests. When a significant main effect or an interaction between time and 

hemisphere was detected, pair-wise comparisons with paired t-tests were performed between 

different time points or between hemispheres. Bonferroni correction was used to control for 

multiple comparisons. Parameters between patients and control subjects were compared with 

independent samples t-tests. Correlations were evaluated with Spearman’s correlation 

coefficient. 
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5 EXPERIMENTS  

5.1 SI REORGANIZATION AFTER STROKE (STUDY I) 

Studies in humans and animals have shown that movement or somatosensory stimulation 

related activation areas in the cerebral cortex are enlarged after stroke (Nudo et al., 1996b, 

Rossini et al., 2001, Rossini et al., 1998b, Ward et al., 2003a, Ward et al., 2003b). In this 

study, we investigated the temporal evolution of plastic reorganization in the SI cortex in 15 

first-ever acute stroke patients (3 patients were excluded because of technical problems in the 

MEG measurements, preventing reliable analysis of the data) and correlated the changes with 

recovery of hand function. Follow-up measurements were performed within 1 week (T0), 1 

month (T1), and 3 months (T2) after stroke and the MEG findings were compared with 

findings of the healthy control subjects. 

 

5.1.1  Results 

The patients recovered well: the affected hand function in the 9-hole peg board test (Peg) and 

in the ARAT was significantly improved at T1 and T2 as compared with T0 (57 ± 10 s and 45 

± 9 s vs. 79 ± 10 s, p < 0.05 for Peg; and 49 ± 4 and 50 ± 5 vs. 37 ± 5, p < 0.005 for ARAT). 

At T2, the affected hand function did not significantly differ from the healthy hand function 

(45 ± 9 s vs. 26 ± 2, p = 0.08 for Peg; and 50 ± 5 vs. 57 ± 0, p = 0.15 for ARAT). At T1, the 

size of the hand representation area in the SI cortex in the affected hemisphere (AH) was 

enlarged as compared with T0 or T2 (12.6 ± 0.8 mm vs. 9.6 ± 0.8 mm and 10.2 ± 0.8 mm, 

respectively, p < 0.05; Figure 5.1.1). Moreover, the SI hand representation size in the AH at 

T1 was significantly larger than in the unaffected hemisphere (UH) and in the control subjects 

(12.6 ± 0.8 mm vs. 10.8 ± 0.8 mm and 9.5 ± 0.6 mm, respectively, p < 0.005). 
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Fig. 5.1.1 Mean (+SEM) size of the hand representation in the SI cortex in all three measurements of the patients 
(n = 15 for T0 and T1, and n = 14 for T2) and in the control subjects (n = 10; right and left hand pooled; *p < 0.05, 
**p < 0.005). 
 

At whole group level, no correlation between the enlargement of the SI hand representation 

and hand function was found. However, in patients with subcortical infarction (n = 8) the 

increase in the SI hand representation during the first month after stroke correlated strongly 

with impairment of hand function (rs = 0.8, p < 0.01; Figure 5.1.2). 

 
 

 
Fig. 5.1.2 Correlation between the increase in the size of the SI hand representation during the first month after 
stroke (Δ hand representation = size of the hand representation at T1 – size of the representation at T0) and the 
results of the Peg test at T1 in subcortical stroke patients. The Peg test is evaluated in seconds needed for the 
task; the shorter the time, the better the hand function. Regression line is shown in black. 

 

5.1.2 Discussion  

In the patients, the SI hand representation in the AH was transiently enlarged 1 month after 

stroke and returned to normal size at 3 months, concomitantly with recovery of hand 
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dexterity. Earlier MEG studies have indicated a tendency towards a larger hand representation 

in the AH than in the UH at 9 weeks to 6 months after stroke, in association with incomplete 

recovery of hand function (Rossini et al., 2001, Rossini et al., 1998b). In the present study, an 

initial enlargement of the hand representation was also observed in patients who recovered 

well later on. The size of the hand representation returned to normal size in parallel with 

recovery of hand function.  

 

Studies in animals have indicated that cortical plasticity is learning-dependent and not simply 

use-dependent. In monkeys who were trained for a new task, cortical map changes in motor 

representations were observed in parallel with improvement of performance (Nudo et al., 

1996a). In contrast, no such changes were observed in monkeys who just repeated a simple 

task that they performed optimally from the beginning (Plautz et al., 2000). In line with these 

findings, enlarged cortical representation of the affected hand in MI was observed in chronic 

stroke patients during constraint-induced movement therapy in parallel with clinical 

improvement of hand function. After this treatment, the cortical representation of the hand 

returned to normal, whereas the motor performance remained good (Liepert et al., 2000a).  

We suggest that the transient enlargement of the SI hand representation in our stroke patients 

may reflect the re-learning of motor skills, whereas the normalization of the representation 

size may reflect the maintenance of re-learned function. 

 

5.2 SII ACTIVATION AFTER STROKE  

Fluent motor function requires continuous inflow of somatosensory input to the motor system. 

In this study, we recorded SEFs to tactile index finger stimulation within 1 week (T0), 1 

month (T1), and 3 months (T2) after stroke with concomitant evaluation of clinical recovery 

(NIHSS, BI, mRS, ARAT, Peg) to study the effect of altered activation in the somatosensory 

cortical network on motor recovery after stroke. Eighteen first-ever stroke patients and 18 

healthy control subjects were enrolled in the study. 

 

5.2.1 Results 

The patients recovered well, and all clinical parameters improved significantly from T0 to T1 

and T2 (p < 0.005; Table 5.2.1; Figure 5.2.1).  
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Table 5.2.1 Clinical scores of the patients (Peg, ARAT, mean ± SEM; NIHSS, BI, mRs, median ± SEM) 

T0, within 1-7 days; T1, 1month; T2, 3 months from stroke onset. ah, affected hand. uh, unaffected hand. Peg, 9-
hole peg board test, time (s). ARAT, Action Research Arm Test (0–57). NIHSS, National Institutes of Health 
Stroke Scale (0–42). BI, Barthel Index (0–100). mRS, modified Rankin Scale (0-6).  

 

 

 

 
Fig.5.2.1 Mean (+ SEM) Peg times and ARAT scores of the patients (n = 18 for T0 and T1, and n = 17 for T2) at 
T0, T1, and T2. ah, affected hand. hh, healthy hand. (*p < 0.05, **p < 0.005). 
 

 

In the control subjects, tactile stimulation elicited responses in contralateral SI at 58 ± 1 ms 

and in bilateral SII regions at 109 ± 6 ms and 118 ± 4 ms (contra- and ipsilateral SII, 

respectively). At T0, SI responses were found in 15 patients and contralateral SII (cSII) 

responses in 9 patients. Latencies of the responses were comparable with latencies of the 

control subjects. At T1 and T2, SI responses were detected in all patients and cSII responses in 

17 patients. When an SII response was detected, it was always preceded by an SI response. In 

the patients, the SI responses were significantly stronger in the UH than in the AH at T0 and 

T1. No time effect was observed for the SI responses. In contrast, the cSII response in the AH 

 Peg (ah) Peg (uh) ARAT(ah) ARAT(uh) NIHSS BI mRS 

T0 84  9 36  4 35  5 56  0 4  1 60  7 3  0 

T1 59  10 28  1 46  5 57  0 2  0 90  4 2  0 

T2 51  9 26  1 48  4 57  0 1  0 100  3 2  0 
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was significantly weaker at T0 than at T1 or T2 (14 ± 4 nAm vs.25 ± 5 nAm and 26 ± 4 nAm, 

respectively, p < 0.05; Figure 5.2.2). Moreover, the cSII response in the AH at T0 tended to be 

weaker than in the UH (14 ± 4 nAm vs. 25 ± 6 nAm, p = 0.06) and was significantly weaker 

than in the control subjects (14 ± 4 nAm vs. 29 ± 2 nAm, p < 0.01). No significant differences 

between the hemispheres were observed in the ipsilateral SII responses. 

 

 

 

Fig 5.2.2 Mean (+SEM) amplitudes (nAm) of SI and cSII responses in the patients (n = 18 for T0 and T1, and n = 
17 for T2) in the affected hemisphere (AH) and unaffected hemisphere (UH) to contralateral tactile finger 
stimulation. The mean (+SEM) amplitudes of the control subjects (n = 18; right and left hand pooled) are shown 
with dashed and grey horizontal lines (**p < 0.005). 
 

The amplitudes of the SII responses correlated with results of the Peg test at all time points (rs 

= -0.6, p < 0.01 for T0; rs = -0.5, p < 0.05 for T1, and rs = -0.6, p < 0.05 for T2; Figure 5.2.3). In 

contrast, SI responses did not correlate with results of the Peg test at any time point. 

 

 

Fig. 5.2.3 Correlation between the strength of SII activation and Peg time (s) of the affected hand at 1 week (T0), 
1month (T1), and 3 months (T2) from stroke. Regression line is in black. 
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5.2.2 Discussion  

In the patients, the strength of SII activation was decreased in the AH compared with the UH 

and the control subjects in the acute phase and increased during follow-up. The strength of SI 

activation was also decreased in the AH compared with UH, but no significant increase of SI 

activation was observed during follow-up. The strength of SII activation, but not SI 

activation, in the AH correlated with results of hand function tests both in the acute phase and 

during recovery, indicating that the SII region is important in hand sensorimotor functions. 

 

Earlier studies on somatosensory activation after stroke have shown varying correlations 

between the strength of SI activation and clinical outcome (Oliviero et al., 2004, Rossini et 

al., 2001, Wikstrom et al., 2000). In healthy subjects, the SI amplitude has been shown to 

reflect tactile sensitivity and stimulus properties like intensity (Hari et al., 1993, Huttunen et 

al., 1987, Tiihonen et al., 1989). In line with these findings, a follow-up study in stroke 

patients showed improved 2-point discrimination in patients with increase of SI responses 

during follow-up (Wikstrom et al., 2000). Alterations in activation of the SII region, 

suggested to be involved in higher-order somatosensory processing  (Jousmaki and Forss, 

1998, Lin et al., 2003, Simoes and Hari, 1999, Disbrow et al., 2000), have so far not been 

studied with whole-head MEG. 

 

Somatosensory input is crucial for fluent motor functions. Continuous inflow of 

somatosensory input to the motor system is needed to adjust the speed, range, and strength of 

movements. Despite some direct afferent thalamic connections to MI (Asanuma et al., 1979), 

somatosensory input to the motor cortex is suggested to be mediated mainly via cortico-

cortical connections (Chen et al., 1999, Disbrow et al., 2000, Hinkley et al., 2007). 

Anatomical studies have shown strong connections from SII to MI (Jones and Wise, 1977, 

Mori et al., 1989), whereas connections from the main cutaneous area 3b in SI to MI have 

been shown to be sparse (Jones et al., 1978). A close interaction between SII activation and 

motor functions have also been shown in functional imaging studies in humans. Navigated 

TMS of the SII region facilitates motor performance in healthy subjects (Raij et al., 2008). In 

addition, clinical studies have shown an association between SII activation and motor 

functions. For instance, Unverricht-Lundborg type progressive myoclonus epilepsy patients 

with absent SII activation had more severe motor symptoms than the patients in whom SII 

activation was observed (Forss et al., 2001).  
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We suggest that the deficient SII activation in our acute stroke patients reflects insufficient 

flow of somatosensory input to the motor cortex, which results in impaired sensorimotor 

integration. During follow-up, activation in SII paralleled motor recovery of hand function, 

supporting the view that the SII region is an important node in sensorimotor integration. 

 

5.3 MOTOR CORTEX  EXCITABILITY AFTER STROKE  

Motor cortex excitability has been shown to be altered after stroke (Butefisch et al., 2003, 

Liepert et al., 2000b, Manganotti et al., 2002). In addition to cortical excitatory and inhibitory 

circuits, afferent input has also been suggested to modulate motor cortex excitability 

(Asanuma and Arissian, 1984, Favorov et al., 1988). The effect of afferent input on motor 

cortex excitability can be studied by monitoring the reactivity of the motor cortex beta rhythm 

to somatosensory stimulation, which elicits an initial suppression followed by a subsequent 

rebound of the rhythm. The rebound of the rhythm is suggested to reflect decreased motor 

cortex excitability (Chen et al., 1999, Franzkowiak et al., 2010, Gaetz et al., 2011, Salmelin et 

al., 1995). In this study, we monitored the reactivity of the beta rhythm to tactile index finger 

stimulation in 18 patients after acute stroke (T0) and during recovery (T1 and T2), as well as in 

10 healthy control subjects. The rebound of the beta rhythm was correlated with hand function 

as evaluated with the Peg test. Moreover, the rebound was correlated with the strength of the 

SEFs (adapted from Study II) to determine how alterations in motor cortex rhythms are 

modulated by changes in afferent input. 

 

5.3.1 Results 

In the control subjects, the beta rhythm started to decrease at 120 ± 15 ms after stimulus and 

reached its peak at 250 ± 15 ms in both hemispheres. The subsequent rebound started at 550 ± 

35 ms after stimulus and peaked at 900 ± 85 ms. Comparable latencies of suppression and 

rebound were found in both hemispheres in the patients.  

 

In the patients, the beta rebound was weaker at T0 than at T1 or T2 in both the AH and UH (p 

< 0.01 for the AH, p < 0.05 for the UH; Table 5.3.1.; Figures 5.3.1 and 5.3.2). Moreover, the 

beta rebound in the AH at T0 was significantly weaker than that in the control subjects (p < 
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0.05). Within patients, the beta rebound in the AH was significantly weaker than in the UH at 

all time points (p < 0.005 for T0; p < 0.001 for T1; p < 0.05 for T2).  

 

 
Table 5.3.1 SEF amplitudes (mean ± SEM) to index finger tactile stimulation of the affected hand (adapted from 
Study II), and beta rebound (increase of the rhythm with respect to the reference baseline; mean ± SEM) in 
patients and in control subjects 

T0, 1-7 days; T1, 1 month; T2, 3 months after stroke. Ctrl.; control subjects (left and right hands pooled). SI, 
primary somatosensory cortex. SII, secondary somatosensory cortex.  AH, affected hemisphere. UH, unaffected 
hemisphere. 

 

 

 

 
 

Fig. 5.3.1 Average strength of the beta rhythm (15–25 Hz) over the sensorimotor region in the affected (AH) and 
unaffected (UH) hemispheres to contralateral tactile index finger stimulation within 1 week (T0), 1month (T1), 
and 3 months (T2) after stroke and in the control subjects (right and left hemispheres pooled). 0 indicates the 
onset of the tactile stimulus. 
 
 
 

 SI ampl, AH (nAm) SII ampl, AH(nAm) Rebound, AH (%) Rebound, UH (%) 

T0 17  3 14  4 22  7 43  7 

T1 22  3 25  5 43  11 68  9 

T2 23  3 26  4 37  9 57  7 

Ctrl. 25  3 31  3 61  11 61  11 
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Fig.5.3.2 Mean (+SEM) strength of the beta rebound over the sensorimotor region in the affected and unaffected 
hemispheres to contralateral tactile index finger stimulation at 1 week (T0), 1month (T1), and 3 months (T2) from 
stroke and in the control subjects (right and left hemispheres pooled; *p< 0.05, **p < 0.005). 
 
 
No association between absent/diminished rebound and decreased tactile sensitivity was 

observed. The strength of the beta rebound in the AH correlated with Peg results of the 

affected hand in all three measurements (nonlinear regression rs = -0.8, p < 0.001 for T0; rs =  

-0.5, p < 0.05 for T1; and rs = -0.6, p < 0.05 for T2; Figure 5.3.3).  

 
 

 
Fig. 5.3.3 Association between the strength of beta rebound in the affected hemisphere and the Peg time (s) of 
the affected hand at 1 week (T0), 1month (T1), and 3 months (T2) from stroke. Nonlinear (x2) regression curve is 
shown in black. 
 
 
At T0, the strength of SII activation correlated with the strength of the beta rebound (rs = 0.5, 

p < 0.05), whereas no correlation between SI activation and beta rebound was found. 
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5.3.2 Discussion  

In the patients, the beta rebound was decreased in the AH at the acute phase after stroke, 

suggesting increased motor cortex excitability after acute stroke. The beta rebound increased 

during follow-up, suggesting decreasing motor cortex excitability during stroke recovery. 

These findings are in line with a recent TMS study suggesting reduced short-latency afferent 

inhibition in the AH after acute stroke (Di Lazzaro et al., 2012). The strength of beta rebound 

correlated with hand function test results at the acute phase and during recovery, suggesting 

that increased excitability is associated with poor control of hand function, and that a return 

towards normal excitability is associated with good recovery of hand function. These findings 

are in line with earlier studies, showing increased motor cortex excitability in association with 

impaired fine motor skills in patients suffering from Unverricht-Lundborg Type Myoclonus 

epilepsy or complex regional pain syndrome (Canafoglia et al., 2004, Juottonen et al., 2002, 

Schwenkreis et al., 2003, Silen et al., 2000). Accordingly, several studies in stroke patients, 

applying different measures of motor cortex excitability, have shown that motor cortex 

excitability is increased in the acute phase, but returns to normal if the patients recover well 

(Calautti et al., 2001, Swayne et al., 2008, Ward et al., 2003a).  

 
As discussed in Study II, anatomical studies in animals (Jones and Wise, 1977, Mori et al., 

1989) and functional studies in humans (Disbrow et al., 2000, Hinkley et al., 2007) have 

suggested that the SII region may be important in integrating somatosensory information with 

motor functions. In our study, the strength of the beta rebound correlated with the strength of 

SII but not with SI activation in the acute phase after stroke. This finding supports the earlier 

suggestions that the modulatory afferent input to motor cortex excitability may be mediated 

via SII. 

 
In principle, all observed changes of motor cortex excitability could be solely due to recovery 

of somatosensory afferents. However, in the light of our results, this possibility is not likely. 

SI amplitudes increase almost linearly with increasing stimulus intensity (Jousmaki and Forss, 

1998, Torquati et al., 2002). In our patients, the stimulus intensity was kept constant across all 

measurements; hence enhanced afferent input due to recovery of somatosensory afferents 

would elicit increased SI amplitudes. However, no significant changes in SI amplitudes in our 

stroke patients were observed (Study II). Neither was there a clear relationship between 

absent/diminished rebound and decreased tactile sensitivity. We suggest that the changes in 

the beta rebound result from recovery of both the somatosensory and the motor systems. The 
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parallel recovery of the sensory and motor systems allows a fluent sensorimotor integration, 

which is a prerequisite for normal hand dexterity. 

 

5.4 SPONTANEOUS BRAIN OSCILLATIONS AFTER STROKE  

Alterations in the frequency and amplitude of spontaneous rhythmic brain activity have been 

associated with pathological phenomena in the brain (Lewine et al., 1999, Pfurtscheller et al., 

1981, Van Huffelen et al., 1984) and have even been suggested to predict recovery from 

stroke (Tecchio et al., 2007). In this study, we recorded spontaneous brain activity in 16 first-

ever stroke patients within 1 week (T0), 1 month (T1), and 3 months (T2) after stroke and in 

ten healthy control subjects, to find out how alterations in spontaneous brain oscillations are 

associated with functional recovery after stroke. 

 

5.4.1  Results 

The main sources of the ~10-Hz oscillations in the eyes-open condition were detected in the 

temporo-parietal region, clearly distinct from occipital alpha sources (Fig. 5.4.1), but slightly 

lateral to the typical location of rolandic ~10-Hz oscillations.  

 

 

 
Fig 5.4.1 Averages of sources of ~10-Hz oscillations (eyes open) in the patients with lefthemispheric stroke 
(arbitrary scale). The sources are clearly stronger in the affected hemisphere. 
 

 

In the patients, the source strength of ~10-Hz oscillations (eyes open) in the AH was 

significantly stronger than in the UH at T1 and at T2 (2.6 ± 0.3 nAm vs. 1.6 ± nAm, p < 0.05 

and 2.5 ± 0.3 nAm vs. 1.7 ± 0.2 nAm, p < 0.05, respectively; Figure 5.4.2). The strength of 

~10-Hz oscillations in the AH at T1 and T2 had a tendency to be stronger than in the control 

subjects (2.6 ± 0.3 nAm vs. 1.9 ± 0.2 nAm, p = 0.08 and 2.5 ± 0.3 nAm vs. 1.9 ±0.2 nAm, p = 

0.10, respectively). In contrast, no differences in the strength of the ~10-Hz oscillations for 
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the eyes-closed conditions or the rolandic beta rhythm were detected between the hemispheres 

or between patients and control subjects. The amplitude of the ~10-Hz sources seemed to 

increase in bursts, showing strong variation in source strength from window to window used 

in FFT estimation. As fdMCE calculates the mean strength of all the FFT-windows, the 

absolute values for the ~10-Hz sources are rather small. 

 
 

 
Fig. 5.4.2 Mean (+SEM) source strength of ~10-Hz oscillations (eyes open) over the affected hemisphere (AH) 
and unaffected hemisphere (UH) of the patients and in the control subjects (right and left hemispheres pooled, *p 
< 0.05). T0, within 1 week; T1, 1month, and T2, 3 months after stroke. 
 

 

Pathological low-frequency oscillations at <4 Hz with strongest amplitudes on average at 1 ± 

0.1 Hz were detected in 7/16 patients at T0, in 6 patients at T1, and in 4 patients at T2. In 

patients with cortical involvement of the stroke, the sources of low-frequency oscillations 

were detected in the surrounding of the cortical lesion (Figure 5.4.3). The patients with low-

frequency activity had a significantly larger lesion than the rest of the patients (35 ± 15 vs. 2 ± 

1 cm3, p < 0.05). The 4 patients showing persistence of low-frequency activity at T2 had a 

worse clinical outcome than the rest of the patients (88 ± 21 vs. 33 ± 3, p < 0.001 for Peg; 3 ± 

1 vs.1 ± 0, p < 0.05 for NIHSS). 
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Fig. 5.4.3 A) Source location of pathological low-frequency activity within 1 week (T0), 1month (T1), and 3 
months (T2) after stroke (arbitrary scale). B) MRIs from the same patient; the arrow points to the cortical lesion; 
the ellipsoids illustrate the generator area of pathological low-frequency oscillations. 
 
 

5.4.2 Discussion 

In the patients, the strength of ~10-Hz oscillations was increased for the eyes-open condition 

in the AH at T1 and T2 as compared with the UH. In contrast, no differences between the 

hemispheres were observed for the eyes-closed condition. The source locations were distinct 

from those of occipital alpha sources, but slightly lateral to the typical location of rolandic 

~10-Hz sources. In addition to occipital and rolandic ~10-Hz oscillations, sources of rhythmic 

activity in 7–10 Hz range have been detected in the temporal-lobe (tau rhythm; Tiihonen et 

al., 1991) and in the parietal operculum (sigma rhythm; Narici et al., 2001). The source 

location of the prominent ~10-Hz oscillations detected in our patients could agree with the 

location of the sigma rhythm, found in the SII region. However, a contribution of rolandic 

~10-Hz oscillations to these sources cannot be excluded. Although the exact generator areas 

for the ~10-Hz oscillations cannot be determined, the differences between the eyes-open and 

eyes-closed conditions indicate that the occipital alpha rhythm does not contribute to this 

rhythm. Rather we suggest that the enhanced ~10-Hz oscillations detected in the AH of our 

stroke patients reflects a somatosensory rhythm, with possible contribution of both the 

rolandic and the SII regions.  
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The sigma rhythm has not been extensively studied, and to our knowledge no earlier reports 

of alterations of this rhythm in stroke patients exist. Earlier observations of alterations in the 

strength of rolandic ~10-Hz oscillations in stroke patients have been controversial, as both 

increases and decreases of the oscillatory amplitudes have been observed (Pfurtscheller et al., 

1981, Tecchio et al., 2006, Tecchio et al., 2005, Van Huffelen et al., 1984). One previous 

study found that in patients with mild or moderate deficits, rolandic ~10-Hz oscillations 

increased in the acute phase after stroke. In patients with severe neurological deficits, this 

increment was observed months later in association with slow clinical recovery (Pfurtscheller 

et al., 1981). In the present study, no clear association between the strength of ~10-Hz 

oscillations and clinical outcome was observed. However, the steepest improvement in 

clinical function was observed from T0 to T1, and the ipsilesional increase in ~10-Hz 

oscillation amplitudes was observed at T1.  

 

In healthy subjects, both rolandic and occipital ~10-Hz oscillations have been associated with 

cognitive processing (Llinas and Ribary, 1993, Jensen et al., 2002, Haegens et al., 2010, Palva 

et al., 2005), and particularly in directing the flow of information to optimize performance 

(Haegens et al., 2012, Jensen and Mazaheri, 2010). In light of these findings, it may be that 

the enhancement of ~10-Hz activity in the AH observed in our stroke patients could possibly 

be engaged in allocating resources for recovery mechanisms. However, this remains 

hypothetical, and future studies are needed to understand the functional significance of 

enhanced ~10-Hz oscillations in the AH after stroke. 

 

Perilesional low-frequency oscillations have been detected in earlier stroke studies (Butz et 

al., 2004, Fernandez-Bouzas et al., 2000, Vieth, 1990), but the functional significance has 

remained unclear. In the present study, low-frequency oscillations could be detected in 7 

patients in the acute phase, and in 4 patients, low-frequency activity still persisted 3 months 

after stroke. In a rat study, pathological low-frequency oscillations after thermal ischemic 

lesions were strongly correlated with axonal sprouting, suggesting that low-frequency 

oscillations may have a role in plastic reorganization after brain lesion (Carmichael and 

Chesselet, 2002). On the other hand, a study combining MEG and proton magnetic resonance 

spectroscopic imaging, suggested that pathological low-frequency oscillations are associated 

with abnormal metabolic activity in malfunctioning perilesional neurons (Kamada et al., 

1997). In the present study, the patients with low-frequency activity had larger lesions and the 
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patients with persistent low-frequency activity had a worse clinical outcome at T2 than the rest 

of the patients. However, as the number of patients with persistent low-frequency activity was 

small, and the follow-up period was only 3 months, no definitive conclusions about the 

clinical significance of low-frequency oscillations can be drawn. 

 

An earlier MEG study suggested that alterations in spontaneous brain oscillations may be 

used to predict the outcome from stroke; particularly delta (2–3.5 Hz) power in the UH and 

gamma (33.5–44 Hz) power in the AH were found to predict long-term outcome after stroke 

(Tecchio et al., 2007). We did not find clear UH delta or AH gamma peaks in our patients. 

Pathological low-frequency oscillations were detected in less than half of our patients and the 

presence of low-frequency oscillations significantly correlated with lesion size, thus this 

parameter is not likely to provide any additional information in predicting outcome after 

stroke. In contrast, ~10-Hz activity is a very robust signal, which is detected practically in 

every subject; and enhancement of AH ~10-Hz activity was detected at some time point in 

13/16 of our well-recovering patients. Thus enhanced ~10-Hz activity may have functional 

significance in recovery from stroke. Future studies should aim at investigating if enhanced 

~10-Hz activity could be used to predict the outcome from stroke. 
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6 GENERAL DISCUSSION  

In this thesis, different levels of adaptive alterations in the sensorimotor system after acute 

stroke were studied in a longitudinal design. The aim was to elucidate the temporal evolution 

of plastic changes after acute stroke and their correlation to clinical recovery in order to better 

understand the recovery mechanisms of the injured human brain. 

 

6.1 Temporal evolution of plastic changes after stroke 

Although the brain alters its structure and function throughout life, injury to the central 

nervous system seems to be a special trigger that elicits plastic mechanisms (Nudo, 2006). 

Focal brain injury results in a variety of time-dependent metabolic and pathophysiological 

reactions which enable widespread cortical regions to change structure and function. 

Although there is a wide range of studies investigating plastic changes such as changes in 

cortical somatosensory and motor representations (Calautti et al., 2001, Rossini et al., 1998a, 

Rossini et al., 2001, Ward et al., 2003a, Ward et al., 2003b) or excitability (Butefisch et al., 

2003, Liepert et al., 2000b, Manganotti et al., 2002, Ward and Cohen, 2004) after stroke, 

longitudinal data recording the evolution of these changes are rare. A study in monkeys 

indicated that, if motor rehabilitation was delayed over 1 month after stroke, the spared hand 

representation areas within the peri-infarct area of the motor cortex were not maintained, 

although the monkeys achieved recovery of hand function after delayed training (Barbay et 

al., 2006). In contrast, if monkeys obtained early post-infarct rehabilitation the hand 

representation areas in the peri-infarct zone were maintained or even enlarged (Nudo et al., 

1996b). These results suggest that, during early rehabilitative training, the cerebral cortex may 

be more capable of reorganizing, whereas in chronic stages other compensatory mechanisms 

may emerge. 

 

In line with the animal studies, in our Studies I, II, and III, all significant changes in brain 

activation were observed within the first month after stroke: the size of the hand 

representation in the SI cortex in the AH (Study I), the strength of cSII activation in response 

to affected hand stimulation (Study II), and the strength of the beta rebound in the AH (Study 

III) all increased significantly from T0 to T1. Also the increase in ~10-Hz oscillations was 

observed at T1. The steepest improvement in clinical function was observed in parallel with 

the detected functional changes.  
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We did not control our patients for any specific rehabilitative treatment. All patients were 

treated in the Department of Neurology, Helsinki University Central Hospital in the acute 

phase, usually for 1 to 2 weeks, and afterwards the patients received specific treatment 

according to their individual needs. Thus, we cannot distinguish between the effects of 

rehabilitative training and spontaneous recovery on neurophysiological changes and clinical 

improvement. Clinical experience has shown that further recovery still occurs after 1 month 

from stroke, but changes are more subtle. In line with these findings, clinical improvement 

was still observed from T1 to T2 in our studies, although no significant changes in the 

measured neurophysiological parameters were observed in that time period. It may be that 

within the first month after stroke, the cerebral cortex is particularly responsive to plastic 

changes, and after that time window, other compensatory mechanisms take over to yield 

functional recovery. This finding would encourage clinicians to force the initiation of 

effective rehabilitative training as early as possible. However, it is also possible that we did 

not observe further significant changes in neurophysiological parameters after 1 month 

because most of our patients had already recovered well. Future follow-up studies with more 

severe stroke patients should aim at investigating whether there is a time window for plastic 

changes after stroke, and whether it would be beneficial to extend this time window to 

improve clinical outcome. 

 

6.2 Motor cortex excitability after stroke 

Animal studies have indicated increased excitability after central ischemic lesions in cortical 

areas both in the AH and UH. These changes have been observed both after 

photothrombotically-induced lesions (Buchkremer-Ratzmann and Witte, 1997, Domann et al., 

1993) and after middle cerebral artery occlusion (Reinecke et al., 1999), suggesting that 

changes in excitability are independent of the lesion mechanism. 

 
In humans, most of the earlier studies on motor cortex excitability after stroke have been 

performed with TMS and intracortical inhibition (ICI) and intracortical facilitation (ICF) 

paradigms (Liepert et al., 2005, Liepert et al., 2000b, Manganotti et al., 2002, Swayne et al., 

2008). There are only a few studies using TMS after conditioning somatosensory stimulation 

to detect changes in motor cortex excitability after stroke (Di Lazzaro et al., 2012, Oliviero et 

al., 2005). Changes in motor cortex excitability due to alterations in afferent input are most 
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likely mediated by different circuits than those mediating ICI or ICF (Sailer et al., 2002). A 

recent TMS study evaluated both short-latency ICI (SICI) and short-latency afferent inhibition 

(SAI) in stroke patients and found a correlation between SAI and clinical recovery, but not 

between SICI and recovery. TMS recordings after somatosensory stimulation have shown, in 

addition to SAI, long-latency inhibition at approximately 200 ms, called as “long-latency 

afferent inhibition” (LAI; Chen et al., 1999, Sailer et al., 2002). LAI occurs bilaterally after 

unilateral somatosensory stimulation and has been suggested to be predominantly mediated 

via polysynaptic cortico-cortical projections (Abbruzzese et al., 2001, Chen et al., 1999, Sailer 

et al., 2003). Both paradigms, LAI in TMS and beta rebound in MEG, use peripheral afferent 

input to study changes in cortical excitability. In both methods, unilateral afferent stimulation 

induces bilateral changes in cortical excitability at comparable long latencies. It is not known 

if LAI and beta rebound share any common mechanisms, but such comparison would be an 

interesting target for future investigations. 

 

6.3 Cortical excitability and reorganization of the cerebral cortex 

Earlier studies have suggested that altered cortical excitability is a prerequisite for cortical 

reorganization after stroke. Jacobs and Donoghue (1991) suggested that expansions of motor 

cortical representations are dependent on adjustments in local inhibition, and proposed that 

inhibitory circuits are critically placed to unmask latent intracortical connections and to 

readjust cortical motor presentations. However, representational changes are not restricted to 

the motor cortex. Direct intracortical measurements in rats demonstrated an enlargement of 

representational areas of the vibrissae in the somatosensory cortex in the neighbourhood of an 

ischemic cortical lesion (Schiene et al., 1999). This enlargement was linked to decreased 

intracortical inihibition (ICI), due to a reduction of GABAA receptors, which may lead to an 

unmasking of pre-existing silent connections (Schiene et al., 1996). In line with these 

findings, we found a transient expansion of the hand representation area in the SI cortex one 

month after stroke (Study I).   

 

In our patients, the strength of the beta rebound (measured in Study III) and the enlargement 

of the SI hand representation (Study I) did not correlate. However, it has to be noted that the 

beta rebound reflects the afferent modulation of motor cortex excitability. Changes in 

afferent-input-modulated inhibition can occur independent of changes in local inhibitory 

circuits, as was shown in an earlier TMS study combining afferent inhibition and ICI (Di 
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Lazzaro et al., 2012). In fact, it is not well known how different excitatory and inhibitory 

systems interact together (Chen, 2004). An earlier TMS study investigating ICI after short-

latency (1‒10 ms) median nerve stimulation conditioning suggested that short-latency 

afferent inhibition may reduce ICI (Ridding and Rothwell, 1999). However, the interaction 

between long-latency afferent inhibition, which probably would resemble the beta rebound we 

studied, and ICI is not well known. Clarifying the interaction of afferent and intracortical 

inhibitory circuits would further help to understand the complex interplay between plastic 

reorganization and different inhibitory and excitatory mechanisms. 

. 

6.4 Sensorimotor integration 

Prior studies in monkeys and in humans have indicated that the SII cortex participates in 

sensorimotor integration, especially in tasks involving multiple functionally-related body 

parts like both hands or the digits of one hand (Disbrow et al., 2000, Forss et al., 2001, 

Hinkley et al., 2007, Jones et al., 1978, Raij et al., 2008). However, the exact functional role 

of SII in sensorimotor integration remains uncertain. In our Studies II and III, we suggest that 

modulatory afferent input reaches the motor cortex via SII. Furthermore, we suggest that the 

somatosensory input is integrated with motor functions by modulating the excitability of the 

motor cortex.  

 

Both, changes in motor cortex excitability and deficient SII activation, have been reported in 

several disorders with motor impairment, such as Unverricht-Lundborg Type Epilepsy, focal 

dystonia, and Parkinson disease (Abbruzzese et al., 2001, Boecker et al., 1999, Butterworth et 

al., 2003, Forss et al., 2001, Sailer et al., 2003, Silen et al., 2000). However, the association 

between motor cortex excitability and SII activation has not yet been directly studied. To our 

knowledge, we are the first to suggest that the SII region may mediate motor functions by 

modulating the motor cortex excitability. 

 

SII activation and strength of beta rebound correlated at T0, but not at T1, or T2. The strength 

of SII activation in the AH was normalized already at T1, whereas the beta rebound in the AH 

was still weaker than in the UH still at T1 and T2. Changes in the strength of the beta rebound 

are not likely to result solely from the integrity of the somatosensory inflow to the motor 

cortex. In addition, the functional integrity of the motor cortex including local cortical 

excitability influences is likely to affect the strength of the beta rebound. A faster recovery of 
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the afferent somatosensory system than the motor system may explain the discrepancy in the 

correlation between SII activation and beta rebound in the acute phase but not during follow-

up.  

 

6.5 Future perspectives in monitoring recovery after stroke 

Monitoring stroke recovery is complex, since the definition of successful outcome varies and 

many physical and psychosocial aspects may affect neurological functions (Duncan et al., 

2000). Still, a precise definition of recovery is lacking, and so far, evaluation of the efficacy 

of rehabilitation has mainly been based on a variety of clinical parameters. Although it is 

known that early rehabilitation is a powerful tool to modulate recovery after stroke, early 

extensive training may sometimes be maladaptive. A forced overuse of the affected forelimb 

in rats after brain injury led to exaggeration of the neuronal injury (Kozlowski et al., 1996). 

Hence, it is important to find parameters for objective monitoring of recovery from stroke and 

to define optimal parameters for successful rehabilitation.  Searching for such parameters was 

one motivation of this thesis. 

 
In light of our findings, one suitable parameter for monitoring recovery from stroke appears to 

be the enlargement of the hand representation in the SI cortex. Animal studies have shown 

that increased motor repetition alone is not sufficient to drive changes in cortical 

representation maps, rather, it demands acquisition of new skills (Nudo et al., 1996a, Plautz et 

al., 2000, Remple et al., 2001). In line with these findings, in a study with stroke patients 

receiving constraint-induced movement therapy, a significant increase in the cortical 

representation of the affected hand was observed in parallel with significant improvement of 

motor functions. In follow-up measurements up to 6 months after treatment, the motor 

performance had remained good, but the cortical representation had decreased and normalized 

(Liepert et al., 2000a). Hence, the transient enlargement of cortical representations, also 

observed in our study, may reflect the acquisition of new skills, and may thus provide an 

objective parameter to monitor the sufficiency of rehabilitative training.  

 
Our results clearly extend the earlier knowledge of sensorimotor recovery after stroke. 

However, many issues still remain unresolved. Earlier studies have indicated that post-stroke 

recovery mechanisms in cortical versus subcortical strokes may differ (Ameli et al., 2009, 

Liepert et al., 2005). The correlation between the enlargement of SI hand representation and 

hand motor function in patients with subcortical stroke but not in patients with cortical lesions 
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(Study I) was in accordance with this idea. However, as the number of patients with pure 

cortical strokes was small, no definitive conclusions about the differences in the recovery 

mechanisms between different stroke sites can be drawn from our data. Future studies should 

aim at comparing neurophysiological changes after cortical and subcortical strokes.  

 
All the changes in neurophysiological parameters studied in this thesis were observed within 

the first month after stroke, indicating that the brain’s maximum responsiveness to plastic 

changes may be restricted to a relatively short time window. However, all our patients 

recovered relatively well, thus it may also be that no further changes were observed because 

of the relatively good clinical outcome 1 month after stroke. Another possibility is that the 

steepest changes in neurophysiological parameters occur within 1 month and that the 

evolution of changes decelerates from then on. Hence, 1 month and 3 months would be too 

close in time to observe any significant changes.  Future studies should aim at including more 

severe stroke patients in follow-up measurements, and follow-up measurements should be 

performed at least over 6 months or even a year to obtain better understanding of the brain’s 

capability for plastic changes beyond the subacute phase. 

 

We observed changes in various cortical neurophysiological parameters that were associated 

with clinical recovery after stroke. It may be meaningful to study the effect of therapeutic 

interventions such as repetitive TMS or pharmacological treatment on these parameters to 

evaluate whether the time window for these alterations can be extended, and whether it has a 

positive influence on recovery. Such knowledge may further help to define the optimal 

parameters for successful rehabilitation and to allow better targeting of therapeutic 

interventions.

 

.  
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7 SUMMARY & CONCLUSIONS 

In this thesis, plastic changes related to hand sensorimotor functions were studied in 18 acute 

stroke patients in a longitudinal design. The main results shed light on alterations in the 

central sensorimotor mechanisms important for fluent hand function. The observed transient 

enlargement and subsequent normalization of the SI hand representation in our stroke patients 

(Study I) strengthens the earlier observations of differences in learning-dependent and use-

dependent plasticity. This finding underlines the importance of sufficient challenge during 

rehabilitation in order to provoke plastic reorganization in the brain. 

 
The observation that patients with persisting perilesional low-frequency oscillations have a 

worse clinical outcome than the other patients (Study IV) may indicate that this phenomenon 

is an indicator of more severe brain lesions. On the other hand it may also be a signal of 

ongoing plastic reorganization and thus longer follow-up times would be needed to elucidate 

the clinical significance of perilesional low-frequency oscillations. 

 
Our observations in Studies II and III add important knowledge to the role of afferent input in 

motor functions. The observed changes in cSII but not in SI activation in parallel with 

recovery of hand dexterity strongly indicate that cSII is an important node in mediating the 

modulatory somatosensory input to the motor cortex. This finding is further supported by the 

correlation of the beta rebound, suggested to reflect the effect of afferent input on motor 

cortex excitability, with cSII activation (Study III). Furthermore, the increase in beta rebound 

in association with hand motor recovery underlines the importance of parallel recovery of the 

sensory and motor systems to allow fluent sensorimotor integration, which is a prerequisite 

for normal hand function. 

 

MEG provides a suitable tool to study cortical neurophysiological alterations after stroke. We 

observed a variety of alterations which seem to be significantly related to clinical recovery. In 

the future, studies with more severe stroke patients and longer follow-up times as well as 

interventional studies may lead to an improvement of individually designed and well-targeted 

rehabilitation to maximize the recovery potential after stroke.  
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