FINE STRUCTURE OF MEASURES

TUOMAS SAHLSTEN

Academic dissertation

To be presented for public examination
with the permission of the Faculty of Science of the University of Helsinki
in Auditorium XII of the University Main Building
on 20 October 2012 at 12 o’clock noon

Department of Mathematics and Statistics
Faculty of Science
University of Helsinki
2012



ISBN 978-952-10-8272-6 (Paperback)
Unigrafia Oy

ISBN 978-952-10-8273-3 (PDF)
http://ethesis.helsinki.fi

Helsinki 2012


http://ethesis.helsinki.fi

CONTENTS

Acknowledgements
List of included articles
1. Overview
2. Dimension and mass distribution
2.1. Local homogeneity
2.2. Conical densities
2.3. Porosity
3. Tangent measures
3.1. Non-doubling measures
3.2. Typical measures
References
Included articles [A, B, C]

iii






ACKNOWLEDGEMENTS

I am deeply grateful to my advisor Pertti Mattila for his excellent guidance and contin-
uing support throughout the years. Pertti gave me free hands to work on my own ideas,
but helped me to be self-restraint when things became too chaotic.

I express my gratitude to the pre-examiners Tapio Rajala and Toby O’Neil for their
time and encouraging reports, and Zoltdn Buczolich for acting as my opponent.

I would like to thank Tuomas Orponen for many eye-opening mathematical debates,
collaboration, and friendship. I wish to also thank Pablo Shmerkin and Ville Suomala for
many exciting discussions and collaboration. Furthermore, I am indebted to Sara Mun-
day, Tony Samuel, De-Jun Feng, Huo-Jun Ruan, Ville Suomala, Esa and Maarit Jarvenpaa
for hosting my several research visits during past years. Moreover, thanks to Jonathan
Fraser and Bing Li for recent collaborations.

The financial support from the Finnish Centre of Excellence of Analysis and Dynamics
Research and Emil Aaltonen Foundation is gratefully acknowledged.

Finally, I would like to thank all my colleagues in the mathematics department for an
inspiring enviroment, my high-school teachers Marcus Frosén and Martti Parikka for
encouraging me to pursue further in mathematics, and my friends and family for their
support.

In Helsinki, September 2012 Tuomas Sahlsten






LIST OF INCLUDED ARTICLES

This thesis consists of an introductory part and the following three articles:

[A] T. SAHLSTEN, P. SHMERKIN, V. SUOMALA, Dimension, entropy, and the local distri-
bution of measures, to appear on J. London Math. Soc. (2012).

[B] T. ORPONEN, T. SAHLSTEN, Tangent measures of non-doubling measures, Math. Proc.
Cambridge Philos. Soc. 152 (2012), 555-569.

[C] T. SAHLSTEN, Tangent measures of typical measures, to appear on Real Analysis Ex-
change (2012).

The article [C] consists of author’s independent research, with the exception of [C, Propo-
sition 5.1]. The author had a central role in the research and writing of the articles [A]
and [B].

vii






FINE STRUCTURE OF MEASURES 1

1. OVERVIEW

During the birth of fractal geometry, several irregular sets, now commonly known as
fractals, emerged from physical phenomena and became popular due to their rich fine
structure. It turned out that measures are powerful in the study of fractal sets since mea-
sures can be used to distinguish local irregular structures. The basic intuition behind a
measure is that one is given a fixed amount of mass, and then one distributes the mass to
a space according to some rule. If we distribute mass as uniformly as possible around a
fractal, the measure becomes complicated itself and actually characterizes the geometry
of the fractal. These examples of measures arising from fractal geometry have led to the
need to understand the fine structure of measures in general.

Several tools have been introduced to understand the local properties of measures.
The theory of rectifiability has been a catalyst in the rise of such concepts. Here notions
such as densities, conical densities, and tangent measures were introduced and became cen-
tral, and have also recently become useful in the context of irregular sets. Moreover,
dimension and porosity of measures, and a more recent related concept of local homogene-
ity have also risen when studying fractals with a lot of fine structure. In this thesis, we
provide new results related to a number of these notions.

In Section 2 we study the geometric nature of fractal dimensions and summarize the
work of article [A]. Dimensions of sets and measures are global quantities that capture
the distribution of the set and measure under study. During recent decades there has
been much research aiming to calculate the dimension of sets and measures. Often the
objects in study have arisen from physical and dynamical contexts as attractors of some
dynamical systems, where the dimension of the measure could be calculated using tools
from dynamics. Here the exact value of the dimension becomes important as it gives also
information about the behavior of the underlying dynamical system.

The intuition behind dimension can be understood from the following example. Con-
sider the Cantor dust C x C, where C) C [0, 1] is the classical Cantor set with contraction
ratio A € (0,1/2]. When we increase )\, the approximations of the set will occupy more
space, see Figure 1.1. In fact, the self-similarity of the dust guarantees that such phe-
nomenon happens everywhere no matter how close we look at the dust. The contraction
ratio A completely characterizes the fractal dimension of the Cantor-set: the theory of
self-similar sets implies that any reasonable fractal dimension of the Cantor-dust is equal
to

log 4

dim(C)\ X CA) = m .

Thus the dimension grows when X increases. When X approaches its maximal value 1/2,
the dimension grows to 2. In the case A = 1/2, the dust fills everything and becomes the
whole unit square [0, 1]2.

We are witnessing the geometric nature of dimension growth. Objects with large “di-
mension” should be more uniformly distributed in arbitrarily small scales. Concepts
such as local homogeneity, conical densities and porosity are precisely made to serve
us in the quantification of this phenomenon. Connecting dimension to these geometric
notions has been a central part of research for the last century, all the way up to recent
years. In the paper [A], we generalize and simplify a number of previous results related
to them by providing a new unifying theory based on local entropy averages.
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FIGURE 1.1. Third generation approximations of the Cantor dust C) x
Cy when the contraction ratio \ attains values 0.25, 0.33, 0.40 and 0.45.
Higher the contraction ratio, or the “dimension” of the Cantor dust is,
more space the dust ought to occupy.

In Section 3 we study the theory of tangent measures and summarize the articles [B]
and [C]. Tangent measures have been quite useful in problems related to rectifiability
since often when tangent measures behave well at many points, also the original mea-
sure will be quite regular. Moreover, tangent measures often possess more regularity
than the original measure, so they might be easier to analyze. However, such heuris-
tics do not hold in general. An example by D. Preiss in [33, Example 5.9] demonstrated
that a singular measure might have only constant multiples of the Lebesgue measure as
tangent measures. This provided an argument for the fact that irregularity of a measure
might not preserve to tangent measures at all. Moreover, an example by T. O’Neil in
[32] demonstrated that the set of tangent measures can be very rich: O’Neil constucted
a measure that has every non-zero measure as a tangent measure of it at almost every
point with respect to the measure.

Articles [B] and [C] are devoted to study the possible extensions of the results by Preiss
and O’Neil. In the paper [B], we consider very badly singular measures, non-doubling
measures, and give an example of a non-doubling measure with very regular tangent
measures. This example also has some implications to the theory of porous measures.
In the paper [C] we prove that typical measures in the sense of Baire category satisfy the
same property as the measure O’Neil constructed. This result is not new, it was already
proved by O’Neil in his PhD thesis [31], but our contribution to the problem is to exhibit
a different self-contained proof, provide some ramifications, and study the sharpness of
the result.
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2. DIMENSION AND MASS DISTRIBUTION

In this section we go through the results we obtained in the paper [A]. The main focus
is the relationship between dimension of measures and different geometric notions that
describe the local distribution of mass. There are several ways to define a dimension for
a measure. Originally dimensions were only defined for sets and the classical notions
here are the Hausdorff and packing dimension. They can also be used to define global
dimensions of measures: the Hausdorff dimension of a measure y on R? is defined by

dimy p¢ = inf{dimg A : A ¢ R%is a Borel set with ;(4) > 0};
and the packing dimension of p is
dimp p = inf{dimp A : A C R%is a Borel set with y(A) > 0},

where dimy A and dimp A are the usual Haudorff and packing dimension of the set A C
RY, respectively. Here a measure on R? is always a Radon-measure. In other words,
dimension of the measure is defined by the minimal dimensions of the sets the measure
charges.

Another way to define a dimension of a measure is given by the behavior of j(B(z, 7))
with respect to °, when r N\, 0. Here B(z, ) is a closed ball of radius » > 0 and center
x € RY. This gives rise to the notion of upper- and lower local dimensions of a measure p,
which at z € R? are defined by the quantities:

_ 1 B
dimjge (p, ) = limsup M

log u(B(,r))
™0 log r

and dimy,.(u,x) = ligl\%’lf log -

It turns out that understanding p(B(z, ) whenr N\, 0 at ;2 almost every point is essential
in the evaluation of the Hausdorff and packing dimension:

dimy g1 = sup{s > 0 : dim,.. (11, ) > s for  almost every z € R%};

and

dimp p = sup{s > 0 : dimjec(1, 2) > s for p almost every z € R?}.

For a proof of this fact, see [9, Proposition 10.2]. Hence the local dimensions of measures
are the key to understand global dimensions.

In many examples, the measure ; under consideration often arises as an invariant
measure for some dynamical system, such as in the case of self-similar sets. In these cases,
the local dimension can be naturally derived from the theory of dynamics. However,
calculating the local dimension directly can in general be very hard. If we are given some
information on the distribution of 1, we can possibly try to rely on the technique of local
entropy averages. Local entropy average is an alternative formula for the local dimension
of a measure ;. at u almost every point. The formula is based on averaging entropies
of the measure with respect to some cube grid. Considering problems related to mass
distribution, this formulation turns out to be much more useful than the definition of
local dimension as entropy takes into account the uniformity of the distribution of mass.

Let Qy, be the set of all dyadic cubes of generation k € N, that is, all the cubes of the
form [0,27%)4 +27%p for some b € Z9. Given = € R?, we let Q** be the unique cube from
Q). containing . When a € N, we denote Q' <, Q if ' is an 2%-adic child of @, that is,
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Q€ Q Q € Quigand Q' C Q. If pis a measure on R?, a € N, and Q is a cube with
(@) > 0, the a-entropy of 1 in the cube @ is

a _ wQ") wQ)
HY(1,Q)= Y &) log i
Q'<aQ

Proposition 2.1 (Local entropy averages). Let u be a measure on R? and a € N. Then for p
almost every x € R%:

N
. BT k’ .
dimye (@, ) = lllgr;sgop Nlogae ];1 H (1, Q™");
and
1 N
_ . k,
dimy . (p, z) = lmloréf Nlogar kg_l H(u, Q7).

The number log 2¢ in the average could be considered as some kind of Lyapunov ex-
ponent of the measure y with respect to the 2%-adic dyadic partition of the cube Q**. In
fact, Shmerkin also considered in [37] a more general nested partition where the Lya-
punov exponents depend on the generation & and the point x.

There are many variations of the exact statement of local entropy averages, see for
example [10, 37, 36]. The particular formulation above is used in [A] and it is due to
M. Hochman in a personal communication from 2011. The proof of the principle is an
application of the law of large numbers for martingale differences when invoking the fact
that the local dimension of y can be calculated via dyadic filtrations ;. almost everywhere,
see [36, Theorem 5]. Local entropy averages were first considered by J. G. Llorente and
A. Nicolau, but they relied on the law of the iterated logarithm rather than the law of
large numbers. As a result, they get sharper results but under stronger assumptions on
the measure, such as dyadic doubling, see [17, Corollary 6.2].

The main contribution of the paper [A] is to introduce local entropy averages as a
unifying technique for the relationship between dimension and the geometric notions of
local homogeneity, conical densities, and porosity. The idea is that local entropy averages
can be used to obtain discrete information about the distribution of ;2 on a certain por-
tion of scales. More precisely, if the entropy H®(u, Q%%) is large for some generation &,
then the measure y is fairly uniformly distributed among 2%-adic children of Q. This
information is then used to derive bounds for local homogeneity, conical densities and
porosity near x. This general strategy was introduced and used by Shmerkin in the study
of mean porous measures in [37, 36]. However, the geometric arguments in our applica-
tions are rather more involved at all steps. In the next three sections we will introduce
the concepts under study and our results.

2.1. Local homogeneity. Homogeneity of a measure was introduced by E. Jarvenpda
and M. Jarvenpdd in [12] as a tool which describes how far a measure is from uniform
distribution. However, a priori, homogeneity by Jarvenpads is not a local notion in the
sense that it would describe the behavior of a measure near a given point. For this pur-
pose local homogeneity was introduced by A. Kdenméki, T. Rajala and V. Suomala in
[13]. A local version of the homogeneity was a very welcomed concept since it served as
a natural tool to study porosities and conical densities.
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Definition 2.1. The local homogeneity of a measure p at z € R? with parameters 6,,7 > 0
is defined by
homs ¢ (1, x) = sup{tiB : B is a (dr)-packing of B(z, )
with u(B) > ep(B(z,5r)) for all B € B}.

Here a 6-packing of a set A C R? is a disjointed collection of balls of radius § centred in 4,
see also Figure 2.1.

FIGURE 2.1. Our aim is to find an optimal (dr)-packing of B(z,r) with
large relative ; mass for each ball in the packing. The larger the size of the
packing is, that is, the larger the local homogeneity is, the more uniformly
distributed the measure j is. In the picture the distribution of p is given
by the Sierpiriski carpet and the small darker grey balls form an optimal
homogeneous packing of B(x, ).

The distribution of a measure y is the most uniform near = € R? when for all small
d,e,7 > 0 the local homogeneity

homs ¢ (1, ) > 6

for some constant ¢ independent of d,e,7. This happens for example in the case of
Lebesgue measure p = £, If the behavior of homs . , (i, x) differs from this, that is,
homg . (1, ) < c¢6~® where s < d, the measure ; becomes less and less uniformly dis-
tributed the smaller the s is. The number s here is closely related to the dimension of
the measure p: Intuitively, if the dimension of 4 is larger than s and if § > 0, then for
many x and small 7 > 0 one expects to find at least ¢ disjointed sub-balls of B(x,)
of diameter dr with relatively large mass. This observation was made precise for upper
local dimension in [13, Theorem 3.7], which is stated in the Euclidean case below:

Theorem 2.1. Let 0 < m < s < d. Then there exists a constant o9 > 0 such that for all
0 < § < o, there exists ¢ > 0 with the following property: If ji is a measure on R%, then for p1



6 TUOMAS SAHLSTEN

almost every x with dimee(p, x) > s, we have

lim sup homg . - (p, ) > 6~ ™.
\0
However, Theorem 2.1 does not give us any extra information about the homogene-
ity if we replace the upper local dimension with lower local dimension. In the article
[A] we studied this case, and we were also able to generalize Theorem 2.1 into a more
quantitative form:

Theorem 2.2 (Theorem 1.1 of [A]). Let 0 < m < s < d. Then there exist constants p > 0
and 6o > 0 such that for all 0 < 6 < dy, there exists € > 0 with the following property: If 1 is a
measure on R?, then

(@) for w almost every x with dimy, (11, ) > s and for all large enough N € N, we have
homs . ,(p,z) > 6™ (2.1)

for at least pN dyadic scales r € {271,272, ... 27N},
(b) for u almost every x with dimyoe (11, x) > s and for infinitely many N € N, the estimate
(2.1) is satisfied for at least pN dyadic scales r € {271,272 ... 27N},

The main difference to Theorem 2.1 is that here we have a portion p > 0 of scales where
we have an estimate for the local homogeneity. For the proof of Theorem 2.2 we have to
introduce the notion of dyadic homogeneity where for a given dyadic cube we estimate
the number of certain generation children of the cube with large relative ;1 mass. Dyadic
homogeneity works really well with local entropy averages, and allows us immediately
to have dyadic homogeneity estimates from local dimension estimates. Thus the main
problem is to link dyadic homogeneity to the spherical homogeneity homs . . (u, x).

2.2. Conical densities. As one can see from the results related to local homogeneity, if a
dimension of a measure (. is large, 1 should be locally fairly uniformly distributed. This
would mean that if we “look” from many points z in the support of ;1 to some direction,
we should see some of the mass of p in arbitrarily small scales, see Figure 2.2. This
observation can be made precise with conical densities.

The problem of relating the dimension of sets and measures to their distributions in-
side narrow cones has a long history beginning from the work of Besicovitch on the
distribution of purely 1-unrectifiable sets. The conical density properties of Hausdorff
measures have been extensively studied by J. Marstrand in [19], P. Mattila in [22], A.
Salli in [34] and others and have been applied for example in unrectifiability [23] and
removability problems [25, 18]. Analogous results for packing type measures were first
obtained in [38, 15, 14]. Upper conical density theorems of arbitrary measures have been
considered in [5, 13].

Let us introduce some notation. Let m € {0,...,d —1} and let G(d, d — m) be the set of
all (d — m)-dimensional linear subspaces of R%. For z € RY, r > 0,V € G(d,d — m) and
0 < a <1we write

X(z,r,V,a)={y e R?: dist(y — z,V) < aly — z|,y € B(z,r)}.

In the plane, this is a symmetric cone to the direction V' around x with an opening angle
2 arcsin « restricted to the ball B(x,r). When 6 € S9! we also write

H(z,0,0)={yeR%: (y—z)-0>aly—z|}.
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FIGURE 2.2. In the picture we are considering the mass of the Sierpiriski
carpet measure y in a non-symmetric cone C' formed around a line pass-
ing through z. If x is chosen wisely, we should see some mass of i no
matter to what direction we look from x.

If o here is close to 0, this cone is a near the half-space to the direction §. We are interested
in the following narrow cones

C(z,r,V,0,a) = X(z,r,V,a) \ H(z,0, )

and the distribution of measures in these cones, see also [Figure 1, A].

When considering the upper conical density theorems for measures, the most general
result before the one in [A] is the following result [13, Theorem 5.1] by Kdenmaki, Rajala,
and Suomala:

Theorem 2.3. [et 0 < m < s < d, m € Nand 0 < o« < 1. Then there exists a constant
¢ > 0 such that the following holds: If y is a measure on RY, then for p almost every x with
dimjoe(p, ) > s we have

u(C(z,r,V,0,a))

limsup  inf > c.
gd—1 B
oo oest o u(Bla,r)

In the article [A], we extended this result in a similar way we extended the local ho-
mogeneity result in Theorem 2.2:

Theorem 2.4 (Theorem 1.2 of [A]). Let 0 < m < s < d, m € Nand 0 < a < 1. Then there
exist constants p > 0 and ¢ > 0 such that the following holds: If y is a measure on RY, then
(a) for p almost every x with dimy,.(u, x) > s and for all large enough N € N we have
e plCGnV.6,0))
oesd—1 /,L(B(LE, T))

VeG(d,d—m)

for at least pN dyadic scales r € {271,272, ... 27N},

(2.2)
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(b) for u almost every x with dimyoe (11, x) > s and for infinitely many N € N, the estimate
(2.2) is satisfied for at least pN dyadic scales r € {271,272 ... 27N},

For the statement (a), a weaker form of the result was already available. Namely, the
results of M. Csornyei, Kdenmaéki, Rajala, and Suomala in [5] (see Remark 4.7 in [5]) yield
that for infinitely many N € N the estimate (2.2) holds at least pN dyadic scales r < 27V,
Our result strengthens this to all large enough N. In the proof we once again invoke
local entropy averages and solve a discrete version of the conical density theorem, see
[A, Lemma 3.2].

2.3. Porosity. Porosity is a degree of singularity of sets and measures which describes
the size of “holes” in arbitrarily small scales. The ideas surrounding porosity were al-
ready present in the work of A. Denjoy in [6] and the notion was rigorously considered
by E. P. DolZenko in [7] when he studied certain exceptional sets for complex functions.

The relationship between dimension and porosity is of much later origin. J. Sarvas
proved in [35] that when a set has uniformly positive porosity at every small scale, then
its Hausdorff dimension is less than the dimension of the space. O. Martio and M. Vuori-
nen [21] then extended this result to give sharper bounds for the dimension. In [22]
Mattila studied the asymptotics of this phenomenon when porosity increases, and using
techniques from conical densities he managed to prove that when the porosity of a set in
RY increases to its maximal value 1/2, then the Hausdorff dimension of the set decreases
to d — 1. The reasoning for dimension d — 1 here is that (d — 1)-dimensional hyperplanes
are already maximally porous. In [34] Salli found the correct rate of asymptotics for this
phenomenon, and generalized it to packing dimension. Moreover, in [16] P. Koskela and
S. Rohde introduced mean porosity in which we assume that holes of the set appear in av-
erage at some portion of small scales rather than all small scales. For dimension theory,
relaxation to mean porosity was not too radical since previous results could be general-
ized to mean porous sets. For example, the work by Salli was generalized by D. Beliaev
and S. Smirnov in [3].

Porosity was historically just set theoretical until the work by J.-P. Eckmann and Jar-
venpdads in [8] where they introduced an analogous notion for measures. For measures
“holes” are determined by the areas where the measure has relatively small amount of
mass compared to its surrounding area, see Figure 2.3. Most dimension theorems for
porous sets could be deduced also in the setting of porous measures, see the papers
[8,3,14, 2,13, 37].

In the article [A] we are able to obtain a new generality to some previous results in this
field. Let us first introduce some precise notion we need.

Definition 2.2. Fix ¢ = 1,...,d and a measure z on R%. The ¢-porosity of p at = € R? with
parameters r, e > 0 is the number
por,(u, x,7,¢) = sup{o > 0 : there are 1, ...,y € R%, (y; — x) - (y; — ) = 0, with
B(yi, er) C B(z,r) and pu(B(yi, or)) < ep(B(z,7))}-
Let0 < a <1/2,0<p<1,and z € R% The measure ;. is

(a) lower mean (¢, v, p)-porous at z if, for any € > 0 and for all large enough N € N, we
have

pOI"Z(,U,, Z,T, 5) >« (23)



FINE STRUCTURE OF MEASURES 9

for at least pN dyadic scales r € {271,272,... 27N},
(b) upper mean (¢, o, p)-porous at x if, for any € > 0 and for infinitely many N € N, the
estimate (2.3) is satisfied for at least pN dyadic scales r € {271,272 ... 27V},

FIGURE 2.3. In the picture we have por;(u, z,7,¢) > « for the Sierpinski
carpet measure p. Thus there exists a “hole” B(y, ar) for p in B(z,r) with
relative size a. Notice that the hole can have some i mass in it, but we
have control over it. The threshold ¢ is an upper bound for the relative
w mass of B(y, ar) in the ball B(z, r).

The concept /-porosity was introduced by Kdenméki and Suomala in [15] for sets and
by Kdenmdiki, Rajala and Suomala for measures in [13]. This generalizes the usual notion
of porosity in the sense that now one requires /¢ holes in ¢ orthogonal directions near a
point rather than just one hole. When assuming such a condition, dimension should drop
more drastically than in the case of usual porosity. This observation was made precise
for measures by Kdenmaéki, Rajala and Suomala in [13, Theorem 5.2], which we also state
below.

Theorem 2.5. Let £/ =1,2,...,d,0 < a < % and p be a measure on R, Then at p almost every
x where
lim lim inf >
lim lim in pory(p, z,1,€) > a
we have
S c
dimyee (p, ) < d — £+ ——7—,
log 1755

where ¢ > 0 depends only on the dimension d.

Motivated by Theorem 2.5 one can ask whether an analogous result holds for mea-
sures that satisfy a mean /-porosity condition rather than the strong porosity condition
of Theorem 2.5. The case ¢ = 1 was already established in [2, Theorem 3.1]:
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Theorem 2.6. Let 0 < a < %, 0 < p <1, and pn a measure on R®. Then at 1 almost every x
where y is lower mean (1, cv, p)-porous, we have

di7rnloc(/%$) S d— p +

C
1 b
log =55

where ¢ > 0 depends only on the dimension d.

The method used in [2] relies heavily on the co-dimension being one and cannot be
used when ¢ > 1. In the paper [A] we managed to generalize Theorem 2.6 for any ¢ =
1,2,...,d. Moreover, we were able to say something about the case when the measure
is upper mean porous. Before the work in [A], upper mean porosity was not previously
considered.

Theorem 2.7 (Theorem 1.3 of [A]). Let £ =1,2,...,d,0 < a < %, and 0 <p <1l Ifpisa
measure on R?, then
(a) for p almost all x where yu is lower mean (¢, o, p)-porous, we have

diimloc(,ua i‘) <d- pé + 171 ’ (24)
1-2a
(b) for pvalmost all x where y is upper mean (£, e, p)-porous, we have
diimloc(/% ‘T) S d— pﬁ + % . (25)
log 1-2a

Here ¢ > 0 is a constant that depends only on the dimension d.

The estimates in Theorem 2.7 are asymptotically sharp when o — 1/2. However, in
the paper [A] we do not provide any examples verifying this, but modifications of the
example for general ¢ in [2, Example 3.9] works in our setting as well. The proof of
Theorem 2.7 is once more based on local entropy averages and a discrete version of the
problem, which is given in [A, Lemma 3.6].
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3. TANGENT MEASURES

Tangent measures could considered to be analogous concepts to measures as what
derivatives are to a function. Both are defined as blowing-up the object in study at some
point in small scales, and taking a suitable limit of the blow-ups when we increase res-
olution. Information about the fine structure of the measure can then be deduced from
tangent measures. Ideas surrounding tangent measures were already present in the work
[20] by Marstrand and they were first defined by Preiss in [33] as an effective tool to solve
an old conjecture on the characterization of rectifiability with respect to densities.

Tangent measures are still playing a central role in the study of rectifiability. For ex-
ample, symmetricity of tangent measures is useful in the characterization of rectifiability
with respect to principal values for singular integral, see [26]. Furthermore, they are
also present in the work related to rectifiability in the Heisenberg group, see for example
[24, 27]. Nowadays, tangent measures are also well represented in the study of scenery
flows and tangent measure distributions, which in turn have turned out to be essential
in the study of dimensions of fractals, see for example the paper [10] by Hochman and
Shmerkin.

Let us now introduce the basic notation related to tangent measures. Recall that a
measure is always a Radon-measure on R%. Let M be the space of all measures on R%.
Given 1 € M, z € R?%, and a scale r > 0, the blow-up of ppatx € R? is the image measure
T, r41t, defined by

Ty rsi(A) = p(rA+x), for every Borel set A C R%.

Definition 3.1. Let © € M and = € R?. A measure v € M\ {0} is a tangent measure of y at
x if there exists a sequence of radii (7;);en, i > 0, r; \( 0, and normalization constants
(¢i)ien, ¢i > 0, such that the blow-ups

Cily gl —> v, asi— 00,

where — denotes the weak convergence of measures in M. The set of tangent measures
of p at x is denoted by Tan(yu, z).

3.1. Non-doubling measures. The doubling condition for measures rises from the re-
search related to analysis on homogeneous metric spaces. Homogeneous metric spaces
are finite dimensional in a certain sense, and this can be characterized by the existence
of doubling measures, that is, measures satisfying a certain uniform growth condition for
the measures of balls in the space. We are interested in a local version of the doubling
condition and how this behavior could be observed from tangent measures.

Definition 3.2. Let ¢ € M and z € spt p, where spt 41 is the support of p. The doubling
constant of p at z is defined by

: pu(B(x,2r))
D(p,x) = limsup ———~.
(0 = BB )
We say that 1 satisfies the doubling condition at z if D(u, ) < oc. A measure ; in R? is
non-doubling if
D(p,x) = o0

at ;1 almost every x € R%.
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Tangent measures are not blind to the doubling condition of a measure. A compactness
property of tangent measures immediately gives that Tan(u, z) is non-empty at those
where 4 satisfies the doubling condition, see [23, Theorem 14.3]. Moreover, Preiss proved
in [33, Proposition 2.2 & Corollary 2.7] the following characterization:

Theorem 3.1. Let 1 € M and = € R% with Tan(u, ) # @. Then

v(B(0, R))
D(p,z) =00 <= VGTSaLrllr()y,m) J(B(0,1)) oo  forevery R > 1.

Can anything more be said about the behavior of the tangent measures of non-
doubling measures? For example, is non-doubling always preserved to them, or do they
even have some form of singularity? Non-doubling of a measure is a particularly strong
form of singularity, but singularity itself is too weak to pose any impact on the tangent
measures. This can be seen from the following example by Preiss [33, Example 5.9]:

Theorem 3.2. There exists a singular measure . on R such that every tangent measure v of i is
a constant multiple of L1.

However, as Theorem 3.1 indicates, non-doubling measures cannot have the same
property as the measure constructed in Theorem 3.2. Nonetheless, in the article [B] we
exhibited an analogous result for non-doubling measures:

Theorem 3.3 (Theorem 1.1 of [B]). There exists a non-doubling measure p on R such that every
tangent measure v of  is equivalent to Lebesgue measure.

Here “v is equivalent to Lebesgue measure” means that v and Lebesgue measure are
mutually absolutely continuous to each other. The construction of the measure 1 in The-
orem 3.3 is based on finding a continuous map ¢ : [—1, 1] — [0, c0) which vanishes very
rapidly when approaching to —1 or 1. Then 1 is constructed using ¢ as a rule to distribute
mass over rapidly nesting grids of dyadic cubes.

Theorem 3.3 answers to the questions we posed in the beginning of this section: No
form of singularity is in general preserved to the tangent measures of non-doubling mea-
sures. Moreover, Theorem 3.3 has some implications to the theory of porosity. In [28,
Lemma 5] M. E. Mera and M. Mordn characterized positive upper porosity

PO (s, ) = lim lim sup por, (1, 7, 7, ),
eN\o0 r\0

recall Definition 2.2, with respect to tangent measures in the following way:

Theorem 3.4. Let y € M. Then
por(p,z) >0 = there exists v € Tan(u, ) such that sptv # RY
at p1 almost every x € RY where i satisfies the doubling condition.

V. Suomala asked in a personal communication from 2009 that could one generalize
Theorem 3.4 for non-doubling points. This question is reasonable since Preiss proved in
[33, Theorem 2.5] that tangent measures do exist at i« almost every point for any measure
p. However, the example given in Theorem 3.3 provides a counterexample. First of all,
it was proven in [29, Proposition 3.3] that the condition D(u, ) = oo occurs precisely
when por(u,z) = 1. Moreover, if a measure v is equivalent to Lebesgue measure, we
immediately have spt v = R%. Hence we have
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Corollary 3.1 (Corollary 1.1 of [B]). There exists a measure ;v on R such that por(u, xz) = 1 at
w almost every x € R, yet every tangent measure v of p has spt v = RY.

3.2. Typical measures. During recent years, understanding the properties of objects that
are generic in the sense of Baire category have gained a lot of attention. Let X be a
complete metric space. A setT" C X is thin if for any = € T there exists a sequence of
balls B; C X\ T,i € N, such that B; \, z. A countable union of thin sets is called meagre.
A property P of points x € X is typical if the set

{z € X : x does not satisfy P}

is meagre. The reason why completeness of X is assumed is that then we have the Baire
category theorem at our disposal: In particular, the Baire category theorem yields that
X itself cannot be meagre in X. In our setting we are interested in typical properties of
measures in M. The set M can be equipped with a metric d that makes it a complete
metric space.

In [32] T. O’'Neil constructed a Radon measure p in R? with a curious property: for
almost every = € R? the set of tangent measures Tan(u, r) = M \ {0}. Moreover, in his
PhD thesis [31] O’'Neil managed to extend this result by showing that such a property of
measures is typical:

Theorem 3.5. Typical yu € M satisfies Tan(u,z) = M\ {0} at p almost every x € RY.

In [C, Theorem 1.1] we provide a different self-contained proof for Theorem 3.5. The
main difference between the proofs is that O'Neil’s original proof relied on a special
property of the measure p constructed in [32], but we do not require O’Neil’s measure in
our approach.

Recalling non-doubling measures from the previous section, we also noticed in [C,
Corollary 4.1] that Theorem 3.5 has the following immediate consequence if we invoke
Theorem 3.1:

Corollary 3.2. Typical jn € M is non-doubling.

Furthermore, D. Bate and G. Speight proved in [1] that when a measure y on a metric
space admits a differentiable structure in the sense of Cheeger, then 1 satisfies the dou-
bling condition ; almost everywhere. Hence Corollary 3.2 also says that with respect
to Euclidean metric a typical © € M does not admit a differentiable structure. How-
ever, Corollary 3.2 is proven in R¢, so motivated by this it would be interesting to see if
Corollary 3.2 could be generalized for measures in more general metric spaces.

We also show that Theorem 3.5 is sharp: it cannot be extended to hold at every point
r € R% More precisely, we obtain the following

Proposition 3.1 (Proposition 5.1 of [C]). For any n € M \ {0} there exists x € spt p with
either £ ¢ Tan(u, ) or L]0, 00)? ¢ Tan(u, z).

In the paper [C] we also studied micromeasures — an analogous concept to tangent
measures on trees, and their typical properties. Let I be any finite set, and I N be the
corresponding infinite tree. Let PP be the set of all Borel probability measures on I™. If
p € P and y is a finite word with pu[y] > 0, we define the normalized blow-up of p with
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respect to y as follows:

g2l = M, for any finite word z.

ply)
In other words, 1, is the normalized restriction of 11 to [y] shifted back to I'V. Here [y] C I
is the cylinder generated by y. This notion defines a Borel probability measure on I*.

Definition 3.3. A measure v € P is a micromeasure of u € P at x € IV if there exist
generations (n;);en, i /* 00, such that the normalized blow-ups

Hgln; —V, aST — 00,

where — also denotes the weak convergence of measures in P. The set of micromea-
sures of ; at = is denoted by micro(u, ).

The weak topology of P is metrizable and compact, so asking for typical properties of
measures in P makes sense. In [C] we obtain the following analogous result to Theorem
3.5:

Theorem 3.6 (Theorem 6.1 of [C]). Typical uu € P satisfies micro(u, x) = P at every x € I,

The proof of Theorem 3.6 is much simpler than the proofs of Theorem 3.5 even though
the ideas involved are similar. The main reason for this is that we are now working in a
purely symbolic environment. This is also the reason why Theorem 3.6 has “at every x”
rather than “at ;s almost every x” as it was in Theorem 3.5.

Further problems. (1) Theorems 3.5 and 3.6 do not rule out that on average over small
scales, some measures might appear more often than others as local blow-ups when we
zoom in to a point. Micro- and tangent measure distributions can be used here to describe
the statistical behavior of the blow-ups of a measure and the distribution of micro- and
tangent measures. These notions have risen naturally when studying dimensions of mea-
sures, as it was in the study of projections of measures in [10]. It would be interesting to
see what kind of distribution of micro- and tangent measures typical measures have.

(2) J. Christensen introduced in [4], and B. Hunt, T. Sauer and J. York later developed
in [11] the notion prevalence, a type of genericity that has been considered to be a gener-
alization of “Lebesgue almost everywhere” in topological vector spaces. Prevalence can
also be studied in M as it was already done by L. Olsen in [30], where the L?-dimensions
of prevalent measures were studied. Dimensions of prevalent measures have been ob-
served to be drastically different than typical properties, so it would be interesting to see
if the sets of micro- and tangent measures for prevalent measures are different than the
ones obtained in Theorems 3.5 and 3.6.
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