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Chapter 1

Motivation

In this chapter we will shortly review the historical development of the Standard Model of elementary
particle physics. The aim of the historical overview is to give an idea as to how the current theory was
born, from theoretical predictions and experimental verification with many unexpected discoveries
leading to reformulations and expansions of the theory. With this section we wish to show the reader
that there have been unexpected events along the way: that there might still be many surprises in
store for us and that it might be premature to think that our current view of particle physics is
complete.

In the second part of this chapter we list some shortcomings of the current model, called the
‘standard model’, and give some arguments in favor of adding a fourth family of particles. Ideas
presented in this section will be considered in some detail later on in the text.

1.1 Historical overview – the ‘discovery’ of

the standard model

The observable matter of the universe consists of atoms that are made up of protons, neutrons and
electrons. All of these particles were discovered in the 1930’s, and at the time they were deemed to
be elementary constituents, just as had been thought of atoms before that. Before this the photon
had also been found, the photon being the quantum of the electromagnetic field that ‘binds’ the
electron to the atomic nucleus. The force binding the protons and neutrons of the nucleus was
thought to be mediated by a particle called the ‘pi-meson’, as suggested by Yukawa [1]. When
Pauli predicted the existence of one more particle, the electron neutrino, as a solution to a problem
(missing energy in beta decays) [2], it appeared that a complete picture of particle physics had been
established.

The situation changed when the muon was discovered some years later, in 1937 [3, 4]. The muon
seemed identical to the electron, but with 200 times its mass. It was also very puzzling that this
new particle seemed to be produced by strong interactions but its interactions with matter were
electromagnetic. A famous physicist, Rabi, then made a comment conveying the amazement at this
surprise, cited many times since: ‘Who ordered that?’ [5].

Ten years later the charged pion, predicted by Yukawa, was found [6, 7, 8]. At the same time
another meson was discovered, too [9]. Later it became clear that this was similar to Yukawa’s
particle, but neutral, and so it became known as the ‘neutral pion’ [10]. These new pieces fit into
a beautifully simple theory where electromagnetic interactions are mediated by photons, strong
interactions by π-mesons and weak interactions are described by the Fermi four-fermion interaction;
all nuclei are bound states of protons and neutrons, atoms bound states of nuclei and electrons and
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8 CHAPTER 1. MOTIVATION

the matter fields classified as leptons (electron and its neutrino), mesons (the pions) and baryons
(consisting of protons and neutrons).

The beginning of a new decade, the 50’s, opened a new ‘era’ of elementary particle physics [5, 11]:
In 1951, cloud chamber observations showed a new neutral particle (Λ), which decayed into a
proton and a negative pion; in 1952-1953 the negatively charged Ξ and the charged Σ-particles
were detected in cosmic rays at high altitudes. All of these (later called hyperons) were heavier
than the known nucleons and exhibited an unusual feature: they were produced relatively often in
nuclear collisions, but then they decayed with long life-times of O(10−10) − O(10−8) s, suggesting
that they were produced in strong interactions but decayed through weak ones. These particles,
called ‘strange’ and always produced in pairs led to the discovery of the strange quark [12, 13, 9]. A
theoretical explanation was given both by Nakano and Nishijima [14] in Japan, and independently
Gell-Mann [15] in the USA. As a part of this explanation they introduced a new quantum number
called ‘strangeness’, related to other, already established, quantum numbers.

In the following years there was a great accumulation of data on baryon and meson resonances
as a consequence of the completion and running of several particle accelerators. By the mid-
1960’s it was realized that the contemporary theory did not suffice as an explanation for the many
new particles that were being discovered. The idea of quarks as the constituents of mesons and
baryons was put forward by Gell-Mann [16] and Zweig [17] in 1964. Further the notion of ‘color
charge’ was introduced in 1964 by Greenberg [18] and in 1965 by Nambu and Han [19]. Since
leptons were observed to have a specific pattern, emanating from the discovery of the muon and
muon neutrino [20], a fourth quark was predicted in 1964 by Bjorken and Glashow [21], an idea
that was further worked on by Glashow, Iliopoulos and Maiani [22] in 1970. It was recognized
that the fourth quark allowed for a theory with flavor conserving neutral currents, but not flavor
changing ones (called the ‘GIM’ mechanism), as explained by two generations related through
Cabibbo mixing [23]. This model was consistent with observations and the fourth quark, called
‘charm’, was found in 1974 [24, 25, 26, 27]. By this time a renormalizable gauge theory had been
developed [28, 29, 30, 31], based on the two ‘generations’ of particles observed thus far, the first
generation being the u and d quarks, the electron and its neutrino and the second generation
consisting of the c and s quarks, the muon and its neutrino.

A quantum field theory of strong interactions was formulated in 1973, first suggested by Fritzsch,
Gell-Man and Leutwyler [32]. Quarks were deemed to be real particles (as opposed to mere mathe-
matical tool) carrying a charge of their own – the ‘color’ charge. In this theory of color interactions,
called quantum chromodynamics (QCD), the massless quanta of the color field were named gluons.
A very peculiar feature of the theory was discovered not long afterwards – a property later called
‘asymptotic freedom’, needed to describe observed properties of the proton [33, 34, 35, 36, 37].

As had been the case for the theory based on just one family of particles, the theory based
on two families suddenly experienced severe problems with the experimental discovery of the tau
lepton in 1975 [38]. Two years later, in 1977, a fifth quark, named ‘bottom’, was discovered [39, 40].
The search for a sixth quark went on for 18 years and it was only when the Fermilab accelerator
Tevatron reached sufficiently high energies that the unexpectedly heavy top quark was found in
1995 [41, 42], with a mass much larger than that of the bottom quark.

The last particle of the third generation, the tau neutrino was finally found in 2000 [43].

This brief review of the ‘discovery’ of particle physics is meant to show the reader that there
has been an abundance of surprises in the history of particle physics. Especially, the discovery of
particles belonging to a new generation has already on two occasions, in the case of the second and
the third families, come as a surprise. When the history of new and unexpected discoveries is taken
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into account, it might well be that, even though the situation has been ‘stable’ for many years, we
still do not know the whole story.

That there are only three families of particles is an idea that has been generally accepted for
some time. The origin of this idea lies in the precision tests made at LEP, showing with high
statistical significance that the number of light neutrinos is three. This ‘has led to the prevalent,
if rather optimistic, belief that ... the number of sequential lepton and quark families has also
been determined to be 3’ [44]. But then again ‘this belief hinges on the notion that a heavy
sequential Dirac neutrino (mν ≫ mZ/2) belonging to a possible fourth generation would necessarily
imply an unnaturally large hierarchy among the Yukawa couplings of different neutrinos with the
Higgs boson’ [44]. In sections to come, we will see that the masses of elementary particles are
described through the particles’ Yukawa interactions with a field called the Higgs field. ‘Unnaturally
large hierarchy’ among the couplings here refers to the fact that the known particles have very
different masses. ‘Though the naturalness argument is intuitively rather appealing, it is basically a
philosophical outlook and hence is not beyond debate’ [44].

A further similar, more specific argument four the three families of particles is that one would
not expect a neutrino to be so heavy as to not be seen in the LEP measurements of the Z boson.
This argument has been countered by a wise comment: “the necessarily heavy neutrino mass,
mnu4

> mZ/2, would be surprising, but without a theory of neutrino masses we are not really in a
position to judge” [45].
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1.2 Problems of the standard model solved by

a fourth generation

Although the standard model [46, 28, 31] with three generations (to be denoted ‘SM3’) has been
immensely successful in describing the strong and electroweak interactions of elementary particles
there are still some issues that it does not cover in a satisfactory way. Many physicists today believe
that the SM3 is not the ‘ultimate’ theory, but rather an effective theory which is applicable at low
energies only. In this sense the SM is thought to be just the low energy limit of a more fundamental,
underlying theory. A variety of ‘beyond the standard model’ (BSM) theories have been proposed to
take the role of this underlying, more extensive theory. Such BSM models are e.g. theories including
supersymmetry or extra dimensions or even string theory and grand unified theories. A possible
way to extend the standard model, so that it might better explain observed phenomena is to add a
sequential fourth chiral family to the three already known families of elementary particles. This is
a very simple and perhaps a very ‘natural’ way to extend the SM, and it is the topic of this thesis.
This model will henceforth be referred to as ‘SM4’.

The motivation for the development of the various BSM models is the fact that some of the
theoretical aspects of the SM are not well understood, seem to be lacking a fundamental explanation
or are not yet experimentally verified. Another problem is that there are some experimentally
observed phenomena that exhibit some tension with the SM predictions. Amongst these open
issues are for example :

1. Origin of mass

2. Quark-lepton symmetry

3. Family replication and number of families

4. Masses and mixing pattern of fermions

5. Violation of parity

6. Baryon asymmetry of the universe

7. Large number of arbitrary parameters

The origin of mass is a question of fundamental importance to particle physics. As we will later
see (in Section 2.3), the masses of all particles are thought to arise from their interactions with
a scalar field. These interactions are called ‘Yukawa interactions’ and the scalar field is called the
‘Higgs field’. The SM predicts some of the properties of the Higgs particle, the quantum of the Higgs
field, but it does not predict its mass. Short-lived particles that live such a short time that they
cannot be directly seen, are instead indirectly observed in detectors through their decay products.
A motivation for SM4 is that the presence of a massive fourth generation would affect the Higgs
boson cross sections and decay channels.

At the moment there is some tension between the SM fit to and the lower bound on the Higgs
boson mass as measured by LEP II. It is not known whether the two anomalies giving rise to this
tension arise from unknown physics or if they are just due to systematic errors. If these anomalies
are removed, the SM fit improves, but then the predicted Higgs mass falls into a region already
excluded by LEP giving a contradiction. When the anomalies are present, then the SM fit is bad
and this situation is not satisfactory either. Interestingly, if a fourth family is added, then the fit
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gets better, giving a reason to study such a model. [47] We come later (in Chapter 5) to the issue
of an observed 125 GeV boson at the LHC.

A further thing about the fourth family and the origin of mass is that, in addition to the
effect the fourth generation particles have on the Higgs field, they could also be the initiators of
electroweak symmetry breaking themselves. This would be possible if the Yukawa couplings of the
fourth generation particles were found to be very big because then they could dynamically break
the electroweak symmetry [48].

The idea that there are three SM families has been widely accepted for a long time. This belief
is based on SLAC [49, 50] and LEP [51, 52, 53, 54] data of the width of the Z boson peak. As
noted in Ref. [54]: “In the standard electroweak model the Z boson is expected to decay with
comparable probability into all species of fermions that are kinematically allowed. The decay rate
of the Z into light, neutral, penetrating particles such as neutrinos, that would otherwise escape
detection, can be measured through an increase in the total width ΓZ ”. The visible width from
experimentally measured decay channels can be subtracted to give the ‘invisible’ width, that of the
neutrino channels. The results of the measurements at electron–positron colliders is that there are
only three light (mν ≪ mZ/2) neutrinos [55]:

Number of light neutrino types : 2.9840 ± 0.0082 at 95% C.L. (1.1)

with ‘C.L.’ standing for confidence level (or limit).

The generally accepted conclusion drawn from these results was that there could thus only
exist three generations of particles in the SM. Yet, as already mentioned in the previous section,
this conclusion relies upon the thought that a heavy fourth neutrino would not be ‘natural’, and
that its presence (along with the other, probably heavy, particles of the fourth generation) would
lead to ‘unnaturally’ large differences in the masses of all the elementary particles. But in fact an
unnatural hierarchy is not inevitable for the existence of a heavy fourth neutrino: actually the most
natural scenario can be implemented in a four family model [44]. This is the case if there are three
(nearly) massless neutrinos and a heavy neutrino, as given by the democratic mass matrix in the
hypothesis of flavor democracy (see Section 1.2.2). This hypothesis is in agreement with a very
simple conclusion of the Z width (1.1): that there are at least three generations.

As it is, the SM does not give a theoretical prediction for the number of families. Each SM family
is independently anomaly-free and therefore the number of families is completely unrestricted in the
sense of theoretical consistency of the model. The only restriction coming from the SM is an upper
limit given by the asymptotic freedom of Quantum Chromodynamics (QCD) [35], which requires
the number of generations to be less than or equal to eight. There are also some other hints
of an upper limit, namely some considerations that seem to disfavor a fifth sequential family. If
one assumes flavor democracy, then a fifth family would lead to four massless or nearly massless
neutrinos and one heavy one but this contradicts (1.1), and is therefore improbable. One would
also expect mt ≪ mt′ ≪ mt′′ , where mt is the top quark mass (mt ∼ 175 GeV) and t′ and t′′ refer
to the top type quarks of the fourth and fifth generation respectively. In this scenario mt′ is already
close to the unitarity limit, and therefore the theory is no longer trustworthy for energies as high as
mt′′ . [56]

Finally, we note that a fourth family could give an explanation to one of the open questions in
cosmology, concerning the ratio of matter to antimatter in the observable universe. A fourth family
could contribute with a factor up to O(1010) [57] or possibly from O(1013) to O(1015) [58] to the
baryon asymmetry of the universe, thus giving the observed amount of baryons to antibaryons in
the universe, a ratio that that SM3 predicts to be much too small.
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1.2.1 Naturalness

As far as has been experimentally found to date, there exists three families or generations of particles.
In the standard model, to be reviewed in the next chapter, the elementary particles are grouped
into doublets of the SU(2) gauge group.

ith generation : quarks

(
ui
di

)
and leptons

(
ℓi
νi

)
, (1.2)

with

ui = {u, c, t} , di = {d, s, b} , ℓi = {e, µ, τ} , νi = {νe, νµ, ντ} , (1.3)

for i = 1, 2, 3. The quarks of a family form one doublet and the leptons another.
The masses of all particles are created in the same way – through the Higgs mechanism. One

might think that this would imply that all masses are of the same order of magnitude, but this
turns out not to be the case. From experiments we know that [59]

(
mu ≈ 2.3 MeV
md ≈ 4.8 MeV

)
,

(
mc ≈ 1.3 GeV
ms ≈ 95 MeV

)
,

(
mt ≈ 173 GeV
mb ≈ 4 GeV

)
, (1.4)

(
me ≈ 2.3 MeV
mνe < 225 eV

)
,

(
mµ ≈ 1, 275 GeV
mνµ < 0.19 MeV

)
,

(
mτ ≈ 173 GeV
mντ < 18.2 MeV

)
. (1.5)

Eqs. (1.4), (1.5) show that the masses of each generation increase, the first generation being the
lightest one, the third the heaviest one. The mass gap between sequential generations is often called
the flavor problem.

The large mass differences are surprising, since one might think that since the masses are gen-
erated at the electroweak breaking scale (v ≈ 246 GeV) that they would all be proportional to
this scale. This would be plausible since the masses mf of particles are given by their Yukawa
couplings [1] λf , related to the electroweak breaking scale by

mf = λf
v√
2
. (1.6)

This shows that the only ‘natural’ mass scale would be the one given by the top quark, since
λt ∼ O(1). But from this point of view the masses of the other particles would seem ‘unnatural’.
This is what is often called the naturalness problem. The standard model does not provide a
satisfactory motivation for the differences in the Yukawa couplings.

Dynamical symmetry breaking

A sequential fourth generation might prove to be a solution to this problem [48]. Non–perturbative
dynamics of the system may cause a breaking of symmetry, leading to large differences in scales.
The fourth generation is an option for quarks with masses close to the unitarity breaking scale
mq4 ∼ 550 GeV (with Yukawa couplings λq4 ∼ 2.5). In this scenario a heavy quark condensate
〈q̄4q4〉 could be responsible for the dynamical symmetry breaking.

Dynamical symmetry breaking is exhibited e.g. in the Nambu–Jona–Lasinio (NJL) model [60,
61]. In this model the dynamics of heavy fourth generation quarks is described by a four–fermion
interaction

g2

Λ2
(q̄LqR)(q̄RqL) , (1.7)
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where g is the coupling and Λ the cut–off scale at which new physics enters the game. When g
is above some critical value gc the condensation occurs. The subscripts R,L are used to denote
right–handed and left–handed fields, respectively.

Fine–tuning

What is the cut–off scale Λ, the energy scale signaling the domain of new physics?

A modern point of view is that theories, such as the standard model, are but effective theories of
some more fundamental, underlying ones. The effective theories describe the low–energy regime, say
energies below a threshold M , whereas the fundamental theory is seen for E > M . The threshold
M is physical in the sense that the whole physical spectrum is contained in E < M . [62]

In order to study the concept of naturalness, let us consider a scalar theory with quartic vertices,
that is, a theory with an interaction Lagrangian of the type Lint ∼ λφ4, as in Ref. [62]. Upon
renormalization, the mass of such a field acquires a counterterm as shown in Fig. 1.1 at one–loop
order.

k

δm2 = λ
∫ Λ d4k

(2π)4
1

k2
∼ λ

16π3
∫ Λ

dk2 ∼ λ

16π3
· Λ2

Figure 1.1: Mass renormalization of a scalar field with quartic interactions.

The renormalized (‘dressed’) mass m of the scalar is then

m2 = m2
0 + αλ

Λ2

16π2
, (1.8)

where m0 is the bare mass, α is a (positive or negative) constant of order one. We note that the
mass has a quadratic dependence on the cut–off scale Λ. If we consider Λ to be a fundamental mass
unit, then

m2
0

Λ2
=
m2

Λ2
− α

λ

16π2
. (1.9)

Plugging in some typical values into this expression (1.9), e.g. m = 100 GeV and Λ = MP ∼ 1019

GeV shows that, in order to get the divergence canceled out, the ratio m2
0/Λ

2 has to be adjusted to
more than 30 orders of magnitude. This amounts to extreme ‘fine–tuning’ of the theory – a feature
that is not desirable in a theory.

In order to avoid this kind of fine-tuning of m2
q4/Λ

2 in the NJL model with dynamical symmetry
breaking, the ‘dynamical mass’ mq′ should not be much smaller than Λ/2. The cutoff scale Λ, the
mass mq4 and the electroweak breaking scale v = 246 GeV are related by the approximate formula

v2 ≈
3m2

q4

4π2
· ln Λ2

m2
q4

. (1.10)

An appropriate value for v is given by e.g. mq4 ≈ 750 GeV and Λ ∼ 2mq4 , but mq4 as low as 500
GeV might also be acceptable. [63] For such ‘low’ fourth generation quark masses Eq.(1.10) gives
the TeV–scale as the scale for new physics.
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1.2.2 Flavor democracy – a solution to the naturalness problem

The flavor democracy hypothesis or the democratic mass matrix model was proposed [64] more
than thirty years ago as a solution to some of the problems of the standard model. For three
SM families this approach leads to a number of ‘false’ predictions, such as a low mass for the t–
quark [65], but in the case of four families flavor democracy seems fitting since it gives three exactly
massless neutrinos and a heavy neutrino without requiring a large hierarchy among the Yukawa
couplings of the fermions of different types [66]. This is the foundation of the hypothesis: the idea
that all fermions of a particular type have equal Yukawa couplings with the Higgs field before the
diagonalization of the mass matrix. The three exactly massless neutrinos obtain small masses from
the slight breaking of democracy.

In order to familiarize ourselves with the ideas of flavor democracy let us consider three different
bases [66, 65]:

− standard Model basis {f0} ,

− mass basis {fm} and

− weak basis {fW}.
In the three family SM quarks are grouped into the following multiplets before symmetry breaking:




u0L

d0L


 , u0R , d0R ;




c0L

s0L


 , c0R , s0R ;




t0L

b0L


 , t0R , b0R . (1.11)

For one family all bases are equal and the Yukawa interaction of, for example, the d–quark mass
reads

L(d)
Y = λd(ūL d̄L)

(
φ+

φ0

)
dR + h.c. , (1.12)

where λd is the Yukawa coupling and (φ+, φ0)T is the SM Higgs doublet where only the second,
neutral component φ0 has a nonzero vacuum expectation value

〈
φ0
〉
0
= v = 246 GeV (the Higgs

mechanism will be discussed later on, in Section 2.3). The interaction (1.12) leads to a mass term
for the d–quark :

L(d)
m = mdd̄d , (1.13)

with md = λd · v/
√
2.

For n generations the Yukawa couplings form an n× n matrix λij and the Yukawa-term in the
SM Lagrangian is a sum over all the flavors. For the down–type quark this interaction reads :

L(d)
Y =

n∑

i,j=1

λdij(ū
0
Li d̄

0
Li)

(
φ+

φ0

)
d0Ri + h.c. , (1.14)

where the quark fields are in the SM basis. Eq. (1.14) gives the mass terms

L(d)
m =

n∑

i,j=1

md
ij d̄

0
i d

0
j , (1.15)

where d1 = d, d2 = s etc and md
ij = λdijv/

√
2. As will be discussed further on, a bi-unitary

transformation diagonalizes the mass matrix of a given type of fermions and makes the transition
from the SM basis to the mass basis.



1.2. PROBLEMS OF THE STANDARD MODEL SOLVED BY A FOURTH GENERATION 15

The basic idea of flavor democracy is that the mass matrix M is fully ‘democratic’ in
the sense that all of its entries have the same value Mij = λv/

√
2 ∀ i, j. Such a matrix has two

eigenvalues: a three-fold degenerate eigenvalue Λ1 = 0 and the nonzero Λ2 = 4. For the generic case
of n generations one gets an n× n mass matrix Mf instead of the 4× 4 of SM4. The superscript f
refers to the type of fermion considered (up, down, charged lepton, neutrino).

If the model has approximate flavor democracy among the Yukawa couplings then Mf

can be written in terms of the fully democratic matrix described above and a small, democracy-
breaking term λM ′

f as [66]

Mf = Y f (M0 + λM ′
f ) , (1.16)

where Y f is interpreted as the common Yukawa coupling of fermions of type f and the parameter λ
is introduced for bookkeeping purposes (as is usually done in perturbative quantum mechanics). λ is
assumed to be real and to take values between 0 and 1. The matrixM ′ has entries O(1), and since the
first three eigenvalues of the fully democratic mass matrix are zero, M ′ gives the first three generation
particles their ‘small’ masses – the deviation of the model from perfect democracy [67, 68, 44].

Again, in the generic case of n generations the first n−1 eigenvalues of M are equal to zero while
one is equal to n so a large hierarchy among the masses of a given species f does not necessarily
require a similar hierarchy among the elements of the mass matrix [66, 65].

In order to be able to work with the flavor democracy hypothesis one needs to make
the following assumptions [65]:

1. Before spontaneous symmetry breaking all fermions with the same quantum numbers are
indistinguishable so the Yukawa couplings within each type of fermions should be equal:

λdij ≃ λd , λuij ≃ λu , λℓij ≃ λℓ and λνij ≃ λν . (1.17)

This assumption leads to n−1massless particles and one massive particle with mf = n·λfv/
√
2

for n generations and f = u, d, ℓ, ν.

2. Because there is only one Higgs doublet giving Dirac masses to all four types of fermions it
would seem natural that the Yukawa couplings of different types of fermions be nearly equal:

λd ≃ λu ≃ λℓ ≃ λν . (1.18)

3. A natural value for λ is the SU(2) gauge coupling constant gW . If this were true then
m4 = 2

√
2gW v ≈ 450 GeV. On the other hand, if λ = 1 then m4 ≈ 700 GeV, which is close to

the upper limit posed on quark masses by partial wave unitarity (discussed in Section 1.3).

A prediction of the first and second assumptions is that, taking into account the actual masses
of the third SM family, namely mντ ≪ mτ < mb ≪ mt, the fourth SM family should exist [65].

1.2.3 Electroweak Precision Data

During the last two decades precision tests have been made at CERN, Fermilab and SLAC. The
results have provided increasingly precise tests of the SM, so that the SM is now confirmed at at the
level of virtual quantum effects. The tests also probe the mass scale of the Higgs boson. Even though
in many cases the agreement between experiment and theory is excellent, there are some observables
of the electroweak precision data (EWPD) that have some tension with the SM predictions. These
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discrepancies may be due to various errors in the measurements, or possibly signals of new physics
beyond the standard model. Interestingly, it seems that the adding of a fourth generation might
amount to a better agreement with the data. The situation is, however, far from clear.

B physics

Measurements of the b–quark CP–asymmetries, often called B-CP asymmetries have shown several
indications of new physics. During the last years the amount of available data has accumulated
and at the same time the accuracy of some important theoretical calculations has improved. These
developments make it increasingly apparent that several of the results are difficult to reconcile with
SM3 (see e.g. [47, 69, 70, 71]) and provide a test for models going beyond the SM (BSM models).

The problem of the B−CP asymmetries from a phenomenological point of view is that the CKM
picture of CP–violation does not explain all of the experimentally observed phenomena. As will be
discussed later on, in the SM CP-violation is encoded in a few CP violating phases of the quark
mixing matrix, called the CKM matrix. Phenomena not explained by the CKM model are [72] (see
Appendix A for explanations of the parameters) 1:

1. The large difference in direct CP asymmetries is difficult in the SM framework: the direct CP
asymmetry is measured to be [75]

∆ACP = ACP (B
− → K−π0)−ACP (B̄

0 → K−π+) = (14.4 ± 2.9)% . (1.20)

Naively this quantity would be expected to vanish but on the other hand it is difficult to
draw any conclusions from the value (1.20), since the associated hadronic decays are not fully
understood.

2. The need for a non-standard CP-phase has recently been brought up [76, 77] in the study of
Bs → ψφ by CDF [78] and D/0 [79] at Fermilab.

Some of the above anomalies may be explained by a fourth generation. The heavy
up–type quark of the fourth generation generate a new source of electroweak penguin contribution
since the amplitudes do not obey the decoupling theorem and hence grow as m2

t′ . This might help
to explain two of the anomalies in b→ s transitions and this also helps in explaining the difference
in CP asymmetries ∆ACP. [72]

Z-pole anomaly

In addition to the above listed discrepancies in B physics there is a Z-pole observable with a large
anomaly that has been mentioned in the literature [69]: the Z → b̄b front-back asymmetry Abb̄

FB

(A.3), which differs by about 3σ from the SM prediction (3.2σ at 99.9% C.L. in 2011 [80], 2.8σ in
2006 [81]).

This deviation could be a signal for new physics but there are a few issues that suggest cau-
tion [69]:

1 A few years ago there was another parameter that would have been added to this listing; namely the sin 2β
parameter (see Eq. (A.2)). In 2008 the SM prediction was approximately 2 − 3 σ larger than the directly measured
value (see e.g. [71]). Recent measurements have shifted the parameter towards the SM prediction, and the discrepancy
has vanished. In 2012 the PDG [59] reported the result [73]

β = 0.07+0.06
−0.08 , (1.19)

of the HFAG collaboration, which is in agreement with the SM prediction β = 0.018 ± 0.001 [74].
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1. the direct determination of Ab (A.5) from the front-back left-right asymmetry ALRFB (A.4),
with a deviation of only 0.7σ is consistent with the SM but when Ab is determined from
Ab = 4Ab

FB/3Aℓ, with Aℓ the leptonic asymmetry, disagrees by 3.5σ at 99.95% C.L,

2. there is no hint of an Rb anomaly to match the Ab one, so fine-tuning of the left and right-
handed Zb̄b couplings is required as well as an extremely large shift in the right-handed
coupling,

3. Z → b̄b measurements are known to be difficult.

Another thing to keep in mind is that the deviation could be due to a statistical fluctuation or
subtle systematic error. If the explanation were systematic error Ab

FB should be omitted from the
SM fit. In this case the global fit, which is poor with Ab

FB included, becomes excellent, but at the
same time the predicted value of mH gets low values in direct conflict with the search limit 114.4
GeV (95% C.L.) [82].

The effective leptonic mixing angle xℓW = sin2 θℓW , extracted from the hadronic asym-
metry measurements Ac

FB and QFB agrees with xℓW extracted from Ab
FB but deviates from the

SM fit (the leptons do not mix in the SM, as we will see). When all measurements are combined,
they differ from the SM fit at 99.5% but on the other hand these are the only measurements that
raise the predicted value of mH toward the range required by the search limit. It follows that the
data favors new physics whether the Ab

FB anomaly is genuine or not. In any case an important con-
sequence is that the evidence from the SM fit favoring a light Higgs boson becomes less credible. [69]

1.3 Unitarity constraints on the fourth generation

At the quantum level conservation of probability is guaranteed by the unitarity of the scattering
matrix S, which is generally written as S = 1+ iT with T the matrix describing the interactions of
the system. The expression for T can be deduced from a given Lagrangian, and its eigenvalues give
information about the spectrum of fermion masses. More specifically, the largest eigenvalue of T is
used to compute the lowest ‘critical’ value of the mass of fermions. The expression ‘critical mass’
is used here to signify the value of mass (mf )crit beyond which the electroweak interactions are no
longer weak, but strong, signaling the breakdown of perturbation theory (the perturbative regime
holds for fermions with mass mf . (mf )crit). At the energy scale of a possible fourth generation the
color interactions usually denoted as ‘strong interactions’ may actually be weak compared to the
electroweak interactions, due to the asymptotic freedom of QCD. Hence it is conceivable that weak
interactions dominate at the scale of fourth generation masses and that these new particles may
be bound together by the SU(2) × U(1) gauge bosons, giving ‘quarkonia’ and ‘leptonia’ bound by
W, Z, H. The long–distance behavior of these states would nevertheless be explained by QCD, since
the color interactions are known to become strong at small energies, but since the small–distance
(high–energy) behavior is dominantly described by the electroweak interactions, these are the ones
to study when investigating the validity of perturbation theory, the series expansion in powers of
the coupling. Perturbation theory is applicable as long as terms of high orders are subleading and
do not overtake the lower–order ones. [83]

A tool used to study unitarity is called ‘partial wave analysis’ – a method which we shall now
briefly review. This method can be used to bound the masses of a possible fourth generation. It
has also been used to deduce an upper limit on the Higgs boson mass [84].
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Partial wave analysis

A generic scattering amplitude A may be written in terms of ‘partial waves’ :

A = 16π
∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)aℓ , (1.21)

where the Pℓ(cos θ) are Legendre polynomials and aℓ gives the spin–ℓ partial wave (see e.g. [85]).
We recall that the differential cross section of a 2 → 2 scattering is simply

dσ

dΩ
=

1

64π2s
|A|2 , (1.22)

which, together with equation (1.21) gives the total cross section

σ =
8π

s

∞∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)aℓaℓ′

∫ +1

−1
d cos θPℓ(cos θ)Pℓ′(cos θ) (1.23)

=
16π

s

∞∑

ℓ=0

(2ℓ+ 1)|aℓ|2 , (1.24)

where, going from (1.23) to (1.24) the orthogonality property of the Legendre polynomials has been
used. We note that the cross section of Eq. (1.24) is a sum of positive definite terms. On the
other hand, by the optical theorem, the cross section is proportional to the imaginary part of the
amplitude in the θ = 0 direction :

σ =
1

s
ℑ [A(θ = 0)] , (1.25)

which together with (1.24) gives

|aℓ|2 = ℑ(aℓ) =⇒ [ℜ(aℓ)]2 +
[
ℑ(aℓ)−

1

2

]2
=

1

4
, (1.26)

which is nothing but the equation for a circle of radius
1

2
– the ‘unitarity circle’ – centered at (0,

1

2
)

in the complex aℓ plane. The real part of the partial wave aℓ lies thus in the region

ℜ(aℓ) <
1

2
∀ℓ . (1.27)

Limits on fermion masses

In the high–energy limit
√
s≫ mf the amplitudes of 2 → 2 processes simplify, and since this is also

the case of current experiments (notably at the LHC) this is the limit upon which we focus. In this
high-energy limit the tree–level amplitudes of certain 2 → 2 processes, such as [86]

f f̄ −→ f f̄ , W+W−, ZZ, ZH, HH (1.28)

tend toward the constant value of GFm
2
f . When mf is very large the constant GFm

2
f may become

of the order of unity, signaling the saturation of the tree–level unitarity of the S–matrix. When
the S–matrix is saturated already at tree level, this implies that the higher–order corrections need
to be relatively large, which in turn implies that the coupling is relatively strong and that one is
working at the limit of the validity of perturbation theory.
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This is also seen from the point of view of partial–wave analysis. As noted above, the most
stringent bound on the mass of new fermions is given by the largest eigenvalue of the T matrix. In
the partial wave analysis presented above, the ℓ = 0 partial wave is computed from

a0 =
1

32π

∫ +1

−1
d cos θT . (1.29)

For quarks (leptons) the smallest critical mass comes from the spin–0 (spin–1) matrix, giving the
following tree–level results [83]

mq <
4
√
2 · π
GF

1

5 + sin2 θC
× 1

N
and (1.30)

mℓ <
4
√
2 · π
GF

1

1 + sin2 θC
× 1

N
, (1.31)

when the particles of a doublet are assumed degenerate: m1 = m2 = m with m1, m2 the masses of
the particles of an SU(2) doublet. Here GF is the Fermi constant, θC is the Cabibbo angle and N
is the number of nearly degenerate doublets, ‘nearly degenerate’ meaning that the mass difference
of the particles in a given doublet is much smaller than the masses themselves. The doublets of the
three–generation SM are not nearly degenerate, so for a degenerate fourth family N = 1. In the
absence of mixing between doublets, i.e. for θ = 0, these limits read :

mq . 550 GeV and mℓ . 1200 GeV . (1.32)
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Chapter 2

The Standard Model

The standard model of elementary particle physics is a gauge theory – a theory based upon the lo-
cal, continuous symmetries of the system, ‘local’ meaning that the parameters of the transformation
depend on the space–time coordinates. Symmetry transformations have a mathematical description
in terms of group theory, and more specifically continuous symmetries are described by Lie groups.
Each Lie group has an associated Lie algebra, a vector space over some field and where an operator
called the Lie bracket has been defined. The standard model is based upon the symmetry group
(the gauge group) SU(3)×SU(2)×U(1), where each group of this direct product is associated with
a symmetry of the system. SU(3) is the color group, SU(2) and U(1) the isospin and hypercharge
symmetry groups. The theory of quantum chromodynamics (QCD) [36, 37, 34, 87] is based upon
the gauge group SU(3) whereas the Glashow–Weinberg–Salam (GWS) [46, 31, 28, 22] theory of
electroweak interactions is based on SU(2)× U(1). The SU(2)×U(1) symmetry is broken sponta-
neously by the presence of a scalar field, separating the interactions into weak and electromagnetic
ones. This spontaneous symmetry breaking (SSB) generating masses for the standard model par-
ticles is called the Higgs mechanism [88, 89, 90] and the associated scalar field is called the Higgs
field.

In the following we give a brief review of the salient features of this theory that in elementary
particle physics is called the standard model. We start by presenting the theory of strong interactions
before going on to the electroweak theory and the breaking of the SU(2)×U(1) symmetry and the
generation of mass.

2.1 Quantum chromodynamics

The theory that describes the strong interactions that bind together nuclear matter is called quantum
chromodynamics (QCD) – from the Greek word ‘chromo’ meaning color. The gauge group SU(3) of
the theory is often called the ‘color group’, with Nc = 3 the number of colors (the number of degrees
of freedom in the fundamental representation) for the case of QCD. The quanta of the gauge field,
the ‘gluons’, live in the adjoint representation of the gauge group and hence there are N2

c − 1 = 8
of them.

The Lagrangian density of a system must respect the relevant symmetries, for QCD this means
that the Lagrangian is required to be invariant under SU(3). The Yang–Mills Lagrangian for a
non-abelian theory with the Dirac field ψ reads

LQCD = LDirac + LYM = ψ̄(i /D −m)ψ −GaµµGa
µν , (2.1)

21
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where Ga
µν is the field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.2)

with Aa
µ the gauge field with color index a and Lorentz index µ and g is a constant that is eventually

identified with the gauge coupling. The fabc are the (completely antisymmetric) structure constants
of the SU(3) algebra : [

ta, tb
]
= ifabctc . (2.3)

The ta are the generators of the algebra.
The notation can be abbreviated writing

Gµ ≡ Ga
µt

a and Aµ ≡ Aa
µt

a , (2.4)

where summation over a is implied.
A specific representation of the group is given by the Gell-Mann matrices λa ≡ ta/2, after the

Nobel–prize winning physicist Murray Gell–Mann. The action of the covariant derivative Dµ on ψ
in (2.1) reads

Dµψ(x) = [∂µ − igAµ(x)]ψ(x) , (2.5)

where we have used the Feynman slash notation

/D ≡ γµDµ , (2.6)

for γµ generators of the Clifford algebra in four dimensions. Matter fields transform in the fundamen-
tal representation whereas gauge fields transform in the adjoint (antifundamental) representation.

From the Lagrangian (2.1) and the identities (2.2), (2.4), (2.3) we see that invariance under
SU(3) implies that the spinors ψ transform as (see e.g. [91])

ψ(x) → V (x)ψ(x) , (2.7)

where V (x) = eigt
aαa(x), αa(x) being a space–time dependent vector whose ath component is mul-

tiplied by the corresponding Lie algebra generator. The gauge field transforms as

Aµ → V (x)

(
Aµ +

i

g
∂µ

)
V †(x) . (2.8)

2.1.1 Gauge fixing and Faddeev–Popov ghosts

Let us for a moment discuss the quantization of a non–abelian field theory in the path integral
formalism.

The generating functional of a QFT with a Yang–Mills Lagrangian LYM ≡ LYM (Aa
µ) =

−1

4
(F a

µν)
2 is written as a functional integral over the gauge field Aa

µ

Z ∼
∫

DA exp

(
i

∫
d4x L

)
(2.9)

∼
∫

DA eiS[A
a
µ] , (2.10)

up to a normalization factor. Here the action S is

S
[
Aa

µ

]
≡
∫

dtL(Aa
µ) =

∫
dtd3xL(Aa

µ) , (2.11)
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with L the spatial integral of the Lagrangian density L. Since L is invariant under a (non–abelian)
gauge transformation, and gauge transformations are continuous, there is an infinite number of
directions in configuration space along which the Lagrangian is unchanged. The choice of direction
in configuration space – the gauge choice – should not affect the physics of the system, so these
‘redundant’ degrees of freedom corresponding to the different gauges need to be integrated out of
(2.11), since the dynamics is given by the action (or the Lagrangian) through the equations of
motion. This procedure of choosing direction in phase space is often called gauge fixing.

A clever way to fix the gauge, proposed by Faddeev and Popov [92], is to insert the identity in
disguise into the functional integral (2.10)

1 =

∫
Dα(x) δ (G(A)) det

(
δG(Aα)

δα

)
. (2.12)

This equation enforces a gauge–fixing condition G(A) = 0 at every spacetime point x. In (2.12) Aα

is the gauge field transformed by a finite gauge transformation

Aα
µ ≡ (Aα)aµt

a = eiα
ata
(
Ab

µt
b +

i

g
∂µ

)
e−iαctc , (2.13)

with the ta generators of the adjoint representation of SU(3), satisfying

(tb)ac = ifabc . (2.14)

For the determinant in (2.12) it is convenient to write (2.13) in its infinitesimal form

(Aα)aµ = Aa
µ +

1

g
∂µα

a + fabcAb
µα

c (2.15)

= Aa
µ +

1

g
Dµα

a , (2.16)

where one recognizes the covariant derivative Dµ of (2.5) using (2.14). When the generalized Lorentz
gauge condition G(A) = ∂µAa

µ(x)−ωa(x), with ωa(x) a Gaussian weight, is chosen the result (2.16)
gives

δG(Aα)

δα
=

1

g
∂µDµ (2.17)

The idea of Faddeev and Popov was to write the determinant of the left–hand side of (2.17)
as a functional integral over Grassmannian (i.e. fermionic or anticommuting) fields c, c̄, with a
Gaussian integrand

det

(
1

g
∂µDµ

)
=

∫
DcDc̄ exp

[
i

∫
d4x c̄(−∂µDµ)c

]
. (2.18)

The fields c, c̄ that appear in this way are called Faddeev–Popov ghosts or simply ghosts.
The ghosts couple to the gauge field through the minimal coupling of the covariant derivative
c̄Aµc ∈ c̄Dµc, giving vertices with one external gauge boson and two ghosts. These ghost fields are
not physical since they have no asymptotic states. They arise, however, as intermediate states in
loop calculations. They are crucial to getting results that are gauge invariant and need to be taken
into account when renormalizing QCD.
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2.1.2 Renormalization and asymptotic freedom

Non–abelian gauge theories have a very interesting characteristic, which is not present in the Abelian
case. It turns out that at very high energies the strength of the color interactions, as given by the
QCD coupling αs, become weak. This property is called asymptotic freedom [35, 37, 36, 34, 33],
signaling the asymptotic tendency

asymptotic freedom : αs(µ
2) ≪ 1 when µ2 ≫ Λ2

QCD , (2.19)

with ΛQCD ≃ 200 MeV the QCD ‘cut-off scale’. The coupling αs is related to the gauge coupling g
through

αs ≡
g2

4π
. (2.20)

The property (2.19) is extracted from the dependence of the coupling on the energy scale at
which it is determined. Actually, the physics of a system quite generally depends on the scale at
which one studies it. For instance, at the low energies in the domain of application of Newtonian
mechanics, the orbit of the Earth may at the lowest order be computed by approximating the motion
of the Earth around the sun as a classical two–body problem of pointlike particles. However, when
‘zooming in’ a little bit one notices that the sun is not pointlike at all, and at this distance scale
the shape and varying density of the sun have to be taken into account. Zooming in yet more one
discerns even details of the Earth, and sees that it is not a pointlike particle either, and that when
wanting to do an even more comprehensive calculation you need to take the finiteness of its size
into account, too. [93] (For published notes see e.g. [94] by the same author.)

A similar situation arises in elementary particle physics – the physics of the system depends
upon the energy scale considered. It is well known that some loops diagrams lead to divergences
(see e.g. [95]) in quantum field theories. Whenever the divergences come from a finite number of
subdiagrams they can be ‘absorbed’ into a finite number of so–called counterterms. The procedure
of identifying the divergences and grouping them into counterterms is called renormalization. This
renders the physical observables finite, since the infinities are canceled by the counterterms. In
doing so, however, one needs to introduce an arbitrary scale µ that is called the renormalization
scale. The finite, renormalized, quantities then depend upon this scale, as does for example the
coupling ‘constant’ αs that is in fact scale–dependent αs ≡ αs(µ

2) and not a constant at all.
The dependence of the gauge coupling g on the renormalization scale µ is given by the β–function

(also called the Callan–Symanzik function)

β(g) ≡ ∂g

∂ log(µ/µ0)
, (2.21)

when the coupling is known at some reference scale µ0. For non–abelian theories the general
expression at the leading order in perturbation theory reads (see e.g. [96])

β(g) = − g3

(4π)3

(
11

3
C

(A)
2 − 4

3
nfC

(r)

)
+O(g5) , (2.22)

where C
(A)
2 is the quadratic Casimir operator for the adjoint representation, C(r) is the Casimir

operator for the representation r and nf is the species of fermions. When the gauge group is
SU(N) these are, for the fundamental (F ) and adjoint (A) representations

C(F )(N) =
1

2
, C

(F )
2 =

N2 − 1

2N
and C(A)(N) = C

(A)
2 (N) = N . (2.23)



2.2. LOCAL SU(2) AND U(1) SYMMETRIES 25

For QCD with gauge group SU(3) the β–function (2.22) is negative when the number of fermion
species is nf ≤ 16, which implies that the number of families can be at most four. Since we believe
that QCD indeed does exhibit asymptotic freedom the β–function should be negative, meaning
that the coupling diminishes with the energy, this gives an upper limit on the number of fermion
generations.

2.2 Local SU(2) and U(1) symmetries

Besides the theory of strong interactions just covered, the standard model contains the electroweak
interactions, whose gauge group is SU(2) × U(1). According to Noether’s theorem [97] to each
symmetry of a system there is related a conserved current and a conserved charge. The conserved
charges of the electroweak theory [98, 46, 31, 28] are the isospin I for SU(2) [99] and hypercharge
Y for U(1) – one often sees the notation SU(2)I × U(1)Y . This SU(2) × U(1) symmetry, is not
an invariance of the low–energy theory, because it is broken by another field at what is called the
electroweak scale v ≈ 246 GeV. After this symmetry breaking, the isospin and hypercharge are no
longer conserved separately, but combine to form just one conserved charge, the electric charge. In
other words, the SU(2)I × U(1)Y symmetry group is broken down to a subgroup: U(1)Q.

The field that breaks the electroweak symmetry is called the Higgs field [88, 89, 90]. It is a
scalar field whose non–zero vacuum expectation value (VEV) is responsible for the breaking of the
symmetry and the generation of mass of the standard model particles. The quantum associated
with the field, the Higgs boson seems to have been found at the time of writing this report [100, 101].

2.2.1 Isospin symmetry

As already noted in Section 1.2.1, the particles of the standard model come in doublets. A general
fermion doublet Ψ(x) is of the form Ψ(x) = (ψ1(x), ψ2(x))

T , with ψ1, ψ2 complex fields. Under
the SU(2) isospin symmetry group such a doublet transforms as (see e.g. [102])

Ψ(x) → Ψ′(x) = e−iαa(x)taΨ(x) , (2.24)

where the ta are generators of SU(2) and the parameters αa(x) are local. The Pauli matrices σa

give a specific representation of the group such that ta = σa/2. In order for the Dirac Lagrangian

LDirac = ψ̄(x) (iγµ∂µ −m)ψ(x) (2.25)

to be invariant under the transformation (2.24), the partial derivative ∂µ must be replaced by the
covariant derivative Dµ, given in (2.5). The covariant derivative transforms as the Dirac field (this
is the meaning of a ‘covariant’ derivative)

(DµΨ(x))′ = e−iαa(x)taDµΨ(x) , (2.26)

so the gauge field should transform as

A′a
µ t

a = U(α)Aa
µt

aU−1(α)− i

g
[∂µU(α)]U−1(α) , (2.27)

where U(α) = exp (−iαa(x)ta).
Now we are ready to add the Yang–Mills term for the gauge field to get the complete Lagrangian

L = LYM + LDirac = −1

2
Tr(FµνFµν) + ψ̄(x) (iγµDµ −m)ψ(x) , (2.28)

where we see interactions between the matter fields and the gauge bosons appearing from the
minimal coupling in the covariant derivative.
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2.2.2 Quantum electrodynamics

After the breaking of the SU(2)I ×U(1)Y symmetry of the electroweak theory the remaining invari-
ant subgroup is U(1). This is however not the same U(1) group as the original one; originally, the
U(1)Y symmetry has the associated quantum number that is the hypercharge, whereas the relevant
quantum number after the breaking is the electric charge so the one may use the notation U(1)Q.
The electric charge Q is in fact a linear combination of the quantum numbers of the two broken
symmetries, namely

Q = I3 +
Y

2
, (2.29)

with I3 the third generator of the SU(2) isospin algebra
[
Ii, Ij

]
= iǫijkIk (the structure constants

of SU(2) are the components of the completely antisymmetric tensor with three indices).
The remaining U(1)Q group gives rise to an Abelian gauge theory called Quantum electrody-

namics (QED), describing the electric and magnetic interactions of matter. It may be derived from
the free Dirac equation, as done above for the SU(2) gauge theory, simply by replacing the partial
derivative in the Dirac term with a covariant one and by also inserting a Yang–Mills term for the
gauge field into the Lagrangian. The only difference to the treatment of Eqs. (2.24)–(2.28) is that
since QED is based on an Abelian gauge group, there is no commutator algebra for the generators
(the generators commute) and the transformation matrix that is called U(α) in (2.27) simplifies

UQED(α) = exp (−iα(x)) . (2.30)

The vector αa(x) is now just one real parameter α, reflecting the fact that only one degree of freedom
is enough to uniquely determine U(1) transformations. The associated Lagrangian reads

LQED = LDirac + Lγ (2.31)

= ψ̄(x) (iγµDµ −m)ψ(x) − 1

4
FµνFµν (2.32)

= −1

4
FµνFµν + ψ̄(x) (iγµ∂µ −m)ψ(x) − eψ̄(x)γµψ(x)A

µ(x) , (2.33)

where, in going from (2.31) to (2.32) Eqs. (2.25),(2.28) have been used as has the definition of the
covariant derivative (2.5) in the last equality. The covariant derivative (2.5) simplifies for an Abelian
theory:

Dµψ(x) = (∂µ + ieAµ)ψ , (2.34)

where the parameter α = α(x) of (2.5) actually is the electric charge e (e 6= e(x)), appearing in
(2.33) (we have written e instead of Q, as is often done). An important thing to note about the
Lagrangian (2.33) is that a mass term for the gauge field Aµ is missing. This is so because such
a term would break the gauge symmetry and is thus forbidden. The last term in (2.33) gives the
coupling of the electromagnetic field to matter. It arises from the minimal coupling of the covariant
derivative and may also be written as a current Jµ coupling to the gauge field Aµ

eψ̄(x)γµψ(x)A
µ(x) ≡ Jµ(x)A

µ(x) , (2.35)

with Jµ the Noether current [97].

2.3 Spontaneous symmetry breaking

As long as the SU(2) and U(1) gauge theories presented in the previous section 2.2 do not include
mass terms

∼ m2
AA

µAµ (2.36)
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for the gauge mediators the theories work well: they are gauge invariant and renormalizable but as
soon as one attempts to introduce conventional mass terms for the gauge bosons the theory loses
these characteristics. Experimentally, however, it is known that some of the gauge bosons observed
in nature are indeed massive, so there has to be some other means of mass generation besides the
ad hoc addition of terms like (2.36).

The Goldstone model reviewed in Appendix B provides such a means of mass generation, through
the appearance of massless bosons that can be interpreted as longitudinal degrees of freedom of the
gauge fields. The Goldstone model is the basis for another model where spontaneous symmetry
breaking appears – the Higgs model, a field theory which is invariant under U(1) gauge transforma-
tions. The ‘Higgs field’ of this model breaks the SU(2)I × U(1)Y symmetry of the combined weak
and electromagnetic interactions of the electroweak theory down to the remaining U(1)Q of QED.

2.3.1 The Higgs mechanism

The Goldstone theorem (see the Appendices, B) is evaded in gauge theories since the proof of the
theorem requires all of the usual axioms of quantum field theory to be valid: manifest Lorentz
covariance, positivity of norms and so on. This is a problem because there is no possible gauge-
fixing condition for which a given gauge theory would obey all of the axioms of usual field theories.
For example: in covariant gauges states of negative norm (longitudinal photons) arise whereas in
axial gauges Lorentz covariance is not manifest. As it turns out, both of these problems are solved
in the physical spectrum of the theory, where massive vector particles arise without ruining the
renormalizability of the theory, as first suggested by Anderson [103, 104]. Englert and Brout [90]
and independently Higgs [89, 105] carried out the generalization to relativistic fields. Finally, the
renormalizability of gauge field theories in the presence of spontaneous symmetry breaking was
shown by ’t Hooft [30].

Abelian case

The Higgs model is a field theory invariant under U(1) gauge transformations, obtained from the
Goldstone model (see Appendix B) by replacing the partial derivatives by covariant ones (2.34) and
introducing a Yang-Mills term FµνF

µν into (B.8) :

L = (Dµφ)
†(Dµφ)− µ2φ†φ− λ(φ†φ)2 − 1

4
FµνF

µν , (2.37)

with φ the ‘Higgs field’. The ground state of the system corresponds to a minimum of the ‘potential’

V (φ) = µ2φ†φ+ λ(φ†φ)2

= µ2|φ|2 + λ|φ|4 . (2.38)

For λ > 0, which is required for V to have a minimum, two situations arise. For µ2 > 0 the origin
|φ|2 = 0 is the point where the state of lowest energy is obtained; here both φ(x) and Aµ(x) vanish.
The ground state is clearly invariant (under the gauge group U(1)) and is unique. If, on the other
hand, µ2 < 0 then the potential has the form of a ‘mexican hat’ whose minimum is at

|φ| =
√

−µ
2

2λ
≡ v√

2
. (2.39)

The vacuum is now given by any of the points on the ring of radius v/
√
2 in the complex φ–plane.

(The numerical value of v is ∼ 246 GeV in the SM.)
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In this case the point |φ| = 0 is unstable and any value of φ such that Eq. (2.39) is satisfied
gives a ground state. The number of ground states is infinite. These states are not invariant under
the gauge transformations φ(x) −→ exp(−iα(x)) · φ(x), since such a transformation actually takes
one from one ground state to another, the ground states all being of the form

φvac =
v√
2
eiΛ , (2.40)

Λ being a real parameter, but otherwise arbitrary. All of the points on the ring of minima are
equivalent since any of the points can be obtained from any other by applying a U(1) transformation.
Since this is the most interesting case, we will assume µ2 < 0 in the following.

Eq. (2.39) implies that the field operator φ ≡ φ(x) develops a vacuum expectation value (vev)

|〈0|φ|0〉| = v√
2
. (2.41)

Writing the complex φ in terms of two real fields φ1 and φ2

φ =
1√
2
(φ1 + iφ2) (2.42)

one is free to chose

〈0|φ1|0〉 = v and 〈0|φ2|0〉 = 0 . (2.43)

This amounts to choosing one vacuum out of the infinitely many possibilities. Making such a specific
choice breaks the U(1) symmetry of the Lagrangian.

Shifting the fields

φ′1 = φ1 − v and φ′2 = φ2 (2.44)

and replacing (2.44) into (2.37) it appears that φ′2 corresponds to the massless Goldstone boson
because:

|Dµφ|2 = |(∂µ − igAµ)φ|2

=
1

2
(∂µφ

′
1 + gAµφ

′
2)

2 + (∂µφ
′
2 − gAµφ

′
1)

2 − gvAµ(∂µφ
′
2 + gAµφ

′
1) +

g2v2

2
AµAµ (2.45)

The last term can be interpreted as a mass term for Aµ, a term that would vanish if the vev of the
Higgs field (2.41) were zero: The nonzero value of (2.41) is responsible for the mass of the gauge
boson.

The mixed term

gvAµ∂µφ
′
2 (2.46)

couples the fields Aµ and φ′2 and makes the interpretation of Eq. (2.45) less clear. This possible
problem can be fixed using the unitary gauge, in which the term (2.46) disappears. The unitary
gauge amounts to a redefinition of the fields φ and Aµ :

φ(x) −→ exp(−iξ(x)/v) φ(x) = 1√
2
(v + η(x))

Aµ(x) = Bµ(x) +
1

gv
∂µξ(x) . (2.47)
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Now the Lagrangian (2.37) may be written

L =
1

2
[∂µη − igBµ(v + η)]2 − µ2

2
(v + η)2 − λ

4
(v + η)4 − 1

4
(∂µBν − ∂νBµ)

2

= L0 + L1 , (2.48)

with L0 the free Lagrangian density for a massive vector field Bµ with mass M = gv and a scalar
meson η with mass m =

√
2µ and

L1 =
1

2
g2BµB

µη(2v + η)− λv2η3 − 1

4
λη4 (2.49)

the interaction Lagrangian. The would-be-Goldstone boson ξ(x) has disappeared from the La-
grangian and the massless gauge field Aµ and the scalar field ξ have combined to form a massive
vector field Bµ.

Non-abelian case

The generalization of the above mechanism to a case with a non-Abelian gauge field is straightfor-
ward. In the Lagrangian (2.37) one just uses the covariant derivative (2.5) instead of (2.34) and the
field strength tensor (2.2).

2.4 The Glashow–Weinberg–Salam model

Having familiarized ourselves with the local SU(2) and U(1) symmetries and the spontaneous
breaking of such, we are ready to review the SU(2) × U(1) model of electroweak interactions, also
called the Glashow–Weinberg–Salam model after its founders [46, 31, 28, 22]. We will use U(1)Y
and U(1)Q to denote the groups whose conserved charges are the weak hypercharge and electric
charge, respectively (SU(2) will be written without any indices since there should be no risk for
ambiguity here).

Gauge and scalar sectors

The gauge and scalar sectors of the model read (see e.g. [62]):

L = −1

4
F aµνF a

µν −
1

4
BµνBµν +Dµφ†Dµφ− V

(
φ†φ
)
, (2.50)

where F a
µν is the SU(2) field strength tensor (given as Ga

µν in (2.5)) whose index a = 1, 2, 3 runs
over the number of generators of the group, Bµν reading

Bµν = ∂µBν − ∂νBµ , (2.51)

is the field strength tensor that is invariant under U(1)Y and φ in (2.50) is the Higgs field. The
derivative Dµ is invariant under both SU(2) and U(1)Y , so it has the minimal substitution terms
of both these groups :

Dµφ = ∂µφ− igAa
µ

σa

2
φ− i

g′

2
yφBµφ , (2.52)

where g, g′/2 are the SU(2), U(1)Y gauge coupling constants, respectively, and yφ = +1 is the

hypercharge of the neutral Higgs field φ0 (when φ =
(
φ+, φ0

)T
/
√
2). Invariance of (2.50) under
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SU(2)× U(1)Y gives the infinitesimal transformations of the fields :

δAa
µ = −1

g
∂µα

a + εabcαbAb
µ ,

δBµ = −2

g
∂µβ ,

δφ = −iαaσ
a

2
φ− iyφβφ , (2.53)

where αa (a = 1, 2, 3), β are the parameters of the SU(2), U(1)Y transformations. (The choice
α1 = α2 = 0 and α3 = 2β = θ corresponds to the QED U(1) transformation δφ+ = −iθφ+, δφ0 =
0.) Taking the scalar potential (2.38) with µ2 = −m2 the ground state of φ is at

〈φ〉 =
(

0
v√
2

)
, (2.54)

with v given in (2.39). The gauge field mass matrix is obtained from the matrix of the covariant
derivative (2.52), which in the ground state 〈φ〉 reads

〈Dµφ〉 =


 −ig v√

2
· A1

µ−A2
µ

2

+i v√
2
· gA3

µ−g′Bµ

2


 . (2.55)

The masses of the gauge bosons come from the terms quadratic in the gauge field and linear in
the Higgs field, and more precisely, of the vev of this term:

〈
Dµφ†Dµφ

〉
. Computing the matrix

product reveals the mass eigenstates :

W±
µ =

A1
µ ∓ iA2

µ√
2

, MW =
1

2
gv , (2.56)

Z0
µ =

gA3
µ − g′Bµ√
g2 + g′2

, MZ =
1

2

√
g2 + g′2v , (2.57)

Aµ =
g′A3

µ + gBµ√
g2 + g′2

, MA = 0 . (2.58)

Only the photon Aµ is massless after the breaking of the SU(2)×U(1)Y symmetry – the remaining
symmetry group is U(1)Q of QED. Both neutral bosons Aµ and Zµ are superpositions of the same
generators – they depend on the same basis vectors and the mixing angle between them is called
the Weinberg angle :

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, tan θW =
g′

g
. (2.59)

Substituting (2.59) into (2.57),(2.58) gives the Z boson and the photon in terms of the generators
and θW :

Zµ = cos θWA
3
µ − sin θWBµ , (2.60)

Aµ = sin θWA
3
µ + cos θWBµ . (2.61)

The masses of the gauge bosons and the Weinberg mixing angle can be grouped together to a
parameter traditionally denoted as ρ :

ρ =
M2

W

M2
Z cos2 θW

, (2.62)



2.5. QUARK AND LEPTON MIXING 31

which upon substitution of (2.56),(2.57) and (2.59) gives the (tree-level) result :

ρ = 1 , (2.63)

an important prediction of the standard model, and a good test for various BSM models.

Matter sector

The spontaneous breaking of SU(2)×U(1)Y gives masses to fermions as well as gauge bosons. This
happens through the so-called Yukawa couplings of the Higgs field to the fermion fields (again, see
for example [62]):

LY uk = λe ψ̄ℓ φ̃ eR + λν ψ̄ℓ φ NR + λd ψ̄q φ dR + λu ψ̄q φ̃ uR + h.c. , (2.64)

where e,N stand for the charged and neutral lepton fields, respectively, u, d are quarks of up-type
and down-type and

φ̃ ≡ iσ2φ
∗ =

(
φ0∗

−φ−
)
. (2.65)

The masses are obtained when the scalar φ takes its vacuum expectation value:

Lf
m = 〈L〉 = λe

v√
2
ēLeR + λν

v√
2
ν̄LNR + λd

v√
2
d̄LdR + λu

v√
2
ūLeR + h.c. (2.66)

The right-handed neutrino NR does not exist in the SM, so the above term λν
v√
2
ν̄LNR is only

hypothetical. The issue of neutrino mass will be discussed at a later time, in Section 2.5.2. The
masses of the established SM particles are :

me = −λe
v√
2
, md = −λd

v√
2
, mu = −λu

v√
2
. (2.67)

2.5 Quark and lepton mixing

Of the almost twenty free parameters of the SM ten are related to the quark sector: six give the
quark masses and four parametrize the mixing between flavors, encoded in the Cabibbo – Kobayashi
– Maskawa (CKM) mixing matrix [23, 106]. This mixing is a result of the quark mass eigenstates
being different from the interaction eigenstates. The two eigenstates form bases that are related to
each other by a unitary transformation and the CKM matrix represents this transformation that
connects the two bases.

It appears that the same is true in the lepton sector: there are experimental observations
suggesting that there is mixing in the lepton sector, too. This is an issue that is problematic in the
SM, because in the SM framework lepton number is assumed to be a conserved quantity, prohibiting
the change of leptons of one flavor into another. This question, wich is closely related to to the
problem of neutrino mass, is the topic of the second part of this section.

2.5.1 The quark sector

In the standard SU(2) × U(1) electroweak theory the charged current Lagrangian density, in the
basis of the weak interaction eigenstates, reads

LW = − g√
2
Ū I
Lγ

µDI
LW

+
µ + h. c. (2.68)
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the vectors Uf
L (Df

L) are left-handed up- (down-) quark interaction eigenstates of flavor f [107]. The
Lagrangian (2.68) is diagonal in flavor space thanks to the absence of a flavor space-tensor; hence the
charged current interactions are diagonal in the interaction basis. The SU(2)L × U(1)Y symmetry
being broken by the Higgs field (Section 2.3.1) implies a distinction between the interaction and
mass bases. In the interaction basis the mass matrix Mij ≡ vΛij , arising from (see e.g. [62])

Lq
Yukawa = Λd

ijψ̄qiφdj + Λu
ijψ̄qi φ̃uj , (2.69)

with Λu,d
ij the matrix of Yukawa interactions of up and down quarks, respectively. Here φ is the

Higgs field and φ̃ ≡ iσ2φ with σ2 the second Pauli matrix and ψqi = (uL,i, dL,i)
T . In general M is

non-diagonal, but it can always be diagonalized by a bi-unitary transformation (see e.g. Ref. [108])

Mdiag = VLMV †
R (2.70)

The mass eigenstates DL,R satisfy D̄LM
diag
D DR = D̄I

LMDD
I
R, MD being the mass matrix of the

down–type quarks, so
DL = VLD

I
L and DR = VRD

I
R . (2.71)

The charged current interaction (2.68) is then

LW = − g√
2
ŪLγ

µV †
LDLW

+
µ + h. c. , (2.72)

whence one can deduce that V †
L is the quark mixing matrix. In a generic n generation case V †

L ∈
U(n), containing n2 parameters. Of these 1

2n(n − 1) can be chosen as real angles and 1
2n(n + 2)

are phases (see e.g. Ref. [109]). Of the phases, 2n − 1 ones can be eliminated by a bi-unitary
transformation

V †
L → V = PUV

†
LP

∗
D , (2.73)

with Pu, PD unitary diagonal matrices. The number of physically meaningful phases is therefore
1
2(n− 1)(n − 2). The matrix V thus obtained is the CKM matrix for three generations [23, 106]

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (2.74)

The elements of the CKM matrix are given by experiment. There are in principle two ways to
determine the matrix elements. Charged weak decays depend on these already at tree level, so e.g.
a measurement of a decay rate gives direct information on the corresponding CKM elements (cf.
e.g. [110] and references therein). This has the advantage of allowing for the matrix elements to
be extracted independently of the number of generations. On the other hand processes involving
flavor-changing neutral currents (FCNCs) provide strong constraints on the CKM elements, since
such processes are forbidden at tree level. The absence of such currents at tree level is due to a
cancellation that is called the GIM mechanism [22]. FCNC processes are, however, present in loops
in so called penguin and box diagrams. [111]

The different matrix elements are determined from the processes given in Table 2.1.
The current values found in literature are [55]

VCKM ≃




|Vud| ≃ 0.97425 ± 0.00022 |Vus| ≃ 0.2252 ± 0.0009 |Vub| ≃ (3.89± 0.44) × 10−3

|Vcd| ≃ 0.230 ± 0.011 |Vcs| ≃ 1.023 ± 0.036 |Vcb| ≃ (40.6 ± 1.3) × 10−3

|Vtd| ≃ (8.4 ± 0.6)× 10−3 |Vts| ≃ (38.7 ± 2.1) × 10−3 |Vtb| ≃ 0.88 ± 0.07


 .

(2.75)
The most striking feature of Eq. (2.75) is that the diagonal elements Vud, Vcs, Vtb are clearly
dominant.
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Matrix element Direct measurement from

Vud nuclear β decay
Vus semi-leptonic K decay
Vub semi-leptonic B decay
Vcd semi-leptonic D decay
Vcs (semi-) leptonic D decay
Vcb semi-leptonic B decay
Vtb (single) t quark production

Table 2.1: Measurements allowing for determination of CKM matrix elements [55].

2.5.2 Beyond the SM: mixing in the lepton sector

Measurements of neutrinos produced in the sun, the atmosphere, accelerators and reactors show
that neutrinos oscillate, that is, they change flavor in time. The oscillations are not possible if the
neutrinos were massless (see Appendix C), so the oscillations provide direct proof of neutrinos being
massive. In the SM neutrinos are massless, and experiments have put some upper limits on the
masses, the most stringent being that of the electron anti–neutrino [55]

mν̄e < 2.3 eV at 95% C.L. (2.76)

Furthermore, since the oscillations are just neutrinos of one flavor changing into ones of another
flavor, the experimental results imply that there is mixing in the lepton sector, just as for the
quarks. The mixing, however, poses a problem for the standard model, since it violates lepton
number conservation, which is presumed in the SM. In fact, a recent study [112] gives the 90% C.L.
upper limit of 2.4 × 10−12 on the branching ratio of the µ+ → e+γ decay, constituting the most
stringent limit on the existence of this decay to date and constraining the mixing in the lepton
sector.

In what follows the issues of neutrino mass and mixing will be discussed in some detail. A
mathematical treatment of oscillations is given in the appendices C.

Experimental evidence for neutrino oscillations

As noted above, in several experiments neutrinos are seen to change flavor between the time of
production and the time of their observation. This phenomenon, known as neutrino oscillations
has been discussed in the literature as early as in the 1950’s and 60’s [113, 114] as was the issue of
mixing in the lepton sector [115, 116]. Measurements made during the last ten years have striven
to shed light on this. Among the results of such measurements are [117]:

• Solar νe’s oscillate to νµ or ντ with a statistical significance of more than 7σ [118, 119].

• Reactor–produced ν̄e are reported to disappear :

→ In 2008 the KamLAND experiment 1 reported its first observations of ν̄e disappearance
at distances of ∼ 180 km and a distortion of their energy spectrum. The two pieces of
evidence combined give a statistical significance of more than 3σ C.L. [120].

1Kamioka Liquid-scintillator Anti-Neutrino Detector, http : //kamland.lbl.gov/
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→ In 2012 the Daya Bay reactor neutrino experiment 2 measured the mixing between the
first and third generations and found it to be nonzero at a statistical significance of 5.2
standard deviations [121] (see Table 2.3). The distances from the reactor to the detectors
of the experiment vary between 470m and 1678m.

• Measurements show that νµ disappear (it is likely that they convert to ντ [122]) at a significance
of more than 15σ [119];

→ K2K 3 has reported the disappearance of νµ’s at distances of 250 km and a distortion of
the energy spectrum of the neutrinos at a C.L. of 2.5 – 4σ [123].

→ LSND 4 has reported evidence for ν̄µ → ν̄e. This measurement has recently been con-
firmed by MiniBooNE 5 [124].

In light of experimental evidence, the SM clearly needs to be extended, so that the observed
phenomena may be explained. A possible solution to the mixing is the inclusion of a mixing matrix,
called the PMNS matrix [113, 114, 115, 116], in the lepton sector – analogously to the CKM mixing
of the quark sector. But before getting to the mixing, the problem of neutrino mass needs to be
discussed. We say ‘the problem of neutrino mass’ because the SM lacks right–handed neutrinos, and
therefore the usual Dirac–mass terms, originating in the Yukawa couplings of the neutrinos with
the Higgs field, are prohibited.

Neutrino mass

The lepton fields of the SM are arranged into SU(2) doublets:

(
ℓ
νℓ

)
, (2.77)

with ℓ the charged lepton of a given family, νℓ the neutral one. Each field has quantum numbers
of the SU(2)× U(1) theory: the weak hypercharge Y and the isospin I3, whose linear combination
gives the electric charge according to Eq. (2.29). The hypercharge has couplings to the weak
current, whereas the isospin couples to both neutral and charged currents. The SM leptons and
their quantum numbers are listed in Table. 2.2, above the dashed line. Below the dashed line
are the two neutrinos that are missing in the SM, the right–handed neutrino and the left–handed
antineutrino. The lack of these prevents the neutrinos from having Dirac mass terms. Note that
since the SU(2) × U(1) quantum numbers of these fields are zero, they do not interact with the
gauge bosons of the electroweak theory, but are sterile.

The seesaw mechanism

Dirac mass terms can be introduced in the SM Lagrangian if the fields νR and ν̄L are added to the
matter content of the theory (as is done in Table 2.2). There is, however, the possibility of another
mass term, applicable for neutral lepton fields. This is called the ‘Majorana mass’ term [126].
Majorana neutrinos, just as SM ones, are described by two–component spinors. In the SM neutrinos

2A neutrino-oscillation experiment designed to measure the mixing angle θ13 using anti-neutrinos produced by the
reactors of the Daya Bay Nuclear Power Plant; http : //dayabay.ihep.ac.cn/twiki/bin/view/Public/

3From KEK to Kamioka - Long baseline neutrino oscillation experiment, http://neutrino.kek.jp/.
4Liquid Scintillator Neutrino Detector, Los Alamos National Laboratory, http://www.nu.to.infn.it/exp/all/lsnd/.
5Mini Booster Neutrino Experiment, http://www.nu.to.infn.it/exp/all/boone/index.html, http://www-

boone.fnal.gov/.
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N Nx Particle states I3 Y Q

+1
+1

L
L

(
eL
νL

)
−1/2
+1/2

−1
−1

−1
0

−1
−1

R
R

(
ēR
ν̄R

)
+1/2
−1/2

+1
+1

+1
0

+1 R eR 0 −2 −1
−1 L ēL 0 +2 +1

+1 R νR 0 0 0
−1 L ν̄L 0 0 0

Table 2.2: Lepton charges. N denotes fermion number, Nx left- or right-handedness, I3 the third
isospin component, Y and Q stand for hypercharge and electric charge, respectively. The fields
above the dashed line are those of the SM, the fields below this line are not included in the SM.
Table from Ref. [125]

are massless and described by Weyl spinors (a Dirac spinor is composed of two Weyl spinors) – a
mass term may be added by including νR and ν̄L to the theory, as noted above. In the Majorana
case the neutrino fields are described by two–component spinors, too, but there is no need to include
the fields νR and ν̄L, since a Majorana particle is its own antiparticle; the two components νL, ν̄R
suffice. This has the consequence that Majorana particles have only half the number of degrees of
freedom compared to Dirac ones.

In the most general case neutral lepton fields can have both of the mass terms mentioned above :

LDirac = −mDν̄LNR + h.c. (2.78)

LMajorana = −1

2
MN̄ c

LNR + h.c. , (2.79)

where we denote the right–handed neutrino by NR instead of νR, following the notation of [62].
Here mD, M are the Dirac and Majorana masses, respectively and the superscript c stands for
charge conjugation. The Dirac mass mD arises from SU(2) × U(1) breaking and is of the order
of the electroweak scale. The symmetry factor 1/2 in (2.79) accounts for the ‘degeneracy’ of the
Majorana neutrino being its own antiparticle. Both mass terms (2.78),(2.79) can be generated by
the so–called ‘Seesaw mechanism’, where the mass term is of the form (see e.g. [62])

L = −1

2
(ν̄L ¯(N c)L)

(
0 mD

mD M

)(
(νc)R
NR

)
+ h.c. (2.80)

The eigenvalues of this matrix are

m1,2 =

√
1

4
M2 +m2

D ∓ 1

2
M , (2.81)

which in the limit M ≫ mD gives

m1 ∼ m2
D

M
, m2 ∼M . (2.82)
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The mixing angle θ depends on the mass eigenvalues [127]

tan θ =
m1

mD
=
mD

m2
=

√
m1

m2
(2.83)

and in the present limit it reads

tan θ ∼ mD

M
. (2.84)

When mD is fixed and M is increased, the mixing angle tends to zero and the two different neutrino
states decouple. The Dirac mass is usually set proportional to the SM mass scale, whereas M is
associated with the scale of BSM physics. We recall that the LEP bounds presented previously
imply that mν′ & mz/2 while the argument of naturalness restrics the Yukawa coupling of the
neutrino to be O(1). This restricts the Dirac component of the fourth generation neutrino mass to
mD ≃ O(100 − 500) GeV, which in turn implies that the mixing angle is approximately confined
into the range [128]:

0.1 . tan θ . 1 . (2.85)

For more than one generation, the above considerations are generalized in a straightforward
manner (see e.g. [62]). In the general n generation scenario, the mass matrix M is of size n×n and
complex. An arbitrary M ∈ GL(N,C) is not necessarily positive definite but the operator MM † is.
Hence there exists a matrix U ∈ U(N) such that [108]

MM † = Um2
DU

† , (2.86)

with m2
D = diag(m2

1, ...,m
2
N ), where m2

i are the eigenvalues of MM †. One can just as well use
another matrix V ∈ U(N) to perform the diagonalization

mD = U †MV . (2.87)

A similar unitary matrix appears in the mass term for the charged leptons [127], we denote this
by Uℓ. The product of the charged and neutral lepton matrices then becomes the analogue of the
CKM matrix for the leptons, called the PMNS matrix [113, 114, 115, 116] :

UPMNS ≡ U †
ℓU . (2.88)

The PMNS matrix

In order to investigate the leptonic mixing matrix, let us define weak and mass eigenfields νW and
νM by

νW ≡




νe
νµ
ντ


 and νM ≡




ν1
ν2
ν3


 . (2.89)

The states that are physically observed are the ones taking part in interactions, that is, the states
νW . The two different bases in (2.89) are related by

νW = UνM . (2.90)

with U ∈ U(3) for three generations (see also Section 2.5.1 and Appendix C).

The Majorana case differs from the Dirac one in that the Majorana condition ν = νc does not
allow a certain number of phases to be absorbed into neutrino phases. Only N phases, equal to the
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number of charged leptons which are Dirac particles, can be absorbed into charged lepton phases,
giving 1

2N(N − 1) unabsorbed phases. [127]
There are several ways to parametrize the 3× 3 unitary matrix for three generations, depending

on whether the particles are Dirac or Majorana. One of these, perhaps the best known, is the
Cabibbo – Kobayashi – Maskawa (CKM) representation [23, 106]

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12s23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


×




1

ei
α21
2

ei
α31
2




(2.91)
where cij ≡ cos θij, sij ≡ sin θij , the angles θij ∈ [0, π/2], the Dirac CP violating phase δ ∈ [0, π/2]
and α21, α31 are the two Majorana CP violating phases [55]. The current values for the parameters
sin θij are shown in Table 2.3. The value of the parameter δ is yet unknown.

Parameter Best fit ±1σ

sin2 θ12 0.312+0.017
−0.015

sin2 θ23
0.51 ± 0.06
0.52 ± 0.06

sin2 θ13 0.092 ± 0.016(stat) ± 0.005(syst)

Table 2.3: Values of the neutrino mixing angles, with the statistical (stat) and systematical (syst)
errors given separately for sin2 θ13. For sin2 θ23 the upper (lower) row corresponds to normal (in-
verted) neutrino mass hierarchy. sin2 θ12 and sin2 θ23 values from Ref. [129], sin2 θ13 from Ref.[121].
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Part II

The minimal four–generation model
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Chapter 3

Phenomenology of the fourth family

In this part we consider adding a sequential fourth generation of elementary particles to the standard
model, sequential meaning that the fourth family has the same structure as the first three families.
This means adding one quark and one lepton doublet to the SM :

quark doublet

(
t′

b′

)
, lepton doublet

(
ℓ′

ν ′ℓ

)
, (3.1)

such that the particles of (3.1) have the same quantum numbers as their counterparts in the first
three families (the t′ quark is the fourth family ‘equivalent’ to the u, c, t quarks of the first, second
and third families, respectively, and so on). In the Introduction appealing features of this extension
were considered; in this chapter we will focus on the phenomenological implications of and the
experimental constraints on a fourth family.

3.1 Mixing of the fourth family with the first three ones

As already discussed (see Section 2.5.1), the phenomenon of mixing in the quark sector is well
established in the SM. Apparently also the neutrinos ‘mix’ among themselves, as observed in the
neutrino oscillations presented above (Section 2.5.2). It may seem natural that since the first three
families mix among themselves, that a sequential fourth generation would do so too. The mixing
of the fourth family is constrained by both theoretical and experimental considerations, as we shall
see, but it is not ruled out by the already measured CKM matrix elements. The task of measuring
with better precision these parameters and determining the number of fermion families is one of the
goals of the LHC [63, 130]) and further at the ILC [131].

In this section we will often use the notation ‘CKM3’ and ‘CKM4’ to denote the 3× 3 and 4× 4
mixing matrices of the three-generation and four-generation models, respectively.

3.1.1 Sources for constraints

CKM Unitarity

The 3 × 3 CKM submatrix is well tested by a variety of processes, as discussed previously (see
Section 2.5.1 and especially Table 2.1). The unitarity of the CKM matrix constrains the elements
of each row and column :

4∑

j=1

|V 2
ij | = 1 for fixed i ,

4∑

i=1

|V 2
ij | = 1 for fixed j . (3.2)

41
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When the currently measured values of the 3 × 3 matrix are taken into account, the unitarity
constraint (3.2) allows to deduce some of the mixing parameters [132]:

1st row : |Vub′ |2 = 1− |Vud|2 − |Vus|2 − |Vub|2 ≃ 0.0008 ± 0.0011 (3.3)

2nd row : |Vcb′ |2 = 1− |Vcd|2 − |Vcs|2 − |Vcb|2 ≃ −0.003 ± 0.027 (3.4)

1st column : |Vt′d|2 = 1− |Vud|2 − |Vcd|2 − |Vtd|2 ≃ −0.001 ± 0.005 . (3.5)

Requiring Eqs. (3.3)–(3.5) to be valid at 1σ one finds

|Vub′ | . 0.04 , |Vcb′ | . 0.17 , |Vt′d| . 0.08 . (3.6)

All of these are larger than the smallest elements of the CKM matrix, namely |Vub| and |Vtd| (see
Eq. (2.75)).

Oblique electroweak corrections

Global fits to electroweak precision data serve to constrain the mixing between third and fourth
family quarks. The dominant constraint comes from nondecoupling oblique corrections, denoted by
the parameters S, T, U (see Appendix D).

Two of the electroweak (EW) precision observables have a quadratic dependence on the masses of
the fourth generation fermions and therefore serve to constrain the SM4: the ρ parameter [133, 134,
135] correction through the oblique parameter T [136, 137] and the Zb̄b vertex correction (Fig. 3.1)

Rb =
Γ(Z → b̄b)

Γ(Z → hadrons)
. (3.7)

This quantity is highly relevant in the study of the fourth generation because, as shown in Fig. 3.1,
the Z → b̄b partial decay width has corrections from fourth–generation quark loops, in addition to
the oblique corrections [86]. This dependence differs from what is expected at 1–loop order in the
SM [45]

δρ, δRb |SM ∝ GFm
2
t , (3.8)

δρ, δRb |SM4 ∝ |Vt′b|2 · (m2
t′ −m2

t ) , (3.9)

evaluated from the nondecoupling vertex correction from the t +W diagrams. The correction of
(3.9) is the one arising from 3–4 CKM mixing.

These relations serve to constrain the free parameters of the fourth generation, since they both
have been measured with good precision. Specifically, the value of the rho–parameter is known to
be very close to one [59]:

ρ = 1.0004+0.0003
−0.0004 , (3.10)

as obtained from global fits to electroweak precision data.
If the mass splitting of the fourth quark doublet is large (m2

b′ ≫ m2
t′) then there are also large

corrections proportional to |Vt′b|2m2
b′ . [45]

Flavor changing neutral currents

Also processes including flavor changing neutral currents (FCNCs) constrain new–physics models.
This is so because FCNCs are absent at tree level in the SM, thanks to the unitarity of the CKM
matrix and the inclusion of just one Higgs doublet (the case of two Higgs doublets will be discussed
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Z

t′

t̄′

W

b̄

b

Z

W

W

t′

b̄

b

Figure 3.1: One-loop correction to the Zbb̄ –vertex from t′.

b

d̄

t, c, u W− t, c, u

d

b̄ d̄

b
t, c, u

t̄, c̄, ū

W−
d

b̄

Figure 3.2: Box diagrams for Bd mixing.

further on) and no new gauge bosons [138]. From experiments it is also known that the FCNCs are
suppressed, so BSM models should have this property in order to be valid options for new physics.

When the CKM matrix is enlargened from 3× 3 to 4× 4, the 3× 3 submatrix loses its unitary
nature, as can be seen in Eq. (3.2). This allows for new FCNC processes, which must be in
agreement with data in order for the four–generation model to be a possible extension to the SM.
The amplitudes of FCNC processes, such as Bd or K mixing (see Fig. 3.2 for the former) depend
on the CKM matrix elements, and so measurements of the cross section of a given process gives
information about the matrix elements when all other parameters appearing in the amplitude are
known. This is an especially good method for observables that have been measured with high
precision.

Higgs mass

Measurements of the Higgs mass – the regions that have been excluded by LEP and Tevatron, and
the unitarity limit – constrain mixing of the third and fourth generations. As discussed above, part of
the fits’ dependence on the third–fourth generation mixing angle θ34 comes from the nondecoupling
fermion corrections to the oblique parameters, and especially T . The T parameter is furthermore
related to the Higgs mass: a positive value of T pushes mH to higher values, and so there is a
dependence of the CKM4 entries on the Higgs mass. [139]

3.1.2 Possible parameter space

The elements of the mixing matrix as well as the mixing angles themselves have been analyzed
in several studies during the last few years. However, there is some controversy in the choice of
parameters that are allowed to vary when searches for the best fits are made. The choice of free
parameters affects the bounds set on the mixing angles, and thus the bounds resulting from various
studies often differ. Interestingly, sometimes neglecting some of the observables (such as hadron
asymmetry) when doing the fits leads to an improvement in its quality for some observable, but at
the same time the fit gets worse when another observable is considered instead.
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In this section we attempt to review some of the results, emphasizing the choice of data that
is fitted and which variables are left free or possibly left out completely. We note that in light of
recent results concerning the Higgs boson (see Chapter 5) some of the results below are already
dated, but will be presented for the sake of academic interest nevertheless.

Quite sizeable mixings seem to be allowed in a study [111] that takes its experimental
constraints from

(i) tree–level CKM3 elements in such a way as to restrict the CKM4 elements using

|Vi| − 2∆Vi < |VCKM4,i| < |Vi|+ 2∆Vi , (3.11)

where the Vi are the experimental values as given by the PDG [55], the errors being ∆Vi,

(ii) the unitarity of the CKM matrix,

(iii) the following FCNC processes: K,D,Bd and Bs –mixing, the decay b → sγ (see Fig. 3.2 for
the Feynman diagrams for Bd–mixing).

The choice for free and fixed parameters is:

(iv) the CP violating phases δ13, δ14 and δ24 are left unconstrained,

(v) mt′ is varied from 300 to 650 GeV, such that the fourth generation quark masses are related
through

mb′ = mt′ − 55 GeV . (3.12)

Furthermore, some simplifying assumptions are made concerning the QCD corrections below, and
any correlations with the lepton mixing matrix are neglected.

This choice of input parameters and experimental constrains seems to favor small mixing of the
fourth generation with the other ones, but larger mixings are not excluded – in fact, there seems to
be a region of parameter space where sizeable mixing is allowed. The mixing angles θ14, θ24 and θ34
are shown in Table 3.1, for both conservative and aggressive bounds.

Parameter Conservative bound Aggressive bound

θ14 ≤ 0.0535 ≤ 0.0364
θ24 ≤ 0.144 ≤ 0.104
θ34 ≤ 0.737 ≤ 0.736

Table 3.1: Allowed mixing angles, resulting from the analysis of Ref. [111]. The conservative bounds
assume χ2/d.o.f. < 2, while for the aggressive constraints χ2/d.o.f. < 0.5 is required (see Eq. (A.1)
for the definition of χ2).

New FCNC processes and the following two kinds of experimental constraints are taken
into account in the analysis of Ref. [138]:

(i) the measured values of CKM3, using conservative bounds (conservative meaning in this case
that the bounds are related to the experimental values that take the largest uncertainties
into account, and that the orthonormality constraints on the rows and columns of the CKM3
matrix are not taken into account),
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(ii) current bounds for FCNC processes.

When left–right symmetry is assumed (meaning that DL and DR in (2.71) are equal), the largest
allowed mixings of the fourth generation may be computed, giving a CKM4 matrix :

V =




0.974 −0.227 0.003 −2.0× 10−3

0.227 0.973 −0.040 2.1× 10−2

0.007 0.044 0.920 −0.39
−3.7× 10−4 −3.6× 10−3 0.39 0.92


 . (3.13)

It is worth noting that the large value of Vtb largely violates the ordinary 3× 3 unitarity condition
of the known mixing matrix. As is seen from Eq. (2.75), this element has not yet been measured
with very good precision and the error ∆Vtb in (2.75) is quite large so the present situation allows
for 0.90 ≤ Vtb ≤ 0.94. This is in part due to the insufficient statistics on the production rate of
heavy quarks and also to the small branching ratios of FCNC processes. The branching ratios are
small not just because the matrix elements are small but because semileptonic top quark decays are
enhanced by the same matrix elements. The LHC should allow for more precise measurements of
the characteristics of heavy quarks, since these are expected to be produced in large numbers. It
may be possible to reach a sensitivity of 10−5 or 10−6 for FCNC processes at the LHC, in which
case the proposed matrix (3.13) may be verified or discarded. [138]

The two above reviewed studies are controversial when the experimental constraints
are taken to be those of electroweak precision data (EWPD) [45]. The analysis is based upon
global fits to the EWPD, instead of focusing on just one observable. The global fits to the data
need furthermore to be reevaluated entirely – it is not sufficient to use the magnitude of shifts from
the values of parameters in the SM fit. In this way the minimum of χ2 may be at values that are
significantly different from the SM fit and furthermore effects arising from statistical fluctuations and
systematic uncertainties are smaller. [45] Global fits, when reevaluated using the same parameter
set that the LEP electroweak working group [81], namely varying four SM parameters :

mt, ∆α5, αs and mH , (3.14)

such that mH may vary freely between 10 GeV and 1 TeV. In (3.14) ∆α5 is the five flavor hadronic
contribution to the renormalization of the electromagnetic coupling at the Z–pole (note that mt >
mZ so only five flavors contribute) and αs is the strong coupling ‘constant’. The parameter ∆α5 is
the dominant uncertainty in α(mZ). Differing from the LEP EWWG, the W width is neglected,
since its precision is poor and this parameter has only a small effect on the results.

Setting the fourth generation quark masses to satisfy (3.12) and choosing m′
ν = 100 GeV,

m′
ℓ = 145 GeV, the global fits give results as shown in Fig. 3.3 and Table 3.2. Table 3.2 shows that

the limit on |s34| behaves as m−1
t′ formt′ ≫ mt. For these fits the Higgs boson mass is mH = 790±30

GeV and the correction from the fourth generation to the oblique parameter T : T4 is 0.47 ± 0.01
at 95% confidence level. In all the cases studied in [45] |Vtb| ≃ |Vt′b′ | ≃ | cos θ34| ≥ 0.94 and for
mt′ ≥ 500 GeV | cos θ34| ≥ 0.99, meaning that mixing between the third and fourth generation might
well be of the order of Cabibbo mixing of the first two families. However, mixing angles as large as
those reported in [111], [138] are excluded by this analysis.

The upper limits of the mixing angles are not reported to depend sensitively on the choice of
mt′ − mb′ , but no acceptable fits are found for larger mass differences mt′ − mb′ & 100 GeV: at
|s34| = 0 the fits are poor (CL(χ2)<0.03), and quickly become worse as |s34| increases. On the
other hand, for smaller mass splittings, e.g. at the limiting case of mt′ = mb′ the confidence limits
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mt′ T4 mH(GeV) |s(1)34 | |s(2)34 | ±∆
(2)
tb′ |c(2)34 |

300 0.46 760 0.32 0.35 ± 0.001 0.94
326 0.47 760 0.28 0.30 ± 0.002 0.95
389 0.48 760 0.21 0.23 ± 0.004 0.97
400 0.47 800 0.20 0.22 ± 0.005 0.98
500 0.48 810 0.15 0.17 ± 0.007 0.99
600 0.48 800 0.12 0.14 ± 0.010 0.99
654 0.48 820 0.11 0.13 ± 0.013 0.99
1000 0.49 820 0.07 0.11 ± 0.10 0.99

Table 3.2: 95% CL upper limits on |s34| at one and two loops from global fits to the EWWG data
set. T4 and mH from the 95% CL fits are also shown, T4 being the correction from the fourth
generation to the oblique parameter T (see Appendix D). Table from Ref. [45]

of χ2 are acceptable for |s34| = 0 but then mH = 35 GeV and then the confidence level becomes
very poor, ‘unacceptable’ according to [45]: CL(mH > 114 GeV) = 0.0016.

This conclusion is supported when constraints from the Higgs boson mass are taken into
account [139]. When fits are made to the data set of the EWWG and low–energy data is added,
the allowed parameter space of s34 ≡ sin θ34 as a function of mH is as in Fig. 3.4 for different fourth
generation quark masses. The upper bounds on | sin θ34| are [139]:

| sin θ34| . 0.27 for mt′,b′ ≃ 350 GeV , (3.15)

| sin θ34| . 0.17 for mt′,b′ ≃ 500 GeV . (3.16)

It is furthermore found that the LEP exclusion region, except for the interval between 114 and 131
GeV, rules out zero mixing s34 = 0.

Cabibbo–sized mixing between the fourth and second families may also be possi-
ble [140, 141, 72]. Regions have been found in the CKM4 parameter space that can explain possible
anomalies in B meson CP measurements. These regions require large mixing of the second and
fourth families as well as the third and fourth ones. In [140, 141] it was found that for mt′ = 300
GeV and |s34| = 0.22 the 2-4 mixings

|Vt′s| = 0.114 and |Vcb′ | = 0.116 (3.17)

are allowed – a conclusion that has later been confirmed [45].

However, it may be that even Cabibbo–sized mixing is disfavored as argued in more
recent analyses [142, 143]. Apparently the four family model with such mixing and with the Higgs
boson, t′ and b′ close to their unitarity bounds is strongly conflicting with electroweak data and that
while the electroweak precision constraints have eased somewhat, a fourth family remains disfavored
given that adding it deteriorates the global fit.

Constraints on the mixing of the leptons in the fourth family has not been studied in
as much detail as the quark sector. In one study [132] bounds on the PMNS4 matrix are computed,
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Figure 3.3: On the left the χ2 distribution, on the right the Higgs boson mass, both as functions
of | sin θ34| for the global fit to the four family model with mt′ = 500 GeV. The horizontal lines
indicate the 95% confidence interval for | sin θ34| ≤ 0.15. Figures from Ref. [45]

taking into account constraints from lepton flavor violation both in the charged and neutral sectors
– the most stringent bound coming from µ → eγ decay, which has not been observed. A region of
parameter space that seems to be in agreement with all experimental constraints and further has
minimal contributions to the oblique parameters is reported :

mℓ′ −mν′ ≃ 30− 60 GeV ,

mt′ −mb′ ≃
(
1 +

1

5
ln

mH

115GeV

)
× 50 GeV ,

|Vub′ |, |Vt′d| . 0.04 and |Ueℓ′ |, |Uµℓ′ | . 0.02 . (3.18)

Here the PMNS matrix is denoted by U (V is the CKM matrix). The upper bound on the PMNS
matrix elements relating the first and fourth, as well as the second and fourth, is found to be at
∼ 0.02.

3.2 Higgs production and partial decay widths

The Higgs field, responsible for the breaking of SU(2)×U(1) electroweak gauge symmetry is one of
the still open issues in particle physics, and the search for the Higgs boson a major goal at particle
colliders. In addition to being of interest due to its fundamental part in the standard model, the
Higgs boson could, through measurements of its properties, also provide information about BSM
models. In this section we focus on the phenomenological impacts of the fourth generation on
observables of the Higgs field.

3.2.1 Higgs production at hadron colliders

In high-energy pp or pp̄ collisions the dominant Higgs production mechanism is gluon fusion, pro-
ceeding through a quark loop, as shown in Fig. 3.5. This is so because at high energies the gluon
density dominates that of the quarks in the proton (see Fig. 3.6). Fig. 3.6 shows the gluon, sea and
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Figure 3.4: 95% CL contour plots for SM4 with mt′ ,mb′ = 354, 338 GeV (left) and 500,484
GeV (right) and different ∆α5(mZ) inputs: ∆α5 = 0.02758(35) solid, 0.02760(15) dashed, and
0.02793(11) dash-dot. The nearly identical dotted contours include the low energy data. The
vertical dotted and dashed lines indicate the LEPII and Tevatron 95% exclusion regions, and the
diamond on the abscissa marks the stability bound mH & mt′ . Figures and caption from Ref. [139].

g

g

Hq

Figure 3.5: Higgs production through gluon fusion.

valence quark densities for the two energies Q2 = 10 GeV2 (left) and 10000 GeV2 (right) as functions
of the longitudinal momentum fraction x. It should be noted that the gluon and sea distributions
have been scaled down by a factor of 20, to better fit into the same graph. One sees that especially
for small x the gluon density is overwhelming.

The effective Lagrangian describing the ggφ interaction, with φ denoting the Higgs field, reads [145]

Leff = −(
√
2GF )

1

2mq
αs(m

2
H)

12π
IGa

µνG
aµνφ , (3.19)

where αs(m
2
H) is the strong coupling constant evaluated at m2

H , the color field tensor Ga
µν =

∂µg
a
ν − ∂νg

a
µ + gfabcAb

µA
c
ν with gaµ the gluon field. Here, as in Section 2.1, µ is a Lorentz index and

a is the index of the gauge group SU(3). The parameter I in (3.19) is a function :

I =
∑

q

Iq , Iq = 3

∫ 1

0
dx

∫ 1−x

0
dy

1− 4xy

1− xy
λq

− iǫ
= 3 [2λq + λq(4λq − 1)f(λq)] . (3.20)

where the term −iǫ in the denominator of the integrand ensures the convergence of the integral and

λi ≡ m2
i /m

2
H (3.21)
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Figure 3.6: The parton distribution functions from HERAPDF1.0 at Q2 = 10 GeV2 (left) and
10000 GeV2 (right). The gluon and sea distributions are scaled down by a factor of 20. The
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the region relevant for the hadron colliders TEVATRON and LHC. In this figure, the central values
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and the function f(λq) is

f(λ) =





−2
(
sin−1 1

2
√
λ

)2
for λ > 1

4

(
i.e. mq >

mH

2

)

1
2

(
ln η+

η−

)2
− π2

2 + iπln η+

η− for λ < 1
4

(
i.e. mq <

mH

2

) (3.22)

with η± = 1
2 ±

√
1
4 − λ.

In the limit of large mq (λq ≫ 1) Iq → 1, as seen from Eqs. (3.20), (3.22), and in the other
limit, small mq (λq ≪ 1) Iq → 0. Due to the behavior of Iq for the limiting case of heavy quarks,
the top quark contribution is the most dominant one in the SM, and the heavy quarks of the fourth
generation are expected to contribute significantly to (3.20), too.

The cross section for the production of a Higgs boson via gluon fusion is [145]

σ(pp → H + anything) = Γ(H → gg) · π2

8m3
H

τ

∫ 1

τ

dx

x
g(x,m2

H )g
(τ
x
,m2

H

)
, (3.23)

where τ = m2
H/s and g(x,Q2) is the gluon distribution evaluated at x = Q2. The partial decay

rate of H → gg is

Γ(H → gg) =
GFm

3
H

36
√
2π

[
αs(m

2
H)

π

]2
n2hf (3.24)

with nhf the number of heavy quark flavors.

Substituting (3.24) into (3.25) gives

σ(pp→ H + anything) =
GF√
2

(αs

3π

) πN2

32

τ

mH

∫ 1

τ

dx

x
g(x,m2

H)g
(τ
x
,m2

H

)
, (3.25)
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In a fourth generation with two additional heavier quarks t′ and b′, the Higgs production cross
section is enhanced with respect to the SM cross section due to the function I in (3.20), where
the quark flavors are summed over and we already pointed out that the main contribution comes
from the heaviest quarks. The ratio of the cross sections SM4 to SM is then just the ratio of their
respective I:s [146]

R
SM4/SM
σ(gg→H) ≡

σ(gg → H)SM4

σ(gg → H)SM
=

|Ib + It + It′ + Ib′ |2
|Ib + It|2

. (3.26)

The dependence of the function (3.26) on the Higgs boson mass has been computed [146] for
two different mb′ values, one of 10 TeV (‘infinite mass’) and the other 400 GeV, with t′ fixed in both
cases [132]

mt′ = mb′ + 50 + 10 · ln
(

mH

115 [GeV]

)
, (3.27)

in order to be consistent with electroweak data. The result is shown in Fig. 3.7.
The maximal enhancement factor ∼9 is obtained for a light Higgs boson when Ib → 0 and

It, It′ , Ib′ → 1. At low mH the enhancement factor is seen to be independent of the fourth genera-
tion quark masses (the red and blue curves in Fig. 3.7 overlap). The ‘infinite mass’ scenario might
however not be entirely trustworthy since, as already discussed in Section 1.3, at masses beyond
∼ 500 GeV [133, 134] the interactions between the heavy particles becomes strong and perturbation
theory is no longer valid. But since the infinite mass scenario gives the smallest enhancement to
the cross section, this just means that the exclusion limits are more conservative.
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When the fourth generation quarks are very heavy with respect to the Higgs, mq′ ≫ mH ,
the Higgs coupling cancels the mass dependence of each of the three propagators of the quark
loop. Hence the ggφ coupling is asymptotically independent of the masses of the fourth generation
quarks. [147] This can be seen in Fig. 3.8 for the case of a degenerate fourth generation [148]. It is
interesting to note that for mH ≤ 300 GeV the cross section seems to be independent of mq′ (the
three upmost curves in Fig. 3.8 are nearly horizontal).

3.2.2 Branching fractions

In particle detectors the Higgs will be indirectly seen from its decay products. When the number
of events in the various channels is known, the branching fractions can be computed, giving in turn
valuable information about the couplings. The presence of a fourth generation may affect the Higgs
decays in such a way that the branching fractions differ from those predicted by the standard model.
If so, this will be a measurable effect and hence the discovery of the Higgs and the measurement
of its branching ratios will give information about the fourth generation and vice versa: the fourth
generation also affects, through loops, Higgs pair production and the Higgs self coupling.

Higgs decay to two photons

The H → γγ is similar to H → gg considered above (Eq. (3.24)), except that charged leptons,
the W boson and the charged Higgs bosons also contribute to the loop. The effective Lagrangian,
obtained from the low energy theorem, is then [145]

Leff = − α

8π
(
√
2GF )

1

2 IFµνF
µνH (3.28)

and the H → γγ decay rate is

Γ(H → γγ) =
GFm

3
H

8
√
2π

(α
π

)2
|I|2 . (3.29)
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Here

I =
∑

q

Q2
qIq +

∑

ℓ

Q2
ℓIℓ + IW + IS , (3.30)

where Qf denotes the charge of fermion f and the Ii, representing the quark, lepton, W boson and
colorless charged scalar contributions, are

Iq = 3 [2λq + λq(4λq − 1)f(λq)] ,

Iℓ = 2λℓ + λℓ(4λℓ − 1)f(λℓ) ,

IW = 3λW (1− λW2)f(λW )− 3λW − 1

2
,

IS = −λS [1 + 2λSf(λS)] , (3.31)

with λi as in Eq. (3.21). For all λi ≫ 1 Eq. (3.30) simplifies to

I ≃
∑

q

Q2
q +

1

3

∑

ℓ

Q2
ℓ −

7

4
− 1

12
. (3.32)

The fermions and bosons contribute with opposite signs. In the other limit, that of λi ≪ 1, only
the W loop contributes and one has I ≃ −1

2 .

In a fourth generation model both Iq and Iℓ terms receive additional contributions from
the fourth generation quarks q′ and the charged lepton ℓ′.

Also the width Γ(H → γZ) is affected by fourth generation quark loops. Especially the modes
gg, γγ and γZ are affected at low values of mH .

Higgs decay to weak bosons

The couplings of the Higgs boson to the weak gauge fields is [145]

L = (
√
2GF )

1

2 (2m2
WHW

+
µ W

−µ +m2
ZHZµZ

µ) , (3.33)

where the W and Z terms differ by a factor 1/2 since the Z:are indistinguishable but the W :s are
characterized by their charge. The widths of the Higgs decay into the massive gauge bosons are

Γ(H →W+W−) =
GF

8
√
2π
m3

H(1− 4λW )
1

2 (3λ2W − 4λW + 1) and (3.34)

Γ(H → ZZ) =
GF

16
√
2π
m3

H(1− 4λZ)
1

2 (3λ2Z − 4λZ + 1) . (3.35)

For mH ≫ mZ Γ(H0 → ZZ)/Γ(H0 → W+W−) ≃ 1/4, which is just the symmetry factor in the
Lagrangian (3.33), and for mH ≫ mW the decays into massive gauge bosons dominate over those
into massless ones :

Γ(H → γγ)

Γ(H →W+W−)
≃ 1

4

(α
π

)2
≃ 10−6 . (3.36)

Furthermore, when mH ≫ mW the decay rates for longitudinally polarized W ’s dominate [146].
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The overall enhancement of the Higgs signal, the product of the production cross section
and branching ratios, with respect to that of the SM

RSM4/SM ≡ [σ(gg → H)×B(H → X)]SM4

[σ(gg → H)×B(H → X)]SM
(3.37)

is shown in Fig. 3.9. X stands for the decay modes γγ, WW and ZZ. The drop of the enhancement
factor near mH ≈ 300 GeV is due to the growth of the denominator of Eq. (3.37) since the SM cross
section has a larger contribution from the top quark as mH nears 2mt [147].

The authors of Ref. [146] note that one advantage of computing R
SM4/SM
σ(gg→H) as in (3.37) instead

of σ(gg → H) is that this ratio is less sensitive to higher order corrections. It is also less sensitive
to other theoretical uncertainties, such as the choice of parton distribution function.

3.2.3 Searches for the Higgs and the fourth family

The assumed mixings and masses of the fourth generation are used for combined Higgs and fourth
family searches at the Tevatron and the LHC. A difficulty is that the sought-after signal depends
on these input parameters, that are for the time being unknown. Predictions can be made when
the free parameters of the fourth family are fixed, as was done in [132]. For

mt′ = 320GeV , mb′ = 260 GeV ,

mℓ′ = 155 GeV , mν′ = 100 GeV (3.38)

the complete set of branching ratios of the Higgs as a function of mH are shown in Fig. 3.10. Unless
mH is very large the decays into fourth generation particles will be only into the leptons, and not
the quarks, a conclusion disfavored by EWPD [132]. During the last years weak boson production
has shown to be the leading discovery channel for a light Higgs since loop effects on the WWφ
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couplings are so small to be ignored in the SM, but this no longer applies in a four family model.
However, the decay channels H → ℓ4ℓ̄4 and H → ν4ν̄4 are small compared to the gauge boson
decays.

New Higgs decay modes are possible if mH is sufficiently large. Higgs decay into two
heavy quarks has a production rate that is small compared with QCD production and is not a
promising channel since the signal–to–background ratio is expected to be poor. Concerning decays
to two heavy leptons there are two cases to consider, determined by the the size of the mixing
between the heavy leptons and the SM ones [132]: In a first scenario the mixing is assumed to be
very small, |Ui4| < 10−8, with i = 1, 2, 3, allowing the fourth generation neutrinos to escape the
detector as missing energy. If, on the other hand, one considers a second scenario where the mixing
|Ui4| is not too small then the fourth generation neutrino will swiftly decay via a mixed charged
PMNS current Ui4ℓ

±
i ν4W

∓. The lepton flavor of the new signal

H −→ ν4ν̄4 −→ ℓ+ℓ−W+W− (3.39)

relies upon the dominant PMNS element. In this case the Higgs must be heavier than 200 GeV in
order for the LEP bounds on this two-body decay to be open.

If the neutrino has an electroweak scale Majorana mass the two-body decay will produce same-
sign leptons half of the time:

H −→ ν4ν4 −→ ℓ±ℓ±W∓W∓ . (3.40)
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Analyses with relatively light fourth generation particles have been made as well [149,
150]. It has been found that precision electrweak data is in particular compatible with [149]

mH ≃ 300 GeV , mν′ ≃ 50 GeV , mℓ′ ≃ 100 GeV ,

mt′ +mb′ ≃ 500 GeV and |mt′ −mb′ | ≃ 75 GeV . (3.41)

The data seem to prefer the masses of the fourth generation to be m2 > m1 for leptons and m1 > m2

for quarks, when the doublets are (ψ1, ψ2)
T . The set of parameters (3.41) gives a minimal χ2 of

χ2
min/nd.o.f. = 20.8/12 , (3.42)

whereas χ2
min/nd.o.f. = 23.8/13 in the SM, so the fourth generation with masses as in (3.41) gives a

slightly better fit. The quantity χ2
min/nd.o.f. is the correct one to gauge the goodness of the fits in

this light-fourth-family case, since the oblique parameters S, T, U are not adequate as the definition
of these is valid only when all fourth generation particles are heavier than mZ .
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Chapter 4

Experimental searches

Running experiments test the standard model and physics beyond the SM. These searches – mainly
done at the LHC and Tevatron – include the fourth generation. At the LHC parton interactions at
ŝ ∼ 1 TeV will be produced in significant rates [151] so it is well suited for the search of new, heavy
particles. Specifically, such high–energy parton interactions may produce fourth generation particles
of masses close to the unitarity scale ∼ 500 GeV. In what follows we will review proposed search
strategies and already existing bounds on the physics of a possible fourth generation. Feynman
diagrams of various production processes are shown in Appendix E.

4.1 Search strategies – SM4 quarks

In this section we will review the searches proposed for finding t′ and b′ quarks, both in single and
pair production. We start by reviewing the event topologies [151] and then present studies that
were made for identifying W bosons originating from heavy quark decays in pp collisions (at the
LHC) [130] or in the process eq → t′ν (at the LHeC) [152]. It is of great interest to study both single
and pair production, since the two give different information: pair production allows for precise mass
measurements whereas single production gives information about the mixing of the fourth family
with the others [153]. Measuring both processes allows for a more comprehensive physical picture of
the fourth generation. Also, the various production mechanisms give different information about the
quarks: strong production depends only on the masses of the fourth generation quarks, whereas the
electroweak production and decay modes are mostly sensitive to the mass difference of the quarks
and their CKM mixing [154].

4.1.1 General event topologies

For the fourth generation quark masses ∼ 400 − 600 GeV considered throughout this report the
dominant decays are into a W boson and a light quark [151]. There are several possibilities for such
decays:

(i) Q −→ qW

(ii) Q −→ qWW (4.1)

(iii) Q −→ qWWW

(4.2)

Here Q is a heavy quark (either t′ or b′) and q is one of the five lightest quarks (u, d, s, c, b). These
different channels occur for :

57
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(i) This channel is especially seen for t′ −→ b, s, d + W or b′ −→ c, u + W . When the CKM
mixing matrix is such that Vt′b ≪ Vcb′ and/or Vub′ then this is the dominant b′ decay channel.

(ii) This is the dominant b′ decay channel if the process begins by b′ −→ tW , followed by t −→ bW .
There is a similar channel for t′, open when mt′ > mb′ +mW and the b′ decays through

b′ −→Wc or Wu such that t′ −→ WWc or WWu. (4.3)

(iii) This is the appropriate channel if t′ −→ Wb′ by process (i) and then b′ decays as in (ii):
b′ −→Wt −→WWb.

Under certain conditions there may be important three–body decays. This is the case when
the mixing between the third and fourth generations is small and the mass splitting between the
t′ and b′ quarks is smaller than the W mass. Then the fourth generation quarks may also decay
through [151]

(iv) Q −→ Q′W ∗ −→ qWW ∗ (4.4)

where W ∗ indicates a virtual W and Q is the heavier fourth generation quark, Q′ the lighter one.
If mt′ > mb′ then the above chain gives t′ → b′W ∗ → tWW ∗ → bWWW ∗.

What happens to the W s and the light quarks?
The light quarks form jets and the W has the following decays W+ (W−) −→ ℓ+νℓ (ℓ−ν̄ℓ) and
W± −→ qq̄, called leptonic and hadronic channels, respectively. Hence a W+W− pair can decay
in three distinct ways

leptonic : W+W− −→ ℓ+νℓ ℓ
−ν̄ℓ

hadronic : W+W− −→ q1q̄1q2q̄2 (4.5)

semi− leptonic : W+W− −→ ℓ+νℓqq̄ .

(4.6)

The quarks of the hadronic and semi–leptonic decays give rise to jets, which are a challenge from
an experimental point of view. The leptons are easier to identify.

4.1.2 Pair production of fourth family quarks

A few years ago the signal of pair produced quarks decaying weakly was analyzed [130] – the signal
being f f̄W+W−, with f typically a bottom or top quark. In this study the focus is on the case of
the bottom quark, assuming that this (bb̄W+W−) would be the dominant decay mode of a fourth
generation quark that has CKM mixings with the other generations.

The t′ quark is assumed to have a mass in the range 600–800 GeV, in which case its width would
be approximately 60 · |Vt′b|2 GeV, implying that it is possible that Γt′ < Γt if |Vt′b| is small. The
authors note that both t′t̄′ (see Fig. E.1 (a) and (b)) and tt̄ have the same final states and that
it is imperative to have an event selection that significantly reduces the tt̄ background since the
tt̄ cross section at the LHC is about 500 times larger than that of t′t̄′. To this aim the following
characteristics are demanded for a signal to pass the event selection :

− A lower bound Λtop5 = 2mt′ is put on the scalar pT sum of a number (e.g. five) of the hardest
reconstructed objects in the detector,
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Figure 4.1: Signal (red) versus tt̄ background (blue) resulting from simulations. LHS: W mass plot,
RHS: t′ mass plot. Figure from Ref. [130].

− A tagging of b jets with pT > Λb = mt′/3 is used and

− The fact that W ’s and b’s from tt̄ production often originate from one highly boosted t quark
and are difficult to discern from one another is utilized, noting that for t′t̄′ the W and b jets
are often quite isolated. These isolated W jets can be identified using a smaller cone size than
customary and then identifying the invariant mass distribution of the jets.

The authors define a W jet as a ‘non-b-tagged jet’ whose invariant mass is close to the W boson
peak in the invariant mass distribution. Then the mass of the t′ – the quantity that is searched for
– can be reconstructed from the invariant masses of the b−W jet pairs.

Different Monte Carlo–based event generators are used for the study, but the results are similar
for all of these. When the event selection described above is used, the signal to background ratio is
very promising, as can be seen on the RHS of Fig. 4.1.

The cross–section of pair produced fourth generation quarks has (for the case of the b′ quark)
been compared for LHC and Tevatron [155]. The b′ quarks can be produced in much larger numbers
at the LHC, as is shown in Fig. 4.2: for a b′ mass of e.g. 300 GeV the pair production cross section
at the LHC already with

√
s = 7 TeV is 20 times larger than at the Tevatron, so that a discovery

(at 5σ significance) could be made at the LHC with ∼ 30 times less data than at the Tevatron (see
Fig. 4.3).

4.1.3 Single production of fourth family quarks

Having discussed the pair production of fourth generation quarks, we now turn to their single
production. Single production is possible both at the LHC [153] and at the hypothetical extension
of the LHC, the Large Hadron electron Collider (LHeC) [152, 156]. We will consider these both,
starting with the LHC.

Single production at the LHC

The relevant production processes at the LHC are pp → b′(b̄′)jX and pp → t′(t̄′)jX (cf. Fig. E.4
in Appendix E), with j denoting a jet and X some hadronic final state [153]. The cross section for
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the process pp→ q′jX, where q′ is a fourth generation quark, is

σ =
∑

i,j

∫ 1

ymin

dy

∫ 1

y

dx

x
fqi/p(x,Q

2)fqj/p(y/x,Q
2)σ̂(ys) , (4.7)

where the functions fq/p(x,Q
2) are the parton distribution functions, with Q2 = m2

q′ for the signal

and Q2 = ŝ for the background and a good choice for the lower limit of the first integral is ymin =
m2

q′/s.
The authors consider three different CKM parametrizations. They use the parametrizations

given in Eq. (4.9) (below) for PI and PIII but choose Vq′i = Viq′ = 0.05 for PII. The choices
are motivated by the fact that only the upper limits on the CKM matrix elements could be well
predicted from the current experimental data. It is noteworthy that for a parametrization with
equal strengths, Vq′i = Viq′ , the single production cross section becomes comparable to the pair
production cross section for CKM elements Vt′q = Vqb′ = 0.25 − 0.4 in the entire mass range
considered, mq′ = 300 − 800GeV (see Fig. 4.4).

If mt′ > mb′ , the t′ decays into a W+ and a b′, which then decays into a W− and a t or one of
the lighter quarks. On the other hand, if mb′ > mt′ , then one has b′ → W−t′ and t′ successively
decaying into lighter and lighter SM quarks, seen as jets in the detector. In the case that mt′ = mb′

both t′ and b′ decay via a charged current interaction into quarks of the first three families.
The background from the decays into W±Z, W+W−, ZZZ, ZZW±, W+W−Z, W+W−W±

and Wbj, Wtj can be reduced by applying the following cuts

− invariant mass cut mWb > 200 GeV,

− acceptance pT > 20 GeV for final state jets,

− invariant mass cut |mt′ −mW+b| < 10 − 20 GeV depending on the t′ mass and similarly for
the b′ signal: |mb′ −mW−t| < 10− 20 GeV.

Events with final states including a b jet or a light jet, a charged lepton (two leptons with opposite
signs) and missing transverse momentum are considered as t′ (b′) signals. A further demand is that
the invariant mass peak is found around mq′ in the interval 300–800 GeV.
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Mass (GeV) Γ (GeV)

300 3.84
400 9.19
500 18.00
600 31.14
700 49.48
800 73.87

Table 4.1: The total decay widths
of t′ quark depending on its mass
values, as given in Ref. [152].
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The statistical significance of b′ (b̄′) at the integrated luminosity Lint = 105 pb−1 is O(100)
(O(10−1)) for the parametrization PI and O(0.5× 102) (O(101)) for PII and O(0.5× 103) (O(0.5×
103)) for PIII in the whole mass range. The statistical significance is a bit higher for lower mass
values. For t′, t̄′ the corresponding values are similar for the parametrizations PI and PII but much
higher for PIII, for which it is O(103 − 104) for t̄′ and O(103) for t′.

Single production at the LHeC

The Large Hadron electron Collider [157] – a hypothetical ‘extension’ of the LHC – is designed to
consist of a new linear accelerator or a storage ring and the electrons from this accelerator or storage
ring, having an energy of 70/140 GeV, will collide with the 7 TeV proton beam from the LHC. This
allows for the study of deep inelastic scattering processes at center of mass energy of 1.4/1.9 TeV.
With a design luminosity ∼ 1033 or 1032 cm−2s−1, the LHeC would surpass the previous ep collider,
HERA at DESY. At the LHeC the fourth generation quarks are produced in the processes ep → t′νe
and ep → b′νe (cf. Figs. E.2, E.3) for a chosen mass range of 300–800 GeV [152, 156]. The relevant
CKM matrix elements used in the study of t′ production [152] are Vt′d = 0.063, Vt′s = 0.46 and
Vt′b = 0.47, optimized for a 1σ deviation over the average values of the CKM matrix elements. For
the parametrization used the t′ branching fractions are the same for the whole of the mass range:
BR(t′ → W+b) = 51%, BR(t′ → W+s) = 48% and BR(t′ → W+d) = 0.9% but the total cross
sections of the t′ and t̄′ quarks change significantly, as shown in Fig. 4.5. The total decay widths of
t′ are shown in Table 4.1 for the whole mass range.

For the event selection the authors propose the following cuts:

− a pT cut to reduce the background from b quarks,

− a cut on the missing transverse momentum pmiss
T > 50 GeV,

− a cut on the invariant mass |mt′ −mW+b| < 10−20 GeV, according to the mass and the decay
width of the t′ quark.

The statistical significance of the signal is computed (under the assumption of Poisson statistics)
using

SS =
√

2Lintǫ [(σS + σB)ln(1 + σS/σB)− σS] , (4.8)
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Mass (GeV) Γ (GeV) W−c(%) W−t(%) W−u(%)

300 0.18 66 30 3.9
400 0.55 52 45 3.0
500 1.22 46 52 2.7
600 2.25 43 55 2.5
700 3.72 41 57 2.4
800 5.70 40 58 2.3

Table 4.2: The total decay widths and the branching ratios of b′ quark depending on its mass. Table
values from Ref. [156].
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Figure 4.6: The total cross section for the process e−p→ b′νe +X (solid line) and e+p→ b̄′ν̄e +X
(dashed line) with

√
s = 1.4 TeV. Figure from Ref. [156].

where σS and σB are the signal and background cross sections, respectively. An integrated lu-
minosity Lint = 104 pb−1 is assumed, and the b–tagging efficiency is taken to be ǫ = 0.6. The
statistical significance (4.8) is estimated to lie approximately in the range SS = 4113.27 – 8.35 for
mt′ = 300− 800 GeV. For the chosen mixings and masses it could thus be possible for the LHeC to
discover the t′ quark up to 800 GeV.

In a similar study [156] the discovery potential of the LHeC for the single production of b′ and b̄′

quarks was contemplated. The authors calculated the cross sections of the signal (cf. Fig. 4.6) and
the decay widths and branching ratios (cf. Table 4.2) of the b′ quark, using the parametrization
|Vub′ | = 0.028, |Vcb′ | = 0.116, |Vtb′ | = 0.99, |Vt′b′ | = 0.99 and assuming that mb′ < mt′ with a mass
splitting of mt′ −mb′ ∼ 50 GeV.

The event selection is based upon the following demands

− transverse momentum cuts on the emitted charm quark, the lepton and missing momentum:
pcT > 20 GeV, pℓT > 30 GeV and pmiss

T > 20 GeV,

− a secondary vertex of the charmed jet with mass around 1 GeV,

− |mb′ −mWc| < 10− 20 GeV according to the mass and decay width of b′.

The statistical significance of the signal can be computed from Eq. (4.8), assuming Lint = 104

pb−1 as in the case of the t′ as well as a c–tagging efficiency of ǫ = 0.3. For these values
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SS(e+p → W+c̄ν̄e) = 13.2 − 2.72 and SS(e−p → W−cνe) = 6.48 − 0.5 for mb′ = 300 − 800
GeV, rendering the observation of singly produced b′ quarks possible at the LHeC, provided that
the considered mass range and mixings hold.

Anomalous resonant production

The anomalous resonant production (breaking SU(3)c) of the t′ quark has also been considered [158].
The relevant subprocess is gqi → t′, where qi = u, c (cf. Fig. E.5, Appendix E). The decay products
are W±bjet, as in the previous analyses, and any observation of a mass peak in the t′ mass interval
300–800 GeV resulting in W±bjet is interpreted as a signal for this type of anomalous resonant
production.

The anomalous interactions are deemed to become significant at tree level due to the possible
large mass of the fourth generation quarks. The t′ quarks could be produced in large numbers if
they have anomalous couplings that dominate over the chiral SM interactions. The strength of the
anomalous coupling is taken to be κ/Λ = O(10−1) . . . 1 TeV. The decay width of t′ for the different
parametrizations of the CKM matrix

PI : |VQ′q| = |VqQ′ | = 0.01 , PII : |VQ′q| = |VqQ′ | ≈ λ4−n ,

PIII : |Vt′d| = 0.063, |Vt′s| = |Vcb′ | = 0.46, |Vt′b| = |Vtb′ | = 0.47, |Vub′ | = 0.044 . (4.9)

can be seen in Fig. 4.7 for different t′ masses, the CKM parametrizations (4.9) and strengths of the
anomalous coupling κ/Λ. In Eq. (4.9) n is the family number.

The event selection used in [158] is based upon the following requirements:

− for leptonic decay of the W boson the criteria for the electrons or muons are: pℓT > 20 GeV,
|ηℓ| < 2.5 and /ET > 20 GeV,

− for hadronic decay of the W boson it is demanded that there are at least two jets with
pjT > 20GeV and |ηj | < 2.5,

− the b jets are in both cases required to have pjbT > 50 GeV and |ηjb | < 2.5.

A conclusion of this study is that for a large enough anomalous coupling with other up type
quarks, t′ can be discovered with early LHC data. The sensitivity to the anomalous coupling
κ/Λ = 0.1 TeV−1 is thought to be possible to reach at the LHC at center of mass energy

√
s = 10

TeV and integrated luminosity Lint = 100 pb−1.

4.1.4 Current experimental bounds

Specific analyses where the fourth family quarks have been searched for have been made by many
of the collaborations mentioned in this report. Below we will cite some of the constraints on fourth-
generation parameters given in the literature. Before that, we wish to emphasize that the results
of a given analysis depend on the chosen set of input parameters and their values. In experiments
one often has to make assumptions about the physics in question, and the assumptions affect the
final result.
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Figure 4.7: Decay width of t′ as a function of its mass for different Vt′q parametrizations and κ/Λ
values. Figure from Ref. [158].

t′ quark mass

Searches for a heavy up-type quark, t′, decaying into Wq, have been made by the CDF collabo-
ration [159]. The data used for the analysis corresponds to 2.8 fb−1 of integrated luminosity at√
s = 1.96 TeV in pp̄ collisions at Tevatron, Fermilab.

The t′ quark is assumed to decay to a final state with a high pT lepton, large missing transverse
energy and multiple hadronic jets having large total transverse energy. The signal is similar to that
of a top pair. The transverse energy is defined as ET ≡ E sin θ, where E is the energy deposited
in a calorimeter cluster and θ is the polar angle measured from the proton beam direction. The
transverse momentum is the the component of the momentum of a given track transverse to the
beam line. The missing transverse energy is the magnitude of the vector defined as −∑iE

i
T n̂

i
T ,

where n̂iT is the transverse component of the unit vector pointing from the interaction point to the
calorimeter tower i, corrected for the pT of muons, which do not deposit all of their energy in the
calorimeter as well as for tracks which point to uninstrumented regions in the calorimeter.

The highly energetic quarks of the decay undergo fragmentation, resulting in jets. The jets of
an event are required to have /ET > 15 GeV and |η| < 2.5. The pseudorapidity η is defined as

η ≡ −ln [tan(θ/2)] . (4.10)

For further enhancement of the signal to background ratio a leading jet with ET ≥ 60 GeV is
demanded as are some angular correlations. The main background for such events comes from
electroweak processes (dominated by W +jets) and tt̄ pair production.

Based on the results of their analysis, the CDF collaboration conclude that

mt′ ≥ 311 GeV at 95% C.L. (4.11)
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The authors note that this result is deduced assuming that the true top mass is 175 GeV but that
the top quark mass may have been affected by the presence of a heavier t′ and that the conclusion
should the treated with care.

If the fourth generation quarks dominantly mix with the first two generations then t′ and b′ will
have the same signature and the Tevatron observation limit is raised to well over 400 GeV [155] and
on the other hand, if a more general, wide range of mixings are considered, a reinterpretation of the
CDF results give a lower bound of mt′ &290 GeV [160].

These results have since been improved by the CMS collaboration [161, 162], reporting

mt′ ≥ 450 GeV (semileptonic channel) ,

mt′ ≥ 557 GeV (dilepton channel) . (4.12)

b′ quark mass

CDF has also performed searches for new particles decaying into a Z boson and jets [163], signaling
a b′ quark. The data sample used has a luminosity of 1.06 fb−1, collected using Z → ee and Z → µµ.
It is assumed that the production mechanisms of the b′ quark would be identical to that of the top,
with pair production having the largest cross section. An assumption used for the analysis is that
the branching ratio of b′ to a Z and a b is 100%.

The main background for such a final state is from SM Z production with jets produced in
higher order QCD processes 1. The optimal kinetic region of the four–generation model drives the
focus of the searches to final states with at least 3 jets, each with a transverse energy ET > 30
GeV. Topologies with large numbers of highly energetic jets in the final state allow for a better
separation of the signal from the standard model Z+jet background, since the generic behavior of
new signals is that the cross section decreases and the transverse energy spectra become harder as
mass increases.

The result of the analysis [163], that mb′ ≥ 268 GeV at 95 % C.L., has been superseded by
ATLAS [164] and CMS [165] in 2012, reporting

mb′ ≥ 480 GeV and mb′ ≥ 611 GeV , (4.13)

respectively.

4.2 Searches for fourth generation leptons

Pair production of fourth generation leptons

As discussed in Section 2.5.2, neutrinos can have either a Dirac or a Majorana mass – in the most
general case both components are present. The main difference in the pair production of Dirac vs.
Majorana neutrinos is the dependence of the cross section on the velocity β. In the case of a Dirac
mass the cross section has a β–dependence ∼ β(3− β2) while in the Majorana case there is only a
term ∼ β3, implying that the threshold cross section falls more rapidly in the Majorana case as in
the Dirac case. [166]

1Other sources of background may be [163]:
– single-Z production in conjunction with jets – ZZ+jets, where one of the Z’s decays to jets
– multi-jet events, where two jets fake leptons – WW+jets, where both W ’s decay to leptons
– cosmic rays coincident with multi-jet events – tt̄+jets
– WZ+jets, where the W decays to jets.
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Figure 4.8: ν ′ν̄ ′ pair production cross section as a function of ν4 mass for three scenarios: Higgsless
case and cases with Z+h (mh = 300 GeV and mh = 500 GeV). The enhancement from gluon fusion
is calculated for mt′ = mb′ = 500 GeV. Figure from Ref. [148]

The fourth family leptons decay only through charged currents [166]

ℓ′± −→ νℓW
∓ , ν ′ −→ ℓ±W∓ , (4.14)

where ℓ = e, µ, τ and ℓ′, ν ′ denote the fourth generation charged and neutral leptons, respectively.
For mℓ′,ν′ < 100 GeV, the decay is mainly through a W : in the case of mν′ = 100 GeV the branching
fraction is Br(ν ′ → e±W∓) = 90% and for mν′ < 90 GeV it is 100%.

4.2.1 Neutrinos and Higgs at the LHC

The possible discoveries of the fourth generation neutrinos and the Higgs boson have been analyzed
in Ref. [148]. The processes considered are pp→ (Z or H) → ν ′ν̄ ′ →WµWµ, as shown in Fig. E.6
(the flavor of the final state lepton will depend on the PMNS matrix elements). The relevant cross
sections are calculated for two different Higgs masses, mH = 300 GeV and mH = 500 GeV as is the
neutrino pair production cross section as a function of the neutrino mass for the different cases (see
Fig. 4.8).

The characteristics of the signal depend on the type of neutrino (Dirac or Majorana) and hence
the analysis and event selection for the two cases differ. For a Majorana neutrino the decay products
are two same-sign leptons half of the time and opposite-sign leptons the other half. For a Dirac
neutrino the decay would always lead to opposite-sign leptons. However, in both cases two high pT
leptons are produced along with two W bosons. The event selection requirements common for both
Dirac and Majorana neutrinos are:

− transverse momentum of dileptons pT > 15 GeV (in the case of multiple final state leptons,
the ones with the highest transverse momenta are chosen),

− at least 4 jets (originating from W bosons) with pT > 15 GeV for each jet,
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Figure 4.9: The expected signal significances (in units of standard deviations) of the fourth family
neutrino searches (left) and the Higgs searches (right). Points on the curves are required to have at
least three events that satisfy all the selection criteria. Here ν4 = ν ′ denotes the fourth generation
neutrino. Figures from Ref. [148].

− dijet candidates for the reconstruction of W vertices should be within 20 GeV of the W mass

− rejection of events with a muon and its closest jet of pT > 20 GeV that are closer than
∆R ≡

√
(∆η)2 + (∆φ)2 = 0.4 from each other.

The last criterion reduces the background due to decays of b quarks. Event selection in the case
of Dirac neutrinos is more demanding than in the Majorana case and therefore further demands
need to be set. In both cases the main background is from massive diboson associated dimuon
production.

Fig. 4.9 shows the significance of the signals analyzed. S1 in the legend stands for the process
pp → Z → ν ′ν̄ ′, S2 and S3 for pp → H → ν ′ν̄ ′ when mH = 300 and 500 GeV, respectively (the
authors denote the fourth generation neutrino by ν4). Due to the enhancement of Higgs production
through gluon fusion, the LHC is estimated to have the chance to simultaneously discover the Higgs
boson and the fourth generation neutrinos. A 5σ significance could be reached at an integrated
luminosity of ∼350 pb−1 if mH = 300 GeV and mν′ = 100 GeV.

The Higgs

The possibility of observing the Higgs boson through this channel has also been considered in other
studies [167], [132], where the fourth generation neutrinos are taken to decay into W bosons and
leptons: pp → H → ν ′ν̄ ′ → ℓWℓW (cf. Fig. E.7). The authors call this the ’silver’ mode, in the
sense that it could be competitive with respect to the ’golden’ mode (described below) for some
regions of Higgs and ν ′ masses. For the PMNS parametrization used the branching ratio for a
discovery signal containing two muons and four jets is Br(H → ν ′ν̄ ′ → µ+µ−jjjj) = 1.22 × 10−2

for mH = 300 GeV. Comparing this with the branching ratio of the golden mode ∼ 1.12 × 10−3

renders an enhancement factor of 11. It is assessed that this enhancement makes up for the possible
inefficiencies associated with jet detection and hadronic W reconstruction.

4.2.2 Searches at future lepton colliders

Observing fourth family leptons at hadron colliders is difficult due to a large background [131].
It is therefore worthwhile to consider lepton production at lepton colliders having a sufficiently
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Figure 4.10: Neutrino pair production cross sections at
√
s = 500 GeV (right) and

√
s = 3 TeV

(left) for Dirac (ν4) and Majorana (N1) neutrinos. The Majorana neutrinos are analyzed at two
different strengths of the Yukawa coupling a: a = e and a = gW . Figures from Ref. [131].

high center of mass energy. Analyses made include e+e− [131, 168], γγ [168] and muon colliders.
Currently planned lepton colliders are e.g. ILC 2 and CLIC 3.

In Ref. [131] the pair production of both Dirac e+e− → ν ′ν̄ ′ and Majorana neutrinos e+e− →
ν1ν1 at lepton colliders are considered. There are two Majorana neutrinos (see Section 2.5.2), with
the mass eigenvalues given in Eq. (2.82). It is assumed that the Majorana neutrinos mix with the
known neutrinos in the same manner as the Dirac neutrinos do. In the analysis the focus is on
the production of two ν1:s, since the final states ν1ν2 and ν2ν2 are suppressed by factors sin2 θ and
sin4 θ, respectively, with the mixing angle θ given in Eq. (2.83). These two final states suffer also
from kinematic suppression, ν2 being more massive than ν1.

For PMNS matrix entries Ui4, U41 ∼ O(10−4 − 10−5), with i = 1, 2, 3, the following branching
ratios are obtained:

Br(ν1 → e∓W±) ≈ 0.135 ,

Br(ν1 → µ∓W±) ≈ 0.25 ,

Br(ν1 → τ∓W±) ≈ 0.115 . (4.15)

The cross sections computed for the Dirac case and the Majorana cases at coupling strengths of
a = e and a = gW are shown in Fig. 4.10 for two different center–of–mass energies. The low value of
the Majorana cross section compared to the Dirac cross section stems from the fact that Majorana
production is suppressed both kinematically and by the mixing angle θ, as noted above.

The cleanest signature of the fourth neutrino pairs is thought to be the muon channels. In the
Majorana case a signal with two muons with the same sign does not have any background and the
signal should be discernible from the background in the Dirac case, too, leading to the conclusion
that the number of signal events with preferred topologies are sufficiently high to investigate the
fourth family neutrino properties in detail.

2International Linear Collider, http://www.linearcollider.org/.
Electron-positron collider with a center of mass energy

√
s = 500 GeV with an upgrade possibility to 1 TeV, luminosity

1034 cm−2s−1, length approximately 31 km
3Compact Linear Collider, http://clic-study.org/.

Electron-positron collider,
√
s = 3 TeV, luminosity ∼ 10

35 cm−2s−1, length 48.3 km.
The possible discovery of the fourth generation fermions at CLIC has been analyzed in Ref. [168]
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4.2.3 Existing experimental constraints

The existing constraints on fourth generation leptons mainly come from LEP II [166].
In the search for pair produced neutral heavy leptons two isolated leptons (e, µ, τ) of the same
family are required, as are decay products of a W boson, i.e. e+e− → ℓ′ℓ̄′ → ℓ+ℓ−W+W−. When
the final state leptons are electrons or muons, the events are further required to have :

− two isolated leptons of the same family with a total energy less than 0.7× Ebeam,

− the number of jets plus isolated leptons is at least 3,

− hadronic events with visible energy greater than 60 GeV and charged track multiplicity greater
than 3.

If the neutrino decays to τ and W , the event selection depends on whether the τ decays lep-
tonically or hadronically. In the case of the decay being leptonic, the above requirements are used,
relaxing the first requirement so that the two isolated leptons are allowed to be one electron and
one muon.

For cases where at least one τ decays hadronically, the requirements on the events are :

− the number of jets plus isolated leptons is at least 4,

− the polar angle of missing momentum is in the range 25◦ < θmiss < 155◦ and the fraction of
visible energy in the forward–backward region (θ < 20◦ and θ > 160◦) is less than 40%,

− the electron and muon energies are less than 50 GeV,

− the angle between the most isolated track and the track nearest to it is greater than 50◦, or
the angle between the second most isolated track and the track nearest to it is at least 25◦,

− the transverse momenta of the two most isolated tracks is greater than 1.2 GeV, and at least
one track has transverse momentum larger than 2.5 GeV.

The results of the LEP II analysis are shown in Table 4.3.

Neutral leptons

Decay mode Dirac Majorana

ν ′ → eW 101.3 89.5
ν ′ → µW 101.5 90.7
ν ′ → τW 90.3 80.5

Charged leptons

Decay mode Dirac

ℓ± → νW 100.8
ℓ± → ν ′W 101.9

stable 102.6

Table 4.3: LEP II 95% C.L. lower mass limits in GeV for neutral heavy leptons and pair-produced
charged heavy leptons of a sequential family. Values from Ref. [166].

Stable neutrinos are furthermore constrained by the invisible width of the Z boson, requiring
the possible fourth neutrino to be heavier than approximately 40 GeV.

LEP II bounds revisited

In a recent study the LEP II bounds on fourth generation Majorana masses are reanalyzed, for a
scenario where one right-handed neutrino is included [169]. The two new neutrino states, ν ′1 and
ν ′2, have different mass eigenvalues and thus have different decay modes. The second of these, ν ′2,
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ν ′1 decay mode Bounds

Wτ 62.1
Wµ 79.9
We 81.8

Table 4.4: Bounds on ν ′1 mass in GeV for the various decay channels. Values from Ref. [169].

is by assumption heavy (mν′
2
> mν′

1
) and can decay either into ℓW , with ℓ = e, µ, τ or into ν ′1Z.

The first of these modes is suppressed by the small mixing between the fourth generation with the
others and the second mode dominates for most masses. For the lighter neutrino the only open
channel is ν ′1 → ℓW .

The relative branching ratios of the channels depend on the unknown PMNS matrix elements. In
the limit of complete mass degeneracy (pseudo-Dirac limit), there is phase space suppression of the
first decay mode of ν ′2 and there may be model-dependent interference effects and other effects like
displaced vertices. Therefore the authors have chosen to restrict their analysis to mass differences
greater than 10 GeV. The results of the study are shown in Table 4.4. We see that the the LEP II
bounds 4.3 are altered significantly.

A conclusion drawn is that if a fourth generation exists, relatively light right-handed neutrinos
must exist in order to generate a sufficiently large neutrino mass and that the existence of these
extra states modifies the search strategies for the fourth generation lepton sector.

4.3 Higgs searches

4.3.1 Higgs searches at Tevatron

A study made about ten years ago focused on the discovery of the Higgs boson at the upgraded
Tevatron, taking into account the four–family model [170]. For a Higgs boson with mass in the
range 175 < mH < 300 GeV, the ‘golden’ mode H → ZZ → 4ℓ (cf. Fig. E.7, Appendix E) is the
most reliable one for the possible discovery of the Higgs boson. The discovery potential depends
mainly on the available integrated luminosity. The cross section for this process depends on the
Higgs boson mass, as shown in Fig. 4.11.

The main background from the pair production of Z bosons, namely pp̄ → ZZX, such that
Z → ℓ+ℓ− is reduced by the reconstruction of the four-lepton invariant mass distribution. This
mode is thus esteemed to allow for :

Tevatron > 3σ observation of the Higgs possible for 175 < mSM4
H < 300 GeV. (4.16)

Recently the Tevatron experiments CDF and D/0 have updated their analyses using data of 8.2
fb−1 from CDF and 8.1 fb−1 from D/0 [171]. The collaborations searched for the Higgs boson in the
decays H →W+W− and H → ZZ, using all the production processes of the SM, namely gg → H,
qq̄ →WH, qq̄ → ZH and vector boson fusion.

Two four–generation scenarios are considered: a ‘low–mass’ scenario and a ‘high–mass’ scenario
(see Fig. 4.12). In the former the authors fix the masses of the fourth generation leptons at mν′ = 80
GeV and mℓ′ = 100 GeV, in order to have maximum impact on Higgs decay ratios but to evade
current experimental limits; in the latter they set mν′ = mℓ′ = 1 TeV, in which case the leptons of
the fourth generation do not affect the branching ratios at all (they are kinematically inaccessible).
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Figure 4.11: The cross section of the ‘golden’ mode H → ZZ → 4ℓ as a function of the Higgs mass
for both three and four SM families. Figure from Ref. [170].

The masses of the fourth generation quarks are in both cases set so satisfy

∆mq′ ≡ mt′ −mu′ = 50 GeV + 10 ln
( mH

115 GeV

)
GeV . (4.17)

The collaborations deem the uncertainties in the analyses to come from the total inelastic pp̄
cross section used in luminosity measurements, SM diboson background production cross sections,
and top pair and single production.

The result of the analysis is

Tevatron (2011) : 124 < mSM4
H < 286 GeV excluded. (4.18)

The upper bound is at 300 GeV because searches with masses larger than this were not performed.

The validity of the exclusion (4.18) has since been questioned. In fact, arguments show [172]
that (4.17) overconstrains the fourth generation parameter space and in fact, a better description
of the parameter space might be [154]

∆mq′ .

(
1 +

1

5
log

mH

125 GeV
− 15s234

)
×mW , (4.19)

where the mixing of the third and fourth generations has been taken into account in the inclusion
of s34 ≡ sin θ34 = |Vt′b|.

4.3.2 Higgs searches at the LHC

The discovery potential of the LHC for the SM4 Higgs boson has been analyzed in Ref. [173]. The
integrated luminosity needed at

√
s = 14 TeV is shown in Fig. 4.13 as a function of the Higgs mass,

but also the collaborations themselves have published studies concerning the fourth generation:

The ATLAS collaboration has searched for the Higgs boson in the mass range 110–600 GeV in
35 to 40 pb−1 of data recorded in 2010 [174]. For the SM4 Higgs searches it was assumed that
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Figure 4.12: The Tevatron combined observed (solid black lines) and median expected (dashed
black lines) 95% C.L. upper limits on σ(gg → H) × B(H → W+W−). The shaded bands indicate
the ±1 standard deviation (s.d.) and ±2 s.d. intervals on the distribution of the limits that are
expected if a Higgs boson signal is not present. Also shown the prediction for a fourth-generation
model in the low-mass and high-mass scenarios, 4G (Low mass) and 4G (High mass) respectively.
The hatched areas indicate the theoretical uncertainty from PDF and scale uncertainties. The
lighter curves show the high-mass theoretical prediction. Figure and caption from Ref. [171].

Figure 4.13: The integrated luminosity required at
√
s = 14 TeV for 3σ observation and 5σ discovery

of the ‘golden mode’ gg → H → ZZ → 4ℓ in the SM3 and SM4 cases. Figure from Ref. [173].
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Figure 4.14: The combined upper limit on the Higgs boson production cross section in the framework
of SM4. Figure from Ref. [175].

the fourth generation fermions are very heavy so that the possibility of the Higgs decaying into
neutrinos is excluded. The results of the analysis is :

ATLAS (2011) : mSM4
H = 140 − 185 GeV excluded. (4.20)

A few months later improved limits were reported [175]:

ATLAS (Aug 2011) : mSM4
H < 600 GeV excluded, (4.21)

as is shown in Fig. 4.14.
Similarly, according to the results presented at the summer conferences of 2011 by the CMS

collaboration [176]

CMS (2011) : mSM4
H = 120 − 600 GeV excluded at 95% C.L.. (4.22)

The existence of a relatively light fourth family neutrino might require a reconsideration of the
CMS and ATLAS experimental bounds (4.22), (4.20). The bounds would in this case be reduced
from 120–600 GeV to 160–500 GeV because the opening of the H → ν ′ν ′ modifies the situation [177].

However, as we will discuss in the next chapter, the statistics accumulated by the beginning of
2012 have been enough to exclude the four-family model reviewed in this section.



Chapter 5

Experimental exclusion of the minimal

four–generation standard model

After the beginning of this work new results from experiments at CERN and Fermilab have been
reported. In 2011 some excess could be seen in different channels somewhere around 150 GeV [178,
177, 171], however, at this stage only at 2.5–3σ significance. With the amount of data accumulated
by July 2012, however, the LHC collaborations CMS [101] and ATLAS [100] measure a resonance
at ∼ 125 GeV at 5σ from the expected SM background [179]. Recent analyses done at Fermilab by
CDF give similar hints [180]. This resonance is due to a bosonic particle, but whether it is SM–
like or not is not yet known. The observed signal is not exactly equal to what would be expected
from the standard model as such, but the deviation from the SM prediction is smaller than what
is expected in the framework of four generations. This excess might signal new physics, or it might
not – higher statistics is needed to get an answer.

The determination of the characteristics of this new particle, which is probably the Higgs, will
require a lot more data, but already the mass and the decay rates observed serve to constrain beyond
the BSM theories. Especially, it has been found that the standard model with a sequential fourth
generation is excluded at 99.9% confidence level for a Higgs of mass 125 GeV [181].

Searches

The ATLAS, CMS, CDF and D/0 collaborations have performed searches in five channels :

• γγ, ZZ∗, WW ∗ from gluon fusion

• bb̄ associated production

• γγ from vector boson fusion

These are shown in Figs. 5.1, 5.2. The LHC experiments have observed ∼ 5σ excess in the γγ
and ZZ∗ channels, whereas the Tevatron experiments have a significance of ∼ 3σ for bb̄ associated
production. The only one of the above channels where excess has not been seen is the WW ∗ one.

In the channel H → γγ the signal is reported to have a statistical significance of more than 4
standard deviations [100, 101]. The total observed rate in this channel is somewhat higher than
what is expected of the SM (with a factor 1.9 ± 0.5 for ATLAS and 1.56 ± 0.43 for CMS), lying
within ±2σ [179] from the SM expectation, but still not satisfied by SM4 either. In fact, the
observed rate is at 4σ from SM4 [182]. An important thing to note about this channel is that it is
actually suppressed in the four-generation model. Naively, the rate H → γγ would be expected to
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Figure 5.1: The channels h → V V with V V = γγ,WW ∗, ZZ∗ looked for at the LHC. On the
left–hand side there is a fermion or a massive gauge boson running through the second loop. The
Higgs does not have direct couplings to the photon, so the h→ γγ process can only proceed through
loop processes (left).
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Figure 5.2: The channels h → γγ from vector boson fusion V = W,Z (left) and bb̄ associated
production (right).

be enhanced since Higgs production from gluon fusion has a larger cross section when the two new
heavy quarks are included. But it turns out that when the full next-to-leading order corrections
are taken into account, the rate of H → γγ is suppressed by a large factor. This happens because
the diagrams with a W in the loop have opposite sign from those with a quark in the loop, and
when all fourth generation quarks are summed over in the loop, their contribution almost exactly
cancels the W one. This cancelation is purely accidental (see for example [182]), and it also affects
the H →W+W−, ZZ channels.

The same suppression does not take place for the double production of tau leptons: H →
ττ [183]. Therefore this channel should receive a significant enhancement from the aforementioned
gluon fusion process, but so far this is not consistent with observations, giving a further argument
against the four-generation scenario. The significance of this exclusion is at 4σ.

The CDF and D/0 measurements of the ‘Higgs–strahlung’ process and the subsequent H → bb̄
decay (shown in Fig. 5.3) give a signal with a significance of 2.9 standard deviations [180]. The
measured signal strength of 1.97+0.74

−0.68 is a little above the SM3 expectation, but way above the SM4
expectation, which is just 0.4 [182]. This Higgs–strahlung production mechanism is relevant for
mH ∼ 120 GeV since in this mass range the background consisting of bb̄ from gluon fusion is too
large. In Higgs-strahlung from a W or Z the decay of the vector boson will help tag the bb̄ pair. [128]

Summary: Why is the exclusion possible?

The measured signals serve to exclude the (minimal) four–generation standard model 1 at the very
high confidence level of 99.9% [181]. The exclusion is possible thanks to

1We say minimal because an extended version of the SM4 will be considered in the following chapter.
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Figure 5.3: The diagram of the ‘Higgs–strahlung’ process with subsequent H → bb̄ decay.

Figure 5.4: Constraints on the SM4 derived from scanning over the fourth generation fermion masses
as described in the text. The darker region within the solid borders (light region within the dashed
borders) shows the level of exclusion with (without) the γγjj mode. Left: the exclusion limit as
a function of the neutrino mass (the other fourth generation fermion masses are scanned) for fixed
mh = 125 GeV. Right: the exclusion limit as a function of mh, with all fourth generation masses
varied. Figure and caption from [181].

• gg → h production rate is enhanced by a factor O(10),

• the channel h→ γγ suppressed by a factor O(100),

• at tree level the corrections from the fourth generation to Γ(h → bb̄) and Γ(h → ZZ∗) are
small,

• enhancement of H → ττ not seen in experiments

The authors of [181] deduce constraints on the SM4 by minimizing χ2 (A.1) in two different
settings, depending on the treatment of the mass of the fourth generation neutrino (see Fig. 5.4).
They find that for 124 GeV ≤ mh ≤ 127 GeV the SM4 is excluded at a confidence level of more
than 95% and that for the specific mass mh = 125 GeV the exclusion is at 99.9% C.L.

A similar result is obtained in another study, where the authors develop a new method for the
calculation of probabilities in order to evaluate the SM3 and SM4 fits [183]. The new method is
necessary because the SM3 and SM4 are not nested, meaning that the SM3 cannot be obtained
as a special case of SM4 with some parameters fixed. This non–nestedness implies that the usual
formulae for computing probabilities in likelihood ratio tests does not work. Hence a new C++
framework is developed for this study, where the goodnesses of the SM3 and SM4 fits are evaluated.
The χ2–distributions for the two scenarios are shown in Fig. 5.5. The figures show that both in
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Figure 5.5: The minimum χ2 value of the SM4 (left) and SM3 (right) as a function of the Higgs
mass mH . The solid line shows the results of the combined analysis of signal strengths and EWPOs.
For the dashed line only the signal strengths were included in the fit. Figures and caption from
[183].

the three and four-generation cases there is a minimum at the experimentally measured value of
mH = 126.5 GeV. As noted already in Section 1.2.3, some of the electroweak precision observables
(EWPOs) alter the global fits. For the case of SM3, the minimum at the ‘correct’ value of 126.5
seems to be a global minimum, whereas in the SM4 case there are two minima, at 126.5 GeV and
147 GeV, both at almost the same χ2–value. These SM4 minima occur at ∆χ2 ≈ +8 with respect
to the SM3 and are thus clearly worse. Also, the fact that the fits predicts a second minimum at
147 GeV, which is nowhere near the measured value, is in disfavor of SM4, since it shows that the
SM4 has some severe difficulties in describing the data.

The exclusion was shown to have reached over 5σ confidence level [184] a few days prior
to the submittance of this thesis. When both EWPD and the recent Higgs signal strengths from
both the LHC and the Tevatron are taken into account, likelihood-ratio tests are used to compare
the SM and SM4. (As noted above, the comparison cannot be made analytically but rather using
numerical simulations.) The LHC data alone is not sufficient for a 5σ exlusion, giving a statistical
significance of ‘only’ 4.8σ, but when Tevatron data is included the significance rises to 5.3σ. The
SM4 seems to be most decisively ruled out.

Higgs mass impact on fourth generation neutrino

The observed signal at ∼ 125 GeV constrains the neutrino sector of the fourth generation. If the
channel H → ν ′ν̄ ′ were open, and the Higgs light mH . 160 GeV, then the Higgs width would
be very small ΓH . 1 GeV. In this case the neutino channel would dominate over the other Higgs
decay modes [182]. For the neutrino channel to be kinematically accessible, it is of course required
that

mν′ .
1

2
mH . (5.1)

However, the experiments (ATLAS and CMS, see above) have reported excess in the diphoton
channel, quite the opposite of suppression. In this case the neutrino channel cannot be open, so
in fact the relation (5.1) is not satisfied and as a consequence the neutrino is heavier than ∼ 62.5
GeV. [182]



Part III

The two Higgs doublet model
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Chapter 6

Theory of the two Higgs doublet model

After the beginning of this work the minimal four-generation standard model has been excluded by
experiments (see the previous chapter). The use of the word ‘minimal’ here refers to the fact that,
in the SM4 we have (as is the case of SM3) just included one Higgs doublet in the scalar sector of
the theory. It might well be that there exist more than one scalar doublet in nature; at present we
do not know. In the rest of this report we will consider the impact of adding another scalar doublet
to the four-generation standard model considered previously.

6.1 Why add another doublet?

In this report we have discussed the number of fermion families in the standard model. An interesting
thing to note is that even though we know that there are at least three fermion families and two left–
handed SU(2) doublets in each family, the SM still has just one scalar doublet (the ‘standard’ Higgs
doublet). However, there is no reason for there to be just one Higgs doublet, and on the contrary
there are some arguments that favor several such doublets. Motivation for models including two
Higgs doublets (2HDM:s) instead of one include [185]

• Supersymmetry (SUSY)
Supersymmetry requires at least two Higgs doublets, because scalars come in chiral multiplets
and the complex conjugates come in multiplets of opposite chirality – hence there must be at
least two Higgs doublets.

• Cancellation of anomalies
In the SM the fermion families need to be complete in order for anomalies to be cancelled.
In SUSY, the introduction of a single Higgsino (the supersymmetric partner of the Higgs)
introduces anomalies. These are cancelled when one introduces a second doublet.

• Axion models
According to axion models in QCD possible CP violating terms (that are experimentally
known to be very small) in LQCD may be rotated away if the Lagrangian exhibits a global
U(1) symmetry. Such a symmetry exists only if there are two Higgs doublets.

• Baryon asymmetry of the Universe The baryon asymmetry of the Universe is not properly
described by the standard model. 2HDMs, however, may explain this asymmetry thanks to
the flexibility of the scalar mass spectrum as well as additional new sources of CP violation.
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A very important parameter giving information about the scalar sector is the ρ parameter (2.62)

ρ =

∑n
i=1

{
Ii(Ii + 1)− 1

4Y
2
i

}
vi∑n

i=1
1
2Y

2
i vi

, (6.1)

whose experimental value is known to be very close to one (2.63). Eq. 6.1 shows that both SU(2)
singlets with Y = 0 and doublets with Y = ±1 give ρ = 1 because in both these cases I(I+1) = 3

4Y .

6.2 The scalar potential and the field content

Complex scalar doublets have four degrees of freedom so with two (Higgs) doublets Φ1, Φ2 there
are eight. Three of these are just Goldstone bosons that give masses to the W± and Z and the
remaining five are the physical scalars – the Higgs fields. Of these five there is a charged scalar
(with two physical states), two neutral ones and a pseudoscalar (see e.g. [128]):

(h0, H0, A0, H±) (6.2)

with masses (mh, mH , mA, m±). Here h0, H0, H± are the scalars (CP–even particles) and A0 is
the pseudoscalar (CP–odd).

Whereas the SM Higgs sector has only one free parameter (the Higgs mass) 2HDMs contain
several free parameters and the vacuum structure is much richer. The most general scalar potential
contains several parameters and it has CP–conserving, CP–violating and charge–violating minima.
The potential reads [185]

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†
1Φ2 +Φ†

2Φ1

)
+
λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2

+ λ3Φ
†
1Φ1 Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

λ5
2

[(
Φ†
1Φ2

)2
+
(
Φ†
2Φ1

)2]
, (6.3)

for Φ1, Φ2 the two doublets of hypercharge +1. All the parameters of the potential are real. The
large Yukawa couplings of the fourth generation fields can destabilize the potential (6.3) due to the
possibly very large radiative corrections that they bring [186]. A way to deal with this problem is
to assume that the effective potential of the model is stabilized by some new effect near the TeV
scale, and that (6.3) is valid below this scale.

A region of parameter space minimizing the potential (6.3) gives the vacuum expectation values

〈Φ1〉0 =
1√
2

(
0
v1

)
, 〈Φ2〉0 =

1√
2

(
0
v2

)
. (6.4)

For the vacuum (6.4) the fields have the following mass terms in the Lagrangian

Lmass
φ± =

[
m2

12 − (λ4 + λ5)v1v2
] (

φ−1 , φ−2
)



v2
v1

−1

−1
v1
v2



(
φ+1
φ+2

)
, (6.5)

Lmass
η =

m2
A

v21 + v22

(
η1, η2

)( v22 −v1v2
−v1v2 v21

)(
η1
η2

)
, (6.6)

Lmass
ρ = −

(
ρ1, ρ2
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, (6.7)
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for λ345 = λ3 + λ4 + λ5 and when the doublet Φi is written

Φi =




φ+i

vi + ρa + iηi√
2


 , i = 1, 2, (6.8)

with charged scalar φ±, pseudoscalar η and neutral scalar ρ. The mass-squared matrices of Eqs. (6.5),(6.6)
each have a zero eigenvalue, corresponding to the massless Goldstones that give the masses to the
W± and Z, respectively. Besides the zero eigenvalues these matrices also give the physical masses
for the charged and pseudoscalar Higgses:

m2
± = [m2

12/(v1v2)− λ4 − λ5]
(
v21 + v22

)
(6.9)

m2
A =

[
m2

12/(v1v2)− 2λ5
] (
v21 + v22

)
(6.10)

The mass matrices of Eqs. (6.5),(6.6),(6.7) can be diagonalized, but in general not simultaneously.
We will discuss this in the next section. Two important parameters in the study of 2HDMs are α
and β, the angles that diagonalize the mass–squared matrices of the pseudoscalar and charged scalar
sector and the neutral scalar sector, respectively. The angle β is defined using the VEVs of the two
doublets Φ1, Φ2

tan β ≡ v2
v1

. (6.11)

6.3 Flavor conservation

As already mentioned, the mass–squared matrices of the various Higgs fields may in general not be
diagonalized simultaneously. This gives rise to tree–level flavor–changing neutral currents (FCNC).
Since FCNCs have not been observed in nature their existence poses a problem for such models
with several scalar multiplets. In order to illustrate this let us consider the Lagrangian describing
the mass of down–type quarks [185]

Ld
Y = y

(1)
ij ψ̄iψjΦ1 + y

(2)
ij ψ̄iψjΦ2, (6.12)

where i, j are a family indices. The corresponding mass matrix reads

Md
ij = y

(1)
ij

v1√
2
+ y

(2)
ij

v2√
2
. (6.13)

In the SM, with just one Higgs multiplet, the diagonalization of the mass matrix M implies the
diagonalization of the Yukawa couplings y. This is not the case of Eq. (6.13), however, where y(1)

and y(2) usually do not have the same set of eigenvectors,and so in general the Yukawa interactions
(6.12) will have FCNCs at the tree level (e.g. couplings d̄sφ). Getting rid of these is customarily
done by introducing some additional, continuous or discrete symmetries. [185]

There are different ways to introduce the symmetries that hinder the FCNCs. One option is to
introduce a discrete symmetry

Φ1 −→ −Φ1 , (6.14)

which is done for example in the so–called type I 2HDM, where Φ1 is chosen to couple to all fields
of the theory, and Φ2 to none.

Another option is to have transformations

Φ1 −→ − Φ1 , diR −→ − diR , (6.15)
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ξuh cosα/ sin β ξuH sinα/ sin β ξuA cot β
ξdh − sinα/ cos β ξdH cosα/ cos β ξdA tan β
ξℓh − sinα/ cos β ξℓH cosα/ cos β ξℓA tan β

Table 6.1: Yukawa couplings of u, d, ℓ to the neutral Higgs bosons h,H,A in the type II 2HDM.
The couplings to the charged Higgs bosons are obtained from Eq. (6.16). Values from Ref. [185].

as may be done in the type II 2HDM, where the right–handed down–type quarks couple to Φ1 and
the right–handed up–type quarks couple to Φ2. In this report we will concentrate on the model of
the second type, which is in fact the one that has been studied the most extensively in the literature
since it is the structure that is present in supersymmetric models. The non–supersymmetric case
differs from the SUSY one in a few important aspects [185]:

• there is no strict upper limit on the mass of the lightest Higgs,

• the scalar self–couplings are arbitrary,

• the angle α that diagonalizes the mass–squared matrix of the pseudoscalar and charged scalar
sector is arbitrary,

• decays H± −→ A0W± are usually allowed.

6.4 Yukawa couplings of the type II 2HDM

In the type II 2HDM the Yukawa terms in the SM Lagrangian may be written as [185]

L2HDM
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v
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+ + h.c.

}
, (6.16)

where the f are fermion fields with Yukawa couplings ξf as in Table 6.1, PL,R are the projection
operators on left and right–handed helicities, respectively.

The couplings of the neutral, scalar Higgses h,H to the massive vector bosons Z and W are
proportional to the SM coupling of the single Higgs, namely

g(hWW,hZZ)|2HDM = sin(β − α) · g(hWW,hZZ)|SM (6.17)

g(HWW,HZZ)|2HDM = cos(α− β) · g(HWW,HZZ)|SM . (6.18)

The coupling of the pseudoscalar A to the vector bosons is zero.



Chapter 7

4F2HDM phenomenology

When the second scalar doublet is added to the theory this necessarily affects the production and
decay of the Higgs particles. Already the field content is modified, there are several Higgses, not just
one. Also, the couplings of these many scalars are different from the minimal case of the SM. The
production and decay probabilities are, as normally done in QFTs, computed from the amplitudes of
the relevant processes, and these depend on the properties of and the couplings between the fields
participating in the process. What is then experimentally measured in the detectors of particle
colliders are the decay products, and the rates at which different decays are observed. Since these
differ from model to model the decays, especially through the measured branching ratios, give
information about the properties of the decaying particle and allows to distinguish beween various
models. That is why we in this section concentrate on the (production and) decay of the fourth
generation particles and the Higgses of the type–II 2HDM, the model of interest to us.

7.1 Higgs production and decay in the 2HDM–II

An important thing to note about the branching ratios of the extended Higgs sector is that they will
not only depend on the masses but also on the two new parameters α, β that are introduced in the
theory when another scalar doublet is added [128]. Since these two parameters are unknown, their
values must be fixed in order to get concrete predictions. This implies that comprehensive analyses
are difficult and more specifically that any plot of the branching ratios is necessarily incomplete.

The impact of a fourth generation on SM Higgs production was discussed in Section 3.2. As
noted before, the dominant production mechanism at hadron colliders is gluon fusion (see Fig. 3.5).
In the standard model, the largest contribution comes from a top quark loop, whereas in SM4 the
three heavy quarks t, t′, b′ give the largest contribution. In both these cases the largest contribution
comes from the quarks having the largest Yukawa couplings. Since the bottom quark is quite a
bit lighter than the top quark, its effect on the gluon fusion process in negligible with respect to
the top. In the four-fermion 2HDM (4F2HDM) model the bottom quark contribution to the loop
diagram 3.5 may for the 2HDM–II be sizeable and even dominate over t in a region of parameter
space.

As the Yukawa couplings of the various Higgses differ, we will present their production and
decays separately. We will only consider the two lightest particles h0 and A0 since these are the
ones that are most likely to be discovered at particle colliders, and h0 has perhaps already been
found (see Chapter 5).
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7.1.1 Production and decay of the neutral pseudoscalar A0

The ratio of the 4F2HDM gg → A cross section to that of the SM3 is (compare with Eq. (3.26) for
the ratio of SM4 to SM3) [128] :

σ[gg → A0]4F2H
σ[gg → h0]SM3

=

∣∣∣
∑

Q=t′,b′,t ξ
Q
AIA(τQ)

∣∣∣
2

|IS(τt)|2
, (7.1)

where the form factors are given in Appendix F.
In the enhancement (7.1) we see the Yukawa couplings ξ (Table 6.1) appearing. In particular

this means that when tan β is large the affect of a b quark in the loop of the gluon fusion process
may be relatively large, and has to be taken into account in the sum in the denominator of (7.1).

The decay of A0 to the fourth generation neutrinos ν ′,N ′ with masses (2.81) it of great interest
because, as we will shortly see, this is the dominant decay channel in a large part of the parameter
space. The decay has the tree-level width [128] :

Γ(A0→ν ′ν̄ ′, N ′N̄ ′) =
M2

ν′,N ′MA|ξνA|2
4πv2(1+tan2θ)2

(
1−

4M2
ν′,N ′

M2
A

) 3

2

, (7.2)

where θ is given in (2.84) and the channel is open when the neutrinos have masses smaller than half
the A0 mass. Fourth generation fermions are also present in the loops of A0 → gg, γγ, γZ [128]:

Γ(A0→gg)4F2H =
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3
A

32π3v2
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Γ(A0→γγ)4F2H =
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Γ(A0→γZ)4F2H =
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2
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Here ef is the charge of the fermion f and the expressions for cf and ĨA(τf , λf ) are given in (F.3)
and (F.4), respectively. The widths (7.3) – (7.5) are larger than in SM3 because the form factors
I (F.1) and Ĩ (F.4) are positive. Since there are no cubic A0V V ∗ vertices with V = W,Z in the
Lagrangian (6.16) these decays are not considered here. The lack of these diboson decays especially
implies that the existing limits on the Higgs mass would be significantly weakened. [128]

The various partial decay widths allow for a computation of the A0 branching fractions, which
have been calculated up to NLO in QCD corrections in Ref. [128]. The results are shown in Fig. 7.1
for fixed values of tan β = tan θ = 1, varying mA in the range 100–1000 GeV, and for fixed mA = 126
GeV (in accordance with the reported signal, see Chapter 5) but varying tan β, tan θ in Fig. 7.2. In
this analysis tan θ was let to vary in the interval (2.85). We recall from the definition of the neutrino
mixing parameter θ given in Eq. (2.84) and the mass eigenvalues (2.81), that the value tan θ = 1
corresponds to two degenerate states of a purely Dirac neutrino. In the case of such degeneracy the
decay rates of A0 → ν ′ν̄ ′ and A0 → N ′N̄ ′ are equal (see Eq. (7.2)).

In the low mass range of mA . 2mt the branching ratios in Fig. 7.1 show that the ‘invisible’
channel A0 → ν ′ν ′,N ′N ′ (shown in the graph as ν4ν4,N4N4) suppresses the other channels for
(tan β, tan θ) = (1, 1). The decay is invisible if the neutrinos have long enough lifetimes to escape
the detector before decaying. The suppression might be as strong as a factor O(50 − 100) in
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Figure 7.1: Decay branching ratios of the CP-odd Higgs boson A0 as functions of its mass MA

for the 4F2HDM-II. The other input parameters are fixed as (tan β, tan θ) = (1, 1). Figure and
caption from [128].

Figure 7.2: Decay branching ratios of the CP-odd Higgs boson A0 with mass MA = 126GeV for
the 4F2HDM-II. Plot-(a): Br

[
A0
]

as a function of the fourth-family neutrino mixing angle tan θ,
with fixed tan β = 1. Plot-(b): Br

[
A0
]

as a function of tan β, with fixed tan θ = 1. Figure and
caption from [128].
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comparison to BR(H → γγ) of SM3 [128]. This invisible channel seems to be dominant at all values
of tan θ considered as well as for moderate values tan β . 2. Therefore the diphoton channel is the
good one for discovery in the light-mass range, the range in which a new particle has recently been
seen (see Chapter 5). The type-II 2HDM with four generations can explain the observed excess in
this signal. The lack of A0V V ∗ vertices implying the lack of significant BR(A0 → V V ∗) is also in
accordance with the data, lacking a signal in the H →WW ∗ channel. [128]

7.1.2 Production and decay of the light neutral Higgs h0

The case of the light, neutral scalar is more complicated than the previous considerations, because
h0 mixes with the other neutral scalar, the heavier H0. Hence there is one more free parameter, and
that is the h0 −H0 mixing angle α. There are also two more tree-level decay channels to consider,
namely the ones into the massive gauge bosons, since h0 has couplings h0V V ∗ (where V = W,Z)
of strength (6.17).

As in the case of A0 also h0 production is enhanced by the fourth generation quarks, which have
Yukawa couplings as given in the first row of Table 6.1. For a SM Higgs of the mass of h0, the ratio
of the 4F2HDM gluon fusion cross section to that of the SM3 has an expression analogous to that
of Eq. (7.1) in the case of the pseudoscalar [128]:

σ[gg → h0]4F2H
σ[gg → h0]SM3

=

∣∣∣
∑

Q=t′,b′,t ξ
Q
h IS(τQ)

∣∣∣
2

|IS(τt)|2
, (7.6)

The ratio (7.6) is moderate due to the couplings ξh (Table 6.1) and if the fourth generation quarks
are very heavy with respect to h0 (m2

h ≪ 2m2
q′) then the ratio is approximately the same as for

SM4, that is, approximately nine.
The CP-even light, neutral Higgs has similar couplings as the single scalar boson of the SM.

The usual tree-level SM decay widths to fermions and massive gauge bosons are just scaled by
factors [128]:

Γ(h0 → f f̄)
∣∣
4F2HDM

= |ξfh |2 Γ(h0 → f f̄)
∣∣
SM3

, (7.7)

Γ(h0 → V V ∗)
∣∣
4F2HDM

= sin2(β − α) Γ(h0 → f f̄)
∣∣
SM3

, (7.8)

where the factors |ξfh |2, sin2(β − α) follow from Eqs. (6.16), (6.17), respectively.
The decays proceeding through loops are :

Γ(h0 → gg)4F2H =
α2
sM

3
h

8π3v2

∣∣∣
∑

Q=t,t
4
,b

4

ξQh IS(τQ)
∣∣∣
2
, (7.9)

Γ(h0 → γγ)4F2H =
α2M3

h

16π3v2

∣∣∣
∑

f=t,t
4
,b

4
,ℓ
4

Nf
c e

2
fξ

f
hIS(τf ) +

1

2
sin(β − α)IW (τW )

∣∣∣
2
, (7.10)

Γ(h0 → γZ0)4F2H =
αM3

hm
2
W

128π4v4

(
1− m2

Z

M2
h

)3
×

∣∣∣
∑

f=t,t′,b′,ℓ
4

ξfhN
f
c

ef cf
cW

AH
f (τf , λf ) + sin(β − α)AH

W (τW , λW )
∣∣∣
2
. (7.11)

As before, the form factors are given in Appendix F. In the decays where the loop couples to the
electromagnetic field, that is, when the decay products include at least one photon (7.10), (7.11), it
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Figure 7.3: Decay branching ratios of CP-even Higgs boson h0 in the 4F2HDM-II for the mass-range
mh = 100 − 1000 GeV and sample input (tan β, tanα) = (1,−3). Figure and caption from [128].

is also possible to have the charged Higgs H± running through the loop. If the charged H± is very
heavy, as would seem fit from flavor physics constraints [128], then its contribution to the widths
(7.10), (7.11) is negligible.

All branching ratios BR
[
h0
]

are shown in Fig. 7.3 as a function of mh for fixed α, β. For a very
light h0, with a mass smaller than twice the W mass, the dominant decay mode is the invisible
ν ′ν ′,N ′N ′. When the massive gauge bosons become kinematically accessible they take over.

In Fig. 7.4 the branching ratios for a Higgs of mass mh = 126 GeV are shown on the left-hand
side as a function of tan β for fixed tan θ = 1 and on the right-hand side as a function of tan θ for
fixed tan β = 1. The branching ratios do not have a strong tan θ dependece, whereas they do vary
as functions of tan β. As for the pseudoscalar A0, the invisible channel of the fourth generation
neutrinos has the largest BR when tan β . 2. The recent data suggesting mh ≃ 125 GeV with a
slight enhancement in the diphoton channel may well be explained by the results of this analysis of
Ref. [128] presented here thanks to the enhanced gg → h0 cross section and the suppression of the
diphoton channel.

7.1.3 The charged Higgs

The heavy neutral Higgs is often taken to be so heavy that its effect in most cases is negligible. Its
interactions are similar to those of the light h0. The charged Higgs may also be heavy, but due to
its electric charge its interactions with other particles differ from those of A0, h0 and H0, so we will
very briefly consider its decays here.

If the charged Higgs is not so heavy that it is integrated out of the dynamics then it may decay
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Figure 7.4: Decay braching ratios of CP-even Higgs boson h0 with mass mh = 126 GeV. Plot-(a):
Br
[
h0
]

versus tan θ with tan β = 1. Plot-(b): Br[h0] versus tan β, with tan θ = 1. In both plots
tanα = −3.0 is fixed. Figure and caption from [128].

into third and fourth generation particles, h0 and massive gauge bosons [187]:

H+ −→ tb ,

H+ −→ t′b ,

H+ −→ hW+ ,

H+ −→ τντ and H+ −→ ℓ′ντ . (7.12)

H± will rarely decay into particles of the first two generations, since these are so very light. Quite
generally, the decays of H0,H± (and also A0) are very parameter–dependent in the 4F2HDM [186].
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7.2 Searches for the 4F2HDM at the LHC

The addition of another scalar doublet affects the phenomenology of the fourth generation, and
especially it allows for new decays of the fourth generation quarks. In Ref. [188] it was found that
the new channels

t′ −→ h0t , b′ −→ h0b ,

t′ −→ H+b , b′ −→ H−t ,

t′ −→ W+b′ , b′ −→ W−t′ , (7.13)

are allowed by electroweak precision data and that they may even be the dominant decay channels
of the fourth generation up-type quark. The second of these may be kinematically inaccessible if the
charged Higgs is very heavy. The last one is forbidden in the SM [188, 187]. The presence of these
new channels affect the existing bounds on t′, b′ (relaxing them) and in general the experimental
searches have to be changed somewhat in order to better take into account the possible new signals.

7.2.1 Fourth generation quarks masses

The extension of the Higgs sector introduces new interactions to the fourth generation quarks and
makes their decays more complex than in SM4. As already noted H0 is often taken to be very heavy
and integrated out of the interactions. This leaves the two light neutral Higgses h0 and A0 that we
have focused on in the last chapters as well as the charged H±.

The decays (7.13) give rise to new collider signals such as [187]

qq̄ −→ t′t̄′ −→ 6W + 2b , (7.14)

qq̄ −→ t′t̄′ −→ 2W + 6b , (7.15)

and quite generally one has event topologies

t′t̄′, b′b̄′ −→ nWW + nbb , (7.16)

where nW (nb) is the number of W ’s (b quarks). In a recent analysis the discovery potential of
such channels was studied and the statistical significance of the signals in (7.14), (7.15) are shown
in Table 7.1). The statistical significance is S/

√
B, with S the signal and B the background. Three

different masses are considered for t′ : 350, 400 and 450 GeV and the parameters tan β = 1 and
V34 = 0.1 are fixed. A result of the analysis is that existing limits on the t′, b′ masses need to be
reanalysed, taking into account the new decays (7.16). For the minimal four-generation model SM4
it is estimated that the mass limit on t′ should be ∼ 350 GeV instead of the ∼ 450 − 557 GeV in
(4.12).

Mass splittings

It has already been noted that comprehensive studies of all of the parameter space of 2HDMs are
difficult. Even more so when a fourth generation of fermions are added to the field content. As
scanning the allowed regions of all parameters is challenging, it is necessary to fix some of these in
order to be able to extract information about the other, free parameters. This is what was done in
Ref. [186], where the fourth generation masses were left free while the other unkown variables were
given fixed values, because a lot of information can be gained already from the knowledge of the
masses.
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Process S/
√
B

2W+6b mt′ = 350 GeV 5.66
2W+6b mt′ = 400 GeV 4.55
2W+6b mt′ = 450 GeVe 2.93

6W+2b mt′ = 350 GeV 6 4.65
6W+2b mt′ = 400 GeV 4 3.43
6W+2b mt′ = 450 GeV 2.32

Table 7.1: The statistical significance S√
B

for each of the new signatures (7.14), (7.15) for three

different values of mt′ at the LHC (7 Tev) with
∫
Ldt = 1 fb−1. Table values from [187].

In the study [186] the scalar potential used is (6.3), without the term ∝ m12. This potential
is used to make a sampling of the four-generation parameter space. The samples are compared to
the EWPD and then the most likely mass spectrum for t′, b′, ℓ′ and ν ′ is deduced. This is done by
computing

σ(gg → h0) · Γ(h
0 → γγ, V V ∗)

Γ4F2HDM(tot)
(7.17)

for each scanned value of α (the h0 −H0 mixing angle) and extracting a χ2. Each sample is then
weighted according to its χ2 value. The constraints that are used are :

• mass of the lightest scalar mh = 124.5 GeV,

• tree-level unitarity,

• perturbativity (quartic Higgs couplings have to be smaller than 4π),

• absence of runaway directions,

• oblique electroweak parameters.

Constraints coming from decays of the other Higgses H0,H±, A0 are not taken into account, because
these depend to a very high degree on the parametrization that is used. In this way the most
probable parameter space of mν′ vs. mℓ′ and mb′ vs. mt′ are obtained (see Fig. 7.5 right and left,
respectively). (In Fig. 7.5 mν′ is denoted by m(ν4), mℓ′ by m(τ4), mb′ by m(b4) and mt′ by m(t4).)

The sampling of the parameter space shows that the quark and lepton mass splittings are smaller
than mW in 99% and 65% of the samples, respectively. The fourth generation doublets have normal
mass hierarchies with a probability of 59% in the quark sector, 72% in the lepton sector. The
relation of ∆q = mt′ −mb′ to ∆ℓ = mℓ′ −mν′ is shown on the left-hand side of Fig. 7.6. This figure
also shows that the data prefers a low value for tan β (see the right-hand side of Fig. 7.6). The
sampling results in tan β < 1 46% of the time.
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Figure 7.5: Contour plots of the probability densities in 4F2HDM with the mass of the lightest
CP−even state mh = 124.5 GeV. Left: mν′ ≡ m(ν4) vs. mℓ′ ≡ m(τ4); Right: mb′ ≡ m(b4) vs.
mt′ ≡ m(t4); All scales are in GeV; probability densities have been normalized and each bin is
10 GeV × 10 GeV. Figure and caption from Ref. [186].
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Figure 7.6: Left: Contour plots of the probability densities in 4F2HDM with the mass of the lightest
CP−even state mh = 124.5 GeV. Quark mass splitting vs. lepton mass splitting. The box marks the
area where the magnitude of the mass splittings is less than mW . All scales are in GeV; probability
densities have been normalized and each bin is 10 GeV × 10 GeV. Right: The probability density
function for log10(tan β) in 2HD4G with the mass of the lightest CP−even state mh = 124.5 GeV.
Figure and caption from Ref. [186].
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Chapter 8

Conclusions

In this thesis we have reviewed particle physics models with four generations of elementary particles.
The motivation for studying such extensions of the standard model (SM) comes from the SM lacking
explanations for a number of phenomena observed in nature. Some of these issues are of fundamental
nature, such as the baryon asymmetry of the universe or the reason for family replication and the
number of families. Other issues are of specific experimental nature: measurements whose results
cannot be accommodated in the SM (see Section 1.2.3 for details). An appealing feature of the
four-family models is that they agree with electroweak precision data and flavor observables. For
certain observables, the agreement is even better in the four-generation scenario than it is in the
SM.

Also, the nature of electroweak symmetry breaking and the origin of mass have been uncertain
for a long time, but at the moment the physics community is living exciting times, as a resonance
has just been observed (see Chapter 5). This resonance is presumably the much sought-after Higgs
particle. Its characteristics are not yet known, so whether it is standard model–like is not clear. The
few pieces of information that lead to the discovery already suffice, however, to severely constrain
models that incorporate new physics beyond the SM. Specifically, since the beginning of this work,
the model which has been a major part of this work – the SM with four generations of elementary
particles but just one scalar doublet (SM4) – has been excluded with a very high level of certainty (see
Chapter 5). This is exciting in the sense that the SM4 is now the first of the popular new physics–
models whose minimal version has been ruled out. (Some BSM models incorporate new physics at
such scales that it is questionable whether they can be verified or excluded in the foreseeable future.)
Just a few days before this thesis was submitted, the experimental exclusion of the SM4 was shown
to have reached the very decisive statistical significance of 5.3σ (see Chapter 5 and Ref. [184]). This
is possible thanks to the non-decoupling property of the fourth generation: the loop corrections
from the fourth generation do not tend towards zero when the masses of the particles are increased.

Pushing the extension further, following the exclusion of the minimal version, a perhaps ‘next-
to-minimal’ model is one in which a scalar doublet is added to the SM along with the sequential
fourth family. This four-fermion two Higgs doublet model (4F2HDM), which is phenomenologically
richer than the minimal one, can accommodate the new data from the LHC. The experimental
exclusion of the SM4 relies in part on the enhancement of Higgs production through gluon fusion in
SM4 as opposed to the SM. In the two doublet model the light, neutral Higgses dominantly decay
into the fourth generation neutrinos in a large region of parameter space. (This decay, of course,
requires that the neutrinos be kinematically accessible to the Higgs.)

Interestingly, these decays are invisible if the lifetime of the fourth generation neutrinos is larger
than the scale of the detector. The other, subdominant channels then get event rates that could

95



96 CHAPTER 8. CONCLUSIONS

match the observations. The partial decay widths depend on the parameters of the model, and in
the 4F2HDM notably upon the parameters tan β (giving the ratio of vacuum expectation values of
the two scalar doublets) and tan θ (the neutrino mixing angle) and since the values of these are as
yet unknown, no quantitative predictions can be made. Quite generally, given the number of free
parameters in the models with two Higgs doublets, it is difficult to perform comprehensive analyses
covering the whole of the possible parameter space.

Precision measurements of the recently observed resonance – most likely the Higgs – are currently
being performed and more statistics will be accumulated in the near future. Hopefully, the new
data may soon give answers to some of the questions mentioned in this thesis.
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Appendix A

Definitions of electroweak observables

The following definitions are found for example in Ref. [189].

• The parameter χ2 is often used as a measure of the deviation from the central values of the
tree level bounds of the global SM fit [111]

χ2

#(d.o.f.)
≡ 1

n

∑

i=ud,us,ub,cd,cs,cb

( |VCKM4,i| − |Vi|
∆Vi

)2

, (A.1)

where n is the number of considered degrees of freedom (d.o.f.).

• For the Z-pole measurements there are several observables that can be considered. The
one of interest to us is the observable sin 2β :

β = arg

(
VcdV

∗
cb

VtdV
∗
tb

)
, (A.2)

where Vij are the matrix elements of the CKM matrix.

• The front-back asymmetry Aqq̄
FB for a quark of flavor q is defined as

Aqq̄
FB =

σqF − σqB
σqF + σqB

, (A.3)

where the cross-sections are integrated over the full forward (F) and backward (B) hemispheres,
‘forward’ (‘backward’) meaning that the quark, rather than the antiquark, is produced at
positive (negative) cos θ.

• The left-right forward-backward asymmetry of a given event :

ALRFB =
(σF − σB)L − (σF − σB)R
(σF + σB)L + (σF + σB)R

× 1

〈|P|〉 , (A.4)

where the subscripts L,R define the helicities (left, right) of the initial-state particle and the
beam polarization P is taken as positive for right-handed beam helicity, negative for left and
〈|P|〉 is the average of the absolute value of the polarization of the beam.
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• The asymmetry parameter Af is defined for a fermion f and it is given by a relation
between the couplings of left (L) and right (R) handed helicity states: gLf and gRf the
couplings of the left and right-handed ones, respectively, or equally well by a relation between
the axial (A) and vectorial (V) couplings gV f = gLf + gRf and gAf = gLf − gRf :

Af =
g2Lf − g2Rf

g2Lf + g2Rf

=
2gV fgAf

g2V f + g2Af

. (A.5)

• The average charge of all particles in a jet, called ‘jet charge’, gives information about
the charge of the original quark. The jet charge can be defined as

Qh =

∑
i qip

κ
||i∑

i p
κ
||i

, (A.6)

where the sum is over all charged particles in the hemisphere with charge qi and longitudinal
momentum with respect to the thrust axis p||i and κ is a parameter (usually fixed to have a
value between 0.3 and 1). Jet events are divided into two hemispheres by the plane perpen-
dicular to the thrust axis. The jet charge in the forward (backward) hemisphere is denoted by
QF (QB). Therefore QFB = QF −QB can be thought of as the forward-backward charge flow,
which gives an effective observable, allowing for a derivation of the average charge asymmetry.

• The b-quark partial width of the Z-pole, normalized to the total hadronic width of the
Z-peak, is

Rb =
Γbb̄

Γhad
, (A.7)

where Γbb̄ is the width of the Z → bb̄ decay and

Γhad =
∑

q 6=t

Γqq̄ (A.8)

is the hadronic width of the Z-pole (the top quark is excluded in the sum (A.8) because it is
kinematically inaccessible: mt > mZ).

• The value for the effective leptonic mixing angle sin2 θℓeff, is derived from the experi-
mental observables Af , given in Eq. (A.5) and

ALR =
2(1 − 4 sin2 θfeff)

1 + (1− 4 sin2 θfeff)
2

(A.9)

provided that the ratio of the vectorial to axial coupling of the given type of fermion is

gV f

gAf
= 1− 2Qf

T f
3

sin2 θfeff = 1− 4|Qf | sin2 θfeff . (A.10)
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The Goldstone model

In this section we first review the Goldstone model, a field theory invariant under global U(1)
transformations. This model necessarily leads to massless bosons – not photons – which are not
observed in nature, making them an undesirable and unphysical feature of the model. These bosons
are absent when spontaneous symmetry breaking is applied to a theory that is invariant under a
local symmetry transformation, i.e., to a gauge theory. In a gauge theory these so-called Nambu-
Goldstone or Goldstone bosons have an interpretation as the longitudinal modes of the vector fields,
making the vector fields behave as if they were massive. We will follow the presentations given in
Refs. [190, 102, 191].

Non-invariance of the gound state

Consider a system whose Lagrangian density L possesses a particular symmetry, meaning that it
is invariant under the corresponding group of symmetry transformations. When classifying the
energy levels of the system, there are two distinct cases: A given energy level can be non-degenerate
making the corresponing energy eigenstate unique. In this case the eigenstate is invariant under the
symmetry goup of L. On the other hand the energy level might be degenerate and the corresponding
energy eigenstates are not invariant and transform linearly amongst themselves under the symmetry
transformations of L. A particular eigenstate is the state of lowest energy, the vacuum. A non-
degenerate vacuum is unique and posesses the symmetries of L; on the other hand, when it is
degenerate there is no unique state to represent the vacuum. A vacuum may then be arbitrarily
chosen and due to degeneracy it will not be invariant under the symmetries of L, it is asymmetric.
This is called spontaneous symmetry breaking.

Non-invariance in the Hamiltonian formalism

Whenever an interaction posseses some symmetry a given problem is often simplified considerably.
Exact symmetries (such as electric charge conservation) are fairly rare in nature, and one often
assumes the system to be such that it is just a small piece of the Hamiltonian H or Lagrangian
L density that violates a particular symmetry whereas the rest of H or L is invariant. (This is
the case in the SM: strong interactions conserve parity, isospin and strangeness, but at the same
time electromagnetic interactions violate isospin and weak interactions violate isospin, parity and
strangeness, so a hierarchy of forces arise.)

Let a system be described by such a Hamiltonian that can be written in parts as

H = H0 + λH1 , (B.1)

101



102 APPENDIX B. THE GOLDSTONE MODEL

where H0 is invariant under some group of transformations wheras H1 is not and λ is a parameter.
When there is an element U of the symmetry group that leaves the Hamiltonian H0 invariant, then

UH0U
† = H0 , (B.2)

and U connects states that form an irreducible representation of the group

U |A〉 = |B〉 . (B.3)

It follows that the energies of states related in the way of (B.3) are equal :

EA = 〈A|H0|A〉 = 〈B|H0|B〉 = EB . (B.4)

This is just a statement of the degeneracy of the states |A〉 and |B〉, and so the symmetry of the
Hamiltonian is manifest in the degeneracy of the energy eigenstates that correspond to the irreducible
representations of the symmetry group.

When the formalism of creation and annihilation operators is used, the states |A〉 and |B〉 can
be related to the ground state |0〉 through some creation operators φA and φB

|A〉 = φA|0〉 , |B〉 = φB |0〉 (B.5)

which satisfy

UφAU
† = φB . (B.6)

Hence Eq. (B.3) is satisfied only if

U |0〉 = |0〉 . (B.7)

When Eq. (B.7) is not satisfied the equality in Eq. (B.3) is violated and the symmetry consequence
of the degenerate energy levels no longer hols. This situation is often referred to as a sponta-
neous symmetry breakdown. The Hamiltonian (or Lagrangian) is still invariant under the symmetry
transformation even though the symmetry is no longer manifest in the degenerate energy levels.

Goldstone’s theorem

Let us consider the Lagrangian density of a complex scalar field φ(x) :

L = (∂µφ
∗)(∂µφ)− µ2φφ∗ − λ(φφ∗)2 , (B.8)

called the Goldstone Lagrangian density. This density is invariant under the U(1) group of global
transformations

φ(x) −→ φ′(x) = e−iαφ(x) , (B.9)

with α an arbitrary parameter that does not depend on the spacetime coordinates x. The kinetic
term in (B.8) is positive and vanishes only if φ(x) is constant. The ground state of the system is
obtained at the minimum of the ‘potential’

V (φ) ≡ µ2φφ∗ + λ(φφ∗)2 . (B.10)

As V (φ) depends on φ and φ∗ only through φφ∗ = |φ|2 we can ease the notation by defining

ρ ≡ φφ∗ , (B.11)
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so that (B.10) becomes a functional of ρ

V (φ) → V (ρ) = µ2ρ+ λρ2 . (B.12)

The potential has a minimum only if λ > 0, which we therefore take to be true. Interpreting µ2 as
a conventional mass term > 0, the potential has a symmetric ground state at φ = 0. This ground
state is unique and symmetric under (B.9). On the other hand, if µ2 < 0 the minimum is at

ρ = −µ
2

2λ
, (B.13)

which implies that there exists a whole ring of radius |φ| = √
ρ in the complex φ plane whose points

give the minumum of the potential V . Defining

v ≡
√

−µ2
λ

, (B.14)

the ring of minima is at

|φ| = v√
2
. (B.15)

The point φ = 0 is now unstable, whereas the number of stable points satisfying Eq. (B.15) is
infinite. Each of the points in the ground state can be reached from another ground state point by
a U(1) transformation. For a point on the real axis

φ(x) =
1√
2
[v + ξ(x) + iχ(x)] , (B.16)

with ξ, χ ∈ ℜ and ξ = χ = 0 in the ground state. Substituting this into the Godstone Lagrangian
(B.8) and ignoring constant terms gives

L =
1

2
(∂µξ)

2 +
1

2
(∂µχ)

2 − λv2ξ2 − λvξ(ξ2 + χ2)− 1

4
λ(ξ2 + χ2)2 . (B.17)

Interpreting the Lagrangian (B.17) as one describing a quantum field theory with two basic fields ξ
and χ, we see that there is no mass term for the field χ, but that there is a mass term of the usual
form −1

2m
2
ξξ

2 for ξ with

m2
ξ = 2λv2 . (B.18)

What has happened is that starting with an L, constructed from a complex scalar field φ(x),
invariant under U(1) and with µ2 < 0 we have ended with two fields: a massless field χ and a field
ξ whose mass (B.18) has been generated ‘spontaneously’.

When the Lagrangian (B.8) is generalized from one to n real scalar fields φj :

L =
∑

j

{
1

2
(∂µφj)(∂

µφj)−
1

2
µ2φjφj − λ(φjφj)

2

}
(B.19)

its symmetry group is the n-dimensional orthogonal group O(n) with 1
2n(n − 1) generators. The

symmetry group mixes the fields with each other. The gound state is again the ‘ring’ at
∑

j φjφj =

−µ2/4λ when µ2 < 0. Thinking of the fields φj as components of a vector Φ, then the ground state
fixes the length of this vector but leaves its direction arbitrary. Therefore one is free to choose just
one of the components of Φ to be nonzero, say the nth one. All other vacua can then be obtained
from this chosen one by an O(n) transformation. (Physically, the various equivalent ground states
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differ according to the number of Goldstone bosons (of zero energy and momentum) that they
contain.) The difference to the previously considered case is that the chosen a vacuum state

Φvac =




0
0
...
0
v




(B.20)

is now invariant under a nontrivial subgroup of O(n), namely under O(n − 1), that mixes the
n − 1 first components amongst themselves but does not touch the nth component. The group
O(n− 1) has 1

2 (n− 1)(n− 2) generators. Thus the difference in the number of geenrators between
the original group O(n) and the residual group O(n − 1) equals n − 1. These correspond to the
n− 1 ‘broken generators’ of the original symmetry group, playing the role of the Goldstone bosons
or the longitudinal polarizations of vector bosons.

Repeating the calculation of Eqs. (B.16)–(B.18) one sees that there is still just one massive
field and that the n − 1 other fields, called ‘Goldstones’, remain massless. The above considered
cases are examples of the Goldstone theorem [192] (also [193, 60, 61]) viable for any symmetry group:

For every broken generator in a spontaneous symmetry breaking
there exists a massless scalar boson.



Appendix C

Mathematical description of neutrino

oscillations

Neutrino flavor change is the process να → νβ, such that α 6= β, i. e. a neutrino with flavor α
becomes one with a different flavor, β. This quantum mechanical phenomenon happens both for
neutrinos propagating in vacuum and in matter. In most experiments neutrinos are produced by
charged current weak interactions. A neutrino beam is a superposition of various particle eigen-
states, which evolve differently as the beam propagates and the probability of finding different
eigenstates in the beam varies with time. This phenomenon, which is a consequence of neutrino
mixing, is called neutrino oscillation.

Let us consider charged current interactions, resulting in charged antileptons ℓ̄ and neutrinos νℓ.
The neutrinos participating in weak interactions are in the interaction basis, which is different from
the mass eigenstates [194]. A physically observable state in the interaction basis is generally a
superposition of the matter states να with masses mα :

|νℓ〉 =
∑

α

Uℓα|να〉 , (C.1)

where U ∈ U(N) is the amplitude of the process (see also Section 2.5.2). Let us for simplicity
assume that all neutrinos in the beam have the same three–momentum p. Since the masses of the
components differ the energies of the various components cannot be equal, as follows from

E2
α = p2 +m2

α , pα = p ∀ α . (C.2)

The evolution of states is given by standard quantum mechanics (see e.g. [195]), so that at a time
t the beam has evolved from the initial state at t = 0 to

|νℓ(t)〉 =
∑

α

e−iĤαtUℓα|να〉 =
∑

α

e−iEαtUℓα|να〉 , (C.3)

with |να〉 ≡ |να(t = 0)〉. This result (C.3) holds under the assumption that neutrinos are stable
particles.

As already noted in (C.2), the different Eα’s are not equal. The superposition (C.3) is different
from (C.1). The amplitude of a state νℓ′ in the state |νℓ(t)〉 is

〈νℓ′ |νℓ(t)〉 =
∑

α,β

〈νβ|U †
βℓ′e

−iEαtUℓα|να〉 (C.4)
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and the probability of finding the state νℓ′ is

Pνℓνℓ′ (t) = |〈νℓ′ |νℓ(t)〉|2

=
∑

α,β

|UℓαU
∗
ℓ′αU

∗
ℓβUℓ′β| cos

[
(Eα − Eβ)t− ϕℓℓ′αβ

]
, (C.5)

where we have used the fact that the mass eigenstates are orthonormal, 〈νℓ′ |νℓ〉 = δℓ′ℓ and ϕℓℓ′αβ is
defined as

ϕℓℓ′αβ = arg(UℓαU
∗
ℓ′αU

∗
ℓβUℓ′β) . (C.6)

Neutrinos are usually ultrarelativistic, so

Eα ≃ |p|+ m2
α

2|p| . (C.7)

In the ultrarelativistic limit t may be replaced by the distance traveled at that time, say x (since
v ≃ c = 1), giving the probability (C.5)

Pνℓνℓ′ (t) =
∑

α,β

|UℓαU
∗
ℓ′αU

∗
ℓβUℓ′β| cos

(
2πx

Lαβ
− ϕℓℓ′αβ

)
, (C.8)

with

Lαβ ≡ 4π|p|
∆m2

αβ

(C.9)

and
∆m2

αβ ≡ m2
α −m2

β . (C.10)

The oscillation lengths |Lαβ | give a distance scale over which the effects of oscillation are discernible.
For all distances x 6= n · Lαβ , n ∈ Z, the effects of oscillation are nontrivial.

Experimental values

In order to cite values given in the literature [55] for the above parameters we need to specify the
otherwise completely arbitrary numbering of the neutrinos, νi. We choose to identify |∆m2

21| with
the smaller of the neutrino mass differences squared and for convenience that m1 < m2 so that
∆m2

21 > 0. Which other mass difference is chosen as the second independent parameter does not
really matter, since in fact |∆m2

21| ≪ |∆m2
31(32)|, |∆m2

21|/|∆m2
31(32)| ≈ 0.03 and ∆m2

31 ≃ ∆m2
32 (for

motivation, see Ref. [55]). The current values of the parameters are shown in Table C.1, where the
upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy, where ‘normal’ and
‘inverted’ mass hierarchies correspond to |∆m2

31| > |∆m2
32| and |∆m2

32| > |∆m2
31|, respectively.

Parameter Best fit ±1σ

∆m2
21

[
10−5eV2

]
7.59+0.20

−0.18

∆m2
31

[
10−3eV2

] 2.4 ± 0.09

−
(
2.34+0.10

−0.09

)

Table C.1: Values of neutrino mixing parameters ∆m2
αβ. For ∆m2

31 the upper (lower) row corre-
sponds to normal (inverted) neutrino mass hierarchy. Values from Ref. [129]



Appendix D

Oblique electroweak parameters

While the SU(2)×U(1)Y gauge theory of electroweak interactions is widely accepted the mechanism
responsible for the breaking SU(2)L × U(1)Y → U(1)Q, called the Higgs sector, is still a mystery.
There is a multitude of alternative models (several Higgs doublets, technicolor etc.), but none of
the particles predicted by these models have yet been discovered directly 1, so it is important to
make use of indirect information from current measurements. The most important constraints come
from the measurement of weak interaction parameters, which are typically measured at a very high
precision: typically to a part per mil [196].

The most general Higgs models allow for large deviations from the SM predictions. In the 70’s it
was noted that in the SM there is a ‘natural’ tree–level quantity called the ρ–parameter (2.62) that
can be used to restrict models that break the electroweak symmetry. The theoretically predicted
value for the ρ–parameter is unity (2.63) in the SM, a value that is in agreement with experiment
(the deviation is smaller than 1%), so it is reasonable to assume that the corrections to this relation
arise from radiative corrections only [137]. The radiative corrections are sensitive to new particles
going through the loops.

Later it was noted that the effects of vacuum–polarization diagrams, as in Fig. D.1, so–called
oblique corrections, could also be used as a tool to scrutinize new–physics models in a general
way [197] and this idea was incorporated into a complete theory of weak radiative corrections [198,
199, 200].

In many studies about the fourth generation these oblique corrections are used to constrain
the parameter space of the SM4. A possible fourth generation affects many amplitudes through
loop diagrams, and for the Z and W bosons the effects of new heavy quarks and leptons enter
only through vacuum–polarization diagrams. In this section we will consider the physics of these
diagrams in some detail, following the presentation given in Ref. [137]

Vacuum polarizations affect the gauge interactions indirectly by modifying the gauge
boson propagators. This is why they are called ‘oblique’ corrections as opposed to ‘direct’ vertex
and box corrections, which directly affect the form of the interaction. The vacuum polarization
amplitudes are defined as ΠXY (q

2), with (XY ) = (11), (22), (33), (3Q) and (QQ), by

igµνΠXY (q
2) + (qµqν terms) ≡

∫
d4x e−iqx〈Jµ

X(x)Jν
Y (0)〉 . (D.1)

1At the time of finishing this report, in July 2012, a resonance has been seen at ∼ 125 GeV by the ATLAS [100]
and CMS [101] collaborations at the LHC and also by D0 and CDF at the Tevatron [180]. The observed decays hint
at this being the Higgs boson.
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γ γ

Z γ

Z Z

W W

= ie2 ΠQQ gµν + · · ·

= i
e2

cs
(Π3Q − s2ΠQQ) g

µν + · · ·

= i
e2

c2s2
(Π33 − 2s2Π3Q + s4ΠQQ) g

µν + · · ·

= i
e2

s2
Π11 g

µν + · · ·

Figure D.1: Definition of basic electroweak vacuum polarization amplitudes, as given in Ref. [137].
The notation used is explained in Eqs. (D.1)–(D.5).

Here Jµ
Q, J

µ
3 and Jµ

± = Jµ
1 ± iJµ

2 denote the electromagnetic (index Q) and weak isospin currents
(indices 1,2,3). In the formalism where the currents J interact with the gauge field, the coupling of
the J ’s to the electroweak gauge bosons has the form

e√
2sW

(W+
µ J

µ
+ +W−

µ J
µ
−) +

e

sW cW
Zµ(J

µ
3 − s2WJ

µ
Q) + eAµJ

µ
Q , (D.2)

where
sW ≡ sin θW and cW ≡ cos θW , (D.3)

and θW the weak mixing angle. It is useful to define another quantity, Π′
XY (q

2) by

ΠXY (q
2) ≡ ΠXY (0) + q2Π′

XY (q
2) , (D.4)

so that the first term ΠXY (0), which is regular at q = 0, does not depend on q and is therefore also
regular in the limit when the four–momentum is very large – it is ultraviolet (UV) finite.

Let us also define a shorthand notation for the combinations of Π’s that give the one-particle
irreducible (1PI) self energies of the photon (A), the W , the Z and the 1PI photon-Z mixing, shown
in the second line Fig. D.1 (recall from Section 2.4 that A and Z have the same basis so they mix)

ΠAA = e2ΠQQ , ΠZA =
e2

sc
(Π3Q − s2ΠQQ) ,

ΠZZ =
e2

s2c2
(Π33 − 2s2Π3Q + s4ΠQQ) ,

ΠWW =
e2

s2
Π11 . (D.5)

If the physics included in the vacuum polarization diagrams is associated with new, heavy
particles of mass greater than mZ , the vacuum polarization amplitudes will have rapidly converging
Taylor series expansions in q2, where q is the four–momentum flowing through a given diagram.

Now we are ready to define the three ultraviolet-finite oblique parameters S, T and U by

αS ≡ 4e2
[
Π′

33(0) −Π′
3Q(0)

]
,

αT ≡ e2

s2c2m2
Z

[Π11(0)−Π33(0)] ,

αU ≡ 4e2
[
Π′

11(0) −Π′
33(0)

]
. (D.6)
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Several different notations for these parameters appear in the literature. The above parameters are
written in terms of e, θW and mZ since these are some of the most accurately measured parameters
of electroweak interactions and serve as good reference points. Of the three listed in (D.6), the
S and T parameters divide the contribution of electroweak radiative corrections into pieces which
have a distinct physical significance:

S is isospin-symmetric and gives a part of the momentum dependence of Π33, the part that is
ultraviolet finite,

T obtains contributions only from effects that violate a global SU(2) symmetry called a custodial
symmetry.

In fact S can be pictured as measuring the total size of the new sector while T measures the total
isospin-breaking induced by this new sector. U is often predicted to be very small.

Provided that the mass scale of new physics is high and that the main contribution from it
mostly comes from virtual loops to the electroweak observables, then the three oblique parameters
provide a representation of the discrepancies expected from nonstandard physics. All neutral-current
and low-energy observables depend only on S and T , whereas the only accurately measured weak
interaction observable that depends on U is mW .

The use of S,T,U is convenient as it allows for the predictions from various models to be
compared with electroweak precision data. For a given model, the prediction of any electroweak
observable O is [172]

O = OSM,ref(MH,ref,mt,ref) + cSS + cTT + cUU , (D.7)

where OSM,ref is the SM prediction of the observable in the SM and cS , cT , cU are constants. The
SM reference depends on MH and mt, which take fixed values, and includes all known higher–order
electroweak corrections. The parameters cS , cT , cU can be found in the literature [55] for the full
set of electroweak observables. Because these have been measured with such high precision, the
oblique parameters of various BSM models are restricted by the relation (D.7).

As can be seen from (D.7), S, T and U all vanish in the SM. As our interest in this report is in
the physics of SM4 we note that each extra fermion doublet that is put into the theory contributes
additively to both S and T , because the contribution from a fermion doublet (u, d) is [137]

S(xu, xd) =
Nc

6π

[
1− Y log

(
xu
xd

)]
, (D.8)

T (xu, xd) =
Nc

16πs2W (1− s2W )

[
xu + xd −

2xuxd
xu − xd

log

(
xu
xd

)]
, (D.9)

U(xu, xd) =
Nc

6π

[
−5x2u − 22xuxd + 5x2d

3(xu − xd)2
+
x3u − 3x2uxd − 3xuxd + x2d

(xu − xd)3
log

(
xu
xd

)]
, (D.10)

where xf ≡ m2
f/m

2
Z , Nc is the number of colors (Nc=3 for quarks and Nc=1 for leptons) and Y

is the hypercharge of the doublet. The total contribution to the S, T, U parameters from a fourth
generation is obtained when both quark and lepton doublets are taken into account in the relations
(D.8)–(D.10) and the mixing with the third family (which is assumed dominant – mixings to the
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two first generations is assumed negligible) is included, too [86]:

∆S4 = S(xt′ , xb′) + S(xℓ′ , xν′) , (D.11)

∆T4 = −s234T (xt, xb) + s234T (xt′ , xb) + s234T (xt, xb′) + c234T (xt′ , xb′) + T (xℓ′ , xν′) , (D.12)

∆U4 = −s234U(xt, xb) + s234U(xt′ , xb) + s234U(xt, xb′) + c234U(xt′ , xb′) + U(xℓ′ , xν′) , (D.13)

where s34 and c34 are the sine and the cosine, respectively, of the mixing angle θ34 and mixing in
the lepton sector has been neglected.

Positive S and T , as would be expected by a fourth family according to the above, are not
excluded experimentally since the values currently given in the literature are [55]

S = 0.01± 0.10 (−0.8)

T = 0.03± 0.11 (+0.09)

U = 0.09± 0.10 (+0.01) (D.14)

The central values assume MH = 117 GeV and in the parenthesis give the difference to assuming
MH = 300 GeV. The SM parameters can be determined with no MH dependence, whereas U has
some, if little, dependence on the Higgs boson mass. However, not all of the parameters S, T,MH

can be obtained simultaneously, because the Higgs boson loops have a resemblance to oblique effects.
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Figure D.2: Oblique parameters in a model with a fourth fermion generation. Shown are the
S, T fit results (leaving U free) compared with the prediction from the SM (dark grey) and the
sequential fourth generation model with vanishing flavour mixing (light grey). The symbols illustrate
the predictions for three example settings of the parameters mu4

, md4 , mν′ , mℓ′ and MH . (The
notation used in the definition of the y-axis is ν4 = ν ′, l4 = ℓ′.) The light grey area is obtained
by varying the free mass parameters in the ranges indicated in the figure. Figure and caption from
[172].
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Figure D.3: Constraints in a model with a fourth fermion generation from fits of the oblique param-
eters to the electroweak precision data. Shown are the 68%, 95% and 99% CL allowed fit countours
in the (mt′ −mb′ ,mℓ′ −mν′) plane as derived from the fit for MH = 120. Figure from [172].
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Feynman diagrams for production of

fourth family particles

t̄′, b̄′

t′, b′

(a)

q

g

W

q′

t′, b′

t̄′, b̄′
(b)

q

g

W

q′

t′, b′

b̄, t̄
(c)

Figure E.1: Production of fourth generation quarks. (a) Strong pair production of heavy quarks at
leading order, (b) 2 → 3 Born diagrams contributing to t′b̄′ and t̄′b′ and (c) t′b̄ and t̄b′ t–channel
electroweak production. The amplitude of (c) us suppressed if the 3–4 CKM mixing is small.
Diagrams as in [154].

e+

q
W+

ν̄e

t′ b

(a)
W+

e−

q̄
W−

t̄′

νe

b̄

W−
(b)

Figure E.2: The diagrams for single production of fourth family t′ (a) and t̄′ (b) quarks in ep
collisions, as given in Ref. [152].
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e−

q
W+

νe

b′ c

(a)
W−

e+

q̄
W+

b̄′

ν̄e

c̄

W+

(b)

Figure E.3: The diagrams for single production of fourth family b′ (a) and b̄′ (b) quarks in ep
collisions, as given in Ref. [156].

q

q̄
W+

Q′

q̄′

q

q′
W+

Q′

q′′

q

q̄

W+ Q′

q̄′′

(a) (b) (c)

Figure E.4: The diagrams for single production of fourth family quarks Q in pp collisions. Diagrams
as in Ref. [153].

qi

g

qi
qj

W±

(a)

qi

g

qj

W±

qj

(b)

qi

g

t′

W±

qj

(c)

qi

g

t′
qj

W±

(d)

Figure E.5: The diagrams for gqi → W+qj subprocesses including t′qg anomalous vertices. qi is a
quark from the proton and qj is a quark of any flavor depending on the charged current interaction.
For W−q̄j final states one may change the direction of the current lines and replace the outgoing
quarks with incoming antiquarks. Diagrams and caption from Ref. [158].

q

q̄

Z ν ′

ν̄ ′

g

g

q
h

ν ′

ν̄ ′

Figure E.6: The ν ′ pair production of via netral current (left) and Higgs interaction (right). Dia-
grams as in Ref. [148].
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g
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q
h
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Z

ℓ

ℓ̄

ℓ

ℓ̄
g

g

q
h

ν̄ ′

ν ′
ℓ̄

W

W

ℓ̄

Figure E.7: The ‘golden’ (left) and ‘silver’ (right) modes for the discovery of a heavy Higgs boson.
For the golden mode ℓ = e, µ while for the silver mode ℓ = µ only. Diagrams as in Ref. [167].
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Appendix F

Form factors for A0, h0 branching ratios

In this Appendix we give the form factors of the Higgs branching ratios presented in Chapter 7.
The formulas are from Ref. [128].

The pseudoscalar A0

The functions appearing in Eq. 7.1 are the following:

IS(τ) =
1

τ2
[τ + (τ−1)f(τ)] , IA(τ) =

1

τ
f(τ) . (F.1)

These are the form factors for the CP–even (subscript S) and CP–odd (subscript A) Higgses,
respectively. Eqs. (F.1) depend on the function f(τ), which is (written in different manner than in
(3.22)) reads :

f(τ) =





arcsin2
√
τ , τ ≤ 1 ,

− 1
4

[
ln 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2
, τ > 1 ,

(F.2)

where τ ≡ m2
A/(4m

2
f ).

The parameter cf and function ĨA(τf , λf ) appearing in the width of A0 → γZ (7.5) are :

cf ≡ 2T3f − 4efs
2
W , (F.3)

ĨA(τf , λf ) =
f(τf)− f(λf )

2(τf − λf )
, (F.4)

where sW , cW are given in (D.3) and λf ≡ m2
Z/(4m

2
f ).
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The light scalar h0

The form factors of Eqs. (7.9) – (7.11) are :

IW (τ) = − 1

τ2

[
2τ2 + 3τ + 3(2τ − 1)f(τ)

]
, (F.5)

AH
f (τ, λ) = I1(τ, λ)− I2(τ, λ) , (F.6)

AH
W (τ, λ) = cW

{
4

(
3− s2W

c2W

)
I2(τ, λ) +

[
(1 + 2τ)

s2W
c2W

− (5 + 2τ)

]
I1(τ, λ)

}
, (F.7)

I1(τ, λ) =
1

2(λ− τ)
+
f(τ)− f(λ)

2(λ− τ)2
+
λ [g(τ) − g(λ)]

(τ − λ)2
, (F.8)

I2(τ, λ) =
f(τ)− f(λ)

2(τ − λ)
, (F.9)

where sW , cW are given in (D.3), f(τ) in (F.2) and the function g(τ) is :

g(τ) =





√
τ−1 − 1 arcsin

√
τ , τ ≤ 1 ,

√
1−τ−1

2

[
ln 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]
, τ > 1 .

(F.10)
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