
Santa Clara High Technology Law Journal

Volume 24 | Issue 4 Article 4

2008

Outsource Software Development and Open
Source: Coming of Age in the 2000s
Heather Meeker

Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj

Part of the Law Commons

This Symposium is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in
Santa Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact
sculawlibrarian@gmail.com.

Recommended Citation
Heather Meeker, Outsource Software Development and Open Source: Coming of Age in the 2000s, 24 Santa Clara High Tech. L.J. 869
(2007).
Available at: http://digitalcommons.law.scu.edu/chtlj/vol24/iss4/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Santa Clara University School of Law

https://core.ac.uk/display/149256726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.law.scu.edu/chtlj?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol24?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol24/iss4?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol24/iss4/4?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol24%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sculawlibrarian@gmail.com


OUTSOURCE SOFTWARE DEVELOPMENT AND
OPEN SOURCE: COMING OF AGE IN THE 2000S

Heather Meekert

Abstract

This article gives a brief overview of certain issues that
outsource development service providers should consider to ensure
open source software license compliance. Among other topics, this
article considers various types of licenses, development tools, and
addresses the "developer problem. "

t J.D., Chair IP/IT Licensing and Transactions Group, Greenberg Traurig LLP.



870 SANTA CLARA COMPUTER & HIGH TECH. L.J. [Vol. 24

I. INTRODUCTION

First they ignore you, then they laugh at you, then they fight
you, then you win.

-Mohandas Gandhi

The non-violent revolution of open source software, which has
been re-working the world's software licensing landscape for the last
15 years, is on the cusp of maturity. It is fitting that Gandhi's famous
quotation so accurately describes the adoption of open source by the
technology industry,' because outsource software development
providers, particularly in emerging economies like India, China, and
Eastern Europe, are quickly internalizing the U.S. software industry's
best practices for dealing with open source legal risks.

By all indications, open source is somewhere between the

fighting stage and the winning stage. Certainly, it is no longer
ignored; in the United States, conferences on open source and open
source licensing are ubiquitous. Steve Ballmer's infamous description
of free software as "communist '2 is already eight years in the past. At
this point, best practices in the technology sector include policies and
procedures for vetting the inclusion of open source software in
commercial products.3 Some companies, particularly in the United
States, have become quite sophisticated in this regard. However,
communicating software development standards to outsource
providers is difficult in the best case-facing, as it does, the
challenges of translation errors and cultural disconnects. When it
comes to open source, this is even more difficult, because outsource
providers are being required to come up to speed quickly to follow

U.S.-driven policies. U.S. companies have developed best practices to
inoculate their products against open source licensing risks gradually
and organically. Now, outsource providers are being tasked with
following policies that differ from client to client, and add significant
overhead to software development activity.

So now, in the late 2000s, outsource providers are scrambling to
meet their clients' requirements for best development practices

1. My thanks to Arunesh Dayal of Red Hat, who used this quotation at his presentation
at the tTechLaw conference in Mumbai in February 2008.

2. Which may be apocryphal, but see Graham Lea, MS' Ballmer: Linux is communism
(July 31, 2000), http://www.theregister.co.uk/2000/07/3 1/ms ballmerlinux is communism/.

3. See Karen Faulds Copenhaver, Compliance with Open Source Software Licenses,
LICENSING J. (Sept. 1, 2006).



2008] SOFTWARE DEVELOPMENT AND OPEN-SOURCE 871

relating to open source. But those clients themselves, for the most
part, have only recently put their own house in order after a long
period of denial and ignorance of open source licensing risks.
Outsource clients today are like parents telling their outsource
developer teenage children to straighten up and fly right-which is
like a thirty year old father telling his fifteen year old son to stop
partying, when it was not so long ago that the father was doing
exactly the same partying himself.

II. GIGO-THE ETERNAL INFORMATION PROBLEM

The vast majority of time spent resolving issues in open source
licensing is the gathering of information-or more precisely, the
vetting of the information. Anyone can collect inaccurate or
incomplete information, quickly and easily. As every programmer
knows, bad data means bad results-garbage in, garbage out. Good
record keeping is the answer, of course, but it is a harder answer to
implement than it seems.

Outsource providers will get significant benefit for their efforts
by streamlining their information tracking systems to record and
update open source licensing terms for software used in development.
The information typically needed is:

" Software package name
" Version
" License (including version)
" Download URL
" Dependencies
" Whether the code has been modified
" Copyright notices

The version of the software is necessary, because open source
projects do change their licenses over time, so the version of the
software may help to verify licensing terms. The version of the
license is necessary because subsequent versions of licenses can be
quite different in effect (such as the many changes introduced in GPL
version 3 and Apache Software License version 2.0). The download
URL is helpful to verify the licensing terms. Finally, dependencies
will help identify software that may have been omitted from the
records, and help address compliance issues with copyleft licenses
like GPL.



872 SANTA CLARA COMPUTER & HIGH TECH. L.J. [Vol. 24

Simply keeping the right information will help outsource
providers tremendously to meet the needs of their customers. In fact,
some customers will prefer that the outsource provider make no
substantive decisions about what licenses are acceptable, and leave
those decisions to the customer. But assuming that some customers
will require assistance making that decision-or at least appreciate
the outsourcer identifying issues early rather than late-outsource
providers also need to understand the policies their customers are
likely to have.

III. PERMISSIVE VS. "FREE" SOFTWARE

The first thing any lawyer learns about open source is that there
are two kinds: permissive or "open" software, and "free software."
Terminology in the open source world is inconsistent and fraught with
political peril, but the two categories are essential to understanding
open source compliance. Outsource providers need to understand this
because their clients will react to the use of these two types of open
source software very distinctly.

A. Permissive Licenses

This type of license includes Apache, BSD, and MIT licenses.4

These licenses have few requirements-essentially limited to notice
requirements-and code received under these licenses can be
included in proprietary products.

B. Hereditary Licenses

This type of license includes GPL, LGPL, Mozilla (MPL),
CDDL, CPL, and Eclipse. 5 These are sometimes called "free
software," "reciprocal," or "copyleft" licenses-or more pejoratively,
"viral" licenses-but members of the open source community will
argue about which epithets apply to which licenses.6 The essential

4. The text of these licenses, in their standard forms, is available at
http://www.opensource.org/licenses.

5. Id.

6. I use the term "hereditary" because it is the most neutral, and, I feel, the more
accurately descriptive. But this term is not in common use. The Free Software Foundation calls
this category "free software," but that description does not always include so-called "weak
copyleft" licenses like Mozilla Public License and Eclipse. See The Free Software Foundation,
Various Licenses and Comments About Them, http://www.gnu.org/philosophy/license-list.html
(last visited Apr. 11, 2008). The former category is variously called permissive, BSD-type, or
simply open source, and its terminology tends to be a less sensitive subject because the precept
behind such licenses is the exercise of minimal downstream control. See, e.g., The Apache



2008] SOFTWARE DEVELOPMENT AND OPEN-SOURCE 873

feature of these licenses is that if you distribute the code provided
under these licenses, or modifications of the code, you must distribute
it in source code form under the terms of that license.7 The scope of
modifications covered, alternatives for licensing of binary code, and
other terms vary by license. However, most clients of outsource
development providers will have more restrictive policies for use of
code under hereditary licenses than for permissive ones.

IV. TYPES OF CUSTOMERS AND PRODUCTS

The outsource provider's customers will be more or less
sensitive to the use of open source in its development depending on
the type of product being developed and the nature of the customer's
business. This is because some code is more likely to be distributed
than other code. As a general rule, the copyleft obligations of
hereditary licenses like GPL are not invoked until distribution of a
product occurs. 8 What constitutes distribution can be a thorny issue,9

but generally an on-line service that provides users with access to the
functionality of the software, but not a copy of the software itself, is
not distribution.10 Therefore, development of software to operate
online services, or software to be marketed under a SAAS model, will
be less sensitive to copyleft concerns. However, lack of distribution is
not a panacea for these issues. Online services and SAAS products
can easily morph into distributed software solutions. Also, the gray
areas around what constitutes distribution can mean that providing
copies of code to affiliates can trigger copyleft obligations.

Software Foundation, How the ASF Works, http://www.apache.org/foundation/how-it-
works.html (last visited Apr. 11, 2008).

7. See, e.g., The Free Software Foundation, GNU General Public License, Version 2, §
2(b), http://www.gnu.org/licenses/gpl-2.0.html (last visited Apr. 11, 2008).

8. The exception that proves the rule is the Affero GPL, recently released in a new
version stewarded by the Free Software Foundation. See Fabrizio Capobianco, AGPL is OSI
approved. Sweet Victory (Mar. 13, 2008), http://www.funambol.com/blog/capo/2008/03/agpl-
is-osi-approved-sweet-victory.html (discussing why the distribution threshold for triggering
copyleft is important).

9. See the discussion below of whether the use of outsource providers constitutes
distribution.

10. This conclusion may be more reliable under U.S. law than other law. Some open
source licenses refer to the copyright term "distribution," but others, most notably GPL version
3, refer to analogous terms under local copyright law. Thus, the activities that trigger copyleft
obligations may be broader, particularly under German law. This topic is beyond the scope of
this article.



874 SANTA CLARA COMPUTER & HIGH TECH. L.. [Vol. 24

V. WHITE LISTS, BLACK LISTS, AND GRAY LISTS

Customer policies often come in the form of lists of licenses that
are prohibited, allowed, and allowed on approval-otherwise known
as White Lists, Black Lists, and Gray Lists. The more sophisticated
customers will have developed written policies that identify these
categories, and describe the business processes for submitting Gray
List items for review. Although policies vary by industry, product
type, anticipated use, and individual preference, a typical policy might
contain the information in the following table.

Note that this kind of a table implies that the customer has made
many legal conclusions about the meaning of these licenses, and
reasonable people-even reasonable lawyers-can differ on these
conclusions. The conclusions reflected below are just examples. Some
companies, in particular, may not place GPL/LGPL v.3 on their Black
Lists, and some may place all versions of GPL on their Black Lists. In
the table below, "proprietary" refers to code that is licensed under a
conventional, binary or object code only (not an open source) license.

License Compliance Rules Comments
GPL e No proprietary code may be * This generally
version 2 linked (dynamically or follows the Free

statically) to GPL code. Software
* Proprietary applications may Foundation's

run in user space on top of interpretations and
Linux, even though Linux is guidance, though
covered by GPL. there are gray areas

* GPL code may interface with around the margins
proprietary code through
pipes, sockets, data files, or
fork/exec calls.

GPL e Do not use
version 3
LGPL * Do not use
version 3
LGPL e LGPL code may not be used * Legal must confirm
version 2.1 by proprietary code except that license for

via dynamically linked proprietary code
libraries, does not prevent

* LGPL code may not contain modification or
macros or in-line functions of reverse engineering
over 10 lines, to the extent



2008] SOFTWARE DEVELOPMENT AND OPEN-SOURCE 87

License Compliance Rules Comments
necessary to allow
exercise of LGPL
rights for the
library code,
including
modification of
library and re-build

of product with
modified library.

Legal must confirm
no patent issues

GPL v.2 + GPL + Exception code may 9 GPL + Exception
Special be used if it is an unmodified allows proprietary
Exception library code to be linked,

dynamically or
statically.
Therefore
unmodified code is

unlikely to violate
compliance rules.

* Legal must confirm
no patent issues

Mozilla 1.1 e Proprietary code may be e Legal must confirm
combined with MPL code if no patent issues
it is in separate source files e Note that some

* MPL code may be used if it is companies will
an unmodified library place Mozilla 1.1

on the Black List
due to patent
termination

provisions; this
may not apply to
Mozilla 1.0

CDDL 9 Proprietary code may be e Legal must confirm
combined with CDDL code if no patent issues
it is in separate source files o Note that some

a CDDL code may be used if it companies will
is an unmodified library place CDDL on the

Black List due to



876 SANTA CLARA COMPUTER & HIGH TECH. L.J. [Vol. 24

License Compliance Rules Comments
patent termination
provisions

Eclipse e Eclipse code may be used if it e Legal must confirm
is an unmodified library no patent issues

CPL * CPL code may be used if it is 9 Legal must confirm
an unmodified library no patent issues

Apache 2.0 * OK 9 Legal must confirm
no patent issues

BSD OK
MIT * OK
Apache 1.1 * OK
Apache 1.0 o Do not use * Note that some

companies will
place Apache 1.0
on the Black List
due to its
advertising clause,
since deprecated in
favor of Apache 1.1

VI. DEVELOPMENT TOOLS

The table above represents an illustration of a policy for use of
code to be integrated into a product. But the rules for development
tools are quite different. Unfortunately, there is some confusion over
what is referred to as a development tool.

When people refer to a development tool they usually mean a
compiler, development environment, SDK, or text editor. There are
some gray areas, though. For instance, PERL may refer to the PERL
interpreter (which is dual licensed under GPL and the Artistic
License). However, PERL is also a language, and so there are PERL
libraries and development environments available under various
terms. The fact that the PERL engine is licensed under GPL will not
affect the intellectual property rights in PERL scripts that are
processed using that engine. However, using PERL scripts covered by
GPL may affect the licensing of accompanying or modified scripts.



2008] SOFTWARE DIEVELOPMENT AND OPEN-SOURCE 877

SDKs and compilers may also raise compliance issues. These
utilities may incorporate code snippets or run-time libraries into a
program. If so, it is the licensing of the code or libraries that matters,
not the licensing of the SDK or compiler. Thus, GCC (the GNU C
Compiler) is licensed under GPL, but the standard libraries are
licensed under GPL + exception, allowing them to be incorporated
into proprietary programs."

One should take particular care with the term "API," which is
used inconsistently as a programming interface description (i.e.
documentation) and a set of code libraries for implementing a
particular device, platform, or other technology. In the latter case, the
API includes software code. In the former, it probably does not.
Things can get particularly confusing when non-software is licensed
under a software license like GPL. This generally reflects confusion
on the part of the licensor, and is not common among the bigger,
better-managed projects-which usually use the GNU Free
Documentation License or a Creative Commons license for
documentation.

The bottom line is that a development tool licensed under GPL
that does not inject any code into the program being developed does
not cause compliance issues for the product being developed, because
the GPL code itself is never part of the product. Examples would
include debuggers, text editors, bug trackers and concurrent
versioning systems.

A language interpreter licensed under GPL does not generally
cause GPL compliance issues 1--even though it is possible that
standard system libraries may be covered by GPL and may need to
link to code being interpreted in order to run. PERL, Python, and Java
are examples of language interpreters.

11. For the Free Software Foundation's explanation, see The Free Software Foundation,
Frequently Asked Questions about the GNU Licenses, http://www.gnu.org/licenses/gpl-
faq.html#CanlUseGPLToolsForNF (last visited Apr. t1, 2008) (answering the question "can I
use GPL-covered editors such as GNU Emacs to develop non-free programs. Can I use GPL-
covered tools such as GCC to compile them?").

12. For the Free Software Foundation's view, see The Free Software Foundation,
Frequently Asked Questions about the GNU Licenses, http://www.gnu.org/licenses/gpl-
faq.html#IflnterpreterlsGPL (last visited Apr. 11, 2008) (answering the question "if a
programming language interpreter is released under the GPL, does that mean programs written
to be interpreted by it must be under GPL-compatible licenses?").



878 SANTA CLARA COMPUTER & HIGH TECH. L.J. [Vol. 24

VII. THE "DEVELOPER PROBLEM"

The most complex open source question for outsource
developers is whether use of an outside developer constitutes a
copyleft-triggering distribution. The answer to this question is fact-
specific and can change based on facts that may not seem to change
the business case much. The conceptual difficulty with this question
is that, if you are an outsource developer, your customers will likely
perceive you as equivalent to an in-house developer, so the idea that
engaging you to perform development may change the customer's
outbound licensing posture will seem counterintuitive to them.

The simplest case is when your customer engages you to develop
new programs that the customer intends to release under an open
source license. In this case, there are no restrictions of third party
inbound licenses to consider. 13 Presumably, your customer will own
the code via an assignment of rights. Thus, your customer has
complete discretion to release that code via an open source license or
not. Whether you distribute the code to your customer when you
deliver it is irrelevant.

A harder case occurs when your customer engages you to
perform development of modifications to code covered by a license
like GPL. If your customer owns the rights to the code, and merely
happens to have already released it under GPL, this case is the same
as the one described above. By definition, the owner of the code has
no restrictions of third party inbound licenses to consider. However, if
your customer owns the rights to only some of the code (if, for
instance, it has used community developments licensed under GPL)
or has modified third party GPL code before giving it to you for
further development, the question arises as to whether the customer's
distribution to you invokes the copyleft requirements of GPL, or your
delivery of the finished product to the customer invokes these
obligations.

The Free Software Foundation's FAQ on the GPL says:

Does the GPL allow me to develop a modified version under a
nondisclosure agreement?

Yes. For instance, you can accept a contract to develop changes
and agree not to release your changes until the client says ok. This
is permitted because in this case no GPL-covered code is being
distributed under an NDA.

13. This is not quite true if you are developing plug-ins to GPL code, which is discussed
below.



2008] SOFTWARE DEVELOPMENT AND OPEN-SOURCE 879

You can also release your changes to the client under the GPL, but
agree not to release them to anyone else unless the client says ok.
In this case, too, no GPL-covered code is being distributed under
an NDA, or under any additional restrictions.

The GPL would give the client the right to redistribute your
version. In this scenario, the client will R4robably choose not to
exercise that right, but does have the right.

But note that this question appears to apply to modifications of
GPL code that was originally developed by the same developer. The
FAQ also says:

Is making and using multiple copies within one organization or
company "distribution "?

No, in that case the organization is just making the copies for itself
As a consequence, a company or other organization can develop a
modified version and install that version through its own facilities,
without giving the staff permission to release that modified version
to outsiders.

However, when the organization transfers copies to other
organizations or individuals, that is distribution. In particular,
providing copies to contractors for use off-site is distribution. 15

The FAQ does not mention whether "contractors" in this case
includes developers or other kinds of contractors, but it does suggest
that delivery of GPL code to a contractor for further development
triggers the copyleft obligations of GPL.

There are legitimate questions, however, as to whether the Free
Software Foundation's interpretation of the GPL is legally binding. 16

And there are arguments that providing code to a contractor acting on

one's behalf is not distribution. As a general matter of agency law, if
the contractor is acting on behalf of the company, then the two would
be considered separate entities between which a transfer could take
place. Also, to the extent the U.S. copyright law defines distribution,

14. The Free Software Foundation, Frequently Asked Questions about the GNU Licenses
http://www.gnu.org/licenses/gpl-faq.html#DevelopChangesUnderNDA (last visited Apr. 11,
2008). This FAQ now presumably is addressed toward GPL version 3, but the answer is not
written as specific to version 3.

15. The Free Software Foundation, Frequently Asked Questions about the GNU Licenses,

http://www.gnu.org/licenses/gpl-faq.html#lnternalDistribution (last visited Apr. 11, 2008).
16. This is a complex topic and beyond the scope of this article. For further discussion,

see HEATHER J. MEEKER, THE OPEN SOURCE ALTERNATIVE: UNDERSTANDING RISKS AND

LEVERAGING OPPORTUNITIES 223-32 (2008).



880 SANTA CLARA COMPUTER & HIGH TECH. L.J. [Vol. 24

it requires making a copy publicly available, and so delivery to a
contractor may not qualify.

The bottom line on this issue is that it is unsettled. So, before
delivery by a customer to an outsource provider of third party GPL
code to be modified, or before delivery by an outsource provider to a
customer of third party GPL code that has been modified, each should
stop to consider whether the delivery is possible outside the scope of
GPL, and within the confines of the outsource development
agreement.

VIII. NOTICES

All open source licenses have copyright notice or attribution
requirements. If a product contains many open source modules, it may
be quite difficult to comply with all of them simultaneously. For
instance, some may require notices in user documentation and your
customer may not provide user documentation. But at a minimum, if
your customer plans on distributing copies of the code you have
developed, your customer will need to gather all the notices for all
open source software used in the product. Because of the operational
difficulty in adhering to different notice provisions, many companies
develop a general policy for complying with notice issues-such as
posting notices on a Web site accessible by customers or delivering
notices via technical bulletins. Although these policies often are not
technically compliant with each open source license, they are
intended to address the spirit of the notice and attribution
requirements. Gathering the notices to be included for open source
can be time consuming, so it is best to gather them in a central source
as you perform development. Doing so will save your customer the
time and effort of backtracking.

IX. HELPING YOUR CUSTOMERS HELP THEMSELVES

The brief summary in this article of issues for outsource
development services providers is, in a way, a crash course in open
source compliance for any company doing development. Of course, if
your are lucky enough that your customers tell you exactly how they
want you to handle open source in your work for them, you can
simply follow their direction. But for customers that are still sorting
out their policies on open source, outsource providers can add value
by assisting and guiding their customers. By doing this, outsource
providers can demonstrate a level of sophistication that will give them



2008] SOFTWARE DEVELOPMENT AND OPEN-SOURCE 881

a competitive edge, grow with their customers, and together, come of
age in the open source world.



* * *


	Santa Clara High Technology Law Journal
	2008

	Outsource Software Development and Open Source: Coming of Age in the 2000s
	Heather Meeker
	Recommended Citation


	Outsource Software Development and Open Source: Coming of Age in the 2000s

