
SOCIETAS PRO FAUNA ET FLORA FENNICA 

ACTA 
BOTANICA FENNICA 

103 

Liisa Kaarina Simola: The ultrastructure of dry and 
germinating seeds of Pinus sylvestris L. 

HELSINKI - HELSINGFORS 
1974 



ACT A BOT ANI CA FENNICA 

1-19 vide Acta Botanica Fennica 20-50. 

20-49 vide Acta Botanica Fennica 50-82. 

50. HANS LuTHER: Verbreitung und Okologie der hi:iheren Wasserpflanzen im Brad.--wasser 
der Ekeniis-Gegend in Siidfinnland. II. Spezieller Teil. 370 S. (1951). 

51. M. R . DROOP: On the ecology of Flagellates from some brackish and fresh water 
rockpools of Finland. 52 pp. (1953). 

52. HANS LuTHER: Ober Vaucheria arrhyncha Heidinger und die Heterokonten-Ordnung 
Vaucheriales Bohlin. 24 S. (1953). 

53. ERNST HAYRi:N: Wasser- und Uferpflanzen aus dem Piiijiinne-Gebiet. 42 S. (1954). 
54. LARS FAGERSTROM: Viixtgeografiska studier i Stri:imfors-Pyttis skiirgard i i:istra Nyland 

med speciellt beaktande av li:iviingarna, artantalet samt en del arters fordelning och 
invandring. 296 s. (1954). 

55. flANs LuTHER: Ober Krustenbewuchs an Steinen fliessender Gewiisser, speziell in 
Siidfinnland. 61 S. (1954). 

56. ILMARI HusTtcH: Notes on the growth of Scotch Pine in Utsjoki in northernmost 
Finland. 13 pp. (1956). 

57. HENRIK SKULT: Skogsbotaniska studier i Skiirgardshavet med speciell hiinsyn till 
fi:irh lillandena i Korpo utskiir. 244 s. (1956). 

58. RoLP GRONBLAD, GERALD A. PRoWSE and ARTHUR M. Scorr: Sudanese Desmids. 
82 pp (1958). 

59. MAx von ScHANTZ: Ober das iitherische 01 beim Kalmus, Acorus calamus L. Phar­
makognostische Untersuchung. 138 S. (1958). 

60. lliRALD LINDBERG: Viixter, kiinda fran Norden, i Linnes herbarium. Plantae e septen­
trione cognitae in herbaria Linnaei. 133 pp. (1958). 

61. ALVAR PALMGREN: Studier over havsstrandens vegetation och flora p£ Aland. I. 
VegeMionen. 268 s. (1961). 

62. flANs LuTHER: Veriinderungen in der Gefiisspflanzenflora der Meeresfelsen von Tviir­
minne. 100 S. (1961) . 

63. RoLP GRONBLAD: Sudanese Desmids II. 19 pp. (1962). 
64. VEIKKO LAPPALAINEN: The shore-line displacement on southern Lake Saimaa. 125 pp. 

(1963). 
65. J. ] . DoNNER: The zoning of the Post-Glacial pollen diagrams in Finland and the 

main changes in the forest composition. 40 pp. (1963). 
66. RoLP GRONBLAD, ARTHUR M. ScoTT and HANNAH CROASDALE: Desmids from Uganda 

and Lake Victoria, collected by Dr. Edna M. Lind. 57 pp. (1964). 
67. CARL ERic SoNCK: Die Gefiissp£lanzen£lora von Pielisjiirvi und Lieksa, Nordkarelien 

311 s. (1964). 
68. F. W KLtNGSTEDT: Ober Farbenreaktionen von Flechten der Gattung Usnea. 23 S. 

(1965). 
69. ARTHUR M. Scorr, RoLP GRONBLAD and HANNAH CRoASDALE: Desmids from the 

Amawn Basin, Brazil, collected by Dr. H. Sioli. 94 pp. (1965). 
70. TEUvo AHTt: Parmelia olivacea and the allied non-isidiate and non-sorediate corti­

colous lichens in the Northern Hemisphere. 68 pp. (1966). 
71. SrMo JuvoNEN: Ober die die Terpenbiosynthese beeinflussenden Faktoren in Pinus 

silvestris L. 92 S. (1966). 
72. LEENA HAMET-AHTI: Some races of ]uncus articulatus L. in Finland. 22 pp. (1966). 
73. MAx von ScHANTZ und StMO JuvoNEN: Chemotaxonomische Untersuchungen in der 

Gattung Picea. 51 S. (1966). 
74. luutA KYT6VUORI and ]uHA SuoMINEN: The flora of Ikkalanniemi (commune of 

Virrat, Central Finland), studied independently by two persons. 59 pp. (1967). 
75. LEENA HAMET-AHTJ: Tripleurospermum (Compositae) in the northern parts of 

Scandinavia, Finland and Russia. 19 pp. (1967). 



ACTA BOTANICA FENNICA 103 
EDIDIT 

SOCIETAS PRO FAUNA ET FLORA FENNICA 

THE ULTRASTRUCTURE OF DRY AND 
GERMINATING SEEDS OF PINUS 

SYL VESTRIS L. 

LIISA KAARINA SIMOLA 

DEPARTME T OF BOTA Y, UNIVERSITY OF HELSI Kl 

HELSI KI - HEL I GFORS 
Sept. 1974 



FI ISS~ 0001--5369 

Abstract 

SIMOLA, LnsA KAARINA (Dept. Bot., Univ. Helsinki): The ultrastructure of dry 
and germinating seeds of Pinus sylvestris L.-- Acta Bot. Fennica 103: 1--31. 1974. 

The ultrastructure of dry and germinating seeds of Pinus sylvestris L. has been studied. 
The endosperm and cotyledon and rootlet cells of the dry seeds are very similar in 
structure. The cells are packed with spherosomes and protein bodies, but amyloplasts, 
proplastids, mitochondria, dictyosomes, endoplasmic reticulum and ribosomes are not 
recognizable. Proteolysis is more rapid than lipolysis during germination. These processes 
and the development of new cell organelles are seen first in the rootlet cells and last 
in the endosperm. The rootlets are characterized by rapid development of compound 
amyloplasts, mitochondria, and tannin vacuoles. 

During chloroplast development the cytoplasm in the cotyledon cells is rich in ribo­
somes. Proplastids concentrate round the nucleus but no nuclear budding is seen. Young 
chloroplasts may divide and they already synthesize starch. Small plasroglobuli are also 
frequent . Glyoxysomes, mitochondria and proplastids can be seen in endosperm cells 
after 8 days' germination. 

Author's address: Prof. Liisa Kaarina Simola, Department of Botany, University of 
Helsinki, Unioninkatu 44, SF-00170 Helsinki 17, Finland. 
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I. INTRODUCTION 

Morphologically, the seeds of the family Pinaceae are composed of a 
rather thin outer seed coat surrouding a middle thick haploid endosperm 
(f..?male gametophyte), within which lies a relatively small embryo. The 
seeds of Pseudotsuga menziesii contain both lipid (35 Ofo) and protein 
(32 Ofo) as storage materials. The rest is mainly fibres (29 Ofo) especially in 
the seed coat, and only 1.7 °/o is starch and sugars (CHING 1966). In Pinus 
banksiana, as revealed by electron micrographs, the dormant cotyledon 
cells consist mainly of spherosomes (fat bodies), protein bodies and a 
nucleus. Mitochondria, dictyosomes and proplastids are not recognizable 
(DuRZAN et al. 1971). The dormant endosperm cells of Pseudotsuga men­
ziesii have about the same structure as the cotyledon cells (CHING 1965). 

Histochemical studies on Pinus sylvestris have indicated that lipase 
activity localized around the cell wall and between the protein bodies 
(NYMAN 1965). In dry seeds of the Douglas fir both acid and neutral 
lipases are mainly located in heavy fat bodies and in the soluble fraction. 
The highest specific activity of both enzyme systems is associated with 
these fractions during germination (CHING 1968). 

Despite BuRGERSTEIN's (1900) claims to the contrary, the seeds of Pinus 
sylvestris do have a low starch content ( YMA 1966). But, even in the dry 
state, their content of amylase is relatively high (NYMAN 1969), and 
TESCHE (1965) has demonstrated amylase activity and some starch m 
both endosperm and embryo in this and in several other conifers. 

The germination of gymnosperm seeds (Pseudotsuga menziesii) is 
accompanied by the following physiological changes (CHING 1959). Imbi­
bition of water is coupled with linearly increasing respiratory activity 
and after this the meristematic cells begin to divide. At the following stage 
the activity of several hydrolysing enzymes increases and the cells begin 
differentiate. Translocation of organic material to the growing cells is a 
characteristic feature of the next stage and the cells differentiate much 
further. 

The aim of this study is to clarify the ultrastructural changes in the 
endosperm, rootlet and cotyledons of Pinus sylvestris during germination. 
Basic evidence of this kind is also needed for comparison when ageing pro­
cesses in seeds are studied at ultrastructural level (SIMOLA, in press). 
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Abbreviations used In the figures: 

A amyloplast IS intercellular space Pp proplastid 
c chloroplast Iv invagination Ps polysome 
Cr crystalloid M mitochondrion Pt phytate 
cw cell wall Mb microbody R ribosome 
D dictyosome N nucleus s spherosome 
ER endoplasmic reticulum u nucleolus St starch 
G globoid PB protein body T tonoplast 
Gs glyoxysome PC protein clump Tl thylakoid 
I initial Pg plastoglobulus V vacuole 
le inclusion PI plasmalemma Ve vesicle 

II. MATERIAL AND METHODS 

Seeds of Pinus sylvestris L. (collected in Vastraby, Kronobergslan, 
Sweden) were germinated under a bell jar on filter paper discs moistened 
with tap water at 25 °C in continuous weak ligh t. Material for fixation 
was removed daily for five days. Rootlets, cotyledons and the micropylar 
end of the endosperm were fixed separately. Dry seeds were placed in the 
fixative for half an hour, then dissected out in it, and fixed for another 
three hours at 4 °C. Imbibed seeds were dissected out before fixation. The 
material used was as follows : 

Dormant seeds 
Day 1, imbibed seeds 
Day 2, imbibed seeds 
Day 3, rootlet about half of length of the seed, cotyledons yellow 
Day 4, rootlets about 0.9 cm long, cotyledons green 
Day 5, rootlets about 2 cm long, cotyledons green 

Imbibed material was immersed in Karnovsky's fixative in cacodylate 
buffer (pH 7.2, 0.2 M) for 1.5 hours or in 3 per cent glutaraldehyde in 
phosphate buffer (pH 7.2, 0.1 M) . The material was postfixed with 1 per 
cent osmium tetroxide in phosphate buffer and after dehydration via ace­
tone and propylene oxide embedded either in Spurr or in Epon. 

The ~ections were cut with a diamond knife, stained with lead citrate 
(REY OLDS 1963) and viewed with a Phi lips 2 electron microscope. 
Semi-thin sections stained wi th toluidine blue (TRUMP et al. 1961 ) were 
used for localization of cells. Periodic acid Schiff (PAS), Sudan Ill and 
Sudan Black (JENSEN 1962) were used for histochemical characterization 
of the cell contents. 
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FIGS. 1-3. Cells of a dormant embryo of Pinus sylvestris. Karnovsky - Os04 fixation. -
FIG. 1. Cotyledon cell. Protein bodies (PB) with large globoids (G) and electron-translu­
cent crystalloids (Cr) and traces of phytate (Pt). 2800 x. - FIG. 2. Rootlet cell. Protein 
bodies (PB) with several irregular electron-translucent areas. Plasmalemma loosened 
from the cell wall (CW). 4800 x. - FIG . 3. Rootlet cell. Protein bodies (PB) with ir-

regularly shaped cavities and large roundish bodies. 8800 x. 
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lli. RESULTS 

1. Rootlet cells 

The structure of rootlet cells of dry seeds corresponds very closely to 
that of this part of the seeds of Picea abies (SrMOLA, in preparation). The 
protein bodies usually have several irregular electron-translucent areas 
(Fig. 2) but some of them may have an eccentric globoid. Some of the 
protein bodies have roundish inclusions (Fig. 3 ). The plasmalemma has 
become separated from the cell wall. This is apparently due to desiccation 
and not to the high osmotic pressure of the fixative. It is not easy to make 
out any initials or ribosomes in the cytoplasm between the numerous 
spherosomes as in the rootlets of Picea. 

After one day's imbibition great changes are seen in the structure of the 
rootlet cells (Figs. 4 and 5). The protein bodies have formed vacuoles and 
compound amyloplasts are abundant. Mitochondria, dictyosomes and some 
endoplasmic reticulum (ER) have already developed and the cytoplasm 
contains a great number of ribosomes. 

By the second day the amount of cytoplasm has increased, ribosomes 
occur as polysomes, and the spherosomes have become more osmiophilic 
than before. Rough ER runs parallel with the cell wall and dictyosomes 
are situated near the plasmalemma, which is not easily recognizable 
(Fig. 6). The vacuoles contain some electron-dense material, and micro­
bodies may be seen occasionally. 

On the third day the different parts of the root tip are already dissimi­
lar in structure. The cells near the calyptra contain compound amyloplasts 
and osmiophilic spherosomes (Figs. 7 and 8) . The number of ribosomes has 
decreased, but dictyosomes and the vesicles they liberate are frequent, as 
well as mitochondria with a rather well-developed internal structure (Figs. 
8 and 9). ER lines the plasmalemma and is also present in the endosperm. 
There were several small electron-translucent vacuoles in the cells (Fig. 8). 
In the root cortex cell the vacuoles fill with tannin material and fuse to­
gether to form a large central vacuole (Fig. 11). When tannin formation 
begins the starch grains diminish and the spherosomes become less electron­
dense (Figs. 7, 10 and 11). Ribosomes are very sparse. In the meristematic 
cells (day 4) the vacuoles are very small and lie between the spherosomes, 
which tend to occur in groups (Figs. 12 and 13). Dividing plastid initials 
are very abundant. Some ER and very small initials are rather frequent 
but no starch or tannin is seen in the cells. Some of the root cortex cells 
(day 5) store relatively large amounts of starch, and tannin IS seen as 
flocculent material at the edges of the vacuoles (Fig. 14 ). 
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FIGS . 4--5. Rootlet cells (day 1). - FIG. 4. Dissolving protein bodies (PB). 6800 x. -
FIG . 5. Multiple amyloplasts (A). Developing mitochrondria (M). 13 600 x. 
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2. Cotyledon cells 

The cells of dry cotyledons are packed with spherosomes and protein 
bodies like the other parts of the seeds studied (Fig. 1). The protein bodies, 
however, are rather different in structure from those in the cotyledon cells 
of Picea abies (SIMOLA, in preparation) and Pinus banksiana (DuRZAN et 
al. 1971). They usually have one large globoid cavi ty with some phytate 
and one or two electron-translucent crystalloids. The protein bodies do not 
stain with silver hexamine, and observations wi th the light microscope 
indicate that they do not stain with PAS. They are therefore believed to 

be composed chiefly of protein material , unlike the protein bodies of Picea 
abies, which also contain carbohydrates. The smaller, irregular, rather 
electron-dense bodies are apparently protein bodies transectioned at an­
other level. No amyloplasts are visible, as in the cotyledon cells of Pinus 
banksiana (D uRZAN et al. 1971 ). It is not possible to detect any organelle 
initials or r ibosomes in the cytoplasm between the spherosomes. 

After one day's imbibition inclusions have disappeared from the protein 
bodies and some of the globoid cavities contain abundant phy tate (Fig. 16). 
It seems possible, however, that relatively great variation exist between 
different cells as regards their phytate content, as in the embryo of Lactuca 
(PAULSON & SRIVASTAVA 1968). Small initials and some proplastids with 
electron-translucent starch grains are visible, especially near the nucleus 
(Fig. 15). Their membrane corresponds more nearly to a single than to a 
double membrane, such as is characteristic of plastids. Ribosomes and 
small, very electron-dense bodies are visible between the spherosomes. 
These structures are also found in the cotyledon cells of P. banksiana 
(DURZAN et al. 1971). 

Breakdown of protein material begins after two days' germination 
(Figs. 18 and 19). Possibly, some of the globoids are surrounded by a 
membrane, because a membrane circle may be visible in the globoid cavity 
(Fig. 19). The fact that the globoid cavities contain only vestiges of 
phytate suggests that phytase is rapidly activa ted or formed during ger­
mination. Lipolysis has not begun, but small microbodies with a single 
membrane and rather electro-dense stroma are visible in the cytop lasm 
(Fig. 20). They also contain granules of a size roughly corresponding to 
that of the ribosomes, which are abundant in the cytoplasm between the 
spherosomes (Fig. 21 ). Similar structures in the cotyledon of Pinus 
banksiana (DURZAN et al. 1971 ) have been interpreted as microbodies and 
are supposed to be initials of plastids. Small rather weakly developed 
mitochondria are visible but their early stages cannot be recognized. The 
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Frc. 6. Rootlet cells (day 2). Amyloplasrs (A) . Osmiophilic spherosomes (S). Mitochondria 
(M) containing some ribosomes. Rough ER. Developing vacuoles (V) with some tannin. 

13 QQO X. 

proplastids contain some starch, and a few short thylakoids and small 
plastoglobuli have formed in the stroma (Figs. 17-19). The structure of 
the proplastids is very different in Pinus banksiana (DuRZAN et al. 1971). 
In this plant the proplastids are very electron-dense and usually elongated, 
and their internal structure is not well defined. 
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Frcs. 7-9. Rootlet cells near the calyptra (day 3). - Frc. 7. mall vacuoles (V), some 
of them fusing together. 3200 x. - Frc. 8. Amylopla t (A). mall electron-translucent 
vacuoles (V). 7000 x. - Frc. 9. Mitochondrion (M) with well-developed cri tae. 11400 x. 
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FIGS. 10-11. Root cortex cells (day 3). -FIG. 10. Large cenual vacuoles (V) contammg 
tannin. 3 000 x. -FIG 11. Small vacuole fusing with the large central vacuole. 11 000 x. 
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FrG. 12. Root tip cells near the meristem (day 4). Groups of spherosomes ( ). Organelle 
initials (I ). 11 000 x. 

Afte r three days' germination the vacuole have enlarged and may 
contain some osmiophilic granules attached to rhe tonoplast (Figs. 23 and 
24 ) . The mitochondria have a better defined internal structure and the 
ribosomes are grouped into polysomes. The chloroplasrs seem able to 
divide (Fig. 23). The number of thylakoids increases on the 4th and 5th 
days, and some small grana are formed (Figs. 25 and 26). The cytoplasm 
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FIG. 13. Root tip cells near the meristem (day 4). Proplastids (Pp). Organelle initials (I ). 

8 800 X. 

FIG. 14. Root cortex cells (day 5). Vacuoles (V) with flocculent tannin material. Amylo­
plasts (A). 6 800 x. 
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has a dense background of ribosomes and some rough ER and dictyosomes 
are v isible. No ribosomes are recognisable in the chloroplasts, and the 
plastoglobuli are small, as in the fullgro wn needles of this plant (WALLES et 
al. 1973 ). Lipolysis is not effective and the size of the spherosomes varies 
greatly. 

3. Endosperm cells 

The haploid endosperm tissue has about the same structure as the 
rootlets and cotyledons at the beginning of germination. The structure of 
the protein bodies may vary, as is clearly seen after imbibition before the 
breakdown of the storage material has begun (day 4) . The number of 
globoid cavities and the electron-density of the protein mass may vary 
(Figs. 27- 29) . The globoids may contain osmiophilic grains, apparently 
phytate, and some membrane circles. An electron-translucent inclusion may 
be visible in the protein mass (Fig. 27). The spherosomes are electron­
translucent. 

Breakdown of storage material begins later in the endosperm cells than 
in the embryos of Pinus sylvestris. In view of this, endosperm material 
was also studied after 8 and 13 day's germination. After five days' germi­
nation the protein bodies were often almost intact but disorganization of 
the spherosomes had begun (Fig. 30). Endosperm cells begin to supply 
nutrients for the growing embryo when this has used up the bulk of its 
own protein reserves. After five days' germination numerous spherosomes 
are seen in the cytoplasm of the cotyledon cells, starch is abundant in the 
chloroplasts and amyloplasts are abundant in the root cortex cells. 

It might perhaps be supposed that only different stages in the break­
down of the endosperm cells occur during germination, but actually they 
are followed by a stage of reorganization of the cell structure (day 8, Figs. 
33 and 34). At this stage the cells have a rather well-organized structure 
with new formation of cell organelles (mitochondria and proplastids) and 
several other structures typical of living cells (ER and ribosomes). 

After 8 days' germination the endosperm cells of Pinus sylvestris 
contain abundant microbodies (Figs. 32 and 33). These are interpreted as 
glyoxysomes in the light of earlier observations on the megagametophyte 
of Pinus ponderosa (CHING 1970). These Structures are surrounded by a 
single membrane and may contain an invagination. Glyoxysomes are a 
form of microbody containing enzymes of the glyoxylate cycle. They are 
sites of fatty acid oxidation in cotyledons of many oil-containing seeds 
(castor bean, CooPER & BEEVERS 1969; watermelon, KAGA WA & 
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FIG. 15. Cotyledon cell (day 2). ucleus ( ). Three nucleoli ( u). Proplastids (Pp) with 
some starch near the nucleus . Organelle initials (I ). Microbody (Mb). 6 000 x. 

BEEVERS 1970; peanut, Lo GO & Lo GO 1970; sunflower, GRUBER et al. 
1970). 

After 13 days the endosperm cells are quite empty and only a little 
lipid material is seen in the intercellular spaces. H ow long the endosperm 
cells preserve thei r semipermeabi!ity is not known. 



16 Liisa Kaarina Simola: Ultrastructure of seeds of Pinus sylvestris 

r ?Jo • 
.~j .. ('"'., 
' . 

.-

-- ···~ 

FIG. 16. Cotyledon cells (day 1). Protein bodie (PB) with phyta te (Pt) in the globoid 
cavity (G). 2 800 x. 

FIG. 17. Cotyledon cells (day 2). Proplastids (Pp) with some thylakoids and small plasto­
globuli. 10 400 x. 
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FIGs. 18-19. Cotyledon cells (day 2). Glutaraldehyde - Os04 fixation. - FIG. 18. 
Degradating protein bodies forming vacuoles (V). Proplastids (Pp) with starch, some 
thylakoids and plastoglobuli. 20 000 x. - FIG. 19. Protein body (PB) with a membrane 

circle in the globoid cavity (G). 10 400 x. 
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FIGS. 20--21. FIG. 20. Spherosomes surrounded by a single membrane. Microbodies (Mb). 
30 400 x. - FrG. 21. Microbody (Mb) containing particles corresponding in shape to 

ribosomes . 84 000 x. 

FrG. 22. Cotyledon cell (day 3). Developing chloroplasts (C) with some thylakoids (Tl) 
and small plastoglobuli (Pg). 11 000 x. 
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FIG. 23. Cotyledon cells (day 3). Spherosomes (S) with some osmiophilic material at the 
edges. Dividing chloroplasts (C). 10 400 x. 

FIG. 24. Cotyledon cells (day 3). Vacuoles (V) with osmiophilic granules at the edges. 
Chloroplasts (C). 11 000 x. 
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IV. DISCUSSION 

1. Structure of dry seeds 

Little is known about the ultrastructure of dry seeds owing to the 
technical difficulties of preparing and sectioning desiccated storage tissue 
for the electron microscope. Osmium tetroxide vapour has been used for 
fixing dry seed of Pisum but fixation took a very long time, even months 
(PERNER 1965 ). Such fixation was not satisfactory for Gossypium for 
which an aqueous solution of LiMn04 gave good results (YATSU 1965). 
Most authors have soaked their material in water for varying lengths of 
time, assuming that at low temperatures the structural changes will be 
insignificant (BAGLEY et al. 1963 ). In the present work glutaraldehyde and 
glutaraldehyde-formaldehyde fixatives followed by osmium tetroxide gave 
rather good results if a longer fixation time was used for desiccated ma­
terial than for imbibed seeds. The form of the nucleus and the structure 
of the protein bodies shows that they were not imbibed before fixation. 
PAuLSON & SRIVASTAVA (1968) have also used aqueous glutaraldehyde 
and osmium tetroxide for fixing dormant embryos of Lactuca. 

In structure, the resting cells of the endosperm, rootlets and cotyledons 
of Pinus sylvestris resemble the cotyledon cells of Pinus banksiana 
(DuRZAN et al. 1971) and Picea abies (SIMOLA, in preparation). In some 
details, however, there are slight differences. Amyloplasts are not visible 
in resting cells of Pinus sylvestris but are found in P. banksiana. Pro­
plastids storing starch become recognizable near the nucleus after one 
day's germination in both the cotyledon and roodet cells of P. sylvestris. 
Larger amounts of phytate are seen only occasionally in the globoid 
cavities of this species (cotyledon cells, day 1) but in the dormant cotyledon 
cells of Pinus banksiana phytate is very abundant (DURZA et al. 1971 ). 
In dry seeds of P. sylvestris electron-translucent crystalloid inclusions are 
characteristic of the protein bodies of the cotyledons. Inclusions of less 
regular shape are also found in the protein bodies of rootlet cells (day 1, 
Fig. 3) but even after imbibition may be visible in the endosperm. The 
electron micrographs of DuRZA et al. (1 971) show several inclusions in 
the protein bodies of P. banksiana, but the authors do not comment on 
these structures, although they are clearly visible. 

A well-formed, usually eccentric globoid cavity is found in the protein 
bodies of cotyledon cells in the dry seeds. In rootlet cells there are several 
electron-translucent areas of irregular shape in the protein material. 
Corresponding structures were seen in dry aged embryos of P. sylvestris 
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FtG . 25. Cotyledon cells (day 4). Cell walls (CW) straight. Chloroplasts (C). 4 000 x. 

FtG. 26. Cotyledon cell (day 5). Chloroplasts (C) with weakly developed stroma and grana 
thylakoids. Invaginations (Iv) developing from the inner membrane. Starch (St) and 

plastoglobuli (Pg). 25 000 x. 
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FIGS. 27-28. Endosperm cells (day 4). - FIG. 27 . Protein body (PB) with two globoid 
cavities (G) with some phytate (Pt). A rather electron-translucent inclu ion (le). 8 000 x. 
- FIG. 28. A electron-dense protein body with several globoid cavities (G) at the edges. 
The cavities may contain membrane material. Proteolysis and lipolysis have not begun. 

10 000 X . 
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FIG. 29. Protein body (PB) with a myelin-like structure in the globoid cavity (G). 4 800 x. 
FIG. 30. Endosperm cell (day 5). The electron-density of protein bodies (PB) varies. 

Spherosomal membranes disrupted . 11 000 x. 
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FIGS. 31-32. Endosperm cells (day 8). - FIG. 31. Degradating protein bodies forming 
vacuoles. Protein clumps (PC). Spherosomes ( ) electron-den e. 8 500 x. - FIG. 32. Pro­

plastids (Pp) with some thylakoids and pia roglobuli (Pg). Rough ER. 65 000 x. 
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FIGS. 33-34. Endosperm cells (day 8). - FIG. 33. Glyoxysomes (Gs). Proplastids (Pp). 
Mitochondria (M). ER. Vacuole (V). Electron-dense spherosomes (S). 6 000 x. -

and an eccentric globoid cavity was also visible in a cross-section. It seems 
obvious that these small irregular areas resul t from desiccation and contain 
onl y ai r. During imbibition the air does not all dissolve but form bubbles 
which may be v isibl e especially in endosperm cells after imbibition (Figs. 
28 and 30) . The globoid cavities of Crambe seem to be surrounded by a 
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membrane (cf. v. HOFSTEN 1973) . Some material resembling a membrane 

may be seen in the globoid cavities of cotyledon and endosperm cells of 
P. sylvestris (Figs. 19 and 29). 

2. Mobilization of storage material and development of vacuoles 

The cellular reorganization and degradation of storage material is more 
rapid in rootlet cells than in cotyledons and slowest in the endosperm. 
Proteolysis starts in the endosperm cells when the protein reserves of the 

cotyledons have been used up. Proteolysis precedes lipolysis in all these 
parts, as in some other oily seeds (SrMOLA 1973). In aged seeds of P. syl­
vestris lipolysis begins earlier than proteolysis (SrMOLA, in press) . In living 
growing cells amino acids resulting from breakdown of storage proteins 
are rapidly used for the formation of new cell structures, and the fusion 
of small vacuoles into a large central vacuole is well documented (Figs. 

7 and 11). 
The spherosomes of dry seeds of P. sylvestris are relatively electron­

translucent (Figs. 1-3), as in Picea abies (SrMOLA, in preparation) and 
Pinus banksiana (DuRZAN et al. 1971). During germination the spherosomes 
become more osmiophilic, especially in the endosperm. The thin membrane 
surrounding the spherosomes is sometimes clearly visible (Figs. 20 and 21). 
This seems to correspond tO the half unit-membrane seen around some 
spherosomes (GRIESHABER 1964, ScHWARZE BACH 1971 YATSU & jACKS 

1972, SrMOLA 1973 ). 
During early germination, however, these cells specialize structurally for 
quite different roles. Proplastids develop to amyloplasts in the rootlets 
and to chloroplasts in the cotyledons but fail to develop further in the 
haploid degenerating endosperm tissue. A large proportion of the storage 
material in roots is used for tannin synthesis. 

Lipid is apparently metabolized in different ways in the embryo, where 
it can be reutilized within a cell, and in the endosperm, where glyoxysomes 
play an important role and material is transported to the embryo. The 

No special structures for tannin synthesis and transport are visible, but 
the spherosomes become very osmiophilic and the cytoplasm contains 
rough ER, polysomes and some dictyosomes at the same time (Fig. 6). The 
same cells synthesize starch effectively, unlike the tannin-containing cells 
of Picea glauca in suspension culture (CHAFE & DuRZA 1973). In the 
cotyledon cells of Picea abies tannin seems to be attached to the sphero­

somes and sometimes corresponding material is seen inside the spherosome 
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itself. A small vacuole is usually located close to such spherosomes (SIMOLA, 
in preparation). 

After three days' germination the root-cortex cells have used up most 
of their storage material and a large central vacuole is formed, but the 
meristematic cells contain large groups of spherosomes and the proplastids 
do not store any starch . Storage of starch is characteristic of the cells of 
both rootlet cortex and cotyledons but vacuolization is much slower in 
the cotyledons. The proplastids of endosperm cells do not store starch, 
but small plastoglobuli may be visible. Some microchemical tests indicate 
that starch is synthesized during the initial stages of germination in both 
the embryo and endosperm of Pinus densiflora and P. thunbergii (Goo 
& FuRUSAWA 1955). 

3. Development of new cell organdies, especially mitochondria, plastids 
and glyoxysomes 

In the dormant cells no organelle initials, ER, dictyosomes or ribosomes 
are visible but after one day's germination these are already recognizable 
in root tip cells. How most of these structures are formed during germi­
nation remains obscure, because no intermediate stages could be detected in 
this species or in other embryos examined earlier (SRIVASTAVA & PAULSON 
1968, DuRZAN et a l. 1971, SASAKI & BRow 1971). Intact ribosomes pres­
ent as monomer units may be isolated from dormant embryos of Pinus 
resinosa, and polysome formation begins less than 4 hours after imbibition 
5tarts (SASAKI & BRow 1971). The young rootlet cells have well-developed 
mitochondria (Figs. 6-9). Their cristae are distinct, and ribosomes as well 
as some osmiophilic grains may be visible. In the endosperm cells the 
mitochondria vary in structure. Some are very electron-dense, with 
electron-translucent intracristal spaces (Fig. 33). A corresponding structure 
is characteristic of ageing cotyledon cells of Phaseolus vulgaris (OPIK 1965). 
Dividing mitochondria of P. sylvestris have numerous narrow cnstae 
(microvilli) and some of these organelles have a cavity (Fig. 34 ). 

After eight days' germination the number of mitochondria in the 
endosperm of Pinus is high . The oily cotyledons of Cucurbita and Cucumis 
(LoTT & CASTELFRANCO 1970, TRELEASE et al. 1971) also contain great 
numbers of these organelles. Although the B-oxidation of fatty acids in 
oily seeds appears to be localized to the glyoxysomes (CooPER & BEEVERS 
1969, HuTTO & STUMPF 1969, CHI G 1970, TRELEASE et al. 1971), the 
mitochondria play an important role in the metabolism of storage lipids. 
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The conversion of succina te to oxaloacetate takes place iR the mitochond­
ria, as does the production of ATP, which is needed for the conversion of 
acetyl-CoA to sucrose (BREIDENBACH et al. 1968). 

Development of a great number of glyoxysomes is characteristic of 
endosperm cells during effect ive lipolysis (8th day, Figs. 33 and 34). These 
structures seem to play no part in the mobilization of lipids in the embryo, 
in which they are seen only occasionally and have a different structure. 
In the endosperm of the castor bean glyoxysomes are found throughout 
seed development (CARPENTER & BEEVERS 1966), but in P. sylvestris they 
develop at a relatively late stage of germination. 

Cytoplasmic invaginations containing ribosomes were seen in the micro­
bodies of endosperm cells of Pinus sylvestris . Corresponding structures 
have been seen in the microbodies of Cucumis cotyledons during greening 
(TRELEASE et al. 1971). They have been interpreted as morphological mani­
festations of the mechanism by which the microbodies lose or gain enzymes. 
Some invaginations are also seen in the glyoxysomes of the megagameto­
phyte of germinating Pinus ponderosa (CHI G 1970) and in some epidermal 
cells of the spadix appendices in Sauromatum during flowering (BERGER 
& SCHNEPF 1970). In Cucumis the frequency of invaginations correlates 
strikingly with increases in the activity of glycolate oxidase (TRELEASE 
et al. 1971 ). The glyoxysomes in the end os perm of Pinus ponderosa contain 
both DNA and RNA and are capable of protein synthesis (CHING 1970). 
The glyoxysomes of castor bean endosperm cells also contain RNA 
(GERHARDT & BEEVERS 1969). Cytoplasmic D A different from 
mitochondrial DNA has also been found in the microsomes of mouse liver 
(BOND et al. 1969). 

4. Concluding remarks 

The cells of the different parts of the dry seeds of P. sylv estris have 
the same ultrastructural components and nothing points to their forth­
coming physiological role in the development of the young seedling. 
endosperm is not a mere degenerating storage tissue, however, but its cells 
undergo remarkable structural changes which may be prerequisite for 
effective and balanced transport of organic substances to the developing 
embryo. That the haploid endosperm cells are able to form all the 
structural components of a normal plant cell suggest that it may be 
possible to induce successful differentiation of shoots and roots from 
cultured endosperm cells of Pinus sylv estris. 



• 
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electron-translucent cavities. Cell wall (CW). Plasmalemma (PI) disrupting. Vesicles (Ve). 
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