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Introduction

The papers included in this thesis address somewhat varied problems, both in
terms of the motivation and background and the mathematical methods employed.
This horizontal rather than vertical structure presents something of a challenge for
writing an introduction. To meet this challenge, I decided to concentrate more on
questions that are a little more general in nature than those addressed in the indi-
vidual papers and try to give the reader an overview of large parts of mathematical
biology. Of course, in addition, I give summaries of the results and some specific
background for each paper.

The main scientific work in this thesis consists of the four papers listed. The
papers (I) and (II) clearly address the same topic. They have a somewhat different
flavour, however, in that the first paper has a very clear and relatively narrow focus.
It was written to answer a specific question implicit in the work of Hans Metz and
some of his colleagues and addresses a specific question touching on the foundations
of the mathematical theory of evolution, an area of mathematical biology I will
attempt to describe below in this introduction. By contrast paper (II) expands on
the results of (I), but has a much broader aim, in that it includes a rather lengthy
discussion on optimisation in evolution in terms of more detailed ecological models
and attempts to present the role of optimisation models in the broader context of
the mathematical theory of evolution.

Paper (III) is again very narrowly focused, built essentially around the statement
and proof of a proposition. It came about purely thanks to a talk given at the
monthly departmental colloquium of the Department of Mathematics and Statistics
in the spring of 2009 by Yuval Peres. It touches on one of the more abstract parts
of the theory of point processes, that focuses on some aspects of symmetry. Again I
give a quick account of this area of mathematics in this introduction in the section
entitled “Projections and extra head schemes”. The paper deals with the theory of
so-called extra head schemes, otherwise known as shift-couplings of the Palm and
ordinary versions of a process. A quick explanation of the background to the theory
is found below in this introduction.

Finally, acting as a kind of bridge between evolution and the theory of point
process, paper (IV) presents some results that fall between pure and applied mathe-
matics. The setup is a rather general one of stochastic processes of a locally compact
metric space. The idea is very simple: given the law of a Markov process on such
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a space, define a new process where individual agents move independently in the
space according to the law of the original process. A requirement that arises quite
naturally is that any compact set in the space be populated by but a finite number
of individuals at each time, when the set of all individuals is infinite. The first half
of the paper develops some basic theory for such processes, while the second half
addresses a question of conditioning the process on certain types of observations of
local events. The original motivation for writing the paper was simply to get some
insight into the behaviour of a cloud of independent particles conditioned on the
event that no particle enters a given region in the state space in some given time
interval [0, t].

What is mathematical biology?

To help explain how I came to work on the topics of the papers included in
this thesis, it seems appropriate to give a quick overview of mathematical biology
in general. Let me begin by giving a a very imprecise answer to the question
headlining this section: Mathematical biology is a field in which a student sitting
through, seminars, schools and conferences during his time in graduate school is
able to come across a great number of practical, biologically motivated problems
that lend themselves to solution by mathematical methods from diverse fields, such
as the theory of dynamical systems, stochastic processes, functional analysis and
elementary probability. This answer may be wholly unsatisfactory as an attempt to
describe a field in general, but it explains the somewhat eclectic nature of the thesis
at hand. It is therefore given with a view to explaining how three distinct topics
are covered in the four papers that make up the body of the thesis.

A more standard attempt to describe mathematical biology would probably be
to say that it an interdisciplinary field in which mathematics is used to address
questions arising in biology. However, according to standard usage, not all research
meeting this definition is classified as mathematical biology. Thus a lot of applied
work with an emphasis on statistical or computational methods is not called mathe-
matical biology, but falls under such descriptions as bioinformatics or computational
biology. Of course in many cases it is difficult to draw a line as to which title to apply
to a particular piece of research work. What is clear is that a clearly differentiated
research community defining it self as mathematical biology or biomathematics has
grown up with its own journals and conferences and that there is a new generation of
students specialising in mathematical biology already in their undergraduate stud-
ies. Whether the application is to cell biology, evolution, epidemiology or any other
one of the large number of areas in biology to which one can apply mathematics,
the approach associated with biomathematics tends to rely more on building and
analysing exact, if simplified, models of biological phenomena, rather than direct
statistical conclusions.

This thesis contains papers, notably (III) and (IV), which, taken individually do
not fit nicely under the categorisation of mathematics applied to biology. Hence
this work should be considered a thesis in the area of mathematical biology in
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the extended and informal sense I put forth right at the beginning of this section.
A peculiar feature is that to read and understand the mathematical content of
each of the papers does not require very deep specialised knowledge. However, the
motivation for all of the results is based on some awareness of work done on the
various topics, so I will do my best to convey enough background in this introduction
to motivate the specific results found in the papers.

My perhaps more colourful than strictly informative summary of the specific
emphasis of mathematical content in journals such as the Journal of Mathematical
Biology, is: mathematical biology is an attempt to do biology as if it were physics.
I use the word “attempt”, since it is widely accepted that physics provides us with
the clearest and most impressive examples of advanced mathematical methods at
work in empirical science. It is the obvious model for success of mathematics in
science, whereas biology has, until recent times, been less reliant on mathematics.

Physics plays a special role among the natural sciences in that it studies the
most basic level of the physical reality on which all of the phenomena studied by
science is based. But even more importantly, since the era of Newton, there has
been a great overlap between the groups of scientists working to advance physics
and mathematics.

So why is mathematics so succesful in physics? Taken as a philosophical question,
this is definitely beyond the scope of the current discussion and the interested reader
is directed to the famous essay [16] as a starting point for that discussion. On
a superficial level, however, it seems that physics is fundamentally simple. To
take the example of mechanics, it is not a priori obvious that the analysis of the
movements of point masses acting via Newton’s inverse square law of gravitation
can be simplified via the Lagrangian and Hamiltonian formalisms. Furthermore,
the way this mathematical development lends itself to an extension when classical
mechanics is replaced by quantum mechanics has been seen as rather miraculous,
as discussed in the book [17]. The extra ingredients needed, principally the theory
of Hilbert spaces and spectral theory, were developed by mathematicians primarily
motivated by problems in ordinary and partial differential equations that were of
greater scope than their applications to physics at the time would have required.

Let us now consider the success of mathematics in biology. Let us take as an ana-
logue of the mechanical equations of motion in physics the Lotka-Volterra predator-
prey equations of mathematical ecology:

ẋ = x(α− βy)(1)

ẏ = −y(γ − δx)(2)

Here x denotes the prey population size and y denotes the predator population size.
In the absence of the predator, the prey population grows at an exponential rate.
I turns out that the solutions of the equations (1) are periodic when one starts at
any positive initial conditions for x, y. However, when one wants to make the model
more realistic, by for example including a simple self-limiting mechanism for prey

ẋ = x(α− βy − ηx)



8

one easily destroys this nice structural property of the solutions (see e.g. the text-
book [2] for details). Thus studying the simple case gives rather limited insight into
the general case.

In physics, certain very general and abstract principles are seen to be fundamental.
The most familiar example is probably the principle of conservation of energy. Thus,
a physicist who sets up a model in which the conservation of energy does not hold,
is unlikely to conclude that a triumphant advance through counterexample has been
found, but rather will most likely draw the frustrated conclusion that the definition
of energy used for the model is wrong.

By contrast, among the models of population dynamics that have been studied
in the literature, one does not expect to find fundamental principles analogous to
the conservation of energy that hold universally. Instead many papers cite as their
main result the discovery of a model that satisfies some combination of features that
was previously thought counterintuitive, if not outright impossible (see for example
[14]). It seems therefore that while biology may serve to supply and motivate an
abundant supply of examples of dynamical systems and mathematical problems
related to them, there are few general constraints on such systems that could be
characterised as inherent to ecological models.

One attempt to simplify the zoo of different population dynamical models put
forth in the paper [3] is captured in the motto “all population dynamical equations
can be written as delay equations”. This is briefly touched upon in the paper (II)
appearing in this thesis. The idea is roughly that the birth rate b(t) of a species
at time t is a deterministic function of the history of the birth rate itself up to
time t and that of the state I of the environment, allowing one to write population
dynamics as a coupled system of Volterra and differential delay equations. Another,
quite different approach to imposing some regularity on population dynamics via
physical constraints is the Dynamic Energy Budget theory developed principally by
Bas Kooijman (see [11]).

It is undeniable that biology has benefitted from the work of mathematicians and
statisticians and will do so even more in the future. On the other hand, it must
also be admitted that the application, especially of advanced mathematics, bears a
closer resemblance to the situation in economics than to that in physics. That is,
one expects somewhat less order, less miraculous simplifying conspiracies thrown in
by nature itself.

Background to papers (I)-(II)

In comparing the applications of mathematics to biology and physics, I claimed
that there seem to be few general constraints on models of population dynamics that
arise purely from biological considerations, differentiating them from dynamical sys-
tems in general. One example of a very general and simple, biologically motivated,
constraint is that for dynamical systems on Rn with coordinates representing popu-
lations or abundances of resources, the relevant phase space should consist of some
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subset of Rn
+, the space of vectors with nonnegative coordinates. Thus when the dy-

namical system is given as a system of ODEs, such as the Lotka-Volterra equations
given above, where the right hand side is given by an expression that is defined on
all of Rn, a basic criterion for plausibility of a model is that the cone of nonnegative
vectors remain invariant, as is indeed the case for (1). A nice consequence of the in-
variance is that it simplifies analysis of the so-called invasion problem that is central
to the mathematical theory of evolution and adaptive dynamics in particular.

For sake of concreteness, suppose that a population dynamical model is given
by a system of ODEs. We consider an unstructured population for simplicity of
exposition, so let the population of a given species i be x ∈ R+ and let y ∈ E ⊂
Rn be a vector representing all of the other variables in the model, such as the
abundance of various resources or other environmental factors that play a role in
the population dynamical model. Then the general form of a ODE population model
for an unstructured population without migration is

ẋ = xf(x, y)(3)

ẏ = g(x, y)(4)

where f : R+ ×E → Rn and g : R+ ×E → Rn are (usually) continuous functions.
The reason for writing the growth rate of x in the above form is that f(x, y) then has
the natural interpretation of a per capita population growth rate, which combines
the underlying effects of mortality and reproduction. We consider this model here
simply to illustrate the central ideas of adaptive dynamics, without getting bogged
down in technicalities one encounters when dealing with structured populations.

The set {0} × E is invariant under the flow. The invasion problem consists
of determining whether a small population of species s will grow or decline to 0.
Frequently it is the case that the invariant set determined by the condition x = 0
has a stable equilibrium (0, y0). Then, if f(0, y0) > 0, it follows from the continuity
of f that ẋ > 0 for small values of x and one then says that the species i can invade
the equilibrium (0, y0). Analogously, if f(0, y0) < 0, a small population of s will
decline and one says that the the equilibrium cannot be invaded by species s.

Now let us consider evolution in this simple context. Let I be a space of possible
phenotypes (or strategies). In order to be able to consider evolution, the model must
facilitate the possible coexistence of different strategies. Even in the simple case at
hand, where individual phenotypes are represented by an unstructured population,
one needs to be rather heavy-handed with abstract definitions to be entirely rigorous.
To represent all feasible states of the system, allowing any number of phenotypes
to coexist, we take as the state space `1(I)+ × E, where

`1(I)+ = {u : I → R+ :
∑
s∈S

u(s) <∞}.

A function u ∈ `1(I)+ thus represents the population sizes u(i) ≥ 0 of each pheno-
type i, giving a finite total population size. The complete population dynamics is
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governed by a master equation of the form

u̇(i) = u(i)F (u, s, i)(5)

ẏ = G(u, y).(6)

The term F (u, y, i) has the interpretation of being the per capita population growth
rate for the phenotype i in an environment set by the population structure u and
other environmental variables captured y.

Note that for any set I ′ ⊂ I, the set {(u, y) : u(i) = 0 whenever i /∈ I ′} is
invariant. In particular, when the initial condition u0 for u has finite support, (5)
- (6) is really just a roundabout way of writing a finite system of ODEs. For a
monomorphic population, u(i) = 0 for all but at most one value of i. Substituting
u(j) = xδij, where δij = 1, if j = i and δij = 0 otherwise, one gets again a system
of the form (3)-(4).

Now, if (u, y) is an equilibrium of (5) - (6) and i ∈ I is such that u(i) = 0,
one can consider the invasion problem for phenotype i into the environment (u, y)
in the obvious way. If F (u, y, i) < 0, the equilibrium cannot be invaded by i. If
F (u, y, i) < 0, a small population of phenotype i will grow. It is frequently the case
that the population dynamics then converges to a new equilibrium (u′, y′). Let us
assume this is always the case for the model we are considering. In fact we assume
even more:

Assumption. There exists a nonempty set E ′ ⊂ E with the following properties.

(1) E ′ × `1(I)+ is invariant under (5) - (6).
(2) For any finite set C ⊂ I there exists a unique equilibrium attr(C) such that

the trajectory for any initial condition (u0, y0) with supp(u0) = C and y0 ∈ E ′
converges to attr(C).

Note though, that checking whether this holds is for a concrete model is often a
non-trivial task. Typically the set E ′ needs to be distinct from E when one wants
to rule out e.g. extinction of other species included in the model, since otherwise
one may fail to get uniqueness of the attractor.

Now we are at the starting point of adaptive dynamics, where one thinks of the
population dynamics as happening on a faster timescale than the introduction of
new mutants. One looks at a sequence of phenotype coalitions C0, C1, . . . as follows.
At each stage k one adds a new mutant phenotype ik+1, not present in Ck. One then
assumes that the population dynamics converges quickly to attr(Ck ∪ {ik+1}) and
takes the set Ck+1 of phenotypes present as the next coalition. One can then look
at various mechanisms for the mutation process, typically making the assumption
that ik+1 must be close in some sense to one of the phenotypes present in Ck.

Let us consider monomorphic evolution, where attr(C) always has just one phe-
notype present. Then an additional assumption, which seems to hold in most
models one encounters (but not all, see [14]) is that if i1 can invade attr({i2})
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then it will drive i2 extinct. In this case, to determine possible courses for evo-
lution one need only look at the invasion fitness function, defined for i, j ∈ I by
si(j) = F (attr({i}), j).

Papers (I) and (II) deal with a question of when evolution optimises some nu-
merical quantity. This means that there exists a function ϕ : I → R such that for
all i, j ∈ I ϕ(i) < ϕ(j) holds if and only if si(j) > 0. When this happens one can
usually predict the outcome of evolution, simply by finding the maximum for the
function ϕ, if it is unique. Of course, ϕ may still have distinct local maxima, so an
assumption that mutational steps are small may mean that evolution gets stuck at
a local maximum away from the maximum of ϕ over the whole set I.

Finding conditions for optimisation is the subject of papers (I) and (II). Since the
latter paper contains a very complete introduction to the topic, it seems unnecessary
to go into more detail here. Instead, let me remark that the ODE model considered
here was merely for convenience. The whole framework of considering evolution
based on an underlying ecological dynamical model carries over in great generality
to the case of structured populations. One can also consider the invasion problem
when the resident population is not at equilibrium, but at some other attractor of the
dynamics, e.g. a limit cycle. Other generalisations, such as stochastic fluctuations
are also accommodated without much difficulty on the theoretical level, although
calculating numerical values for the invasion fitness function can present problems.

The framework of adaptive dynamics, originally developed by Geritz and Metz,
has turned out to be very popular, due in part to the wide applicability of the
approach. Since the aim here was merely to give an adequate introduction to the
papers in this thesis, little of the essential ideas was really touched upon, beyond
the essential idea of building a model of evolution on top of a model of ecology. See
[4] for a brief overview of the idea of a adaptive dynamics and [5] for a somewhat
more complete exposition. Paper (II) contains a large number of references to more
recent work in adaptive dynamics.

Background to paper (III)

Paper (III) is based on one simple idea. Let me therefore take the opportunity to
give some background on the body of research work that this contribution fits into.

A point process is, loosely speaking, a random set of points in some space. It
turns out to be convenient, from a technical standpoint, to give the following precise
definition. Let S be a locally compact separable metric space and let N (S) be the
set of Borel measures N on S such that N(A) is an integer for each compact set
A ⊂ S. The space N (S) is equipped with a natural Borel structure induced by the
family of maps N 7→ N(A) where A ranges over the compact subsets of S.

A random element N ∈ N(A) is called a point process on S. With this definition
it becomes transparent that point processes are special cases of random measures.
A point process N is called simple, if N{x} ≤ 1 holds on some event of probability
1 uniformly for all x ∈ S. A simple point process N is uniquely defined by the
discrete set of points x ∈ S for which N{x} = 1, justifying the heuristic description
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as a random set of points. General point processes instead allow more than one
point to be placed at the same site x ∈ S.

Suppose a point process N is defined on a locally compact group G. Given
g ∈ G one can then define a shifted process TgN via TgN(A) = N(g−1A). Note
that if one writes formally N =

∑
k δxk , where (xk) is a sequence of points in G,

TgN =
∑

k δgxk . Now a point process is called stationary (or left-stationary in

the general noncommutative case), if N
d
=TgN for all g ∈ G. Note that the same

definition applies to more general random measures.
A stationary random measure ξ is called ergodic, if the only translation invariant

events have probability 0 or 1. Note that in the case of compact groups G, the
probabilistic structure of ergodic random measures is rather trivial, as they are
obtained from a random shift, distributed by normalised Haar measure, of a single
measure.

For a point process or random measure ξ the expression Eξ(A) defines a (deter-
ministic) measure in A called the intensity Eξ of ξ. If the process is stationary then
Eξ(A) is a left invariant measure. An important special case of point processes is
a Poisson process N , which is defined with respect to a reference measure µ by the
property that EN = µ and N(A1), . . . , N(An) are independent Poisson variables
whenever the sets A1, . . . , An are pairwise disjoint. The distribution of Poisson point
process is uniquely defined by its expectation.

Let ξ be a stationary random measure on a locally compact group G. In this case
Eξ = cλ, where λ is left Haar measure on G and c ∈ [0,∞]. When c ∈ (0,∞) one
defines the Palm distribution as follows:

Definition 0.1. Given a stationary random measure ξ on G with Eξ = cλ, where
λ is left Haar measure and 0 < c < ∞, define the Palm measure Qξ on N (G) by
the condition ∫

fdQξ =
1

Eξ(A)

∫
A

f(Tg−1ξ)ξ(dg)

for all measurable f : N (G) → [0,∞], where A ⊂ G is some fixed Borel set with
Haar measure 0 < λ(A) <∞.

It can be easily shown using stationarity that the definition of Qξ does not depend
on the choice of the set A. It is not hard to show that Qξ is a probability measure.
In the case of a point process N , QN assigns probability 1 to the event {N(e) ≥ 1},
where e is the neutral element of G. Any process with distribution Qξ is simply
referred to as the Palm version of ξ, the use of the definite article being justified by
uniqueness of the distribution.

The definition of the Palm distribution may look a little cryptic at first. The
informal intuition in the case of a simple point process N is that QN is obtained
as a conditional distribution by conditioning on the event {N{e} = 1}. In case G
is discrete, this is in fact rigorous, but in the general case it must be thought of
as shorthand for a statement about an appropriate limit, since P{N{e} = 1} = 0
when G is not discrete. For general stationary random measures ξ, one thinks of the
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Palm distribution as arising through shifting a random point to the origin, where
the distribution of the random point is weighted by the random measure ξ itself.

In the paper [15] the Icelandic probabilist Hermann Thorisson proved the follow-
ing result.

Theorem 0.2. Let a second countable locally compact group G act measurably on
an arbitrary measurable space (S,S). Let X,X ′ be random elements in S defined
on some probability space. Then the distributions of X,X ′ agree on all G-invariant
measurable subsets of S if and only there exists a random g ∈ G, defined on some

extension of the original probability space, such that gX
d
=X ′.

If G is a second countable locally compact group then G acts onN (G) measurably
by translation. If N is a stationary ergodic point process on G, then the distribution
of N and that of its Palm version N? agree on translation invariant sets. Thus
Theorem 0.2 implies that there exists a random element g ∈ G, such that TgN is
the Palm version of N .

A noteworthy special case of a random measure N is when G = Z and N{k}
are i.i.d. Bernoulli variables with a common expectation p ∈ [0, 1]. This has the
familiar and intuitive interpretation of a doubly infinite sequence of independent
tosses of a biased (if p 6= 1

2
) coin. Interpreting the event N{k} = 1 as a head for

the k:th coin toss gives rise to the name “extra head scheme” for a random element
g in a group satisfying the condition in Theorem 0.2. This usage has been adopted
for the general case, even though there is no useful interpretation in terms of coin
tosses for point processes on non-discrete groups.

An extra head scheme picks out a generic head and shifts it to the origin, so that
the shifted process is the Palm version of the original process. The question then
arose as to when one could find an extra head scheme as a deterministic function of
N , without additional randomness. It is perhaps surprising that deterministic extra
heads do in fact exist in a number on non-trivial cases. In particular, the paper
[12] presents an explicit construction for an extra head scheme for simple ergodic
processes on Z and R. A general solutions for Zn and Rn were presented in [9]. A
highly recommended source containing a complete and very elegant solution to the
n-dimensional case is [8].

Paper (III) in this thesis sidesteps the intricacies of the known solution to finding
an extra head scheme in Rn in the Poisson case by reducing the problem to the
one-dimensional one. To illustrate the idea, take the case n = 2. Consider the strip
R × (−1

2
, 1
2
) and project all points in the strip onto the line {0} ×R according to

the mapping (x, y) 7→ (x, 0) as illustrated in Figure 1. If the original process was a
Poisson process in R2 then this projection construction gives a Poisson process on
the one-dimensional line. Now, crucially, if one uses a one-dimensional extra head
scheme to find a projected point (x, 0), then taking the a.s. unique point of the
original process (x, y) ∈ (−1

2
, 1
2
) × R gives an extra head scheme for the original

process.
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An obvious generalisation of this construction works in Rn and this fact is shown
rigorously in the paper (III). This gives a shortcut to finding an extra head scheme
in n dimensions, by reducing to the one-dimensional case.

Figure 1. Replacing points in a strip with points on a line.

Background to paper (IV)

Paper (IV) started from a desire to understand the following simple problem.
Suppose that a number of individuals are executing indpendent random walks on
the lattice Zn. One is a able to observe the state of a single site, say 0, but no other
information of the state of the whole system is given. What can one then say about
the conditional distribution of the system, given the observed data?

It turns out that one can give a satisfactory answer in a much more general setting.
Namely, one can consider the individuals as living in a general space without all
of the symmetries and discrete structure of the lattice. The first part of the paper
is therefore dedicated to developing the appropriate framework, where one allows
infinitely many individuals moving in a locally compact metric space, imposing the
key requirement that at any time each compact set be occupied be a finite number
of individuals.

This leads to the point of view of considering a stochastic process with a state
space consisting of counting measures on a locally compact space. For applications
to biology, it would be desirable to have a theory allowing for interactions between
the individuals, but the paper included here concentrates only on the simple case
without interactions. It is given the name independent particle process.

The fact that individuals are assumed to have independent trajectories has two
consequences. First, it allows one to solve the question about conditioning on local
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observations explicitly in many cases, thanks to the role played by Poisson processes
as stationary distributions. Second, it provides a new perspective for the abstract
theory of general stochastic processes, since the process of independent individuals
can be constructed without much in the way of restrictions on the original process.

The role of Poisson processes as stationary distributions for independent particle
processes stems from the fact that randomisations of Poisson processes are again
Poisson (see e.g. [10] for definitions). I use this opportunity to present a proof of a
classical theorem related to this fact, due to Moran.

Theorem 0.3 (Moran, 1950). Let (Xk) ∈ {0, 1}Z+ be a sequence of independent
Bernoulli variables with EXk = p for all k, 0 < p < 1 and let N ∈ N be a random
variable independent of (Xk). Then the following conditions are equivalent

(1) N has a Poisson distribution.

(2)
∑N

k=1Xk and
∑N

k=1(1−Xk) are independent

Proof. Let Y =
∑N

k=1Xk and Z =
∑N

k=1(1−Xk). Denote by f, g, h the respective
probability generating functions of N , Y , Z. Let

F (x, y) =
∑
i,j

P [Y = i, Z = j]xiyj.

Now

(7) P [Y = k|N ] = P [Z = N − k|N ] =

(
N

k

)
pk(1− p)N−k.

Conditioning on N shows that F (x, y) = f(px + qy), g(x) = f(px + q) and h(x) =
f(qx+ p), where we write q = 1− p.

Suppose now that N has a Poisson distribution with EN = λ. Then f(x) =
eλ(x−1) which implies

F (x, y) = eλ(px+qy−1) = eλp(x−1)eλq(y−1) = g(x)h(y),

showing that Y and Z are independent.
Let us start conversely from the assumption that Y and Z are independent. This

is equivalent to F (x, y) = g(x)h(y). Combining this with the equations noted above,
one sees that

f(px+ qy + 1) = f(p(x+ 1) + q(y + 1)) = g(x+ 1)h(x+ 1) = f(px+ 1)g(qy + 1).

It follows that the analytic function φ(x) = f(x + 1) satisfies Cauchy’s functional
equation φ(x + y) = φ(x)φ(y) in some neighbourhood of 0 and hence has the form
φ(x) = eλx, so the generating function of N is that of a Poisson variable. �

Actually, the fact that randomisations of Poisson processes are Poisson really
boils down to just the implication (1) ⇒ (2) and a few easy measure theoretic
technicalities. My excuse for including the above formulation here is simply that
the result is perhaps less well known than it deserves, given the simple and beautiful
proof “from the book”, to use the famous phrase attributed to Paul Erdös (see [18]).
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