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INTRODUCTION

Emerging large-scale digitization of microscopic tissue samples (i.e. virtual
microscopy) in biomarker research and clinical pathology enables rapid,
objective and repeatable computational analysis of the images. Automated image
analysis is likely to be especially useful in personalized medicine, where high-
throughput analysis is required for risk prediction, advanced diagnostics and
targeted treatment of patients. Malignant tumors are profiled in detail to identify
clinically actionable mutations and aberrant protein expression levels. Human
observers are still predominantly interpreting visually the increasing number of
biomarker assays with fluorescence in situ hybridization (FISH) and
immunohistochemical (IHC) stainings. To aid in these quantification tasks, novel
applications to automated image analysis of cancer tissues are developed,

assessed and adapted to a virtual microscopy setting within this thesis.

The studies in this thesis are based on FISH and IHC stained cancer tissue

samples. First, a whole-slide scanner acquires a digital representation of the
entire specimen. The resulting gigapixel size image files are transferred to a
virtual microscopy platform, where they can be administrated, viewed over

computer networks, annotated and subjected to automated image analysis.

Computer vision methods evaluated in the current study include convolution
with Difference of Gaussians (DoG) kernel, color deconvolution and Local Binary
Patterns (LBP). Custom image processing algorithms based on these methods
were built with freely available image processing software (Image]) and a
commercial software package (MATLAB). In publication I, an algorithm for
quantification of FISH signals in the analysis of HER-2 amplification in a breast
cancer tissue is developed and assessed. In publication I, an algorithm for
automated quantification of Ki-67 IHC staining in a second breast cancer series is
introduced and evaluated. Publication III covers the development and validation
of an automated texture classification tool for segmenting images of colorectal

cancer tissue samples into epithelial and stromal compartments. In publication



[V, the effect of image compression and scaling on the performance of algorithms

from publications II and III is studied.

In publication I, the comparison between the automated and visual methods for
FISH quantification resulted in a high level of agreement (kappa value 0.82, AUC
0.97). The FISH quantification algorithm is freely available as an add-on to

Image], and also provided as a server-side application with a web interface.

In publication II, univariate survival analyses suggest that the image analysis
based method (hazard ratios (HR) 1.77 and 2.34) for assessment of Ki-67
proliferation index is a statistically significant predictor of patient outcome,
comparable to the human observer assessment (HR 1.41 and 2.58). In
multivariate survival analyses, adjusted for other significant prognostic
parameters, the automated but not the visual method was retained as significant
outcome predictor (HR 1.62 and 1.73). Moderate agreement between the
methods was detected (kappa value 0.57).

The colorectal cancer tissue texture classifier developed in publication III was
able to distinguish epithelial and stromal compartments with a high level of
agreement with visual classification (kappa value 0.93, AUC 0.995). An online

database with all the images was released to other researchers.

Publication IV shows that images analyzed with algorithms from publications II
and III can be reduced to one twenty-fifth of the original size by image scaling or

compression while retaining reliable automated image analysis results.

This thesis suggests that computer assisted image analysis combined with virtual
microscopy can be a valuable tool for biomarker research and personalized
medicine. The results from the automated algorithms are comparable to visual
assessments. The introduced algorithms are computationally efficient and they
can be run in a batch mode to analyze thousands of samples in minutes. The
algorithms are already utilized in high-throughput research settings, but may be

adopted in clinical pathology routines after careful validation.



REVIEW OF LITERATURE

Breast and colorectal cancer

Breast cancer in females is the most common form of cancer worldwide and the
leading cause of cancer death, whereas colorectal cancer is the third most
commonly diagnosed cancer in males and the second in females (Jemal et al.,
2011). In developed countries, the mortality rates of these diseases have been
declining due to earlier detection and more advanced personalized treatment

schemes (Jemal et al., 2011).

The foundations for personalized cancer treatment and prediction of patient
prognosis are built on characterization of the tumor. Both the breast and
colorectal cancers are divided into histopathological types based on the cells
they originate from. The grade of the tumor describes the differentiation of the
cancerous tissue i.e. how close to normal structures and cells their appearance is.
The stage of a solid tumor is determined using TNM classification, where T
stands for the size of the primary tumor, N for degree of tumor spread to
regional lymph nodes and M for presence of metastasis to distant organs (Sobin
etal,, 2009). Molecular biomarkers are routinely used in tumor characterization.
In breast cancer, these include estrogen receptor (ER), progesterone receptor
(PR), cell proliferation (Ki-67) and HER2-oncogen amplification. Instead of, or in
addition to, measuring the level of HER2 protein, the copy number of HERZ gene
can be determined. After the tumor characterization, suitable personalized

treatment for the patient can be selected.

Virtual microscopy

Virtual microscopy is a method for digitization of the entire microscopic sample
on a glass slide, and viewing the resulting image over computer networks.
Virtual microscopy has been preceded by various methods for telepathology,
with the intent to perform remote diagnostics via communication networks

(Weinstein et al., 1987). For example, dynamic telepathology comprises a remote
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controlled physical microscope with a live video feed sent to the site of remote
controlling. In contrast, static telepathology means sending of locally selected
digital snapshots of regions-of-interest (ROIs) over telecommunication network

to a remote pathologist (Sinard, 2005).

Virtual microscopy is an extension to static telepathology. First appearances of
virtual microscopy in the literature were based on covering the specimen with
low magnification images (Felten et al., 1999). Currently, the whole area of the
specimen is digitized with high-power optics by a computer-controlled
microscope setup, or a whole-slide scanner (Leong and McGee, 2001; Lundin et
al,, 2004a; Lundin et al.,, 2004b). A virtual slide is thus a full two-dimensional
representation of a traditional microscopy glass slide. Optionally, tissue
microarray (TMA) technology can be used with virtual microscopy in a high-
throughput setting to digitize hundreds of samples on a single glass slide
(Kononen et al., 1998). TMAs have been used with large sample series in
biomarker validation (Joensuu et al., 2003; Hassan et al., 2008) and in
translational research on associations between molecular changes and patient
outcome (Torhorst et al,, 2001; Sahu et al,, 2011). The goal of translational
cancer research is to link the function of the molecules measured as biomarkers
with survival of the cancer patients, thus allowing creation of more effective

treatments for cancer.

Commercial solutions for automated image analysis of virtual slides are
available (Rojo et al., 2009), but usually the algorithms behind the user interface
are hidden from the end user. This may hinder further development of the
algorithms. In addition, the licenses for these software packages are often tied to
a certain whole slide scanner brand, or may be expensive to purchase. Thus,
there is a need for freely available automated image analysis solutions for virtual

microscopy.
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Visualization methods

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) is a method for detecting DNA
sequences in chromosomes (Langersafer et al.,, 1982). In summary, a specific
probe complementing the DNA sequence to be detected is linked with a
fluorophore in the interphase or metaphase chromosomes. An epifluorescence
microscope is used to excite the fluorophores and view the emitted light. The
number of target DNA sequences can be quantified, as the fluorescent signals
usually form distinct spots. Automated staining systems have reduced the
manual preparation of FISH samples (Bankfalvi et al., 2004), but readout is still
preformed by visual assessment (Levsky and Singer, 2003).

In situ hybridization is gold standard for detection of oncogene amplifications in
human tumor samples and is used as “a second opinion” if immunohistochemical
methods have given equivocal results (Wolff et al., 2007). The downside of FISH
method is the fading of the fluorescence over time, which prevents the re-

evaluation and archiving of the original FISH specimen.

Immunohistochemistry

Immunohistochemistry (IHC) is a method of detecting and visualizing the
location of antibodies bound to antigens, usually proteins, in a tissue section
(Coons et al., 1942). The visualization is usually achieved by conjugating either a
fluorophore or an enzyme to the antibody. Fluorophores can be visualized with
an epifluorescence microscope as previously described, and the enzymes that are
used in IHC can act as catalytes in color producing reactions. The colors can be
viewed with a brightfield microscope. In addition to immunohistochemical
staining, a counterstain such as haematoxylin is usually applied to specimen to

enhance the contrast and aid in navigating through the section.
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Studied biomarkers

HER2

Human epidermal growth factor receptor 2 (HER2) is a protein, also known as
ErbB-2, Neu, CD340 or p185. HER2 is encoded by the ERBB2 (HERZ) gene,
located on the human chromosome 17 (17q21-q22). Over-expression of HER2
protein stands for excess production of the protein in cells, whereas
amplification of HERZ gene increases the number of gene copies in the DNA of
the cell. The both phenomenon have been shown to activate molecular pathways
in breast cancer leading to tumor progression and growth and associate with a
less favorable survival. A monoclonal antibody trastuzumab is successfully used
in treatment of patients with HER2 over-expression or HERZ amplification
(Joensuu et al., 2006). FISH analysis to assess HERZ amplification in breast
cancer patients has shown to be of clinical value and in situ hybridization

methods are currently gold standard (Hicks and Tubbs, 2005; Wolff et al.,, 2007).

Ki-67

Ki-67 is a nuclear protein associated with cell proliferation. It is used as a marker
for growth fraction of cancer cell populations, i.e. a higher number of Ki-67
positive cancer cells corresponds to a higher proliferation rate of the tumor. The
prognostic value of Ki-67 has been shown in multiple cancer types, including
carcinomas of the breast, prostate and brain, and most thoroughly studied in
breast cancer (Querzoli et al., 1995; Domagala et al., 1996; Pietildinen et al.,
1996; Querzoli et al., 1996; Rudolph et al,, 1999; de Azambuja et al., 2007; Stuart-
Harris et al,, 2008). The higher level of Ki-67 expression is associated with worse
outcome of the patient (de Azambuja et al., 2007; Stuart-Harris et al., 2008). The
standard staining method used for Ki-67 I[HC assessments is diaminobenzidine

(DAB) immunostaining combined with haematoxylin (H) counterstaining.
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Tissue texture features

In an image, texture is built on the information of spatial arrangement of
intensity or color values of the image. Pathologists examine the microscopic
morphology of the tissue, i.e. the form of the cells and relationships between
their structures. The morphology of a cancer tissue specimen can be considered
as a texture of different types of cells and extracellular structures. Epithelium of
cancer tissue can vary from organized cell structures of well differentiated (low
grade) tumors to complete lack of organizational cell structures of poorly
differentiated (high grade) tumors. Tissue texture is thus related to prognosis of
the patient. Stromal tissue intervening the tumor epithelium has a different
texture and is loose in arrangement and directionally organized (Eroschenko,
2005). Texture features are calculated with mathematical algorithms, and
describe the texture content of an image. Various texture analysis methods
include model-based methods such as Markov random fields or fractals,
statistical methods based on co-occurrence matrices, and signal-processing
methods based on local linear transforms, multichannel Gabor filtering or

wavelets (Mirmehdi et al., 2008).

Automated image analysis

HERZ2 and Fluorescence in situ hybridization

A series of studies have been published on development of automated methods
for FISH quantification (Netten et al., 1997; Adiga and Chaudhuri, 1999;
Klijanienko et al., 1999; Grigoryan et al., 2002a; Narath et al., 2004; lourov et al,,
2005; Raimondo et al., 2005; Kajtar et al., 2006). A top-hat spatial filter has been
used in most studies that describe the applied image processing method (Netten
et al, 1997; Adiga and Chaudhuri, 1999; Grigoryan et al., 2002a; Raimondo et al.,
2005). None of the previous studies used a Difference of Gaussians (DoG)
algorithm, which has been thought to mimic the neural signals rising from the

retina of the mammalian eye (Enroth-Cugell and Robson, 1966).
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The fluorescence signals may originate from different depths of the tissue
sample that typically is 5-10 micrometers thick. The focus depth of the
epifluorescence microscope is usually less than the thickness of the sample.
Thus, information from different focal layers is needed. The extended depth-of-
field image processing method generates in-focus microscopic images of three-
dimensional objects by combining the signals from multiple focal layers, and has
also been reported to improve FISH quantification (Grigoryan et al., 2002a;

Grigoryan et al., 2002b).

Previous studies have presented only limited data on correlation and agreement
between automated and visual methods in clinical samples. The focus of some of
the studies has been on details of the image processing methods, or the reported
agreement has been based on a cell level and not on a tissue sample level (Netten
et al,, 1997; Adiga and Chaudhuri, 1999; Raimondo et al., 2005). The automated
count correlated with the visual counting in 89-95% of the analyzed cells in two
of the studies with six and thirteen specimens, respectively (Netten et al., 1997;
Adiga and Chaudhuri, 1999). Only few studies have compared the methods on a
patient level, but agreement statistics needed for direct comparison with other
studies have not been reported (Klijanienko et al., 1999; Grigoryan et al., 2002a).
Perfect agreement on amplification status of five tissue specimens was reported
in one of the studies (Grigoryan et al., 2002a). A correlation coefficient of 0.92
was reported in a study on 41 invasive breast carcinomas (Tubbs et al., 2006). A
significant correlation (P=0.0001) was observed between automated and visual
scoring in a study on 26 breast cancer cases, but correlation coefficients or

agreement figures were not reported (Klijanienko et al., 1999).

Ki-67 and immunohistochemistry
Computer-assisted quantification of IHC stained protein expression has been

studied extensively (Kolles et al.,, 1993; Pinder et al., 1995; Querzoli et al., 1995;
Layfield et al., 1996; Pietildinen et al., 1996; Querzoli et al., 1996; Corletto et al.,
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1998; Lehr et al., 1999; Camp et al,, 2002; Bloom and Harrington, 2004; Chen et
al,, 2004; Chung et al., 2007; Stromberg et al., 2007; Rexhepaj et al., 2008; Turbin
etal., 2008; Sullivan et al., 2009; Turashvili et al., 2009; Tuominen et al., 2010;
Dahlman et al., 2011). Also Ki-67 immunostaining has been shown to be
evaluable with computer vision methods (Querzoli et al., 1995; Pietildinen et al.,
1996; Querzoli et al., 1996; Tuominen et al., 2010). DAB and H signals must be
separated before the assessment of Ki-67 staining. A computational method,
such as color deconvolution can be used for regular RGB images (Ruifrok and
Johnston, 2001). Another option is to use multispectral imaging, where narrow
bands of wavelengths can be captured separately, and a specific combination of
bands can be used to construct images with only DAB or H signals (Rojo et al,,
2009).

Two previous studies have found that semi-automated analysis of Ki-67 staining
with image analysis can be used for prognostic assessment of patients with
breast cancer (Pinder et al.,, 1995; Tuominen et al,, 2010). The common approach
for evaluating Ki-67 staining has been the segmentation of the nuclei in the
sample and calculating the percentage of positively stained nuclei (Tuominen et
al,, 2010). This approach requires optimal levels of both DAB and H stainings,
otherwise the staining in adjacent cells might fuse together, rendering the
segmentation much more challenging. Moreover, also cytoplasmic and
membraneous expressions of Ki-67 have shown to be prognostic factors in a
recent study (Faratian et al., 2009), and these are not considered if only nuclei

are segmented and analyzed.

Automated cancer classification and local binary patterns

In medical research, studies on automated segmentation of tissue images into
cellular compartments have been published based on color space methods
(Eramian et al,, 2011), texture analysis (Hamilton et al.,, 1997; Diamond et al.,
2004; Florea et al,, 2005; Karacali and Tozeren, 2007; Sertel et al., 2009) or other
morphology-based algorithms (Di Cataldo et al,, 2010). A few automated cancer
classification systems have been presented in the literature (Demir et al., 2005;

Hwang et al,, 2005; Petushi et al., 2006; Tahir and Bouridane, 2006; Doyle et al.,
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2008; Signolle et al., 2010). Most of these methods rely on measurement of
feature deviations on either a cellular-level or a tissue-level. The features can be
divided into morphological, textural, fractal-based, topological and intensity-
based groups. In this thesis, a texture-based method is covered in detail. Local
binary patterns method (LBP) is a computationally simple and efficient approach
to compute features for pattern classification (Ojala et al., 1996; Ojala et al.,
2000; Ojala et al,, 2002). LBP is grayscale and rotation invariant, which are
desired properties in histological sample studies with unknown sample
orientation, possibly variable staining intensities and illumination conditions.
Partly due to these advantages, LBP has been used both in histology (Florea et al.,
2005; Sertel et al., 2009) and in cytology (Nanni and Lumini, 2008b; Nanni et al.,
2010). LBP has also been applied successfully to various other fields, such as face
recognition (Ahonen et al,, 2006), fingerprint matching (Nanni and Lumini,
2008a) and iris detection (Maenpad, 2005). Other popular texture-based
methods for pattern classification include Haralick features (Haralick et al,,

1973) and Gabor filters (Manjunath and Ma, 1996).

Image compression or scaling and automated image analysis of cancer tissue

Uncompressed images produced by current whole-slide scanners can be as large
as hundreds of gigabytes, which poses a challenge to data storage. Usually the
digital slides need to be archived. The storage capacity needed for image
archives and backups is rapidly increasing. To save space in the digital archive,
the images can be compressed or scaled down.

In addition to challenges with regard to storage space, the bandwidth
requirements for transferring the images to and from the digital archives are
decreased by image compression and scaling. However, this comes at the
expense of the higher processing power needed initially for image compression
and scaling, as well as decompression of the images to be viewed or analyzed.
The option for more objective, repeatable and less laborious automated
quantification of biomarkers has recently become widely available (Mulrane et

al,, 2008; Kayser et al., 2009; Rojo et al., 2009). Downscaling reduces the
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computational complexity of the automated quantification and classification
algorithms, but very few studies have been published on the effects of image
compression and scaling on the results of these algorithms.

Generally, uncompressed images without image scaling are recommended for
image analysis (Gonzalez and Woods, 2002). By definition, in lossy image
compression and downscaling of images some of the details in the original
images are lost. It is however unclear whether these details are needed in
making the clinical decision on the images. Published data suggests that image
compression has only a minor effect on visually performed diagnostics (Kalinski
etal, 2009) and computer assisted image analysis (Tengowski, 2004). The
JPEG2000 format is considered as the most efficient way to store digital whole-
slide images (Entwistle, 2003). The role of compression in automated
quantification of IHC stainings has been assessed in a few previous publications
with results showing only small effects on the classification and quantification
accuracy (Lopez et al,, 2008; Lopez et al,, 2009; Lejeune et al., 2011). In texture
classification of natural image series, the LBP algorithm provided reliable results
in JPEG compressed images up to quality levels of 75 (Martens et al., 2010).
Image scaling and visual image quality has been studied previously (Barker et al.,
1998), but none of the publications has taken into account the effect of image

scaling on the automated image analysis.
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AIMS OF THE CURRENT STUDY

The objective of the current study was to develop and evaluate automated
methods for high-throughput quantitative tissue analysis adapted to a virtual

microscopy environment. More specifically, we studied:

-Automated quantification of FISH signals in HER2 amplification assessment of

breast cancer tissue images.

-Automated quantification of IHC staining in Ki-67 proliferation assessment of

breast cancer tissue images.

-Automated segmentation of colorectal cancer tissue images into epithelial and

stromal tissue compartments.
-The effect of image compression and scaling on the performance of the

previously mentioned automated methods for Ki-67 IHC assessment and cancer

tissue segmentation.
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MATERIALS AND METHODS

Patient series

For the automated analysis of FISH in publication I, tissue samples from 42
patients diagnosed with breast cancer at Tampere University Hospital or
Seindjoki Central Hospital during the years 2004 and 2005 were digitized. The
samples were chosen to represent a distribution of HER2 non-amplified,
amplified and equivocal border-line copy number cases similar to that observed

in routine diagnostics.

For the analysis of automated Ki-67 quantification in publication II, 2842 breast
cancer patients diagnosed in 1991 and 1992 within five hospital districts of
Finland were chosen from the previously published FinProg series. The hospital
districts cover half of the population of Finland and the cases represent 53% of
breast cancers diagnosed during this period. Clinical data was extracted from the
hospital case records, hospital registries, the Finnish Cancer Registry, and
Statistics Finland. The data consisted of more than 50 clinicopathological factors,
including the histological type and grade of breast cancer, the number of
metastatic and examined lymph nodes, primary tumor size, tumor ER and PR
content evaluated by IHC in the TMA samples, treatment details, and follow-up
data. More than 50 pathologists participated in histological typing and grading of
cancer at the time of diagnosis according to the World Health Organization
guidelines. The median patient follow-up time was 9.5 years at the time of study.
Patients with ductal or lobular carcinoma in situ were excluded from the study as
well as those who had distant metastases at the time of the diagnosis, bilateral
breast cancer, or other malignancy than breast cancer in history, except basal
cell carcinoma or cervical carcinoma in situ. A patient was also excluded if no
breast surgery was carried out. A single patient may have been excluded for one

Oor more reasons.
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For publication III on the segmentation of cancer tissue based on texture
analysis, tissue samples from a previously studied series of 643 consecutive
patients who underwent surgery for histologically verified colorectal cancer at

the Helsinki University Central Hospital in 1989 to 1998 (Linder et al., 2009).

For analysis of compression and scaling in publication IV, two hundred patients
were selected for the automated IHC analysis from a series of 570 consecutive
patients with invasive non-metastatic breast cancer, treated in 1997 and 1998 at
the Department of Oncology of the Helsinki University Central Hospital. Tumor
samples were analyzed using the TMA technique. All patients underwent surgery
and were treated according to standard guidelines for adjuvant chemotherapy,
radiotherapy and endocrine treatment.

The automated tumor segmentation in publication IV was based on 144
randomly selected colorectal cancer tissue samples from the series used in

publication III.

Sample preparation

In publication I, established protocols used in routine diagnostics for formalin
fixation and processing into paraffin blocks were applied to the tumor samples.
Representative tumor regions were defined and marked from haematoxylin and
eosin (H&E) stained sections. One or multiple regions were visually selected to
obtain the minimum number of 40 evaluable cancer cells for the FISH analysis.
FISH was performed with a probe mixture of HER2 (SpectrumGreen),
chromosome 17 centromere (SpectrumAqua), and Topoisomerase II-alpha
(SpectrumOrange) based on the recommended protocol (Vysis, Abbott
Laboratories, Illinois, USA). Enzymatic digestion was conducted at 37 degrees
Celsius for 20-25 minutes with Digest-All Il (Invitrogen, Carlsbad, California,
USA) solution. The slides were post-fixed with 10% formaldehyde for 10 minutes
and dehydrated in graded ethanols. Hybridization was carried out at 37 degrees

Celsius overnight. The slides were mounted in Vectashield-DAPI (49,6-
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diamidine-29-phenylindole dihydrochloride) (Vector Laboratories, Burlingame,

California, USA).

In publication II, 1931 formalin-fixed, paraffin-embedded (FFPE) samples of the
primary tumors were collected. For every patient 1-4 representative tissue cores
(0.6 millimeters) were assembled into 23 tissue TMAs (Joensuu et al., 2004).
Sections of 5 micrometers were cut and transferred to glass slides. A mouse
monoclonal antibody (MM-1; Novocastra Laboratories; 1:1000 dilution) was
used for Ki-67 immunostaining. The resulting TMAs had an evaluable Ki-67
staining for 1334 (69,1%) of the 1931 cases. 597 samples were lost due to tissue

processing or with non-representative tissue spots.

H&E-stained tissue sections were used to locate representative colorectal cancer
tumor regions in the FFPE samples in publications IIl and IV. Three punched
cores from each of the 643 donor blocks were transferred to construct 27 TMA
blocks with 10-180 tumor samples each. Two of the TMAs were randomly
selected for publication IV. Four-micrometer sections were cut from the TMAs
and transferred to glass slides. A Lab Vision Autostainer TM 480 (Lab Vision,
Fremont, CA) was used for automated IHC according to standard procedures. A
mouse monoclonal antibody (NCL-EGFR; Novo Castra, Newcastle upon Tyne, UK;
1:10 dilution) was used for EGFR immunostaining. The reaction products were
visualized with diamino-benzidine chromogen (DAB) and counterstained with

haematoxylin for 1 minute.

Representative breast cancer tumor regions in the FFPE samples were defined
from the H&E-stained sections and marked for publication IV. Four cores from
breast cancer specimens were punched from each donor block and transferred
to the two TMA blocks, each containing 400 tumor samples. Sections of 3-4 um
were cut from the TMA blocks and transferred to glass slides. A mouse
monoclonal antibody (Mib-1; Dako, Stockholm, Sweden; 1:100 dilution) was
used for Ki-67 IHC in an automated immunostainer (Ventana Medical Systems
Inc., Tucson, AZ, USA) with a DAB kit (Ventana). The slides were manually

counterstained with haematoxylin.
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Sample digitization

Samples in publication I were digitized with an Olympus BX61 microscope,
equipped with epifluorescence optics, by an Olympus CC12 Soft Imaging System
digital color camera (resolution 1376x1032). All FISH images were captured
using an oil 60x objective with a numeric aperture of 1.25. Filters used for DAPI,
HER2 and CEP17 were DAPI, SpectrumGreen and SpectrumAqua single-pass
filters (Vysis), respectively. SpectrumOrange fluorescence (for Topoisomerase II-
alpha) was ignored in this publication. For each channel (DAPI, HER2Z and
CEP17), maximum function between three different focal layers was calculated
resulting in a single best-focus greyscale image. SpectrumGreen was
pseudocolored as red, SpectrumAqua as green, and DAPI as blue, and channels

were merged into an RGB image.

The TMA slides related to publication II and III were digitized with an automated
whole-slide scanner (Mirax Scan, Zeiss, Gottingen, Germany), using a 20x
objective with a numerical aperture of 0.75 and a Sony DFW-X710 camera (Sony,
Tokyo, Japan). The pixel resolution of the scanner was 0.26 micrometers per
pixel. The virtual slides were compressed with a ratio of 1:5 to a wavelet file
format (Enhanced Compressed Wavelet, ECW, ER Mapper, Erdas Inc, Atlanta,
Georgia).

In publication IV, the breast and colorectal cancer TMA slides were digitized with
the same protocol as used in publications II and III, except that the images were
initially stored in an uncompressed bitmap (BMP) format. Subsequently, the
images were compressed to a publicly available ISO Standard JPEG2000 wavelet
format with the freely available JVScomp software (Tuominen and Isola, 2009).
The settings for the compression were: lossless, and lossy compression with
ratios 1:12, 1:25 and 1:50. The compressed breast cancer tissue images were

scaled down to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. The LBP/C algorithm
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used in the automated tumor segmentation method is scale dependent; therefore

the colorectal cancer series images were not scaled down.

Virtual microscopy platform

In publication I, two FISH virtual slides were prepared to demonstrate the
automated FISH quantification tool within a virtual microscopy framework.
Sixteen separate images were stitched together into a single montage file a.k.a.
virtual slide (Figure 1), which was compressed into a wavelet image file
(JPEG2000) using the ER Mapper software (Earth Resource Mapping Pty, West
Perth, Australia). The virtual slides were uploaded to our web server

(http://www.webmicroscope.net) running the Image Web Server software

(Earth Resource Mapping Pty). Virtual slides on the website can be viewed and

analyzed within a standard web browser.

In publication II, the compressed virtual slides of the Ki-67 TMAs were uploaded
to the web server described above. The server hardware in publication II
consisted of two quad-core Intel Xeon processors and 16 GB of RAM, and allowed
image analysis scripts to be run in a batch mode while also hosting the virtual
slides. An annotation system in the graphical user interface (Webmicroscope)
was used to define TMA spot locations on the virtual slides and link spots to the
corresponding clinical data. The TMA spot images sized 1634x1634 pixels were
extracted from the virtual slides as separate, losslessly compressed image files.
The images were used as input to the computer vision algorithm, and stored on

the server for later visual inspection and documentation.

In publications III and IV, the virtual slides of the TMAs were uploaded to the
web server described in previous paragraphs. The server hardware had been
updated to a 3.33 GHz six-core Intel Core i7 processor, and 24 GB of RAM. For
publication IV, each of the breast cancer tissue cores in Ki-67 TMAs were
annotated using an annotation tool in the graphical user interface

(Webmicroscope) for subsequent image analysis.
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Visual analysis

In publication I, every evaluable cell within each region of interest (ROI) was
counted visually with the built-in cell-counter in Image] prior to the automated
counting. The signals were counted separately for HER2 (red) and CEP17 (green)
in the pseudocolored multi-color image, and the ratio of red to green signals was
calculated for every ROI. The specimens were classified into three categories
according to the calculated HER2/CEP17 ratio: less than 1.8 was considered non-
amplified, 1.8-2.2 borderline and higher than 2.2 were scored as amplified with
regard to HER2. The same criteria were used for automated signal enumeration.
A binary cut-off of 2.0 was applied for calculation of specificity, sensitivity and
accuracy of the automated counting, with the visual counting result as the

reference.

For publication II, the visual analysis of 1292 of the cases had already been done
as part of a previous study (Sihto et al., 2008). The extent of Ki-67 staining had
been assessed by counting the number of positively stained tumor cells and
classifying samples into negative, moderate or high expression categories with
cut-off values at 0% and 20%. Immunostainings for ER, PR, HER1, HERZ2, p53 and
CK5 had also been assessed previously and combined to form molecular subtype
categories. The definition of molecular subtypes was following: luminal A (ER+
and/or PR+, HER2-), luminal B (ER+ and/or PR+, HER2+), basal-like (ER-, PR-,
HER2-, CK5 +, and/or HER1+), HER2+/ER- (ER-, PR-, and HER2+), and five-

marker negative (negative for all markers).

For training of the algorithm in publication II], representative epithelial (n=41)
and stromal (n=39) regions were defined with the annotation tool in the
graphical user interface (Webmicroscope, Figure 2). The training set images
were discarded from subsequent analyses. A separate validation set (n=576)
with 360 epithelial and 216 stromal images was annotated for optimization of
the algorithm parameters. Finally, a separate test set (n=720) with 425 epithelial
and 295 stromal images was defined for assessment of classifier accuracy. A

pathologist verified all image annotations (SN). The dimensions of the
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annotations varied between 93 and 2372 pixels in width, and between 94 and
2373 pixels in height. Pixel resolution was kept constant (0.26 micrometers per
pixel) throughout the annotations. The images used in publication Il were
stored in a database and are available at

http://fimm.webmicroscope.net/supplements/epistroma.

The colorectal cancer tissue images related to publication IV were annotated as
described in the previous paragraph. The number of areas with stroma was 138
and with epithelium 269. The dimensions of the annotated areas varied in width

between 168 and 1191 pixels and in height between 168 and 1190 pixels.

The visual scoring of the Ki-67 percentage in breast cancer TMAs related to
publication IV was performed under the supervision of an experienced breast
pathologist (R-MA) (Ahlin et al., 2007). The percentage of Ki-67 positive cells
with unequivocal nuclear staining was evaluated in one high-power field (40x
objective and a field-of-view with a diameter of 450 micrometers) in each of the
four tissue cores on the TMAs. At least 200 cells were analyzed in each tumor. All
statistical analyses were done using average values obtained by dividing all the
positive cells from the four biopsy specimens by the total number of cells from

the same specimens.

Automated image analysis

The automated image analysis algorithms in publications I and Il were created
with Image] (Rasband, 1997-2006), an open source image manipulation tool
widely used in biomedical image processing. The algorithms were written with
the macro language implemented in Image], allowing the use of built-in functions

and plug-ins developed by the Image] community.

25


http://fimm.webmicroscope.net/supplements/epistroma

FISH signal detection

In publication I, representative areas of background, nucleus (DAPI), red signal
(HERZ2) and green signal (CEP17) were selected from the ROIs. The intensity
values of these areas were analyzed and the results used in nucleus-background
thresholding and in calculation of signal-to-noise ratio required for successful
quantification of FISH signals.

The RGB images were split into red, green and blue color channels. The nuclei of
the cells stained with DAPI were detected by applying the previously calculated
nucleus-background threshold to the blue channel image. The blue channel
image was binarised to create a nuclei-mask image for calculation of the CEP17
and HERZ signals.

The CEP17 and HER2 signals were assessed from green and red channels,
respectively. First the image was smoothed with 3x3 pixel Gaussian kernel. Next,
each pixel of the image was compared to surrounding background to determine
if the pixel was a part of a potential signal or not by convolving the image with a
7x7 pixel DoG kernel. Background noise was removed by multiplying the image
with the nuclei mask image. Remaining background noise from nuclear regions
was removed by thresholding the image with a full 8-bit pixel value of 255.

A built-in function of the image processing software (Analyze Particles; Image])
was used for analysis and counting of detected signal spots. The function scans
the image or selection until the edge of an object (spot) is found. The object is
outlined by using the wand tool, measured, and filled with background color. The
scanning was repeated until the end of the image. Clusters of HER2 signals were
also approximated by the Analyze Particles function, by studying the circularity
and size of detected spots. Found spots representing both the green and red
signals were transparently overlaid with respective colors on top of the original
blue channel image, creating the final result image.

The workstation used for image analysis in publication I was equipped with 2.8

GHz Intel Pentium 4 processor and 1 GB of RAM.
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Quantification of immunostaining

The algorithm in publication II first splits the RGB images into separate color
channels using a color deconvolution method (Ruifrok and Johnston, 2001). The
Image] plugin for color deconvolution separated diaminobenzidine (DAB) and
haematoxylin (H) stainings with a built in vector. Afterwards, DAB and H images
were processed individually. Five random test samples stained for Ki-67 were
used to calibrate the threshold levels for DAB and H. The thresholds were kept
constant for the analysis of the main image dataset. Thresholding creates
potentially overlapping binary masks of DAB and H positive areas. Binary masks
were joined into a single result image, with the area of DAB-positive pixels
pseudocolored red regardless of H-status, the area of H-positive and DAB-
negative pixels pseudocolored green and the background displayed as white.
The extent of staining was defined as the number of DAB-positive pixels divided
by the union of the number of DAB-positive pixels and the number of H-positive
pixels. The intensity of staining was defined as a mean pixel value of the original
DAB image within the DAB-positive area. The mean intensity value was scaled to

range from 0 to 100 percent.

Texture features

In LBP, the algorithm used in publication III, a pixel in a grayscale image is
surrounded by a circularly symmetrical neighborhood of P equally spaced points
on a circle of radius R. The gray values of points are estimated by interpolation,
when a point is not situated in a center of a pixel. In order to achieve grayscale
invariance, the gray value of the center pixel is subtracted from gray values of
neighborhood points and the resulting values are binarised so that non-negative
values are assigned with value 1 and negative values with value 0. When
combined, these values can be thought as P-bit binary number. Rotation
invariance is achieved by performing a circular bit-wise right shift P-1 times on
the P-bit binary number and selecting minimum of these numbers. In practice,

the occurrence frequencies of unique patterns vary greatly, which leads to poor
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discrimination. By using uniform patterns to group more infrequently appearing
patterns together, the discrimination can be enhanced. Uniform patterns are
defined as patterns with at most two bitwise 0/1 changes. By definition, there
are P+1 uniform binary patterns in a circularly symmetric neighborhood of P
pixels. These uniform patterns are denoted with numbers from 0 to P. Patterns
with three or more bitwise changes are grouped together and denoted with
number P+1. A simplified demonstration of LBP algorithm is shown in figure 3.
Multiresolution analysis of texture can be achieved by combining multiple LBP
operators with varying P and R values. By using Gaussian low-pass filtering,
problems induced by sparse sampling in multiresolution analysis can be
defeated (Mdenpaa and Pietikdinen, 2003).

In the classification phase, the dissimilarity of sample and model histograms is
evaluated as a test of goodness-of-fit, which is measured with a statistical test
(Ojala et al., 2002). A test sample can then be assigned to a specific class of the

model according to the dissimilarity measure.

In publication III, images were first scaled down by a factor of 0.5. The RGB
image was converted to grayscale with a following weighted equation: 0.2989 * R
+0.5870 * G + 0.1140 * B. A binary mask separating foreground and background
was created with a threshold value of 240. Structures in the binary mask were
smoothed with morphological closing and eroding operators (Gonzalez and
Woods, 2002).

The classification of texture was performed in independent image blocks. An 80 x
80 pixel square window was slid row-by-row 40 pixels at a time through the
image to create the 50% overlapping blocks. A single block was further
processed, if it contained at least 50% tissue, determined by the aforementioned

binary mask.

To extract the LBP/C texture features, each block was processed by using two
discrete joint distributions: the first was a combination of rotation invariant,
uniform LBP with eight pixels and a radius of one, and an eight pixel rotation
invariant local variance (VAR) with a radius of one (Ojala et al., 2002). The

second joint distribution was a combination of rotation invariant, uniform LBP
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with sixteen pixels and a radius of two, and a sixteen pixel VAR with a radius of
two. The histograms were concatenated to a single feature vector with a length
of (8 +2)x8+ (16 +2) x 8 =224 bins. The Euclidean norm of the feature vector
was normalized to one. The MATLAB implementations for the LBP and VAR
operators used in publication III are available at

http: //www.cse.oulu.fi/MVG/Downloads.

In publication III, the results from the LBP/C features were compared to the
results from Haralick texture features (Haralick et al., 1973) and Gabor features
(Manjunath and Ma, 1996). To calculate the Haralick texture features, pixel
values from grayscale images were linearly quantized to 8 levels, defining the
size of the co- occurrence matrix to 8 x 8. Three symmetrical co-occurrence
matrices were used to describe second-order statistics. The metrics computed
from the matrices and used as inputs for the classifier were autocorrelation,
contrast, correlation, cluster prominence, cluster shade, dissimilarity, energy,
entropy, homogeneity, maximum probability, sum of squares, sum average, sum
variance, sum entropy, difference variance, difference entropy, information
measure of correlation 1, information measure of correlation 2, inverse
difference normalized, and inverse difference moment normalized (Haralick et

al,, 1973; Soh and Tsatsoulis, 1999; Clausi, 2001).

The Gabor features were computed from the filter bank defined by using six
orientations and four scales. For each parameter combination a unique Gabor
transformation was defined, and the mean and the standard deviation of the
magnitude of the transformation coefficients were used for classification
purposes. The parameter settings resulted in a 2x24 component feature vector

used as an input for the classifier.

Texture classifier

The classification of the image blocks extracted from the input images was

performed with a linear support vector machine (SVM). The SVM classified the
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image blocks based on a model that it has learned from the LBP/C, Haralick and
Gabor features of the training set images. The classes of the training set were
separated with the largest possible margin by a hyperplane described by the
model. The validation set images were used to optimize the parameters of the
trained classifier, and the independent test set images were used to test the
performance of the classifier. A linear capacity constant SVM (C-SVM) was
implemented by a MATLAB library for large linear classification (LIBLINEAR)
(Fan et al,, 2008).

A varying number of blocks per image were classified by the SVM due to
variability in pixel dimensions of the analyzed images. The test image was
assigned to either epithelium or stroma class according to the average SVM score
of all the blocks in the image. The absolute value of the classification score was
the distance between the feature vector and the decision hyperplane, and the
sign of the classification indicated whether the feature vector belonged to the
epithelium or stroma class. Thus, the feature vectors near the hyperplane were
more likely erroneous than the ones further from it, i.e. the decision value was a
measure of the prediction accuracy. Images with an SVM score higher than 1 or
lower than -1 were regarded as stronger candidates for the respective classes,
whereas those with an SVM score between -1 and 1 were considered as weaker
candidates.

In the result images the pixels belonging to the block in the original image are
pseudo-colored according to the decision value of the particular block with a
heat map: The most probable epithelial regions with large positive values were
colored with dark red and the most probable stromal regions with large negative
values with dark-blue. The colors between the extremes changed from light blue
and turquoise to light green, and from light green to yellow and orange. Light
green color represented the most uncertain areas with values near zero.
Averages of the overlapping decision values were used for the overlapping block

areas.

The automated IHC algorithm from publication II was also used in publication IV

with the breast cancer specimens, and the automated texture analysis algorithm
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from publication III was also used in publication IV with the colorectal cancer

specimens.

Statistical methods

In publications I, II, Il and IV, percentage agreement and kappa statistics were
used to study the level of agreement between the visual and automated methods.
In publication IV, percentage agreement and kappa statistics were also used in
comparisons of results from differently compressed and scaled images,
regarding the results from losslessly compressed and non-scaled images as a
reference. Kappa values were categorized as suggested previously in the
literature: <0 as disagreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as
moderate, 0.61-0.80 as substantial, and 0.81-1 as almost perfect agreement

(Landis and Koch, 1977).

The automated countings in publications I and III were also evaluated by
calculating the accuracy and the area under the receiver operating characteristic
curve (AUC). In publication I, correlation coefficients were calculated using the

Pearson product-moment correlation method.

For statistical analyses in publication II, the highest extent or intensity of Ki-67
staining was selected if multiple tissue cores were evaluable for the same
patient. Continuous Ki-67 extent and intensity values generated by the computer
vision algorithm were grouped according to tertiles. The automated results were
also split into similar proportions of low, moderate and high expression as
obtained based on the visual results, to evaluate the agreement between the
visual and automated assessment of Ki-67. The chi-square test was used for
frequency table analysis. Since the categories of the variables are ordered, a
linearly weighted kappa value was used for evaluation of agreement between the
visual and automated methods (Cohen, 1968). The Kaplan-Meier method was
used in calculation of life tables. Distant disease-free survival was calculated

from the date of the diagnosis to the date of detection of metastases outside of
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the locoregional area or to the date of death from breast cancer, if a patient died
of breast cancer without distant metastases. Patients who died from an
intercurrent disease were censored on the date of death. The log-rank test was
used for survival curve comparison. Multivariate survival analyses were
performed with the Cox proportional hazards model with following covariates:
automated assessment of Ki-67 extent of staining or visually assessed Ki-67
proliferation index, method of tumor detection, tumor size in centimeters,
number of metastatic lymph nodes, histological grade, and age at diagnosis. The
assumption of proportional hazards was ascertained by assessment of log minus
log survival plots. All P values are two tailed. In publication IV, the continuous
visual and automated Ki-67 IHC assessment results were dichotomized with a

seventh decile cut-off (Ahlin et al., 2007).
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RESULTS

Publication I

Automated counting was performed on the 42 cases, covering an average of 65
cells per image (median 64, range 21-112) and an average of 113 cells per case
(median 94, range 47-254). The number of ROI images per case was one in 21 of
the cases, two in 12 of the cases, three in eight of the cases and four in one of the
cases. The algorithm developed in publication I for automated FISH signal
counting processed a single 1376x1032 pixel image in ten seconds with the
described hardware. On average, 500 spots (combined amount of HER2 and
CEP17 signals, median 382, range 86-2565) per image or 868 spots (median
657, range 261-4478) per case were detected. According to the automated
algorithm, the HER2 gene was amplified (average HER2/CEP17 ratio >2.2) in 16
(38%) out of the 42 informative cases. The range of the HER2 /CEP17 ratio was
from 0.42 to 8.55, with a mean of 2.56 and a standard deviation (SD) of 1.70.

In the visual counting the HER2 gene was amplified in 17 cases (40%). The range
of the visual ratio was from 0.45 to 8.11, with a mean of 2.68 and a SD of 1.80.
Considering the visual counting result as a reference with the cut-off for
amplification set at 2.0, the sensitivity of the automated method was 89%, the
specificity 100%, and the accuracy 95%. The corresponding AUC was 0.97 (95%
confidence interval from 0.92 to 1.00). The correlation coefficient of the
automated and visual HER2 /CEP17 ratios was 0.98.

When the ratios were analyzed in three categories (non-amplified, borderline
and amplified), the percentage agreement was 90% and the Cohen’s kappa value
was 0.82 (Table 1).

The algorithm has been made available as a server-side application at the

Webmicroscope website (http://www.webmicroscope.net/fishj). A view of the

user interface is provided in figure 4. Alternatively, the algorithm can be

downloaded from the website as an add-on macro for Image].
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Publication II

According to the computer vision analysis, the range of extent of staining for Ki-
67 was from 0 to 95.3% with a mean value of 8.8% and a median value of 4.3%.
For automated intensity assessment, the range was 33.9-67.0%, the mean
intensity 52.5% and median intensity 53.2%. Two hundred fifty-one patients had
duplicate, 21 patients triplicate and seven patients quadruplicate cores available
for analysis. The automated analysis of 1648 TMA cores from the 1334 patients
took 107 minutes. On average, a single TMA spot was analyzed in 3.9 seconds.
The figures 5 and 6 show the graphical user interface used in this publication,
and samples of original and result images.

According to the visual assessment of Ki-67 staining, 7.7% of the patients were
assigned to the negative expression group, 55.7% to the moderate expression
group and 36.7% to the high expression group.

The percentage agreement between the visual and the automated methods was
87% and weighted kappa value 0.57 (Table 1), when the results of the
automated assessment of Ki-67 extent of staining were divided into similarly
sized groups as the visual Ki-67 results. Example images of different Ki-67
expression levels are shown in figure 7. There were two types of discrepancies
between automated and visual assessment of Ki-67 expression: either the results
of the automated assessment were lower or higher than the results of the visual
assessment. The discrepant cases were reviewed visually. The observed
variability occurred mainly between adjacent groups, only two patients with a
negative visual score were in the automatically assessed high extent group.
These two cases were caused by a partially folded TMA spot and a falsely dyed
spot. Generally, the shift from a visually higher group to a lower automatically
assessed group was caused by the automated method underestimating the
extent of staining in samples with larger stromal areas or with a few strongly
positive tumor nuclei. The main causes for shift from a visually lower group to a
higher automatically assessed group were out-of-focus samples, debris on the

glass slide or positive staining of the tumor cytoplasm.
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For analysis of the relationship between the automated assessment of Ki-67
expression and clinicopathological variables (Table 2), the patient series was
divided into tertile groups according to the automated assessment of Ki-67: In
the low extent group the extent of staining was from 0 to 2.3 percent, in the
moderate extent group from 2.4 to 6.3 percent, and in the high extent group from
6.4 to 100 percent. In the low intensity group the intensity range was from 0 to
49.6 percent, in the moderate intensity group from 49.7 to 56.6 percent, and in
the high intensity group from 56.7 to 100 percent.

Patients younger than 35 years at the time of diagnosis had a higher automated
assessment of Ki-67 extent than those older than 35 years at diagnosis (P =
0.0008). Cancers detected within mammography screening had a significantly
lower extent of Ki-67 staining than those detected outside of screening (P =
0.0001). A higher Ki-67 extent of staining was significantly associated with a
larger primary tumor (P < 0.0001), and a higher histological grade (a less
differentiated tumor) (P < 0.0001). A higher Ki-67 extent of staining was also
associated with a higher number of metastatic axillary lymph nodes (P = 0.01).
The distribution of Ki-67 extent of staining was significantly associated with
histological type of breast cancer (P < 0.0001): higher extent was seen in ductal
carcinomas, whereas lower extent of Ki-67 staining was more frequent in lobular
carcinomas. Higher Ki-67 extent was significantly associated with molecular
markers (all with P < 0.0001): negative ER and PR expression, positive HER2
amplification and expression, and high p53 expression were associated with
higher extent of Ki-67 staining. In the analysis of molecular Luminal A was
associated with lower Ki-67 extent (P < 0.0001).

Higher extent of Ki-67 staining was significantly associated with a decrease in
distant disease-free survival (DDFS) (P < 0.0001). Compared to patients in the
low extent group, patients in the moderate extent group had a hazard ratio of
1.77 (95% confidence interval (CI) 1.31-2.37) for distant recurrence, and those
in the high extent group had a hazard ratio of 2.34 (95% CI 1.76-3.10). The 5-
and 10-year DDFS for the low extent group was 89% and 81%, for the moderate
extent group 77% and 71%, and for the high extent group 69% and 64%,

respectively.
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In a subgroup analysis according to histological grade, patients with grade 1
tumors (well differentiated) in the moderate extent group had a hazard ratio of
1.05 (95% CI 0.35-3.22) and patients in the high extent group a hazard ratio of
4.63 (95% CI 1.83-11.75), as compared to patients in the low extent group. For
patients with grade 2 tumors (moderately differentiated), the corresponding
figures were 1.51 (95% CI 0.95-2.42) and 1.99 (95% CI 1.26-3.15), and in the
grade 3 tumor (poorly differentiated) subgroup, the results were 1.37 (95% CI
0.69- 2.73) and 0.97 (95% CI 0.51-1.84). In the ductal breast cancer subgroup,
the corresponding hazard ratios were 1.83 (95% CI 1.30-2.58) and 2.30 (95% CI
1.66-3.18), and in the lobular carcinoma subgroup, the figures were 1.40 (95% CI
0.67-2.93) and 2.29 (95% CI 1.06-4.95).

When extent of Ki-67 staining was determined visually, patients with a moderate
Ki-67 expression had a hazard ratio of 1.41 (95% CI 0.83-2.39) for distant
recurrence, and those with a high Ki-67 expression had a hazard ratio of 2.58

(95% CI 1.52-4.37), as compared to patients with a negative Ki-67 expression.

There were no statistically significant differences between the low and moderate
intensity groups according to Ki-67 staining. Compared to the low intensity
group, the high intensity group was associated with a less favourable distant
disease-free survival (HR = 1.34, 95% CI 1.04-1.73).

In a multivariate survival analysis, adjusted for tumor size, the number of
positive lymph nodes, histological grade, method of detection and age at
diagnosis, patients with a moderate Ki-67 extent of staining had a hazard ratio of
1.62 (95% CI 1.10-2.39) and those in the high extent group a hazard ratio of 1.73
(95% CI 1.19-2.51), compared to patients in the low extent group.

The visually determined Ki-67 expression and the automated Ki-67 intensity
assessment were not retained as significant prognostic factors in multivariate

analysis.
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Publication III

The LBP/C, Haralick and Gabor texture classifiers were optimized on the
validation set by computing the AUC over a set of cost parameter values (c) for
the linear SVM classifier for each of the LBP/C-, Haralick- and Gabor descriptors.
The selected c values were: 300 for the LBP/C, 2048 for the Haralick and 2 for
the Gabor descriptors.

Significant differences between the accuracies for the classifiers based on the
LBP/C features and both the Haralick features as well as Gabor filtered images
were observed in the testing phase. The AUC for assigning the correct class to the
test images for the LBP/C was 0.995 (95% CI 0.991-0.998) (Table 1), for the
Haralick 0.976 (95% CI 0.966-0-986) and for the Gabor descriptors 0.981 (95%
CI10.973-0.990). The analysis time for the 720 images in the test set was 99
seconds for the LBP/C algorithm, 47 seconds for the Haralick features, and 145
seconds for the Gabor filtering.

The results for the best performing LBP/C classifier were studied in more detail.
In the test set, the sensitivity of the LBP/C classifier was 99% (95% CI 98%-
99%) and the specificity was 94% (95% CI 92%-95%). The percentage
agreement between the human observer and the LBP/C texture classifier was
97% (kappa value 0.93, P<0.0001, Table 1). The average SVM score in the
epithelial images was 1.73 (SD 0.89, range from -2.3 to 3.8) and in the stromal
images -2.37 (standard deviation (SD) 1.16, range from -5.6 to 1.3). Out of the
425 epithelial images, 364 were strongly and 42 weakly assigned to the
epithelium category, and 19 images were wrongly classified as stroma. Out of the
295 stromal images, 263 were strongly and 28 weakly assigned to the correct
class, and 4 images were wrongly classified as epithelium.

To visualize the result of the LBP/C texture analysis method when processing
larger areas of tissue, a whole TMA with 73 colorectal tumor tissue spots was
analyzed and can be viewed at

http://fimm.webmicroscope.net/supplements/epistroma.

A sample with original and result images is provided in figure 8.
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Publication IV

Using the losslessly compressed and non-scaled images, the percentage
agreement between the visual and automated methods for Ki-67 proliferation
index assessment was 85 % and the kappa value 0.64. For the colorectal cancer
series, the percentage agreement between the visual annotations and automated
segmentation method was 97 % and the kappa value 0.93.

Both the compression and scaling reduced file sizes significantly. Sample images
of the effect of image compression and scaling on observed image quality are
presented in figures 9 and 10.

In the automated IHC quantification, over 98% of percentage agreement was
observed with combined compression ratios up to 1:50 and scaling down to 1:8,
with the results from losslessly compressed and non-scaled images as a
reference. Corresponding kappa values exceed 0.96. The results suggest a high
level of agreement between these compression and scaling levels.

The corresponding results for the automated tumor segmentation showed
percentage agreements of over 97% and kappa values of over 0.93 with
compression ratios up to 1:25. However, the compression ratio 1:50 resulted in a

less favorable percentage agreement of 86% and a kappa value of 0.71.
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Table 1: Summary of Kappa values, AUC, image sizes and analysis times from

publications I-III.

Kappa value*  0.82 0.57 0.93

AUC* 0.97 NA** 0.995
Image size in 1376x1023 1634x1634 524x523%**
pixels

Average 10s 39s 0.1s
analysis time

per image

* Visual versus automated analysis

** AUC not available for publication II due to original tripartite visual
classification

*#* Images in publication III varied in size, median size reported.

Table 2: Association of automated assessment of Ki-67 extent of staining with

clinicopathological characteristics (green denotes association with low extent,

red with high extent)

Age at diagnosis (y) 0.0008
Method of detection 0.0001
Primary tumor <0.0001
diameter (cm)

No. of positive axillary - 0.0142
nodes

Histological grade <0.0001
Histological type <0.0001
ER expression <0.0001
PR expression <0.0001
HER2 amplification <0.0001
HER?2 expression - <0.0001
p53 expression <0.0001
Molecular subtype <0.0001
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Figure 1: The single snapshot images (on the left) are stitched together to form a
virtual slide (on the right)
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Figure 2: Annotation tool with annotated areas shown as green rectangles on the
overview image (top right)
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Figure 3: The LBP algorithm (original image (a), 8 pixel neighborhood with pixel

values (b), binarised neighborhood (c) and final binary code (d))
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Figure 4: A graphical user interface of the automated FISH algorithm developed

in publication [ with a HER2 amplified breast cancer sample
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Figure 5: A graphical user interface of the automated IHC algorithm developed in
publication I, original Ki-67 breast cancer TMA spot
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Figure 6: A sample result image of the spot shown in figure 5
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Figure 7: Sample images of different Ki-67 expression levels (high extent on the
top, moderate extent on the middle and low extent on the bottom)
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Figure 8: A sample of original and result images from publication III, showing
automated segmentation of epithelial (red) and stromal (blue) tissue
compartments of colorectal cancer TMA spots
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Figure 9: Sample images of the effect of image compression used in publication
[V on visual image quality, Ki-67 breast cancer sample

Figure 10: Sample images of the effect of image scaling used in publication IV on
visual image quality, Ki-67 breast cancer sample
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DISCUSSION

The automation of high-throughput quantitative analysis of digitized microscopy
images of cancer tissue proved to be feasible and the results are comparable to
the results from the conventional visual analyses. The biomarker research

community already uses the released algorithms.

In publication I, the kappa value was 0.82, corresponding to almost perfect
agreement between visual and automated assessment of HER2 gene copy
number by FISH. Comparable statistics from other publications related to this
issue are scarce. A correlation coefficient (r=0.92) was reported in a study with
41 breast cancer patients, but agreement figures were not given (Tubbs et al.,
2006). The reported correlation coefficient is lower than the correlation
coefficient 0.98 in publication L. In 1-2% of breast cancer cases, spatially
heterogeneous HER2 amplification has been reported (Bartlett et al.,, 2001). In
these cases, FISH signals need to be evaluated in a larger number of microscopic
fields (Hicks and Tubbs, 2005). Compared to conventional epifluorescence
microscopy, proper selection of ROIs may be easier using whole-slide imaging
and virtual microscopy, since an overview of the whole specimen is available.
Moreover, re-scoring of specimens is possible without the fading of fluorescence
using this approach. The developed automated assessment method could be
applied to other FISH studies than HER2 gene copy number enumeration in a
straightforward manner. Modifications could be made to cover also other in situ

hybridization methods such as silver and chromogenic in situ hybridization.

Considering publication II, there is no consensus for Ki-67 cut-off values in the
literature, some studies use arbitrary values, some the median, and some divide
data according to tertiles (de Azambuja et al., 2007; Stuart-Harris et al., 2008). In
a publication on 265 breast cancer patients, univariate survival analysis was
carried out with different Ki-67 thresholds to aid in selection of the cut-off value
(Jalava et al,, 2006). With a selected cut-off point of 15%, subsequent
multivariate analysis resulted in a hazard ratio of 2.02 for visually assessed Ki-67

proliferation index. This figure is in 95% confidence interval of the results from
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automated Ki-67 assessment in our study, although the multivariate model was
slightly different and the patient series was divided into two groups instead of
tertiles. Also the association of the automated assessment of Ki-67 extent of
staining and clinicopathological factors was in line with previous reports for
visual assessment (Ahlin et al., 2007; Sihto et al., 2008).

The automated and visual methods for Ki-67 IHC assessment in publication II
showed only moderate agreement with a kappa value of 0.57, but both were
significant predictors of distant disease-free survival in univariate analyses with
hazard ratios similar to the previous meta-analyses, where hazard ratios of 1.93-
2.18 for disease-free survival (DFS) have been observed (de Azambuja et al,,
2007; Stuart-Harris et al,, 2008). However, in multivariate survival analyses, only
the automated method remained as a significant predictor of patient outcome.
These observations appear to contradict the custom of using the visual method
as gold standard.

Visual interpretation has shown to result in variability due to human errors
(Camp etal., 2002; Cregger et al., 2006). To reduce the variation, a consensus of
two or more experts with a critical review of discrepancies would be needed as
gold standard in most of the studies. In high throughput research setting with
thousands of samples, lack of resources often limits the possibility to use
consensus of multiple experts. Instead of trying to mimic experts’ results,
methods could be rated at how they can predict some clinically valid endpoint,
such as patient outcome.

The prognostic value of an automated image analysis algorithm is especially
relevant in routine breast cancer diagnostic pathology, where results are
subsequently used in clinical decisions on the treatment of patients. TMAs with
samples from dozens of different patients on a single glass slide were used to
study Ki-67 expression in publication II, whereas whole slide sections are
predominantly used in routine diagnostic pathology. The algorithm used in
publication II can be extended to selected ROIs from whole slide sections, or
even applied to the whole section itself. The usage of multicore TMA slides in
routine assessment of prognostic factors in breast cancer has also been
suggested with results comparable to whole slide diagnostics (Sapino et al.,

2006).
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There are a few drawbacks in the automated Ki-67 assessment algorithm
described in publication II. The first weakness is the manual adjustment of
threshold levels needed prior to the batch analysis, where multiple TMA spots
are analyzed automatically in series. However, when all the studied specimens
were processed and stained with same protocols, a constant threshold was used
successfully. Optionally, a method for automated threshold selection could be
developed to cover also the possible variations in the sample staining protocols.
The achieved results should always be visually reviewed after the analysis as a
quality control for the selected threshold.

The automatically assessed intensity of Ki-67 staining was of only limited
prognostic value. The previously reported non-linear relationship between the
amount of antigen and the DAB staining intensity could explain this observation
(Fritz et al,, 1995). Another weakness of the current computer vision approach is
that the unsegmented image of the tissue specimen is analyzed and possible
stromal components are included in the automated assessment. The tumor grade
and histological type can affect the ratio of stroma to epithelium in the TMA
cores. This could have affected the results in publication II. Therefore a subgroup
analysis according to histological grade and type was performed, as well as
adjustment for these possible confounding factors in a multivariate survival
model. The automated assessment of Ki-67 extent of staining was a significant
prognostic factor in all subgroups, except in the poorly differentiated (i.e. grade
3) tumors. This lack of prognostic value of Ki-67 in grade 3 tumors has been
previously reported (Klintman et al., 2010). The stromal part of the tumors could
be excluded by using a preprocessing step with a tissue classifier, such as the one
described in publication III. Commercial image analysis software systems have
already incorporated similar preprocessors for stromal exclusion (Turbin et al.,
2008; Turashvili et al., 2009). Also the stromal expression of proteins has shown
to be of clinical value (Finak et al., 2008; Farmer et al., 2009; Pietras and Ostman,
2010). Thus, in addition to exclusion of stroma, a tissue classifier can be used to
analyze the stroma compartment separately. A tissue classifier could also aid in
selection of cells and tissue areas for laser capture microdissection (Emmert-

Buck etal., 1996).
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In publication III, the algorithm for texture classification of colorectal cancer
specimens based on LBP/C features showed significantly higher classification
accuracy as compared to the algorithms based on either Haralick or Gabor
features. In addition to the rotation and grayscale invariance of the LBP/C
features, which may explain partially this phenomenon, Gabor features may have
suffered from previously reported tendency to favor low-frequency components
over high-frequency components abundant in natural images (Field, 1987). This
low-pass filtering smoothens the details in the images, and small but possibly
important structures for the correct classification of the cancer tissue may be
lost. The direct comparison of the algorithm from publication III with results
from previous studies is challenging, mostly due to different tissue materials
used in the studies. To enable other researchers to compare their algorithms
with the one we constructed, all the images used in publication III were
published as a database available online. Also the selection of the features and
the classifier, and the selected parameters, makes a direct comparison difficult.
The closest comparable study using LBP was based on 43 whole-slide
neuroblastoma samples (Sertel et al.,, 2009). A binary classification was used to
segment the samples into either stroma-rich or stroma-poor classes. The
reported overall classification accuracy was 88%, compared to over 99%
according to our results.

The classification in our study was based on square image blocks of
approximately 40 micrometers, and the algorithm may have overlooked a few
cancerous cells scattered between stromal structures. The algorithm was trained
with colorectal cancer samples stained for analysis of EGFR expression. Other
types of tumors and stainings can be used for algorithm training, and it would be
of interest to see whether algorithms for segmentation of tumor tissue into
stromal and epithelial compartments can have more general use in histology as
previously suggested (Kayser et al., 2006). The prognostic value of this algorithm
remains to be further studied; promising results from similar algorithms have
already been reported (Beck et al., 2011). Texture based algorithms have also
been applied in quality comparison between different microscopic imaging

solutions (Walkowski and Szymas, 2011).
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The publication IV studying the effect of image size reduction on the results of
the automated image analysis algorithms suggest that significant amount of data
storage space can be saved by using image compression and scaling without
compromising the automated assessment results. With the studied algorithms,
images can be reduced to less than four percent of the original image sizes. These
results are in line with a study where maximum JPEG2000 compression levels
(1:46) resulted in good analysis results in low complexity images, but images
with higher complexity tolerated only medium JPEG2000 compression levels

(1:23) (Lejeune etal., 2011).

As described in the literature (Mulrane et al., 2008; Kayser et al., 2009), the
workflow of the pathology laboratories will move towards an increasingly digital
environment similar to the digitization that already has occurred in radiology.
The pieces of software developed within this thesis are tools that in combination
with virtual microscopy have the potential to provide faster, more objective and
less laborious sample analysis in histological pathology. Also, inter- and intra-
observer reproducibility of the results will be enhanced. Automated
quantification of FISH signals can be of clinical value in determining which breast
cancer patients would be eligible for HER2 targeted monoclonal antibody
therapy. By applying this therapy only to patients with HER2 gene amplification,
the treatment can be targeted to patients that are expected to benefit and
adverse effects in HER2 negative patients can be avoided. Rational selection of

patients for therapy will also have considerable economical effects.

A group of users that could take advantage of high throughput automated image
analysis is researchers studying tissue biomarkers. The number of samples is
usually high and there is a need for automated solutions for fast translational
analysis of clinical correlates. As an example, a slightly modified version of the
algorithm created in publication II was already used in automated analysis of
more than two thousand patient samples (Sahu et al., 2011). The readout of an
IHC staining was available for statistical analysis within 24 hours. Similarly, the
automated scoring of HERZ amplification of 36456 FISH spots was performed in

15 minutes, whereas the corresponding visual assessment required an equal
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amount of mouse clicks for the publication I with only 42 patients involved. This
visual scoring was performed by the author in multiple sessions over a period of

two weeks.

Table 1 summarizes key figures from publications I-III. Although not directly
comparable due to different algorithms, image sizes and hardware used, the
analysis time per image has drastically reduced from 10 seconds in publication I
to 0.1 seconds in publication III. The processing power of personal computers
continues to improve, but also other options such as grid and cloud computing
are emerging. In the future, this trend will probably enable even more
complicated algorithms to be run real-time on gigapixel size virtual microscopy

images.
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CONCLUSIONS

In this thesis, tools for high-throughput biomarker research in a digital
microscopy environment were created and evaluated. In publication I, the
algorithm for automated quantitative assessment of FISH signals to determine
the HER2 gene amplification status in breast cancer tissue images proved to be
comparable to visual scoring. In publication II, the extent of Ki-67 staining
determined in breast cancer tissue images by the automated algorithm was a
significant predictor of patient outcome in both uni- and multivariate analyses.
In publication III, the automated segmentation tool divided the colorectal cancer
images into epithelial and stromal histological classes with high accuracy. In
publication IV, image compression and scaling led to significant reductions in
image sizes without compromising the results of the algorithms introduced in

publications II and IIL

The already released algorithms developed in this thesis are freely accessible to
be used by the research community, facilitating also the external validation of the
algorithms. After further validation studies, the algorithms can potentially be
applied in clinical pathology - especially within risk prediction, diagnostics and

targeted treatment of cancer patients in a personalized medicine setting.
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