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Thermocapillary Convection in an Inhomogeneous Porous Layer *
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A new model consisting of an inhomogeneous porous medium saturated by incompressible fluid is investigated.
We focus on the effects of inhomogeneity for the streamline patterns and instabilities of the system. Influences of
the ‘mean porosity’ and gradient of distributions of porosity are also emphasized. The results cannot be obtained
by studying the media with constant porosity as carried out by other researchers, and have not been discussed

before.
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Thermal convection of fluids in porous media has
been extensively investigated, mainly because of its
engineering and technological importance. The onset
of cellular convection in a porous layer, free at the up-
per surface without any deformation and heated from
bottom, is attributed to the combined effects of buoy-
ancy and surface tension.[!l The classical Rayleigh-
Bénard instability problem!>?! for a single free fluid
has its equivalence for a porous media. It is the
HortonRogers-Lapwood problem.[*5! On the other
hand, since the pioneering work of Pearson’sl® on a
pure liquid with a free surface heated from the op-
posite boundary, when buoyancy can be left aside,
surface tension gradient could also lead to convec-
tive instabilities. In 1997, Hennenberg et all”l stud-
ied the Bénard-Marangoni problems in a porous layer
with Brinkman’s model,/8) and showed the instabil-
ity curves for the onset of convective motion, i.e.,
the Marangoni number against wavenumber curves.
In addition, many studies investigated the onset of
convection in a superposed fluid film overlying a ho-
mogeneous porous layer, except the inhomogeneous
ones.[=14 They usually used Brinkman’s model or
Darcy’s law to describe the porous medium and
Navier—Stokes equations for the liquid film. They have
studied the coupled effects of the convection in these
two layers, but the instability problem in porous me-
dia is still basic and crucial, and this is one of the
motives in the present study.

Porous media in common nature environment does
not have the constant porosity usually. Therefore, it
is of vital importance to study the fluid convective
instability problems in inhomogeneous porous media.
In this Letter, we investigate the Marangoni—Bénard
problems in a vertically inhomogeneous porous layer,
as schematically shown in Fig. 1.

Cartesian coordinates are used with the origin at
the ground boundary with the z axis vertically up-
ward. The variation of porosity against its depth

is a function of the distance away from the top
surface. In the present study, we choose the lin-
ear function and the trigonometric function, respec-
tively. The linear variation of porosity is the function
p(z) = gpo[%(z — 1) + 1], and the trigonometric one
is (z) = o[ Z5sin(m(2 — 1)) + 1], where ¢, is the
porosity variation coeflicient at the top free surface
and g the porosity at the upper surface which we set

to be 0.7.
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Fig. 1. Geometrical configuration.

The system is heated from bottom, and assumed
to be infinite in the horizontal direction. The upper
surface of the system is free without any deforma-
tion. The vertical component of velocity there equals
to zero. The bottom wall is considered as rigid and
perfectly heat conduction boundary. The surface ten-
sion at the upper surface is considered to be a linear
function of temperature:

o=o09—op(T —Tp), (1)

where o is the surface tension of the fluid at the refer-
ence temperature Ty and the constant rate of change
of surface tension with temperature, o, is supposed
to be positive. We can defined a mean surface tension
o[l
[ oudS; + [ 0.dS;
7m =TT dS, + [dS,

For an isotropic medium, we obtain

(2)

Om :Ul§0+0's(1 _<P)- (3)
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For any physical property one has ( ), = ( )i +
( )s(1 — ¢), where the subscript m denotes a mean
property, s a property of the solid matrix in the porous
media and [ a property of the liquid. We use the
Brinkman-Forchheimer equation!!?! with Boussinesq
approximation, i.e., only the density of fluid p; is de-
pendent on the temperature:

pr = po[l — (T = Tp)]. (4)

For a reference motionless state (the subscript r de-
notes a reference property)

AT 1
TT = _ﬁ / —dz + TO,
Jo km ™ "dz Jo km

where T, is the reference temperature, Ty the basic
temperature of ground rigid wall.
The Brinkman—Forchheimer equation is

o 160+1 . )<v

oot (v-V <p)] = —év(wp)

+ ueVQ'v - %v = pog[l — (T —Tp)]e.
(5)

The energy equation is

(pc)maa% + poci(v - V)T =V (k,, VT). (6)

The continuity equation is
V-v=0. (7)

For convenience, the variables will be expressed in di-
mensionless forms. The length is scaled by the to-
tal thickness d, the temperature by AT, the time by
d?/k;, and the velocity by r;/d where x; = ki/(poc)
is the thermal diffusivity. In order to obtain the per-
turbation equations, we introduce perturbations of
velocities, pressure and temperature: v = v, + v/,
p=p.+p, T =T,+T, into the above three equa-
tions. After eliminating the pressure and the horizon-
tal components of velocities, the dimensionless equa-
tions for the linearized perturbed variables take the
simplified expressions and involve only two unknown
quantities, namely, the vertical component of the ve-
locity and the corresponding temperature field.

According to the normal mode technique,!*® we
seek solutions for the vertical velocity component and
temperature in the form

(?)::(géﬁ)@mut+wﬂ. (8)

The amplitudes W (z) and ©(z) describe the variation
with respect to z of the vertical velocity and the tem-
perature, and a is the dimensionless wave number in

the z direction. Finally, A is the complex growth rate
of the disturbance. Then, we obtain

A[(D2 a?)? + éZZD(D 2)]VV
- D (D —a) + D
+ Da" ' f1(2) fo(2) DW — a*>Ra©
=X\~ 'Pr (D% — a®)W, (9)
—Sf3(2) fa(z2)W + Sfs(2) X' f5(2)(D? — a*)©
+ f6(z)DO = X0, (10)

where D stands for d/dz. The dimensionless parame-
ters are defined as follows:

PI':Vl/Kh A:,U/e//j/l, Da:K((po)/d27
Ra = agATd? vk,
S = poCz/[(POCl)SOo + (pscs)(l - @0)]&

X = ki/[kipo + ks(1 = @o)],

where K (gg) is the permeability with porosity equal
to ¢g. For pure thermocapillary convection discussed
in here, we set Ra = 0. The functions fi(z) to fs(z)
are defined as

f1(2) = Klp(2)] 7' - K(go),
1 dK(p(2))
fo(2) = (pocz)w + (pscs)(1 — ¢o)
~ (poct)p(2) + (pscs)[L — o(2)]
fa(2) = = a{ [l (2) + k(1 = 9(2))
d dz -1
. /0 [kio(2) + ks(1 — ©(2))] } ’
fi(2) = kip(2) + ks[1 — o(2)]
° koo + k[l — @o]
fG(Z) _ kl - ks d@(z)
ki1 - [(poc)p(2) + (pscs) (1 — @(2))]  dz

The above two equations give rise to a sixth order
system with the following associated boundary condi-
tions.

At z =0, one has

W=0 ©=0 DW=0. (11)

At z =1, one has

W =0, DO+ Bi©®©=0, D?W+a’Ma® =0,
(12)
where Bi is the Biot number, and we set it to be
o,
Ma = -2 OdAT/uem is the

Marangoni number in the porous media,”) where
Omo = 01¥0 + 05(1 - SDO)

zero in this study.
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The calculations are carried out using the physi-
cal properties of water at temperature T = 297.15 K.
The Prandtl number of the fluid is 6.34. The solid
matrix consists of glass beads with a nominal diam-
eter of 3mm.['®l The permeability K[p(2)] of such a
porous medium is obtained using the Kozeny—Carman
relation:[!7]

ez
Klo()] = 1753 M- ()]

(13)

where d; is the diameter of the glass beads and ¢
the porosity. The depth of the porous layer is 4 cm.
The Brinkman—Forchheimer model rests on an effec-
tive viscosity u. denoted A in dimensionless form. We
take A = 1.0 in the following numerical computation.

25

Table 1. Physical properties of water and glass.

po = 0.997 x 103 kg/m?
c; = 4.16 x 103 J /kg-K

k; =0.145 x 1075 m? /s
vy =0.919 x 10~ %m?/s

ps = 2.5 x 10° kg/m3
cs = 0.84 x 103 J /kg-K
ks = 0.201 x 1076 m? /s

The linear equations (9) and (10) together
with their boundary conditions (11) and (12)
are discretized using the spectral method (Tau—
Chebyshev)!'?] and then are resolved as the general
eigenvalue problem. This method has been verified by
analysing the Marangoni-Bénard instability in two-
layer systems.[2021) The complex time growth rate A
is computed in complex double precision. The compu-
tational solutions has also been verified in comparison
with the analytical solutions.!®!
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Fig. 2. Critical wavenumber and z w

Marangoni number vs ¢, in the
media where the distributions of
porosity is linear (a) and trigono-
metric (b).

Fig. 3.

Streamline patterns [(a), (b), (c¢)] and W distribution of pure
Marangoni convection (d) in the media with linearly distributed porosity.
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Fig. 4. Streamline patterns [(a) and (b)] and W distribution of pure Marangoni convection (c¢) in the media with trigono-

metrically distributed porosity.
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Fig. 5. Comparison of W distributions.

From Fig.2, we find that the critical Marangoni
number grows as ¢, is added up, in the media with
linearly or trigonometrically distributed porosity. It
can be explained as follows. If ¢, is positive, the
porosity at bottom or central part is less than that
on top. Then, the mean porosity of the layer is less
than the one with constant porosity ¢g. From both
the numerical results and physical interpretations, the
less the porosity is, the more difficult the fluid is to
flow, then the system is more stable, and vice versa.
The curves of critical wavenumber against ¢, are also
shown in Fig. 2. In the media with linearly distributed
porosity, the corresponding curve is monotonic. While
in the media where the porosity is trigonometrically
distributed, the curve decreases slowly at first, then in-
creases rapidly when ¢, goes through 0.5. This means
that the wavenumber becomes rather sensitive to ¢,
when ¢, > 0.5.

Streamline patterns and distributions of W (z) of
the convection in the media with linearly distributed
porosity are shown in Fig.3, and those in the me-
dia where the porosity is trigonometrically distributed
are shown in Fig.4. No matter what kind of poros-
ity of the media is, the centre of each cell is always
in the vicinity of the top surface. All the cells pene-
trate downwards from top for any case. This is caused
by the mechanism of Marangoni instability, i.e. only
when the fluctuations of surface tension can be sus-
tained under the sufficient temperature gradient, the
convection occurs.

The cells in negative ¢, case penetrate more deeply
than they do when ¢, is positive. For the negative
¢, the larger the increase of the porosity in the di-
rection towards the bottom, the more deeply the con-
vective cells penetrate downwards. Different from the
Marangoni convection in pure liquid layer, the vor-
tex centre in porous layer is near the top surface
(z = 1.0). The growth rate of velocity is extremely
rapid from zero at the upper surface to the maximum.
It is caused by the additional viscous drag of the solid
matrix which strengthens the dissipative effect of the
system. When the liquid start to move from the top
surface, its kinetic energy is much more easily to be
dissipated by the solid matrix than that by its own
viscosity only, and then it is more difficult to move
downwards. The less the porosity is, the more drag

the solid matrix can offer, then the more rapidly the
kinetic energy of particles is to be dissipated, i.e., the
more rapidly their velocity decreases, and finally the
further the centre of cell departs from the centre line
and the closer it is to the top. The comparisons of the
distributions of W (z) with the same ¢, are shown in
Fig.5. The penetrability of the cells can also be seen
from this figure.

In summary, from the results described above, the
porosity variation coefficient, i.e. ., and the distri-
butions of ¢(z) do have significant influence on the
system. The influence is not only on the instability of
system, but also on the streamline patterns and the
distributions of W(z) as well. The system which is de-
noted by the critical Marangoni number becomes more
stable with the increase of ¢,, and the variation char-
acteristic of the corresponding critical wavenumber is
somewhat complicated. When ¢, is negative, the cells
penetrate more deeply; when positive, the cells appear
only in the vicinity of the top surface of the media.
The results indicate that the stability of the system
depends on the mean porosity of the medium, while
the critical wavenumber and the penetration of the
cells depend on the distribution characteristics of the
porosity.

In the present study, we only focus on the surface-
tension-driven instability of a liquid layer in inhomo-
geneous porous media. The influence of anisotropy
of the media and coupled effect of Rayleigh and
Marangoni instabilities will be studied in the near fu-
ture.
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