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ABSTRACT 

The neuronal ceroid lipofuscinoses (NCLs) are a group of pediatric neurodegenerative 

syndromes. They are characterized by epilepsy, mental and motor regression, loss of vision 

and early death. Pathological findings include accumulation of lysosomal storage material 

together with neuron loss and glial activation in affected brains. Mutations in at least ten 

genes are reported to cause NCL disease. Apart from human disease, NCL phenotypes are 

widely present in the animal kingdom. However, the events leading to NCL disease onset and 

progression remain elusive and without a possibility to intervene. 

In this study these events were assessed in two forms of NCLs, the CLN8 and CLN10 

diseases. Late-infantile onset CLN8 disease and the more protracted progressive epilepsy with 

mental retardation are caused by mutations in the CLN8 gene. CLN8 is a resident of the 

endoplasmic reticulum membrane and linked to a lipid metabolism-related protein family. 

Mutations in the cathepsin D (CTSD) gene cause the most severe form of NCL, CLN10, which 

typically leads to death shortly after birth. The lysosomal aspartic protease CTSD is involved 

in cellular protein degradation and apoptosis. Two animal models were used in this study, the 

Cln8mnd mouse carrying a spontaneous mutation in the mouse Cln8 gene, and the previously 

generated cathepsin D deficient Drosophila, cathD1. Both model the respective human NCL 

diseases with intracellular storage and neuronal death. 

The Drosophila cathD1 was characterized with degenerative changes in the retina. This 

phenotype could be utilized to study the genetic pathways of cathD in a hypothesis-based 

modifier screen using Drosophila genetics and histological techniques. Seven candidate 

modifiers involved in lipid metabolism regulation, endocytosis and oxidative stress were 

identified as enhancers of the retinal degeneration of cathD1. Similar processes have been 

described affected in other Drosophila models for NCLs, suggesting that Drosophila NCL 

proteins may act in overlapping genetic pathways. While the importance of these pathways 

needs to be assessed in the human disease, their overlap suggests a possibility for a common 

mechanism of neurodegeneration. 

Similarly to previously characterized NCL models, the CLN8 disease model Cln8mnd showed 

neuron loss and glial activation in sensory thalamocortical pathways. By using stereological 

methods and histology, neuron loss in the visual thalamocortical pathway was shown to 

appear relatively late compared to the previously described retinal degeneration in Cln8mnd. 

This suggests that the visual areas of the brain are spared even with diminished or absent 

input from the retina. The somatosensory thalamocortical pathway was affected first. While 

the cerebral cortical sensory areas were relatively spared, neuron loss progressed rapidly in the 

thalamic component of these pathways. Thalamic sensory nuclei have shown particular 

vulnerability in the majority of NCL models, indicating a common pathological pathway 
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proceeding from thalamus to the cortex. In the future, knowledge of the differentially 

affected components of distinct pathways may be utilized in therapies, which should be 

targeted to the primary sites of pathology. In CLN8 disease these appear to be the retina and 

somatotosensory thalamus. 

Glial cells were observed to contribute to the Cln8mnd neuropathology. Especially microglial 

activation preceded neuron loss in Cln8mnd brain. Decreased axonal myelination, studied by 

stereology, light and electron microscopy, was observed even before microglial activation, yet 

myelination reached normal levels by the time of major brain pathology. By protein and gene 

expression profiling we were able to show a delayed maturation of oligodendrocytes in the 

Cln8mnd mouse brain and in vitro. These results suggest that perturbations in the glia-neuron-

glia signaling occur well in advance of the neurodegeneration in Cln8mnd. With increasing 

information on the mechanisms of these interactions it may be possible to find a specific 

target for therapies for CLN8 or NCLs in general. 

The myelination defect in Cln8mnd was observed through large-scale brain lipid analysis, where 

decreased amounts of myelin-specific galactolipids were found in Cln8mnd cortex, especially in 

the early stages of Cln8mnd disease. Subsequent analyses showed a persistent defect in the 

galactolipid synthesis by the UDP-galactose:ceramide galactosyltransferase enzyme. The 

connection of CLN8 to lipid synthesis regulation is in agreement with the sequence-based 

hypothesis of a role for CLN8 in lipid metabolism regulation, while further studies are 

required to indicate a specific function. 

In conclusion, this study resulted in increased knowledge on the CLN8 and CLN10 disease 

pathogenesis and on the cellular functions of the affected proteins. Results from both cathD1 

Drosophila and Cln8mnd mouse suggest both similarities and differences to other NCL models. 

In the future, increased knowledge on the molecular changes may take us towards targeting 

these diseases with therapies. 
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TIIVISTELMÄ 

Neuronaaliset seroidilipofuskinoosit (NCL-taudit) muodostavat yleisimmän syyn lapsuusiän 

hermorappeumaan. Vaikka tautien taustalla olevat geenivirheet pääosin tunnetaankin, 

molekyylitason tapahtumat, jotka johtavat taudin syntyyn, ovat edelleen pitkälti selvittämättä. 

Taudin etenemistä ei myöskään kyetä pysäyttämään tai tautia parantamaan.  

Tässä väitöskirjassa tutkittiin NCL-tauteihin lukeutuvien CLN8- ja CLN10-tautien taustalla 

olevien proteiinien toimintaa. Synnynnäisen NCL-taudin, CLN10:n taustalla ovat katepsiini D 

(CTSD) –geenin virheet. Solun sisällä lysosomeihin paikantuva CTSD on proteiineja pilkkova 

entsyymi. Työssä käytimme apuna CTSD-poistogeenistä banaanikärpästä (cathD1), jolla on 

NCL-taudeille tyypillistä solunsisäistä kertymämateriaalia ja hermosolujen rappeumaa. 

Teimme seulonnan, jossa tarkastelimme 17 geenin mutaatioiden vaikutusta cathD1-kärpäsen 

ilmiasuun. Histologiseen analyysiin perustunut seulonta vahvisti, että cathD1:n solukuolema 

voimistuu, kun kärpäsellä on häiriöitä rasva-aineenvaihdunnassa, endosytoosissa ja solujen 

suojautumisessa happiradikaaleilta. Samankaltaisten reittien on havaittu vaikuttavan myös 

muiden NCL-banaanikärpäsmallien ilmiasuihin. Näitä reittejä voidaan tarkemmin tutkia 

banaanikärpäsessä ja muissa NCL-tautien solu- ja eläinmalleissa. 

CLN8-geenin mutaatiot voivat aiheuttaa paitsi lapsuusiän NCL-taudin, myös nuoruusiällä 

puhkeavan, suomalaisen tautiperimän tauteihin kuuluvan Pohjoisen epilepsian. CLN8-

toiminta on tuntematon, mutta proteiinin tiedetään paikantuvan solujen 

endoplasmakalvostoon ja sekvenssiyhtäläisyyksien perusteella sen on arveltu liittyvän rasva-

aineenvaihdunnan säätelyyn. Tautimallina CLN8-tutkimuksissa käytettiin Cln8mnd-hiirikantaa, 

jossa on luonnollisesti syntynyt Cln8-geenin mutaatio. CLN8-taudin etenemistä tutkittiin eri-

ikäisistä hiiristä kerätyissä aivoleikkeissä ja käytettiin kvantitatiivisia menetelmiä, joiden avulla 

saatiin luotettava kuva hermosolukuoleman laajuudesta. Näyttääkin siltä, että aiemmin 

kuvattujen NCL-tautimallien lisäksi myös Cln8mnd-hiiren aivopatologia keskittyy isoaivokuoren 

ja talamuksen välisiin yhteyksiin ja alkaa tunto- ja kipuaistimuksia välittävältä 

somatosensoriselta aivoradalta. Toisin kuin useissa aiemmin kuvatuissa NCL-malleissa, 

aivojen näköaivorata säilyi vahingoittumattomana hyvin pitkään, vaikka Cln8mnd-hiiren 

tiedetään sokeutuvan varhain. Tietoa tautimuutosten etenemisestä voidaan toivottavasti 

käyttää hyväksi, kun pyritään kehittämään hoitomuotoja CLN8-tautia vastaan. 

Muutokset glia- eli hermotukisoluissa edelsivät hermosolukatoa tutkituilla aivoalueilla. Jo 

varhain ennen hermosolukuolemaa havaittiin aivojen immuunipuolustuksen aktivaatioon 

viittaavia muutoksia mikrogliassa. Vielä aiemmin muutoksia nähtiin oligodendrosyyteissä, 

jotka muodostavat hermosolujen viejähaarakkeita ympäröivän myeliinitupen. Myeliiniä, joka 

on välttämätöntä nopealle signaalinvälitykselle, muodostui Cln8mnd-hiirellä normaalia 

hitaammin. Tämän havaittiin liittyvän myeliiniin rikastuneiden rasva-aineiden, galaktolipidien 
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vähentyneeseen valmistukseen. Tulokset viittaavat siihen, että CLN8:n toiminta liittyisi rasva-

aineiden valmistukseen, mutta lisätutkimuksia tarvitaan, jotta pystyttäisiin selvittämään tarkka 

biologinen mekanismi. 

Väitöskirjatyön tuloksena saatiin lisää tietoa NCL-tautien aiheuttamasta aivopatologiasta ja 

siihen vaikuttavista tekijöistä. NCL-taudit ovat keskenään hyvin samankaltaisia. Tämä 

tutkimus tukee oletusta, että tautimekanismeissa on samankaltaisuuksia. Esimerkiksi rasva-

aineenvaihdunnan häiriöiden havaittiin vaikuttavan sekä CLN8- että CLN10-tautimalleissa. 

Tautimekanismit ovat kuitenkin myös hyvin erilaiset, mikä nähtiin vertailtaessa eri NCL-

malleissa tehtyjä tutkimuksia isoaivokuoren ja talamuksen välisistä radoista: NCL-taudit eivät 

noudata samaa kaavaa siinä, miltä alueilta tautimuutokset alkavat. Näiden vertailujen kautta 

saatu tieto on hyödyllistä, kun NCL-tauteja vastaan kehitetään hoitomuotoja. 
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1 INTRODUCTION 

I said in Dorian Gray that the great sins of the world take place in the brain: but it 

is in the brain that everything takes place.... It is in the brain that the poppy is 

red, that the apple is odorous, that the skylark sings. 

-Oscar Wilde 

 

Why do we have a brain? As Oscar Wilde says, to see, to smell, to hear. With a nervous 

system we are able to observe the environment with senses such as sight, smell, hearing, taste, 

touch, pain, and balance. Sensations arouse a diversity of behaviours: in Wilde’s case, he got 

an idea, took a pen and wrote, performing the acts of the human brain. Performed acts – that 

is the other half of the answer. We have a brain to act according to our perceptions of the 

environment. Sometimes the act is deliberate, directed movement such as the movement of 

fingers and hands. Sometimes the result is a chain of reasoning, consideration of previous 

experiences, leading to the conscious decision not to act. 

Why study the nervous system of another animal species in order to understand the human 

brain? We may do so out of pure curiosity, since in evolution many variations have been 

generated to adjust to environmental challenges. Yet with shared environment and ancestors 

many of the adjustments are similar between us animals. That is what we make use of when 

tackling a certain problem in an experimental model organism. Brains of different species do 

have much in common: they are comprised of nerve cells, neurons, which signal electrically 

and are interconnected via synapses, structures that join the cells together and enable signal 

transduction in a network of cells. 

 

  



 

Figure 1. Drawings of Santiago Ramón y Cajal depicting the organization of the visual system (from left to right) of a vertebrate, a cephalopod (Sepia) and an 

insect (housefly, Musca). This illustration shows the physical dimensions of the neuronal circuits: vertebrate neurons are larger than those of a cephalopod which 

again are larger than those of an insect (Llinas 2003). Reprinted with permission from Instituto Cajal (CSIC), Madrid, Spain. 
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2 REVIEW OF THE LITERATURE 

2.1 CELL TYPES OF THE CENTRAL NERVOUS SYSTEM 

… l'écorce cérébrale est pareille à un jardin peuplé d'arbres innombrables, les 

cellules pyramidales, qui, grâce à une culture intelligente, peuvent multiplier 

leurs branches, enfoncer plus loin leurs racines, et produire des fleurs et des fruits 

chaque fois plus variés et exquis. 

… the cerebral cortex is similar to a garden filled with trees, the pyramidal cells, 

which, thanks to intelligent culture, can multiply their branches, sending their 

roots deeper and producing more and more varied and exquisite flowers and 

fruits. 

-Santiago Ramón y Cajal 

 

The fact that the brain is formed by a network of connected but separate individual cells that 

communicate specifically with each other was demonstrated by Santiago Ramón y Cajal, 

Nobel Prize laureate in Physiology or Medicine, 1906. Ramón y Cajal described and illustrated 

a plethora of nervous system cell types, subtypes and the pathways they formed. He utilized a 

variety of organisms in his work, including material from humans and other mammals, birds, 

frogs, cephalopoda and insects, and had a substantial contribution to the field of comparative 

neuroanatomy (Fig. 1). 

Ramón y Cajal’s work was the basis of the Neuron Doctrine, the principle of the neuron as 

the single anatomical and functional unit in the nervous system. Ramón y Cajal also 

acknowledged the other major cells types in the nervous system, collectively called the glia, by 

speculating on their functions in attention, sleep and wakefulness (Garcia-Marin et al. 2007). 

However, until recent decades, glial cells have mostly been regarded as connective tissue and 

named as the ‘nerve glue’ (Virchow 1846; according to (Baumann & Pham-Dinh 2001). While 

the active roles of glial cells are still being discovered, neurons are no longer considered as the 

single functional units of information flow in the brain - they are aided to a great extent by 

glial cells in forming and maintaining neural circuits. Established functions of glia include 

supporting neurotransmission, maintaining ionic balance in the extracellular space, and 

insulating axons to speed up electrical communication (Allen & Barres 2009). The main cell 

types of the vertebrate central nervous system (CNS), the astrocytes, oligodendrocytes, 

microglia and neurons (Fig. 2) are introduced in the following sections 2.1.1-2.1.4. Notes on 

invertebrate (Drosophila) neurons and glia are given in section 2.1.5. 
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Figure 2. The four main cell types of the vertebrate central nervous system. A) Schematic illustration 

of a neuron, myelin forming oligodendrocyte, an astrocyte and a microglial cell. B) Neurons and glial 

cells observed through antibody-based staining methods. Scale bars 20 µm. 

2.1.1 NEURONS 

Morphologically, a neuron consists of a cell soma (or cell body), one axon and usually several 

dendrites. There are a multitude of neuron types in the vertebrate nervous system. 

Classification relies on the cellular morphology, electrophysiology, use of neurotransmitters 

and other chemical properties, and on the synapses and connections they make. However, the 

simplest classification of neurons in the vertebrate nervous system is according to the 

distance of the axon projection. Neurons connecting to more distant parts of the nervous 

system are called projection or relay neurons, and neurons with short-distance axons that 

connect to local circuits are called interneurons (Kandel et al. 2000). In this section, properties 

of mammalian cerebral cortical and thalamic neurons are introduced. 

2.1.1.1 Neurons of the cerebral cortex 

Pyramidal cells (Fig. 3A) are the major projection neurons and the most abundant neuron 

type of the neocortex (70-80% of neurons). In addition, they are the main excitatory neurons 

of the cerebral cortex releasing glutamate or aspartate as neurotransmitters. Pyramidal 

neurons are identified by their large size, triangular-shaped soma, large number of dendrites 

and dendritic spines and highly polarized shape. However, their structure exhibits high 

regional variation. Spiny stellate cells are another excitatory cell type of the cortex, but as 

opposed to pyramidal neurons, they are local interneurons. (Elston 2003; Markram et al. 2004; 

Squire et al. 2003) 
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Figure 3. Neuron subtypes in the cerebral cortex and thalamus. A) Excitatory pyramidal cells project 

to the spinal cord, subcortical and to other cortical regions. B) Large basket cells (LB), double bouquet 

cells (DB) and chandelier cells (Ch) are illustrated surrounding a layer III pyramidal neuron. C) 

Thalamocortical relay neurons (TCR) receive information through afferent neurons (Aff) and project 

to cortical regions (Ctx), sending collateral projections to thalamic reticular nucleus (Rt). The reticular 

nucleus also receives collaterals from the cortical axons projecting to thalamus. Local interneuron (in) 

is also depicted. Illustrations modified from (DeFelipe 2011; Jones 2009; Squire et al. 2003). 

 

The major inhibitory neurons of the cerebral cortex include the basket cells, chandelier cells 

and double bouquet cells (Fig. 3B). They predominantly synapse with pyramidal cells and use 

gamma-aminobutyric acid (GABA) as the neurotransmitter. These GABAergic interneurons 

can be distinguished by their morphological, electrophysiological and molecular properties. 

Especially the calcium-binding proteins parvalbumin, calbindin and calretinin serve as valid 

molecular markers. Approximately 50% of all inhibitory interneurons are basket cells, which 

are further divided into large, small and nest basket cells. They target the somata and proximal 

dendrites of pyramidal cells and are thus considered to control the integrated synaptic 

response. Meanwhile the chandelier cells target the axons where they give a strong inhibitory 

input. Double bouquet cells target the pyramidal cell dendrites. (Markram et al. 2004; Squire et 

al. 2003) 

The cerebral cortical layers differ according to which neuron types they contain (Fig. 3A and 

section 2.3.1.1). Pyramidal cells are mainly located in layers III, V and VI. Spiny stellate cells 

are most highly concentrated in layer IV of primary sensory areas. The basket cells, chandelier 

cells and double bouquet cells predominately localize in layers III and V where they inhibit 

the distant-projecting pyramidal cells. (Markram et al. 2004; Squire et al. 2003) 



 

20 
 

2.1.1.2 Neurons of the thalamus 

The thalamus is an important relay system between the cerebral cortex and other regions of 

the CNS. Mammalian thalamic nuclei contain excitatory relay neurons and local interneurons 

(Fig. 3C). The thalamic reticular nucleus consists of GABAergic interneurons and acts to 

integrate and modulate information received and sent by the thalamus. While many thalamic 

nuclei of mice and rats appear to lack local interneurons, the major inhibitory action is 

executed by the reticular nucleus (Arcelli et al. 1997). The thalamic relay neurons largely share 

a common morphology, including a symmetrical, bushy dendritic field. Interneuronal 

dendrites show rich terminal branching and swellings, while the discoid dendritic arbors of a 

reticular interneuron are situated in the plane of the cell nucleus. (Jones 2009; Sherman & 

Guillery 2006) 

The importance of the thalamic communication with cortex is illustrated by the synaptic input 

it receives: the majority of inputs to a typical sensory relay neuron are from cerebral cortex 

(almost 50% of the synapses) while the inputs from the sensory receptors account only for 5-

15% of the synapses. A large number of inhibitory inputs is mostly derived from the reticular 

nucleus (approximately 30% of the synapses). Similarly, cortical inputs predominate in the 

reticular nucleus cells, where 70% of synapses are from the cortex. (Jones 2009; Van Horn et 

al. 2000) 

2.1.2 ASTROCYTES 

Astrocytes populate all CNS regions and constitute the most abundant cell type in the brain. 

Astrocytes form networks through gap junction channels that allow intercellular information 

flow, such as the calcium (Ca2+) transients that may serve as a means of communication 

within and between astrocytes, other glial cells and neurons. Astrocyte morphology, functions 

and molecular expression pattern changes during CNS injury or disease in a process of 

reactive astrocytosis. (Allen & Barres 2009; Giaume et al. 2010; Sofroniew & Vinters 2010) 

2.1.2.1 Astrocyte morphology and functions 

In normal brain, astrocytes can be divided into at least two phenotypes: protoplasmic 

astrocytes are found in grey matter and fibrous astrocytes in white matter. The less studied 

fibrous astrocytes contact neuronal axons at the nodes of Ranvier. Protoplasmic astrocytes 

form a few main branches that give rise to several processes which contact neuronal 

dendrites, synapses and other astrocytes. (Sofroniew & Vinters 2010) 

With their close contacts to synapses, it is not surprising that astrocytes have various roles in 

the synapse. They recycle neurotransmitter molecules released to the synaptic cleft through 

the glutamate-glutamine cycle. Thus, potentially excitotoxic amounts of glutamate are 
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efficiently removed and inactivated. In addition, astrocytes release molecules such as 

thrombospondins, to induce synaptogenesis and increase synaptic activity. Astrocytes are 

proposed to modulate neuronal excitability through releasing 'gliotransmitters' glutamate, 

adenosine triphosphate (ATP) and D-serine. There are neuronally evoked fluctuations in the 

astrocytic Ca2+ concentration that have been proposed to trigger gliotransmitter exocytosis to 

the synaptic cleft. However, the debate continues on the significance of this phenomenon. 

(Barres 2008; Hamilton & Attwell 2010) 

Besides the synapses, astrocytes contact the blood vessels and form an imperative part of the 

neurovascular unit comprising neurons, glia and vascular cells (endothelia, pericytes and 

vascular smooth muscle cells). Astrocytes regulate the cerebral microcirculation through 

inducing vasodilation/vasoconstriction, possibly depending on the neuronal activity and 

involving Ca2+ waves in astrocytes. While astrocytes act as the main glycogen storage in the 

CNS, they are likely to participate in the increased metabolic requirements evoked by synaptic 

activity. (Iadecola & Nedergaard 2007; Sofroniew & Vinters 2010) 

2.1.2.2 Reactive astrocytosis 

Reactive astrocytosis is defined as the astrocytic response to all CNS perturbations, 

manifesting as changes of astrocyte molecular expression, morphology and function that 

depend on the severity of the insult (Fig. 4). Astrocytosis is a regulated phenomenon 

including inter- and intracellular signalling. All CNS cell types can release signalling molecules 

to trigger reactive astrocytosis, including growth factors, cytokines and neurotransmitters. 

(Sofroniew & Vinters 2010) 

Morphologically, reactive astrocytes exhibit cellular hypertrophy with thickened processes. 

Reactive astrocytes are characterized by the upregulation of cytoskeletal intermediate filament 

proteins, especially of the glial fibrillary acidic protein (GFAP). In severe astrocytosis, 

proliferative astrocytes may originate from local or migrated glial cell progenitors or as a 

result of the cell cycle re-entry of mature astrocytes. Glial scar formation is a response to 

severe insult requiring a complex interplay of astrocytes with fibromeningeal and other glial 

cells. A glial scar establishes a physical barrier to the site of the injury, restricting the entry of 

inflammatory cells but also preventing axonal regeneration. (Pekny & Pekna 2004; Sofroniew 

2009; Sofroniew & Vinters 2010) 

Reactive astrocytosis can have both beneficial and detrimental effects on neurons and other 

cell types. The beneficial functions have been observed by experiments where reactive 

astrocytosis has been attenuated. Loss of reactive astrocytosis can lead to excitotoxic 

neurodegeneration due to failure in the synaptic glutamate uptake. It also results in enhanced 

synaptic degeneration in response to cortical lesions. Loss of astrocyte barrier functions may 

increase the effects of inflammation or infection. The detrimental effects may be caused by 
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the production of cytotoxic molecules such as pro-inflammatory cytokines through which 

astrocytosis may lead to chronic inflammation or neuropathic pain. Reactive astrocytosis may 

exhibit two stages, showing beneficial effects in the acute stage after CNS injury, but later 

inhibiting the CNS regeneration and leading to increased inflammation. (Milligan & Watkins 

2009; Pekny & Nilsson 2005; Sofroniew 2009) 

 

 

Figure 4. Different grades and progression of reactive astrocytosis. A) In normal brain, astrocytes 

inhabit separate domains and only some express GFAP (dark grey cells). B) Hypertrophy and 

molecular changes (GFAP expression) are seen in cases such as moderate metabolic or molecular 

insults or milder inflammatory activation. This phenotype can reverse if the triggering insult is 

removed. C) Molecular expression changes, overt cellular hypertrophy and proliferation are typical in 

areas surrounding severe lesions, infection or in regions of chronic neurodegeneration. D) Glial scars 

envelop areas of overt tissue damage and inflammation. It includes proliferation of astrocytes and 

other cell types. Glial scars restrict entry of inflammatory cells (round light grey cells) to the site of 

injury. Illustration based on (Sofroniew & Vinters 2010). 

 

2.1.3 OLIGODENDROCYTES 

In vertebrates, oligodendrocytes are essential for rapid electrical communication between 

neurons and their targets. Oligodendrocytes generate myelin sheets that enclose axons 

enabling the saltatory conduction of action potentials. In addition, myelination induces 

clustering of ion channels thereby further enhancing conduction velocity (Allen & Barres 

2009). Other roles of oligodendrocytes include providing trophic and metabolic support to 

the neuronal axons (Nave 2010). Schwann cells, the peripheral counterparts of 

oligodendrocytes, which will not be introduced here in detail, ensheathe and support 
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peripheral nerves and display similarities but also differences to the CNS oligodendrocytes 

(Baumann & Pham-Dinh 2001). 

2.1.3.1 Myelin 

In brain, myelin is formed by the expanded and specialized plasma membrane of a mature, 

myelinating oligodendrocyte. The compactly multilayered and segmented structure of myelin, 

low water content and high lipid content account for its insulation properties. Structurally, 

myelin sheath segments or internodes are separated by the nodes of Ranvier, where myelin is 

lacking and the axon is exposed to the extracellular milieu. Rapid saltatory nerve conduction 

is established through the axonal impulse jumping from node to node over the well-insulated 

internodes. (Baumann & Pham-Dinh 2001) 

Myelin membrane has a protein to lipid ratio of 1:3 while other biological membranes have a 

ratio of 1:1-4:1. The lipid composition is unique (Fig. 5) with exceptionally high proportions 

of glycosphingolipids galactoceramide (cerebroside, GalC) and its sufated form, 

sulfogalactoceramide (sulfatide, sGalC). These lipids differ from other glycosphingolipids 

since they consist of a galactose (instead of glucose) headgroup, they incorporate very-long-

chain fatty acids and they are solid at body temperature. Other major myelin lipids include 

cholesterol, which decreases the fluidity of the membrane, and phospholipids, of which 

ethanolamine-containing plasmalogen is highly myelin-enriched. A large proportion of fatty 

acids in galactolipids and phospholipids are saturated. These lipid characteristics contribute to 

the decreased membrane fluidity and permeability that enhance the insulation capacity of the 

myelin membrane. (Aggarwal et al. 2011; Chrast et al. 2011; Siegel et al. 1999) 

The multilayered myelin membrane is compacted by specific oligodendrocyte expressed 

proteins (Fig. 5). The myelin basic protein, MBP, and the proteolipid-protein, PLP, account 

for 60-80% of total myelin proteins and are the major structural proteins in CNS myelin (Fig. 

5). MBP joins the cytoplasmic membrane leaflets in close apposition. Membrane spanning 

PLP is suggested to function in the adhesion of the extracellular leaflets. (Aggarwal et al. 2011; 

Siegel et al. 1999) 

Synthesis of the myelin components is under strict developmental regulation and needs to 

progress rapidly before and during the active period of myelination (section 2.1.3.2). The 

activity of UDP-galactose:ceramide galactosyltransferase (CGT), catalyzing the last step of 

galactolipid synthesis, increases notably in rodent brain just before the maximal rate of myelin 

formation and then gradually declines. MBP synthesis and integration to myelin is very rapid 

and occurs in free ribosomes associated with the myelin membrane. PLP is synthesized in the 

bound ribosomes in the perikaryon and transported to the oligodendrocyte processes possibly 

together with cholesterol and galactolipids. A pool of PLP accumulates in the late endosomes 
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of premyelinating oligodendrocyte processes that are released and integrated once the 

myelination is initiated. (Siegel et al. 1999; Simons & Trotter 2007) 

 

 

Figure 5. Major components of the myelin membrane. Cholesterol and galactolipids are enriched on 

the extracellular side of the myelin membrane, while ethanolamine plasmalogen is localized to the 

cytoplasmic side of the bilayer. The cohesive effect of MBP is mainly established through its 

interactions with phosphatidylserine and phosphatidylinositol-(4,5)-bisphosphate. Reprinted from 

Aggarwal et al. 2011, with permission from Elsevier. 

 

2.1.3.2 Oligodendrocyte development and myelination 

Myelination is a spatiotemporally regulated process that requires the oligodendrocytes to 

proliferate, migrate and synthesize myelin membrane. In the mouse CNS, myelin formation 

starts at birth in the spinal cord and optic tract, and by 45–60 days postnatally the brain is 

completely myelinated. In humans the myelination peak occurs during the first year after 

birth, yet the process already starts during the second half of fetal life from the spinal cord. 

Myelination occurs until 20 years of age, especially in the associative areas of the cerebral 

cortex. Myelination progresses caudorostrally in the brain, opposite to the spinal cord where 

the progression is rostrocaudal. (Baumann & Pham-Dinh 2001) 

In the mammalian cortex, oligodendrocytes as well as neurons and astrocytes are generated 

from the proliferating neuroepithelial cells of the telencephalic ventricular and subventricular 

zone (SVZ). Oligodendrocyte progenitors migrate from these zones, continuously extending 

and retracting their processes. This may serve to sense other nearby oligodendrocyte 

progenitors and establish correct spacing. The process of sensing the surrounding 
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oligodendrocytic cells continues throughout postmigratory oligodendrocytic development. 

Different stages of oligodendrocyte development are characterized by changes in cell 

morphology and molecular expression pattern (Fig. 6). (Baumann & Pham-Dinh 2001; 

Simons & Trotter 2007).  

 

Figure 6. Morphological and molecular changes during oligodendrocyte development. 

Oligodendrocyte progenitors have bipolar morphology or extend only a few processes and can be 

detected with markers such as gangliosides (A2B5) and chondroitin sulfate proteoglycan (NG2). These 

cells are migratory and proliferate, also in vitro, in response to specific growth factors and signals. 

Preoligodendrocytes are multiprocessed cells that have mostly lost their mitogenic response to PDGF 

and are post-migratory. An immature oligodendrocyte obtains the marker GalC and loses A2B5 

antigens. A mature oligodendrocyte expresses markers such as MBP, PLP and myelin and 

oligodendrocyte glycoprotein (MOG). Adapted from Baumann & Pham-Dinh, 2001, use permitted by 

the American Physiological Society. 

 

In oligodendrocyte development signals from axons control the timing of progenitor 

differentiation to ensure correct timing of myelination. In addition, they are important in 

matching the number of oligodendrocytes to the axons requiring myelination. Trophic factors 

and growth factors, such as platelet-derived growth factor (PDGF) and fibroblast-derived 

growth factor (FGF), secreted by neurons and astrocytes regulate oligodendrocyte 

proliferation and survival. Myelination is influenced by the electrical activity of neurons, 

possibly through secretion of adenosine from neurons and by indirect signals from astrocytes. 

At the same time, oligodendrocytic support to neurons is required for axonal protein 
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clustering at the nodes of Ranvier. Oligodendrocytes also modify the axonal cytoskeleton and 

transport. (Simons & Trajkovic 2006) 

2.1.4 MICROGLIA 

Microglia comprise 5-20% of the glial cells in CNS. They derive from the hematopoietic 

lineage, unlike neurons, astrocytes and oligodendrocytes, which all have a neuroectodermal 

origin. Microglia are the resident immune cells of the CNS that survey the brain for damage 

and infection and phagocytose dead cells and debris. Activated microglia are present in most 

if not all neuropathological conditions, but whether they are helpful or harmful in these 

conditions remains mostly an open question. (Allen & Barres 2009) 

Developmentally, microglial cells enter the brain from the blood circulation early in 

development, in both embryonic and early postnatal stages. In the CNS microglial precursors 

proliferate and migrate to populate the CNS. While migrating, microglia differentiate and 

their early developmental amoeboid phenotype is replaced by the ramified state. Neurons 

induce and sustain the ramified state by direct signalling, but also astrocytes and epithelial 

cells affect the change. Even in the ramified state, often misleadingly called the resting state, 

microglia are highly motile cells constantly extending and withdrawing processes. (Hanisch & 

Kettenmann 2007; Tambuyzer et al. 2009). 

The activation of microglia affects their morphology and molecular expression. The gradual 

changes from ramified, surveying microglia to the activated, alert microglia are characterized 

by cellular hypertrophy and thickened processes giving the cells a “bushy” appearance (Fig. 

7). Under a persisting stimulus, microglia acquire the amoeboid morphology and become fully 

functional phagocytotic cells that express molecular markers of macrophages. At this stage, 

there often is another population of macrophage marker expressing cells, the acutely CNS-

infiltrated macrophages. These two types of immune cells are both required for the 

maintenance of CNS integrity. Apart from phagocytosis microglia regulate the immune 

reaction by releasing immunoregulatory substances. Interleukin-1 (IL-1) and tumor necrosis 

factor  (TNF) are major pro-inflammatory cytokines whereas anti-inflammatory cytokines 

include IL-10, transforming growth factor  (TGF) and IL-1 receptor antagonist. (Carson et 

al. 2007; Hanisch & Kettenmann 2007) 

Phagocytotic microglia migrate towards the chemotactic stimulus and proliferate at the target. 

Microglia clear the target cells or debris, such as the remnants of neurons eliminated by 

developmental apoptosis. Microglia are implicated in synaptic remodelling during the 

development of the nervous system, since they have been proposed to remove inappropriate 

synaptic connections through phagocytosis. Microglia are also involved in synaptic 

remodelling during pathological conditions, by efficiently removing excitatory synapses and 

so limiting neuronal excitability and glutamate toxicity. This ‘synaptic stripping’ has been 
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described in spinal motor neurons but may occur in other regions of the CNS as well. (Eroglu 

& Barres 2010; Tambuyzer et al. 2009). 

 

Figure 7. Morphology of the microglia in the rat brain, depicting ramified (A,B), hypertrophied (C,D) 

and bushy cells (E,F). Reprinted from Sołtys et al. 2001, with permission from John Wiley and Sons. 

 

Healthy neurons and possibly other CNS cell types release signals to inhibit microglial 

activation. When these signals are disrupted, e.g. by blocking the neuronal activity, microglial 

activation is triggered. Neurotransmitters are proposed to act as such signals. In addition, 

microglial activation can be induced by factors that are not normally present (viral or bacterial 

structures) or that show abnormal states (released intracellular components, protein 

aggregates). (Hanisch & Kettenmann 2007; Tambuyzer et al. 2009) 

2.1.5 DROSOPHILA NEURONS AND GLIA 

Similarily to mammals, the fruit fly Drosophila melanogaster has sensory neurons, interneurons 

and motor neurons. The neuronal structure is widely homologous among invertebrates and 

vertebrates, but differences do exist. . Vertebrate somatosensory neurons are derived from 

the CNS migratory precursors, are unipolar, and their somata locate to dorsal root ganglia 

(see section 2.2.1.4) from where their processes grow bidirectionally both towards the CNS 

and to innervate the periphery. The corresponding Drosophila neurons are bi- or multipolar, 

are born and located in the periphery and grow axons unidirectionally towards the CNS. In 

addition, vertebrate projection axons are myelinated and located in defined white matter 

tracts. Comparable axons in Drosophila locate to synaptic regions (neuropil) and individual 

axons lack glial ensheathment (Sanchez-Soriano et al. 2007). The structural arrangements of 

the Drosophila CNS are described in section 2.2.2. 

Drosophila neurons are usually smaller in size (see Fig. 1) and there are less of them: it has been 

estimated that the adult Drosophila brain consists of 100 000 - 200 000 neurons (Nichols 2006) 
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while the human brain consists of 1011 neurons and mouse brain (C57Bl/6J strain) of 

75 000 000 neurons (Kandel et al. 2000; Williams 2000). Then number of glial cells is also 

lower: the Drosophila glia constitute 25% of the total brain cells while some estimates point 

that 65% of the mouse brain cells and 90% of the human brain cells are glial cells (Allen & 

Barres 2009). 

The functional classes of Drosophila glia resemble the vertebrate glial classes. Cortex glia, 

forming close contacts with neuronal cell bodies, the blood-brain barrier and tracheal 

elements, are very similar to vertebrate astrocytes. The Drosophila blood-brain barrier is 

formed by surface glia that tightly separate neurons and other glia from surrounding 

hemolymph. Neuropil glia resemble oligodendrocytes since they extend sheathlike 

membranes around target axons to provide an isolated space for neuronal action potentials 

and trophic support. Drosophila peripheral glia perform these functions in the periphery, 

similarly to the Schwann cells of vertebrates. Microglia do not appear to have a specific 

counterpart, but all glial types may perform immune cell-like functions. (Freeman & Doherty 

2006) 

2.1.6 DIFFERENTIATING BETWEEN THE CELLS OF THE CENTRAL 

NERVOUS SYSTEM 

Cell type and developmental stage-specific morphological and molecular characteristics can 

be utilized in identifying the cells of the nervous system. Having started this section with 

Santiago Ramón y Cajal, it is reasonable to end it by crediting Camillo Golgi, who shared the 

Nobel Prize in 1906 with Ramón y Cajal. Although wrong in his theory of a continuous, fluid 

exchanging neural network, his staining technique paved the way for Ramón y Cajal’s 

neuroanatomical discoveries. 

Histological staining is used for selectively highlighting cells and cellular components. In 

staining procedures, chemical reactions between chemicals and components within a tissue 

are utilized. Immunohistochemistry refers to a staining process where antibodies are used for 

specific recognition of molecules in the material of interest. Many of the molecular 

characteristics of certain cell types or the developmental status of the cell can be distinguished 

using the immunohistochemical procedures (see Table 6 in Methods, section 4.2.3). 

Apart from differentiating between cell types and cellular components, histological staining is 

utilized in the study of basic anatomy of the tissue, as well as examining the pathology, that is, 

regions of damaged tissue. The topics of functional anatomy and pathologies of the CNS are 

covered in the following sections 2.2 and 2.3. 



 

29 
 

2.2 ANATOMICAL ORGANIZATION OF THE NERVOUS SYSTEM 

Estimated amount of glucose used by an adult human brain each day, expressed 

in M&Ms: 250. 

Harper's Index 

 

Neural pathways including a sensory input, a motor output and the information-integrating 

interneuron is highly conserved in all animal nervous systems. Very early in evolution, 

nervous systems were organized to form distinct modules performing different tasks. Early 

forms of centralized nervous systems consist of a longitudinal nerve cord and an anterior 

collection of nerve cells, a ganglia or a brain, at the cephalic end of the organism. This 

structure is found in flatworms (phylum Platyhelminthes). A more complex CNS is found in 

insects (phylum Arthropoda), brains of which are divided into regions performing different 

functions. During vertebrate nervous system evolution, the importance of the cerebral 

hemispheres and especially the cerebral cortex as the association centre becomes increasingly 

evident. (Lentz and Erulkar in Encyclopædia Britannica, www.britannica.com) 

The peripheral nervous system (PNS) lies outside of the CNS structures, and in vertebrates 

can be divided into somatic and autonomic peripheral nerves. Somatic division consists of the 

sensory neurons of dorsal root and cranial ganglia innervating the skin and musculature. 

Autonomic division controls the smooth muscles and the exocrine glands (Kandel et al. 2000). 

2.2.1 VERTEBRATE CENTRAL NERVOUS SYSTEM ORGANIZATION 

The main regions of the vertebrate CNS include the spinal cord, cerebellum, brain stem 

(comprised of medulla, pons and midbrain), diencephalon and cerebral hemispheres (Fig. 8). 

Spinal cord and brain stem function as relays between the CNS and PNS and contain 

pathways to and from the brain: sensory information is carried via ascending pathways, while 

the motor commands and regulation runs via descending pathways (see section 2.2.1.3). The 

thalamus (section 2.2.1.2) and hypothalamus are diencephalic structures. Hypothalamus 

regulates the autonomic nervous system and, through the pituitary, the hormonal balance of 

the body. The cerebral hemispheres consist of the cerebral cortex (section 2.2.1.1) and the 

underlying white matter, the basal ganglia, the hippocampus and the amygdala. The basal 

ganglia are formed by a group of interconnected nuclei, the striatum (composed of the 

caudate and putamen), the globus pallidus, the substantia nigra and the subthalamic nucleus 

and they contribute to movement regulation and cognition. The amygdala and hippocampus 

are part of the limbic system, which is suggested to process emotional reactions through 

regulating the autonomic nervous system and endocrine system. Hippocampus is also 



 

30 
 

involved in memory storage and spatial navigation. The cerebellum integrates motor, 

somatosensory and vestibular information in order to coordinate the movement. (Kandel et 

al. 2000) 

 

Figure 8. Mouse brain visualized in A) sagittal (cross-section from the midline) and B) coronal section 

(left hemisphere; the plane of cross-section is shown in A). Some major brain structures and white 

matter tracts are illustrated. Modified from Paxinos & Franklin 2001. 

2.2.1.1 Cerebral cortex 

Cerebral cortex is organized into distinct functional areas that have a characteristic pattern of 

connections. Most of the cortical surface in mouse is involved in sensory and motor 

information processing (Fig. 9A). Primary sensory cortical areas are the first areas in cortex to 

receive sensory information from the periphery while the primary motor cortex projects 

directly to the spinal cord. Higher order sensory cortex integrates information from the 

primary cortex, while higher order motor areas send processed information to primary motor 

cortex. (Kandel et al. 2000) 

Apart from the regional division, the cerebral cortex is organized into six layers (I-VI). Layer I 

below the pial surface is mainly composed of axons that run laterally and make contacts with 

the apical dendrites of the lower layer neurons. Layers II and III are composed of pyramidal 

neurons connecting to other cortical regions making association connections (within the 

hemisphere) and callosal projections (between hemispheres through the corpus callosum, see 

section 2.2.1.7). Layer IV neurons receive inputs from the thalamus and send information to 

projection neurons in layers III, V and VI. Layers V and VI comprise the major sites of 

outputs from the cortex, layer VI pyramidal neurons connecting to the thalamus and the large 

layer V pyramidals descending to the basal ganglia, brain stem and spinal cord (Fig. 10B, see 

also Fig. 3A). Depending on the cortical area, the size of the individual layers varies. Layer IV 

is thicker in primary sensory areas that receive vast subcortical input while motor cortex layer 

V is expanded giving rise to descending motor pathways. (Kandel et al. 2000) 
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Figure 9. Regional and laminar organization of the cerebral cortex. A) The flattened mouse cerebral 

cortex shows the proportions of cortical regions, such as the primary sensory regions (somatosensory, 

S1, visual, V1 and auditory, Au) and primary motor cortex M1. The map is constructed from a full set 

of mouse coronal sections (see Fig. 8), the top representing the medioventral limit of the cortex (the 

corpus callossum) of each section. The vertical (y) axis represents distance from the medioventral 

margin measured around the surface of the cortex. Au, auditory (primary and secondary), Cg, 

cingulate, FrA, frontal association, Ins, insular, M1, primary motor, M2, secondary motor, Orb, 

orbital, Pir piriform (olfactory), Rhi, rhinal (entorhinal, ectorinal, perirhinal), S1, primary 

somatosensory, S2, secondary somatosensory, RS, retrosplenial, TeA, temporal association, V1, 

primary visual cortex, V2, secondary visual cortex. Modified from (Paxinos & Franklin 2001). B) 

Cerebral cortex is organized into layers, from which neurons project to distinct areas in the brain. 

Shown are the subcortical somatosensory projections from layers V and VI, and cortico-cortical 

connections from layers II and III, boh association connections within the same hemisphere or 

callosal projections to the other hemisphere. Dashed line presents the midline. VPL, ventral posterior 

lateral nucleus. Modified from Kandel et al. 2000. 

 

2.2.1.2 Thalamus 

The thalamus acts as the major relay system of the information passing to the cerebral cortex 

from other regions of the CNS or from the cerebral cortex itself. Distinct groups of neurons, 

nuclei, are separated based on the information that they transmit and the connections they 

make. All sensory information received by other areas of the CNS pass through the thalamus, 

with the exception of the olfactory afferents. The thalamus also relays motor information 

from the cerebellum and the basal ganglia to the motor cortex. Thalamic nuclei and their 
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major inputs and projections are listed in Table 1. (Kandel et al. 2000; Sherman & Guillery 

2006) 

 

Table 1. Major thalamic nuclei are divided to specific relay nuclei that have well-defined inputs and 

connections to functionally specific cortical areas. Association nuclei receive most of their inputs from 

cortex and project to cortical association areas. Modified from Kandel et al. 2000. 

THALAMIC 
NUCLEUS 

PRINCIPAL 
INPUT 

MAJOR OUTPUTS INFORMATION 
RELAYED 

Specific relay nuclei    

Ventral posterior Spinal cord / 
trigeminal nerve 

Somatosensory cortex Somatosensory 

Lateral geniculate Retina Visual cortex Visual 

Medial geniculate Cochlea Auditory cortex Auditory 

Ventral anterior /   
ventral lateral 

Spinal cord / Globus 
pallidus / cerebellum 

Motor cortex Motor 

Association nuclei    

Anterior group Hypothalamus Cingulate gyrus Limbic 

Medial dorsal Amygdala, 
hypothalamus 

Prefrontal cortex Limbic 

Lateral dorsal Hypothalamus, 
Cingulate gyrus 

Cingulate gyrus Emotional expression

Posterior group Spinal cord, cortical 
regions 

Somatosensory cortex 
(primary / secondary) 

Integration of 
sensory information 

Other    

Midline Reticular formation, 
hypothalamus 

Basal forebrain Limbic 

Intralaminar Reticular formation, 
spinal cord, cerebral 
cortex 

Basal ganglia and 
cortex 

Attention/arousal 

Reticular Cerebral cortex, 
thalamic nuclei 

Thalamic nuclei Modulation of 
thalamic activity 
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2.2.1.3 General organization of the sensory and motor pathways 

Separate pathways carry visual, auditory, somatosensory and motor information and can be 

further divided into specialized pathways, e.g. the somatosensory pathway has distinct 

subsystems for sensations of pain and light touch. The sensory and motor neural pathways 

are topographically organized, that is, the spatial relationship of the peripheral 

receptive/output surface is preserved along the CNS relay systems (Kandel et al. 2000). Below 

is an introduction to the main pathways of somatosensory, visual and motor information 

carried to/from the cerebral cortex (Fig. 10). 

Somatosensory pathways 

Ascending somatosensory pathways deliver information from the receptors in the skin, joints 

and muscles of the trunk and limbs. The main two subdivisions, the medial lemniscal pathway 

and the anterolateral pathway (Fig. 10), mediate sensations of light touch and of pain and 

temperature, respectively. In both pathways the first order neuron soma is located in the 

dorsal root ganglion (DRG), from where it connects to the peripheral sensory receptor. The 

thalamocortical connection is generated by the third order neuron, which lies in the thalamus 

and projects its axon to layer IV of the primary somatosensory cortex. The pathways differ 

mainly in the location and behaviour of the second order neuron. In the medial lemniscal 

pathway, the soma of the second order neuron is in the nuclei of the medulla, from where its 

axon crosses the midline and projects to the thalamus. The tract from medulla to thalamus is 

called the medial lemniscus, from where the name of the pathway derives. The second order 

neuron of the anterolateral pathway is located in the dorsal horn of the spinal cord, from 

where it crosses the midline and ascends to synapse in the reticular formation, midbrain or 

thalamus. The thalamic nuclei innervated by the medial lemniscal pathway are the ventral 

posterior lateral (VPL) and posterior (Po). Apart from these two nuclei, the anterolateral 

pathway has intralaminar nuclei connections. (Kandel et al. 2000) 

Visual pathway 

In the retina, the light-sensitive photoreceptor cells synapse with bipolar cells, which then 

synapse to retinal ganglion cells. The axons of retinal ganglion cells project to the dorsal 

lateral geniculate nucleus (LGNd) in thalamus, axons from the nasal half of the retina 

crossing the midline in the optic chiasm. The pathway from LGNd to the primary visual 

cortex mediates the visual perception. A minor proportion of retinal connections are made to 

the midbrain and the superior colliculus, which control the papillary reflexes and eye 

movements, respectively. (Kandel et al. 2000) 

Corticospinal motor pathway 

The corticospinal motor pathway (or pyramidal tract, Fig. 10) is responsible for the execution 

of voluntary movements. In human brain, half of the corticospinal tract axons originate from 
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layer V pyramidal neurons of the primary motor cortex. The rest of the axons originate from 

the supplementary and premotor areas. Regulatory inputs to the motor cortex arrive from the 

somatosensory and sensory association cortex, thalamus (ventral lateral nucleus), basal ganglia 

and the cerebellum. The motor cortical axons descend through the white matter structures of 

internal capsule and cerebral peduncle in the midbrain to pyramids of the medulla. Most of 

the axons cross the midline in the medulla and reach the lateral column of spinal cord and 

constitute the lateral corticospinal pathway. Some 10% cross only until they reach the anterior 

column of the spinal cord (anterior corticospinal pathway). In the ventral horn of the spinal 

cord, pyramidal axon synapses with the lower motor neuron. (Kandel et al. 2000) 

 

Figure 10. Somatosensory (medial lemniscal pathway on the left, anterolateral pathway on the right) 

and visual pathways carry information from the sensory receptors to the cortex. Motor pathway 

delivers motor commands from the cortex to the target muscles. Modified from Kandel et al. 2000; 

Squire et al. 2003. 

 

White matter components 

The axons in the described neural pathways project long distances and require efficient 

myelination for efficient conduction velocities. Bundles of these myelinated axons form the 

projection white matter tracts in CNS. The internal capsule is a white matter structure formed 

by the tracts to/from the thalamus, cortex and basal ganglia, as well as of the corticospinal 
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tract for motor information. In the brain stem, the medial lemniscal tract and cerebral 

peduncle/pyramidal tracts constitute the white matter tracts of somatosensory and motor 

information, respectively. Commissural tracts, such as the anterior and the posterior 

commissure and the largest fiber bundle in the brain, the corpus callosum, serve to connect 

the two cerebral hemispheres. 

2.2.2 INVERTEBRATE NERVOUS SYSTEM ORGANIZATION 

The Drosophila brain includes neural circuits for vision, olfaction, locomotion, and complex 

behaviors for mating, aggression, circadian rhythms as well as learning and memory. In 

comparison to vertebrate CNS, many aspects such as neurotransmitter systems are highly 

conserved. However, many adaptatations are notably different, such as the fly compound eye, 

introduced in the following section. 

2.2.2.1 Basic structure of the adult Drosophila visual system 

The entire adult Drosophila visual system consists of the retina, lamina, medulla, lobula, and 

lobula plate (Fig. 11 and Fig. 12). Genetic mutations or environmental conditions that alter 

the precise and repeating structure of the adult eye either in development or aging are 

relatively simply detected. This has been utilized in the study of human neurodegenerative 

disorders (see section 2.3.2.2). 

The Drosophila eye consists of approximately 800 ommatidia (Fig. 11) each containing a 

cluster of eight photoreceptor cells. Of these, six extend through the retina (R1–6), and the 

remaining two (R7, R8) locate to the upper and lower halves of each ommatidium. Each 

photoreceptor contains one rhabdomere, consisting of microvilli that function in light 

reception. The ommatidia are surrounded by primary and secondary pigment cells, which 

prevent the off-angle light from entering the photoreceptor system. Overlying the 

photoreceptors are the cone cells that secrete lens material and the pseudocone and 

transparent cornea for light focusing (Montell 1999; Wang & Montell 2007), Interactive Fly, 

http://www.sdbonline.org/fly/aimain/1aahome.htm.) 

From each ommatidium, eight photoreceptor axons project to distinct neuropils in the 

Drosophila brain. The R1–6 axons form synapses in the lamina, situated directly below the 

retina, whereas the R7–8 axons project through the lamina to the medulla. Lamina is linked to 

medulla and medulla to lobula by two successive chiasmata. Throughout the visual system, 

neurons are arranged as topographic arrays representing the arrangement of ommatidia. 

Lobula plate neurons connect the optic lobes of the two hemispheres and the lobula complex 

neurons project to the central brain. (Wang & Montell 2007), the FlyBrain project, 

http://flybrain.neurobio.arizona.edu/Flybrain/html/index.html) 
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The protocerebrum is a part of circuits controlling higher order behaviours such as the 

circuits mediating circadian behaviours. Mushroom bodies are structures within the 

protocerebrum and are involved in olfactory learning and memory. The central body complex 

comprises the ellipsoid body and the fan shaped body. These mediate aspects of learning, 

locomotion, and courtship and are associated with the protocerebrum. The antennal lobes are 

the first order neuropils in olfactory information processing. Antennal lobe neurons are 

innervated by the antennal sensory neurons and send projections to the mushroom bodies. 

Subesophageal ganglion neurons are involved in gustatory information processing. They 

receive input from taste neurons and mediate feeding behaviors. (Nichols 2006; Rein et al. 

2002), the FlyBrain project, http://flybrain.neurobio.arizona.edu/Flybrain/html/index.html.) 

 

Figure 12. Major structures of the adult Drosophila brain. Reprinted and modified from Nichols 2006, 

with permission from Elsevier. 
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2.3 PATHOLOGICAL CONDITIONS OF THE NERVOUS SYSTEM 

De todas las reacciones posibles ante una injuria, la más hábil y económica es el 

silencio. 

Of all the possible reactions to an insult, the most effective and efficient one is 

silence. 

-Santiago Ramón y Cajal 

 

The American National Institute of Neurological Disorders and Stroke lists over 400 

neurological conditions including chronic pain, epilepsy and Alzheimer’s disease 

(http://www.ninds.nih.gov/disorders). Both common and rare forms of these pathological 

conditions cause disability and suffering for both affected individuals and those close to them. 

In the study of human disease, the etiology (the cause of the disease), pathogenesis 

(mechanism through which the disease develops), nature of the changes and the clinical 

outcome need to be determined. Causes including insults such as head injury or stroke, 

infections or inheritance may underlie a human neurological disorder. Inheritance contributes 

to a variety of developmental, degenerative and cerebrovascular diseases such as 

hydrocephalus, Parkinson’s disease or susceptibility to ischemic stroke. 

2.3.1 INHERITED DISORDERS OF THE CNS 

Inheritance of a disorder can manifest as a genetic predisposition (complex inheritance) or as 

monogenic (Mendelian) inheritance, where either one or two mutated copies of a gene can 

cause the disease. While monogenic diseases may be undervalued due to their rarity, they are 

valuable as models for complex, more common disease. For example, the rare inherited 

forms of Alzheimer’s and Parkinson disease have been crucial for dissecting the molecular 

background of these diseases. An interesting entity for genetic research has been the Finnish 

population. Due to the characteristics of the population history, a group of rare hereditary 

diseases are overrepresented in Finland and constitute the so-called Finnish disease heritage 

(Norio 2003b). Importantly, the establishment of the genetic basis of these 36 monogenic 

disorders has resulted in efficient molecular diagnosis but also provided novel avenues for 

basic research. 

2.3.2 ANIMAL MODELS OF HUMAN CNS DISORDERS  

Nobel prize winning research has been performed in experimental animals including the fruit 

fly Drosophila melanogaster, sea snail Aplysia californica, roundworm Caenorhabditis elegans, chicken 
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Gallus gallus domesticus and mouse Mus musculus. Thus, these model systems have a long 

research tradition and are extremely well characterized. They can be studied along the whole 

spectrum of their development, even prior to the manifestation of disease symptoms, which 

is not normally possible in the humans. Experimental animals can be adjusted for specific 

needs of the study in question by selecting a suitable strain or characteristic, by manipulating 

the environmental factors and by genome manipulation techniques. 

In human disease modelling, there are two basic approaches for genetic manipulation. The 

forward genetics or phenotype-driven approach relies on screens for disease phenotypes after 

induced mutagenesis. Random mutations are generated by radiation, chemicals or by 

insertional mutagenesis, and the location of the mutation is mapped to find the cause for the 

interesting phenotype. In the reverse genetics or genotype-driven approach the known gene 

of interest is manipulated in order to study the phenotypic effects of the mutations. In 

addition, spontaneously occurring disease in larger animals, especially in dogs and sheep, have 

proven very advantageous in human disease modelling (Cooper 2010; Gagliardi & Bunnell 

2009; Tecott 2003). 

2.3.2.1 Mouse 

Perhaps the most widely used model system in human genetic disorder research is the mouse. 

Compared to humans, mice exhibit similar nervous system organization and similar 

behaviours. Even complex behaviours can be monitored in mice due to well-developed 

behavioural tests. Almost every human gene has a counterpart in the mouse genome, since 

97% of our genes are similar. In addition, mice are particularly suitable for genetic studies 

because of the availability of genetic manipulation techniques. Well-established methods exist 

to destroy a functional gene through removing or altering the gene sequence (knock-out 

mice), to mimic the effect of human mutation by producing a similar mutation in the mouse 

gene (knock-in mice) and to insert an extra gene into the mouse genome (transgenic mice). 

Apart from these genetically manipulated mice, the relatively long tradition of induced 

mutagenesis has resulted in mutations in genes relevant for human disease. (Hafezparast et al. 

2002; Harper 2010; Tecott 2003) 

2.3.2.2 Drosophila 

The fruit fly Drosophila melanogaster has been a powerful genetic tool for over one hundred 

years and during this time its genome, anatomy, physiology, behaviour and development have 

been characterized in detail. Its short reproduction cycle together with easy and low-cost 

maintenance make it an appealing laboratory organism. Through the analysis of naturally 

occurring and induced mutations a plethora of molecular pathways have been discovered and 

proven to be evolutionarily conserved. Especially the disease-causing genes appear to be 

widely conserved, since approximately 75% of human disease genes have homologues in the 
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Drosophila genome (Bier 2005). Established Drosophila models of neurodegenerative diseases 

suggest that mechanisms of neurodegeneration are well-conserved (Bilen & Bonini 2005; 

Muqit & Feany 2002). 

The power of Drosophila genetics is illustrated by the vast number of mutant lines available for 

research. The largest Drosophila strain resource, the Bloomington Drosophila Stock Center, lists 

nearly 50 000 stocks (http://flystocks.bio.indiana.edu/). Targeted gene deletions can be 

generated through the use of transposable element-based excision strategies (Ryder & Russell 

2003). Of particular importance is the ability to express/silence genes in a cell type-specific 

manner using the UAS-GAL4 system (Brand & Perrimon 1993). A Drosophila line carrying the 

yeast GAL4 transcription activator under the control of a cell or tissue-specific promoter is 

crossed with another line, where the gene of interest or an RNA interference (RNAi) 

construct is fused to the yeast upstream activator sequence (UAS). The controlled gene 

expression or gene silencing effect is observed in the resulting progeny. 

The possibility to access molecular pathways relevant to disease pathogenesis has made 

Drosophila disease modelling especially attractive. In genetic modifier screens an established 

disease phenotype is utilized to search for modifying effects by crossing the mutant to 

Drosophila lines carrying mutations in other genes. In this approach, second-site mutations or 

genome-wide RNAi libraries can be used for screening the enhancement or suppression of 

the original phenotype in an unbiased manner. The prerequisite for large-scale screening is a 

robust phenotype such as the rough-eye phenotype resulting from the degeneration or 

abnormal development of the adult compound eye structure. In candidate screening a 

selected set of mutation lines are used in a hypothesis-driven manner. (Marsh & Thompson 

2006; Muqit & Feany 2002; Nichols 2006) 
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2.4 NEURONAL CEROID LIPOFUSCINOSES 

Once I was like everybody else 

Once I was just like them 

Once I could do everything as the others and everything that I enjoyed 

Once I could do all that 

All that you can do when you can see 

Once no longer exists 

Once will never return 

Once will never ever return 

Once is no more 

-Ida Bernhardsson (1979-2009) 

 

In 1826, a Norwegian family of healthy parents had suffered a loss of their two eldest 

children from a disease manifesting with blindness, progressive mental deterioration, loss of 

speech and epilepsy. The remaining two children had a similar condition, which had started at 

the age of 6 years with deteriorating vision. The tragedy of this small town family was 

reported by Dr. Otto Christian Stengel, a physician at the Copper Mining Company of Røros 

(‘Beretning om et maerkeligt Sygdomstilfaelde hos fire Sødskende i Naerheden af Røraas’, 

Eyr et medicinsk Tidskrift, vol. 1, 1826, according to (Haltia 2006)). 

In 1896, the American neurologist Bernard Sachs described a disease termed ‘Familial 

Amaurotic Idiocy’ with rapid progression of visual loss and mental retardation combined with 

accumulation of lipid material within swollen neurons. During the following decades further 

studies by Drs Batten, Vogt, Spielmeyer, Jansky, Bielschowsky, Haltia and Santavuori, among 

others, lead to the distinction of the neuronal ceroid lipofuscinosis (NCLs) from the disease 

now known as Tay-Sachs disease. Today, NCLs are defined as ‘progressive degenerative 

diseases of the brain and, in most cases, the retina, in association with intracellular storage of 

material that is morphologically characterized as ceroid lipofuscin or similar’. Despite over 

100 years of research and the vast accumulation of knowledge on genes, proteins and 

pathways, there is no treatment to cure children with NCL disease. 

(http://www.ucl.ac.uk/ncl/, Haltia 2006) 

In the following sections, the NCL diseases are introduced focussing on the human disease 

symptoms and classification, together with the recent findings utilizing animal and cellular 

models. Two forms of NCLs and the corresponding proteins, CLN8 and CLN10/cathepsin 
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D are introduced more comprehensively (sections 2.4.4 and 2.4.5). The last section (2.4.8) 

focuses on phenomena that appear to be shared between different forms of NCL. 

2.4.1 HUMAN NCL DISEASE 

Collectively, the NCLs comprise the most common cause of progressive encephalopathies in 

children (Haltia 2006). Incidence is estimated to be 1:25 000-50 000 in the USA (according to 

The National Institute of Neurological Disorders and Stroke) and ranging between 1:25 000 

and 1:200 000 in European countries (e.g. Norway, Germany and Italy; Augestad & Flanders 

2006; Cardona & Rosati 1995; Claussen et al. 1992). The Finnish population is enriched with 

the infantile (CLN1), juvenile (CLN3), and late infantile (Finnish variant, CLN5) diseases and 

the progressive epilepsy with mental retardation (EPMR). Their respective incidences are 

1:14 000, 1:19 000, 1:59 000 and 1:176 000 (Norio 2003a). Mutation carrier frequencies reach 

1:60-1:70 in the whole population (CLN1, CLN3) but can be even higher than 1:50 in certain 

regions in Finland (CLN5, EPMR) (Kestila et al. 2010; Norio 2003a; Ranta et al. 1999; 

Savukoski et al. 1998). 

Symptoms of NCL disease include epileptic seizures, ataxia, mental and motor regression, 

myoclonus and/or visual failure. NCL diagnosis is made based on genetic or enzymatic tests 

from a blood, skin biopsy or saliva sample from the patient. Prerequisite for NCL diagnosis is 

the existence of intracellular storage material (section 2.4.2.2), which can be studied using 

electron microscopy on skin or rectal biopsies, or in lymphocytes of a blood sample. Light 

microscopy may show the vacuolated lymphocytes typical for the juvenile onset CLN3 

disease. Monitoring electroencephalogram (EEG), electroretinogram (ERG), measuring the 

visual and/or somatosensory evoked potentials (VEPs, SEPs) or performing 

neuroradiological analyses may assist the diagnosis of certain forms of NCL. 

(http://www.ucl.ac.uk/ncl/, Kousi et al. 2012) 

Currently, while a treatment to slow down or reverse the symptoms of NCL remains 

unavailable, the therapies aim to improve patients’ quality of life for as long as possible. 

Antiepileptic drugs are used to control the seizures. Palliative treatments include managing 

symptoms such as sleep disturbances, pain and feeding problems. According to the NCL 

subtype, symptom management may also target motor symptoms through antiparkinsonian 

drugs and/or physiotherapy and mental symptoms through combination therapy. 

(http://www.ucl.ac.uk/ncl/) 

2.4.2 CLASSIFICATION OF THE NCL DISORDERS 

The NCL diseases are classified based on molecular genetic findings, age of onset and the 

ultrastructural appearance of the storage material. Of the different NCL subtypes, causative 
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mutations have been reported in ten genes, PPT1, TPP1, CLN3, DNAJC5, CLN5, CLN6, 

MFSD8, CLN8, CTSD, GRN and ATP13A2 (Table 2). 

 

Table 2. The genetic basis of human NCL disorders. 

NCL 
subtype 

Defective gene /protein Onset Storage 
ultrastructure 

Reference 
(genetic) 

CLN1 PPT1 /palmitoyl-protein 
thioesterase 1 

Infancy  
(10-18 months)

GROD Vesa et al. 1995 

CLN2 TPP1 / 
tripeptidyl-peptidase 1 

Late infancy  
(2-4 years) 

CL Sleat et al. 1997 

CLN3 CLN3 /CLN3 Juvenile  
(5-10 years) 

FP (CL, RL) The Int. Batten 
Dis. Consortium 
1995 

CLN4 DNAJC5 / DNAJ/HSP40 
homolog, subfamily C, member 5 

Adult GROD Noskova et al. 2011 

CLN5 CLN5 / CLN5 Late infancy  
(4-7 years) 

RL, CL, FP Savukoski et al. 
1998 

CLN6 CLN6 / CLN6 Late infancy  
(3-8 years) 

Adult 

RL, CL, FP 
 

FP, granular 

Gao et al. 2002;  
Wheeler et al. 2002 

Arsov et al. 2011 

CLN7 MFSD8 / major facilitator 
superfamily domain-containing 8 

Late infancy 
(2-7 years) 

RL, FP Siintola et al. 2007 

CLN8 CLN8 / CLN8 Late infancy  
(2-7 years) 

RL, FP, CL Ranta et al. 2004 

  EPMR: 
juvenile 
(5-10 years) 

CL-like, 
granular 

Ranta et al. 1999 

CLN10 CTSD / cathepsin D At birth 
(or juvenile) 

GROD Siintola et al. 2006; 
Steinfeld et al. 2006 

CLN11 GRN / granulin Adult FP# Smith et al. 2012 

CLN12 ATP13A2 / ATPase type 13A2 Juvenile lamellar* Bras et al. 2012 

Ultrastructural appearance of the storage material according to (Haltia 2006), except # according to 

Smith et al. 2012 and * according to (Tome et al. 1985). GROD, granular osmiophilic deposits; CL, 

curvilinear profiles; FP, fingerprint bodies; RL, rectilinear profiles. 
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2.4.2.1 Genetics 

The NCLs are primarily classified based on genetic findings. Most NCL subtypes have a 

predominant clinical picture (depicted in Table 2), e.g. mutations in the CLN3 gene 

predominately cause the juvenile onset disease. It is noteworthy, however, that most of the 

subtypes include variant phenotypes. Mutations in CLN8 lead to two clearly different NCL 

diseases, late infantile and protracted forms (section 2.4.4). Apart from this phenotypic 

divergence, there is phenotypic convergence among the NCLs. The subtypes of late infantile 

onset NCLs show similar clinical findings but may be caused by mutations in a number of 

NCL genes. (Kousi et al. 2012) 

2.4.2.2 Intracellular storage 

The key finding in NCL neuropathology is the intracellular autofluorescent storage (Fig. 13). 

The disease was named after the accumulating material, lipofuscin and ceroid. Lipofuscin 

relates to normal aging, while ceroid accumulation is seen in pathological conditions including 

disease, cell stress and malnutrition (Seehafer & Pearce 2006). Lipofuscin and ceroid are 

fluorescent and positive for periodic acid-Schiff (PAS), Sudan black B and Luxol fast blue 

(LFB) stains. Storage material is largely composed of protein, which in most NCLs is the 

subunit c of mitochondrial F1-F0-ATP synthase. In certain subtypes, mainly in infantile and 

congenital disease, the main protein components of the storage material are sphingolipid 

activator proteins (saposins) A and D. The ultrastructural appearance of the storage material 

is still important in the NCL classification and diagnosis. Electron microscopic examination 

reveals storage patterns including curvilinear (late infantile), fingerprint (juvenile), rectilinear 

(late infantile variants) and granular (infantile) profiles (see Table 1). (Haltia 2003; Kousi et al. 

2012) 
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Figure 13. Storage material accumulation in NCL disease. The electron microscopic ultrastructural 

examination of the storage material shows A) granular osmiophilic deposits typical for CLN1 and 

CLN10, B) curvilinear profiles common in CLN2, C) fingerprint bodies of CLN3 and D) rectilinear 

profiles typical for most variant late infantile onset NCLs. In light microscopy, the accumulation of 

storage material can be visualized with E) immunostaining for subunit c of the mitochondrial ATP 

synthase (CLN5), F) Luxol fast blue, G) PAS and H) Sudan black B staining. Figures F-H are from 

CLN8 EPMR patient neurons. Magnifications A) x10000, B) x20000, C) x30000, D) x15000, E) x300, 

F-H) x1000. Adapted from Haltia 2003, reprinted with permission from Wolters Kluwer Health. 

 

2.4.3 NCL DISEASE IN ANIMALS 

NCL disease is not confined to humans but occurs widely in the animal kingdom. Disease has 

been described to affect various breeds of dogs, sheep and cattle but also affects domestic 

pig, goat, horse, cat and mouse. The naturally occurring models have been widely used in 

NCL research, especially prior to the development of techniques for the production of 

genetically modified mice. Two natural mouse models exist for the CLN8 and CLN6 disease 

(Cln8mnd and Cln6nclf, respectively) and both exhibit NCL pathology (Bronson et al. 1993; 

Bronson et al. 1998). The large animal models, especially the sheep model, have been widely 

studied (Cooper 2003). 

In addition to the naturally occurring animal disease, various experimental animals have been 

generated to study NCL disease. The most used model system has been the mouse. The 

mouse models show a neurodegenerative phenotype with autofluorescent storage and, with 

few exceptions, ultrastructural appearance and protein components of the storage similar to 

the corresponding human disease. Loss of vision (see section 5.2.1.2 in Results), 
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thalamocortical pathology (sections 2.4.7.4, 5.2.1 and 5.2.2) and premature death are common 

hallmarks of murine NCL. (Jalanko & Braulke 2009) 

Apart from mice, the NCL proteins CTSD, PPT1 and CLN3, which are well-conserved in 

evolution (Table 3), have been studied in Drosophila, C. elegans and unicellular yeasts 

Saccharomyces cerevisiae and Schizosaccharomyces pombe. Drosophila models that are deficient for 

Ppt1, Cln3 and cathepsin D (cathD) (see sections 2.4.5.4 and 5.1.2.2) show modest 

neurodegenerative phenotypes and/or reduced lifespans (Hickey et al. 2006; Myllykangas et al. 

2005; Tuxworth et al. 2011). The Ppt1 and cathD deficient Drosophila also show storage 

material accumulation (Hickey et al. 2006; Myllykangas et al. 2005; Tuxworth et al. 2011). No 

obvious NCL phenotype has been detected in C. elegans models for CLN1 and CLN3 (de 

Voer et al. 2005; Porter et al. 2005). The S. cerevisiae and S. pombe models have been succesfully 

used to study the CLN3 homologue Battenin (Btn1p) (Rakheja et al. 2008). 

2.4.4 CLN8 

Two types of human NCL disease are caused by mutations in the CLN8 gene. Late infantile 

onset CLN8 is clinically very similar to other late infantile variant NCLs while the progressive 

epilepsy with mental retardation (EPMR) exhibits a clinically atypical, protracted NCL 

subtype that so far has not been reported outside of Finland. Although these two diseases 

represent such different phenotypes, there appears to be no phenotype-genotype correlation 

in CLN8. 

Apart from the naturally occurring Cln8 mutant mouse, Cln8mnd, an NCL phenotype due to a 

missense mutation in the canine Cln8 gene has been reported in English Setter dogs (Katz et 

al. 2005). CLN8 is only conserved in vertebrates although a distantly homologous gene exists 

in the Drosophila genome. 

2.4.4.1 CLN8 disease, late infantile 

The late infantile onset CLN8 disease begins at 2-7 years of age with seizures, developmental 

regression and/or motor impairment. Subsequently, myoclonus, cognitive decline, ataxia and 

impairment of vision and speech appear. Disease progression is rapid and loss of ambulation 

follows approximately 2 years after disease onset. Most patients with CLN8 late infantile 

disease have been alive at the time of reporting, with ages up to 18 years, while one patient 

had died at the age of 10 years (Vantaggiato et al. 2009). The disease was first described in a 

subset of Turkish NCL patients but currently, patients with various origins have been 

diagnosed with CLN8 disease (Allen et al. 2011; Cannelli et al. 2006; Kousi et al. 2009; Kousi et 

al. 2012; Ranta et al. 2004; Reinhardt et al. 2010; Vantaggiato et al. 2009; Zelnik et al. 2007). 

Magnetic resonance imaging (MRI) has revealed cerebral and especially cerebellar atrophy, 

hyperintensity of deep white matter and the posterior limb of the internal capsule (Allen et al. 
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2011; Reinhardt et al. 2010; Striano et al. 2007; Topcu et al. 2004; Vantaggiato et al. 2009; 

Zelnik et al. 2007). In addition, hypointensity of the thalamus (Vantaggiato et al. 2009) as well 

as thinning of the corpus callosum (Striano et al. 2007) have been described. EEG of these 

patients is abnormal showing epileptiform activity. Visual impairment and blindness are 

accompanied by diminished/extinguished ERG and VEPs (Allen et al. 2011; Reinhardt et al. 

2010; Striano et al. 2007; Topcu et al. 2004; Vantaggiato et al. 2009; Zelnik et al. 2007). In 

electron microscopy, the neuronal storage material mainly consists of rectilinear and 

fingerprint profiles but additional curvilinear profiles and osmiophilic inclusions have been 

observed (Allen et al. 2011; Cannelli et al. 2006; Reinhardt et al. 2010; Vantaggiato et al. 2009; 

Zelnik et al. 2007). 

2.4.4.2 CLN8 disease, progressive epilepsy with mental retardation 

The EPMR disease, also called as Northern Epilepsy is characterized by childhood-onset 

epilepsy followed by mental deterioration and was described in families in Kainuu, 

northeastern Finland (Hirvasniemi et al. 1994). Development of the affected children is 

normal until 5-10 years of age. The disease starts with seizures which are generalized tonic-

clonic and, in some patients, complex partial seizures that first occur approximately once 

every 1-2 months. During puberty, seizure frequency increases to 1-2 seizures per week. 

Between 2-5 years after the onset of seizures, mental deterioration begins to manifest and 

progresses rapidly when seizures are most frequent. In adulthood, mental regression 

continues even when the seizures become more infrequent. Other symptoms include 

clumsiness in fine motor tasks and imbalance, dysphasic speech and behavioral problems. 

Visual acuity is decreased in approximately half of the patients but retinal degeneration has 

not been observed. All patients are moderate to profoundly retarded with IQs below 70 and 

need assistance in every day life in adulthood. Lifespan appears to be only slightly reduced, 

with death occurring after the fifth decade of life. (Hirvasniemi et al. 1994; Hirvasniemi et al. 

1995; Ranta & Lehesjoki 2000) 

Both magnetic resonance imaging (MRI) and computed tomography (CT) scans show 

progressive cerebellar and brain stem atrophy and, later in the disease, also cerebral atrophy 

(Hirvasniemi & Karumo 1994; Lauronen et al. 2001). EEG changes are mild until puberty, 

when slowing of the background activity, disappearance of the sleep patterns and scanty 

interictal epileptiform activity are obvious. VEPs were abnormal in some patients 

(Hirvasniemi et al. 1995). Neuropathological findings include the typical NCL storage material 

accumulation comprising of the mitochondrial ATP synthase subunit c and minor amounts of 

saposins A and D and amyloid  (Herva et al. 2000). Ultrastructurally, curvilinear profiles and 

granular appearance have been observed. However, the overall pathology is relatively mild 

compared to other NCLs and shows selective distribution. Especially the neocortical layer III 
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and V neurons and the hippocampal CA2 sector show extensive storage and pathological 

changes, while other regions remain only mildly affected (Herva et al. 2000). 

2.4.4.3 CLN8 protein 

The CLN8 gene encodes a predicted 5-7 pass transmembrane protein that resides in the 

endoplasmic reticulum (ER) and partially in the ER-Golgi intermediate compartment 

(ERGIC). The protein has a C-terminal ER retention signal (lysine-lysine-arginine-proline, 

KKRP), the disruption of which causes the protein to be trapped in the Golgi apparatus 

(Lonka et al. 2000). None of the patient mutations studied so far disrupt the subcellular 

localization of CLN8 (Lonka et al. 2000; Vantaggiato et al. 2009). However, the pathological 

mouse mutation c.267–268insC (see section 2.4.4.4) was only found in the ER (Lonka et al. 

2000). In transfected primary neurons the CLN8 protein is localized to ER, yet in mouse 

brain the protein fractionates differently from markers of ER and ERGIC (Lonka et al. 2004). 

While some NCL proteins show axonal and/or synaptic localization in neurons, this appears 

not to be the case for CLN8 (Lonka et al. 2004). 

CLN8 is homologous to the yeast longevity assurance gene protein (Lag1p) and the 

translocating chain-associated membrane protein (TRAM) through the possession of a 

domain named TRAM-Lag1p-CLN8 or TLC (Winter & Ponting 2002). The human and 

mouse TLC domain family consists of six ceramide synthases (CerSs or longevity assurance, 

LASS proteins), three TRAMs, CLN8 and six other genes with unknown functions (Pewzner-

Jung et al. 2006). These multipass transmembrane proteins reside in ER and are well-

conserved in evolution (Levy & Futerman 2010). The ceramide synthase properties of TLC 

proteins were first discovered in yeast, where Lag1 and its paralogue Lac1 have been shown 

to be essential for the synthesis of very long fatty acid chain ceramides (Guillas et al. 2001). 

However, CLN8 is not likely to act as a ceramide synthase since the human CLN8 failed to 

rescue the yeast Lag1/Lac1 deficient phenotype, an opposite result to the human CerSs 

(Guillas et al. 2001; Guillas et al. 2003). Of the other TLC domain-containing proteins TRAM 

participates in the regulation of polypeptide translocation into the ER (Hegde et al. 1998; 

Voigt et al. 1996) and FAM57A (family with sequence similarity 57 member A) appears to be 

involved in amino acid transport (He et al. 2002). 

2.4.4.4 Motor neuron degeneration mouse Cln8mnd 

The c.267–268insC mutation in the murine Cln8 gene causes the NCL phenotype of the 

Cln8mnd mouse (Fig. 14). This spontaneous mutation appeared in an inbred substrain of 

C57Bl/6, B6.KB2/Rn (Messer & Flaherty 1986). Initial descriptions considered the motor 

neuron degeneration mouse, mnd, as a model for amyotrophic lateral sclerosis (ALS). These mice 

were shown to develop hindlimb weakness and ataxia between 5-11 months of age, leading to 

severe spastic paralysis of all limbs and premature death (Messer & Flaherty 1986; Messer et 
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al. 1987). Yet the existence of autofluorescent storage inclusions consisting of mitochondrial 

ATP synthase subunit c with typical ultrastructural appearance indicated that these mice 

model the NCL disease (Bronson et al. 1993; Pardo et al. 1994). The mouse Cln8mnd mutation 

was reported alongside the human EPMR mutation (Ranta et al. 1999). 

Prior to the manifestation of motor deficits the Cln8mnd mice show behavioural abnormalities 

such as increased aggression. Decreased habituation and altered fear-conditioning response 

indicated that Cln8mnd mice display learning and memory related deficits (Bolivar et al. 2002). 

In addition, Cln8mnd mice show spontaneous spiking activity in EEG and are susceptible to 

kainic acid induced seizures (Melo et al. 2010). However, retinal degeneration is the first 

pathological change described in Cln8mnd mice. The thinning of retinal cell layers (Fig. 14D) 

and diminished ERG manifest already before one month of age. Retinal atrophy progresses 

to loss of the photoreceptor cell layer and degeneration of retinal ganglion cells by 3-4 

months of age. ERG is extinguished by 6 months of age. (Chang et al. 1994; Guarneri et al. 

2004; Messer et al. 1993).  

Many studies have focussed on the pathology of the Cln8mnd mouse spinal cord. Neuron loss 

concomitant with the onset of motor symptoms has been reported (Callahan et al. 1991; 

Gorio et al. 1999) while glial activation appears to precede these events (Mennini et al. 2004). 

In spinal cord, glutamate mediated excitotoxity has been proposed as a disease mechanism. 

The uptake of glutamate but not of GABA is decreased while the levels of ionotropic 

glutamate receptors are increased (Battaglioli et al. 1993; Mennini et al. 1998; Mennini et al. 

2002). Treatments with glutamate receptor antagonists have shown mild beneficial effects on 

the motor symptom onset (Elger et al. 2006; Mennini et al. 1999). 

Abnormalities in both excitatory and inhibitory neurotransmission have been proposed as 

disease mechanisms in the Cln8mnd brain. Increased glutamatergic transmission has been 

observed in the hippocampus (Bigini et al. 2012), while the hippocampus and cerebral cortex 

show loss of inhibitory GABAergic interneurons (Cooper et al. 1999). Glial activation possibly 

precedes these changes, which were observed in 9 month old mice, since the hippocampus 

has been shown to contain activated glia at 5 months of age (Melo et al. 2010). Upregulation 

of TNF, a microglial-secreted pro-inflammatory cytokine, and its receptors appears 

concomitantly or precedes the glial activation and may contribute to the neuroinflammation 

(Galizzi et al. 2011; Melo et al. 2010). In addition, TNF has been shown to be upregulated in 

Cln8mnd spinal cords (Ghezzi et al. 1998; Mennini et al. 2004). Oxidative stress and 

mitochondrial dysfunction have been suggested to contribute to the pathogenesis (Bertamini 

et al. 2002; Fujita et al. 1998; Kolikova et al. 2011) and recently, ER stress and unfolded protein 

response were shown to be activated in Cln8mnd mice (Galizzi et al. 2011). 
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Figure 14. Symptoms of the Cln8mnd mouse include A) motor deficits (shown is an attempt to walk 

uphill) and motor neuron pathology in B) dorsal motor nucleus and C) hypoglossal nucleus of spinal 

cord. D) Retinal cell layer thinning is observed early. GCL = ganglion cell layer; IPL = inner plexiform 

layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer; Ph = 

photoreceptors; RPE = retinal pigment epithelium; CC = choriocapillaris. Magnifications B and C) 

x250, D) x400. Adapted from Messer and Flaherty, 1986 (A, B, C) and Chang et al. 1994; reprinted 

with permissions from Informa Healthcare and the Association for Research in Vision and 

Ophthalmology, respectively. 

 

2.4.5 CLN10/CTSD 

The NCL causative mutations in the CTSD gene were originally found in sheep, and only 

recently in humans (Siintola et al. 2006; Tyynela et al. 2000). Apart from NCL, CTSD has also 

been connected to other human diseases such as Alzheimer’s disease and cancer (Benes et al. 

2008). 
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2.4.5.1 CLN10 disease 

The earliest onset and most severe type of NCL disease is the congenital CLN10. Affected 

neonates die within hours to weeks after birth showing respiratory insufficiency and status 

epilepticus. Microcephaly, reduced brain size and the epileptic seizures have been suggested 

to start already during fetal development (Fritchie et al. 2009; Kousi et al. 2012; Sandbank 

1968; Siintola et al. 2006). To date, only 10 cases of congenital NCL have been reported 

(Kousi et al. 2012). In two of the patients, mutations in CTSD have been described, and loss 

of CTSD protein in brain tissue has been confirmed in three additional patients (Siintola et al. 

2006; Fritchie et al. 2009). Mutations in the CTSD gene have also been shown to cause 

juvenile onset NCL (Steinfeld et al. 2006). All CTSD mutations have been shown to result in 

abolished activity of CTSD enzyme (Fritchie et al. 2009; Kousi et al. 2012; Siintola et al. 2006; 

Steinfeld et al. 2006). 

2.4.5.2 CTSD protein 

The CTSD protein is a lysosomal aspartic protease. It mediates protein degradation, protease 

precursor activation and the processing of enzyme activators or inhibitors. CTSD has been 

suggested to process hormones, growth factors and antigens and to have a role in the 

regulation of apoptosis and plasma high density lipoprotein (HDL) cholesterol levels 

(reviewed in Benes et al. 2008). 

CTSD is synthesized as an inactive prepro-enzyme, which is posttranslationally processed to 

the active form during transport from ER via trans-Golgi network and late endosomes to 

lysosomes. The mature CTSD has a pH optimum of 3-4 and prefers peptide bonds flanked 

by hydrophobic amino acid residues. In vitro, its enzymatic activity can be specifically inhibited 

by pepstatin A, and it has been suggested to be activated by ceramide and prosaposin, the 

precursor protein for saposins A, B, C and D (Heinrich et al. 1999; Heinrich et al. 2000). 

Interestingly, in vitro substrates of CTSD include the saposins A-D, of which A and D 

accumulate in the human and sheep CLN10 disease (Benes et al. 2008; Gopalakrishnan et al. 

2004; Haidar et al. 2006). CTSD has been suggested to process amyloid precursor protein, 

apolipoprotein E (apoE) and tau, and thus be involved with Alzheimer’s disease. Non-

enzymatic functions have been suggested in cancer progression, since secreted pro-CTSD has 

mitogenic and growth factor-like properties on cancer cells (Benes et al. 2008; Liaudet-

Coopman et al. 2006). 

2.4.5.3 CLN10 disease in animals 

Mutations in CTSD were first shown to cause a congenital NCL in the White Swedish 

Landrace sheep. The newborn lambs presented with weakness, tremor and death within a few 

days after birth. In autopsy, overt brain atrophy with abundant accumulation of neuronal 
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storage was detected. This disease was found to be due to a mutation in the Ctsd gene and an 

inactive CTSD enzyme. (Tyynela et al. 2000) 

Ctsd deficient (Ctsd–/–) mice were generated by disrupting the Ctsd open reading frame by the 

deletion of Ctsd exon 4 (Saftig et al. 1995). Ctsd–/– mice are apparently normal at birth but 

after two weeks severe neurodegenerative symptoms appear as epileptic seizures, tremor, 

muscle rigidity and blindness. In addition, the mice exhibit progressive pathology of the 

intestinal mucosa, loss of lymphoid cells of the spleen and thymus and death at the age of 25-

27 days in a state of anorexia. CTSD enzymatic activity is abolished but increased levels and 

activity of lysosomal enzymes including cathepsin B (CTSB) and TPP1 have been described. 

Ultrastructurally, the Ctsd–/– intracellular storage resembles the human storage (granular 

osmiophilic deposits), but the main protein component is the mitochondrial ATP synthase 

subunit c instead of saposins A and D that accumulate in humans and sheep. Neuropathology 

is characterized by neuronal loss and glial activation in cerebral cortex and thalamus. (Jalanko 

& Braulke 2009; Koike et al. 2000; Koike et al. 2003; Partanen et al. 2008; Saftig et al. 1995) 

In American bulldogs, a CTSD mutation and the consequently reduced enzymatic activity 

lead to young-adult onset NCL disease with ataxia, psychomotor retardation and premature 

death, but no loss of vision has been detected (Awano et al. 2006; Evans et al. 2005). Recently 

generated ctsd knockdown zebrafish shows disturbed eye and swim bladder development and 

reduced lifespan, but no lipofuscin storage was detected (Follo et al. 2011). 

2.4.5.4 Cathepsin D deficient Drosophila, cathD1 

The Drosophila cathepsin D (cathD; CG1548) encodes for a protein which is 50% identical and 

65% similar to the human CTSD. The cathD deficient Drosophila was generated through an 

imprecise excision of the transposable element EP2151 located 77bp upstream of the cathD 

open reading frame. In the resulting cathD1 mutant line more than 70% of the cathD coding 

sequence is lost and the mRNA expression of cathD is abolished. Development and lifespan 

are normal in cathD1 flies but they show modest late-onset neurodegeneration, observed 

through increased numbers of apoptotic nuclei in the 45-day-old cathD1 brain (Fig. 15). The 

typical NCL pathology was revealed by the progressive accumulation of autofluorescent and 

PAS/LFB positive storage material in neurons. Additionally, storage ultrastructure resembling 

the human infantile and human/ovine congenital NCL storage was observed. (Myllykangas et 

al. 2005) 
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Fig. 15. Cathepsin D deficiency in Drosophila. A&B) The 45 day old cathD deficient Drosophila (A) show 

increased cell death as compared to the age-matched control fly (B), especially in the visual areas of 

the brain, where arrowheads point to individual TUNEL positive neurons (r, retina; l, lamina; m, 

medulla). C) Quantification of cells positive for TUNEL (terminal deoxynucleotidyl transferase dUTP 

nick end labeling) staining. D) Age-dependent accumulation of autofluorescent storage material in 

cathD deficient Drosophila in the cortex of medulla. Scale bars in A&B 15 µm, in D, 5 µm. Df, 

deficiency. Adapted from Myllykangas et al. 2005, reprinted with permission from Elsevier. 

2.4.6 OTHER NCL DISEASES 

2.4.6.1 Infantile onset NCL 

The infantile onset CLN1 disease is caused by mutations in the palmitoyl-protein thioesterase 

1 gene, PPT1. Disease symptoms usually begin with hyperexcitability, muscular hypotonia and 

psychomotor regression at 10-18 months of age, followed by seizures and ataxia. Loss of 

vision, speech and ambulation manifest by the age of 3 years and death occurs between 6-15 

years of age (Santavuori et al. 2000). PPT1 encodes a soluble hydrolase that removes thioester-

linked fatty acid side chains from proteins. All of the reported PPT1 mutations result in 

reduced PPT1 enzyme activity (Kousi et al. 2012). 

2.4.6.2 Late infantile NCLs 

CLN2 disease, classic late infantile, is caused by mutations in the tripeptidyl-peptidase 1, 

TPP1, gene. The disease starts with seizures between the age of 2-4 years and progresses 

rapidly with visual deterioration, cognitive and motor decline, myoclonus, ataxia and speech 

decline. Premature death occurs between 6-15 years of age. The majority of the identified 

TPP1 mutations cause reduced activity of the lysosomal TPP1 enzyme, which cleaves 
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tripeptides from the N-terminus of small proteins. (Kousi et al. 2012; Santavuori et al. 2000; 

Sleat et al. 1997) 

CLN5 disease represents one of the variant forms of late infantile disease onset. Previously 

named Finnish variant late infantile disease, it begins with motor clumsiness, concentration 

disturbances and learning difficulties at 4-7 years of age, followed by mental and motor 

decline, myoclonus, epilepsy, ataxia and visual failure. Disease leads to loss of ambulation by 

the age of 9-13 years and death between 14-36 years of age. The CLN5 protein function is 

unknown. (Kousi et al. 2012; Santavuori et al. 2000; Savukoski et al. 1998) 

CLN6 disease, late infantile variant, is clinically highly similar to CLN2 late infantile disease, 

yet it shows a delayed onset and slower progression. Epileptic seizures and motor symptoms 

characterize the disease onset at 3-8 years of age. Mental decline, speech impairment, visual 

failure, myoclonus and ataxia follow. The disease leads to death in the third decade of life. To 

date, the function of CLN6 protein remains largely unknown. (Kousi et al. 2012; Mole et al. 

2005) 

CLN7 disease, variant late infantile, previously named as the Turkish variant late infantile 

disease, is caused by mutations in the major facilitator superfamily domain-containing 8, 

MFSD8, gene, encoding a lysosomal transporter (Siintola et al. 2007). To date, it has been 

described in patients of various origins with mostly family-specific mutations (Kousi et al. 

2012). The disease is phenotypically indistinguishable from the CLN8 late infantile disease 

described in section 2.4.4.1. 

2.4.6.3 Juvenile onset NCLs 

The most common form of NCL is CLN3 disease, classic juvenile. In pathological 

examination vacuolated lymphocytes in the peripheral blood are a characteristic finding. 

Disease manifests between 5-10 years of age. The progressive visual loss is tin most cases the 

presenting symptom, followed by epileptic seizures. During the course of disease children 

show progressive motor disabilities, ataxia and motor decline, and towards the end-stage of 

the disease behavioral abnormalities including hallucinations develop. Patients die 

prematurely at an average age of 20-30 years. The most prevalent CLN3 mutation is c.460-

280_677+382del967, resulting in a 1.02 kb deletion in the CLN3 mRNA. Function of CLN3 

is still largely unknown (1995; Kousi et al. 2012; Mole et al. 2005; Santavuori et al. 2000) 

A recent study described mutations in the ATP13A2 gene in a Belgian family with juvenile 

onset NCL, CLN12 (Bras et al. 2012). Mutations in this gene encoding a predicted lysosomal 

P5-type ATPase have previously been shown to cause juvenile Parkinsonism with dementia, 

Kufor-Rakeb syndrome (Ramirez et al. 2006). 

Another juvenile onset NCL disease, CLN9, was described as a separate subclass of NCLs 

after genetic and enzymatic exclusion of other NCLs and lysosomal storage disorders. To 
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date, the defective gene remains elusive. The four affected patients, with clinical phenotypes 

similar to the CLN3 classic juvenile disease, represent two families of Serbian and German 

origins. (Schulz et al. 2006) 

2.4.6.4 Adult onset NCLs 

Adult onset disease (ANCL) starts usually in the third decade of life and the patients die 

prematurely, approximately 12 years after disease onset. Visual loss is not typical but 

intracellular storage material accumulation is observed. The autosomal recessive and 

autosomal dominant adult onset NCLs present with very similar phenotypes (Haltia 2003). 

ANCL appears to be genetically very heterogenous. The original CLN number for ANCL, 

CLN4, has been designated to DNAJC5 encoding a cysteine string protein were identified in 

heterozygous state in a subset of families affected with autosomal dominant disease (Benitez 

et al. 2011; Noskova et al. 2011; Velinov et al. 2012). A subset of patients with the autosomal 

recessive disease has CLN6 mutations (Arsov et al. 2011). Homozygous mutations in granulin 

(GRN) were recently described in two siblings with autosomal recessive adult onset NCL, 

designated as CLN11. 

2.4.7 COMMON THEMES IN NCL PATHOGENESIS 

Although genetically heterogeneous, NCLs show largely similar symptoms and storage 

material accumulation. Thus, the mechanisms leading to disease onset have been 

hypothesized to be similar. This section briefly introduces phenomena that appear to be 

shared between different NCL subtypes. The focus is on neuropathological findings and on 

alterations in lipid metabolism. First, current knowledge on the different NCL proteins is 

summarized (section 2.4.7.1 and Table 3). 

2.4.7.1 Properties of NCL proteins 

Most NCL proteins localize to lysosomes, whereas the CLN6 and CLN8 proteins are 

localized to ER (Table 3). Of soluble lysosomal proteins, PPT1, TPP1 and CTSD are 

enzymes while the function of CLN5 is unknown. The functions of membrane-bound NCL 

proteins CLN3, CLN6 and CLN8 remain largely unknown. MFSD8 and ATP13A2 have 

hypothetical transporter and ATPase functions, respectively, and DNAJC5 regulates the 

ATPase activity of 70 kDa heat shock proteins (HSP70). Certain NCL proteins have a 

differential localization in neuronal cells in comparison to non-neuronal cells. For example, 

PPT1 localizes to lysosomes in non-neuronal cells, but in neurons and in brain the protein is 

localized to axons and synaptic vesicles (Ahtiainen et al. 2003; Lehtovirta et al. 2001; Vesa et al. 

1995) 
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Table 3. Functions and subcellular localization of NCL proteins. 

Defective protein 
/NCL subtype 

Function Localization Conservation 

enzymes/soluble    

CTSD/CLN10 aspartic protease lysosomal, secreted Eukaryota 

PPT1/CLN1 hydrolase, cleaves fatty 
acid side chains of 
proteins 

lysosomal, lipid rafts, 
synaptic vesicles, 
axonal 

Eukaryota 

TPP1/CLN2 hydrolase, cleaves 
tripeptides from 
proteins 

lysosomal Vertebrata 
(+Magnaporthe grisea) 

CLN5 unknown lysosomal, axonal Vertebrata 

GRN/CLN11 cell growth regulation secreted Vertebrata 

membrane proteins    

CLN3 unknown (cytoskeletal, 
transport, lysosomal 
acdification?) 

lysosomal, 
endosomal, 
synaptosomal, lipid 
rafts 

Eukaryota 

CLN6 unknown (lysosomal 
acidification?) 

ER Vertebrata 

MFSD8/CLN7 transporter lysosomal, late 
endosomal 

Vertebrata + Insecta 

CLN8 unknown (lipid 
regulation?) 

ER, ERGIC Vertebrata 

DNAJC5/CLN4 component of the 
synaptic chaperone 

synaptic vesicles Vertebrata + Insecta 

ATP13A2/CLN12 P5-type ATPase lysosomal Vertebrata 

Protein conservation based on HomoloGene, http://www.ncbi.nlm.nih.gov/homologene/, modified 

from Getty & Pearce 2011. Magnaporthe grisea = rice blast fungus. 

 

The molecular pathways that are disrupted in NCL disease are mostly unknown. NCL 

proteins have been suggested to operate in a common pathway (Jalanko & Braulke 2009). 

Indeed, many of the NCL proteins interact or modulate each other (Lyly et al. 2008; Persaud-

Sawin et al. 2007; Schulz et al. 2006; Vesa et al. 2002) and may have overlapping interactomes 
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(Lyly et al. 2008). While different NCL proteins may also affect distinct pathways, these 

pathways ultimately converge to result in lysosomal dysfunction and storage. 

2.4.7.2 Abnormalities in the regulation of lipid metabolism 

Before the storage material in NCLs was determined to be composed mainly of protein 

(Palmer et al. 1986; Palmer et al. 1989; Tyynela et al. 1993), many biochemical studies focussed 

on lipids. More recently, interest towards the involvement of lipid metabolism dysregulation 

in NCL pathogenesis has re-emerged mostly through the use of large-scale lipid and gene 

expression analyses in cellular and animal models. Alterations in all major lipid classes, 

sphingolipids, phospholipids and cholesterol, have been reported (Jalanko et al. 2006). In 

addition, through bioinformatics approaches amino acid sequence similarities have indicated 

putative roles for the CLN8 and CLN3 proteins in lipid metabolism regulation (Narayan et al. 

2006; Winter & Ponting 2002). 

CLN8 

The TLC domain in the CNL8 sequence together with the subcellular localization of the 

protein indicate a role for CLN8 in lipid synthesis and/or transport of lipids between the ER 

and Golgi (Lonka et al. 2000; Winter & Ponting 2002). These hypotheses received further 

support through a large-scale lipid analysis of EPMR patient cerebral samples. The liquid 

chromatographic and mass spectrometric analyses revealed abnormal sphingo- and 

phospholipid levels depending on the disease stage (Hermansson et al. 2005). A patient with 

progressing disease showed reduced levels of ceramide, galactosyl- and lactosylceramide and 

sphingomyelin and the phospholipid plasmalogen. Accumulation of these lipids was observed 

in the advanced stage of the disease (Hermansson et al. 2005). CLN8 has been proposed to 

bind the sphingolipids GalC and ceramide in a lipid-protein binding assay performed in 

Cln8mnd mouse fibroblasts (Rusyn et al. 2008). In addition, mitochondria-associated ER-

membranes extracted from Cln8mnd mouse liver were shown to have abnormal properties and 

defects in enzymes involved in phospholipid synthesis and trafficking (Vance et al. 1997). 

CLN10/CTSD 

CTSD has also been linked to metabolism since it is proposed to participate in the regulation 

of lipid trafficking and degradation. CTSD is proposed to control intracellular cholesterol 

levels by regulating apolipoprotein A-I (apoA-I) mediated lipid efflux. The inhibition of 

CTSD in human macrophages is associated with reduced expression and mislocalization of 

ATP-binding casette transporter A1 (ABCA1), which mediates cholesterol and phospholipid 

efflux to apolipoproteins apoA-I and apoE (Haidar et al. 2006). As a result, accumulation of 

free cholesterol was observed in late endosomes/lysosomes (Haidar et al. 2006). Parallel 

findings have been reported in the Ctsd–/– mouse, with reduced ABCA1 protein levels and 

accumulation of cholesterol esters (Mutka et al. 2010). 
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CTSD is involved in the proteolytic maturation of prosaposin into active saposins A, B, C 

and D, which are required for sphingolipid degradation (Gopalakrishnan et al. 2004). In 

Ctsd-/- the amount of prosaposin is increased, suggesting reduced amounts of active saposins 

(Jabs et al. 2008) while the overexpression of CTSD leads to increased amounts of both 

prosaposin and processed saposins (Haidar et al. 2006). Thus, impaired lipid degradation may 

cause the observed accumulation of bis(monoacylglycero)phosphate (BMP) and gangliosides 

GM2 and GM3 in the symptomatic Ctsd–/– mouse brains (Jabs et al. 2008) and the 

accumulation of glycosphingolipids when CTSD is inhibited in human macrophages (Haidar 

et al. 2006). 

Other NCLs 

Apart from CTSD, at least PPT1 and CLN5 appear to be involved in the regulation of 

cholesterol metabolism. In primary neurons extracted from the Ppt1Δex4 mouse, altered 

expression of cholesterol biosynthesis related genes was accompanied with upregulated 

cholesterol biosynthesis (Ahtiainen et al. 2007). However, total cholesterol was unchanged in 

these neurons and in Ppt1Δex4 mouse brain (Ahtiainen et al. 2007). Increased neuronal 

apolipoprotein uptake suggested disturbed apolipoprotein metabolism (Lyly et al. 2008). 

Decreased amounts of large high density lipoprotein (HDL) particles and phospholipid 

transfer protein (PLTP) were observed in Ppt1Δex4 serum (Lyly et al. 2008). CLN5 deficiency 

appears to present with an opposite effect, since increased levels of serum cholesterol and 

PLTP were observed in Cln5–/– mice, together with increased apoA-I mediated cholesterol 

efflux from macrophages (Schmiedt et al. 2012). The CLN6 pathogenesis may also relate to 

cholesterol homeostasis since the CLN6 deficient fibroblasts show alterations in cholesterol 

precursor related genes and accumulate free cholesterol in lysosomes (Teixeira et al. 2006). 

Many NCL proteins have been suggested to associate with lipid rafts, the sphingolipid and 

cholesterol rich plasma membrane microdomains proposed to be involved in membrane 

trafficking and signal transduction (Simons & Ikonen 1997). PPT1 (Goswami et al. 2005) and 

CLN3 (Hobert & Dawson 2007; Rakheja et al. 2004; Rusyn et al. 2008) have been proposed to 

regulate lipid raft properties such as glycosphingolipid content and transport. 

Glycosphingolipid transport defects were also observed in Cln5–/– mouse macrophages and 

fibroblasts (Schmiedt et al. 2012). Similarly with the Ctsd–/– mouse, accumulation of 

gangliosides has been observed in CLN6 patient fibroblasts and the mouse model (Jabs et al. 

2008; Teixeira et al. 2006). CLN9, although the gene itself remains uncharacterized, has been 

suggested to act as a regulator of dihydroceramide synthase based on the properties of patient 

fibroblasts (Schulz et al. 2006). 

The phospholipid species distribution has been shown to be altered in human CLN1 brain 

samples (Kakela et al. 2003) while only minor changes in phospholipid composition were 

observed in CLN2 patient fibroblasts (Granier et al. 2000) and in CLN3 patient brains (Kakela 
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et al. 2003). The levels of CLN3 and the phospolipid BMP appear to correlate, since BMP is 

reduced in patient fibroblasts and increased when CLN3 is overexpressed (Hobert & Dawson 

2007). In addition, the yeast CLN3 homologue BTN1 has been shown to regulate 

phospholipid levels and their intracellular transport (Padilla-Lopez et al. 2012). 

2.4.7.3 Selective neuropathological changes especially in thalamocortical pathways 

NCL neuropathology is characterized by neuron loss that specifically affects distinct regions 

and neuron types of the brain. In general, neuron loss is preceded by gradual reactive changes 

in astrocytes and microglia. While most of these studies have been conducted using animal 

models, largely similar observations have been made in human post-mortem material. 

(Cooper et al. 2006; Cooper 2010) 

Neuron types that appear selectively vulnerable in NCL pathology are inhibitory interneurons 

and thalamocortical relay neurons. The pathology of hippocampal and cortical GABAergic 

interneurons has been described in CLN1, CLN3, CLN5 and CLN8 mouse models and in 

CLN6 sheep (Bible et al. 2004; Cooper et al. 1999; Jalanko et al. 2005; Kopra et al. 2004; 

Oswald et al. 2001; Oswald et al. 2008; Pontikis et al. 2005). Particular effect of NCL disease is 

shown in the thalamocortical and corticothalamic pathways. Thalamic relay neurons appear to 

be lost prior to their projection sites in the animal models of most NCL subtypes (Kielar et al. 

2007; Partanen et al. 2008; Pontikis et al. 2005; von Schantz et al. 2009; Weimer et al. 2006). 

This sequence is reversed in the Cln5–/– mouse (von Schantz et al. 2009). Especially the 

sensory thalamocortical pathways are affected early in disease progression (Bible et al. 2004; 

Kielar et al. 2007; Oswald et al. 2005; Partanen et al. 2008; von Schantz et al. 2009). 

The activation of astrocytes and microglia is connected to NCL disease pathogenesis. 

Astrocytosis has been shown to precede neuron loss in the cerebral cortex, hippocampus, 

thalamus and cerebellum (Kielar et al. 2007; Macauley et al. 2009; Partanen et al. 2008; Pontikis 

et al. 2004; Pontikis et al. 2005; von Schantz et al. 2009). In many NCL subtypes, microglial 

activation follows astrocytosis but early microglial activation is observed in the CLN6 sheep 

(Kay et al. 2006; Oswald et al. 2005) and in Cln5–/– mouse (Schmiedt et al. 2012). It is not 

known whether glial response accelerates neurodegeneration or whether it has 

neuroprotective effects. A recent study in the CLN1 mouse model addressed this question: 

astrocyte activation was genetically attenuated (Ppt1–/–, Gfap–/–, Vimentin–/–), resulting in 

earlier appearing and more rapidly progressing pathology (Macauley et al. 2011). This indicates 

that the reactive astrocytes have at least partially beneficial effects in NCL brains. 
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3 AIMS OF THE STUDY 

This study aimed to determine molecular events contributing to disease progression in the 

neuronal ceroid lipofuscinosis CLN8 and CLN10. Specific aims were 

 

1) to investigate the genetic interactions and pathways of cathepsin D using the 

cathepsin D deficient Drosophila model for CLN10 disease, cathD1 

2) to characterize the neuropathology and spatio-temporal disease progression in 

the CLN8 disease model, Cln8mnd mouse, by 

 2a) determining the sequence of pathological events in the Cln8mnd mouse 

thalamocortical pathways, 

 2b) defining the role of white matter defects in the Cln8mnd mouse, implicated 

by the galactolipid deficiency observed in a large-scale lipid analysis of Cln8mnd 

brains. 
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4 MATERIALS AND METHODS 

By three methods we may learn wisdom: First, by reflection, which is noblest; 

second, by imitation, which is easiest; and third by experience, which is the 

bitterest. 

-Confucius 

 

In this chapter, materials and methods utilized in Studies I, II and III are described. Roman 

numeral indicating the study in question is included in the title of each section. 

4.1 MATERIALS 

4.1.1 DROSOPHILA STRAINS, HUSBANDRY AND CROSSES (I) 

The Drosophila strains used in this study were obtained from the Bloomington Drosophila Stock 

Center at Indiana University, The Exelixis Collection at the Harvard Medical School and 

individual research groups (for references, see Table 4). The overexpression lines for cathepsin 

B (cathB) and cathD were generated as described in I. The cathD1 genotype was verified with 

two polymerase chain reaction (PCR) setups, one with primers spanning the deletion (product 

size depends on the cathD genotype, see I) and one with primers within the deleted sequence 

of cathD1 (no product when cathD1 in homozygous state). Primers used for the latter PCR 

were F: AAC ATA GAA ATC AAA ATG CAG AAG G and R: GTT CTT GGT GTA 

GGT CTT CGA CTT (F and R for forward and reverse, respectively). 

The stocks of the Drosophila strains were maintained at room temperature whereas crosses and 

aging of the flies were performed at 25°C. Flies were raised on standard media including agar, 

semolina, malt and yeast. 
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Table 4. Drosophila strains utilized in this study. 

Gene name Human homolog Fly line Genotype 

cathD cathepsin D (CTSD) Myllykangas et al. 
2005 

cathD1/cathD1 

  I elav-GAL4/+; cathD1; UAS-
cathD 

Ceramidase (CDase) non-lysosomal ceramidase 
(ASAH2) 

Acharya et al. 2003 elav-GAL4/+; cathD1; UAS-
CDase/+ 

CG10992 (cathB) cathepsin B (CTSB) Bourbon et al. 2002 CG10992PG148/+; cathD1 

  I elav-GAL4/+; cathD1; UAS-
cathB/+ 

CG17841 - 
(TLC protein domain containing) 

Bourbon et al. 2002 CG17841PL94/+; cathD1 

HMG Coenzyme A 
reductase (Hmgcr) 

HMG-CoA reductase (HMGCR) Tschape et al. 2002 elav-GAL4/+; cathD1; UAS-
Clb/+ 

Heat shock protein cognate 3 
(Hsc70-3) 

heat shock 70kDa protein 5 
(HSPA5) 

Bloomington #11815 Hsc70-3G0102/+; cathD1 

Heat shock protein cognate 4 
(Hsc70-4) 

heat shock 70kDa protein 8 
(HSPA8) 

Bloomington #10286 cathD1; Hsc70-4L3929/+ 

Saposin-related (Sap-r) prosaposin (PSAP) Exelixis Collection cathD1; Sap-re01294 

cathD1; Sap-re01294/+ 

schlank (lag1) ceramide synthase 5 (CERS5) Bloomington #11665 lag1G0061/+; cathD1 

shibire (shi) dynamin 1 (DNM1) Bloomington #7068 shi1/+; cathD1 

SNF4/AMP-activated protein 
kinase gamma subunit (loe) 

protein kinase, AMP-activated, 
gamma 2 (PRKAG2) 

Tschape et al. 2002 cathD1; SNF4loe/+ 

elav-GAL4/+; cathD1; UAS-
loeI/+ 

Superoxide dismutase (Sod) superoxide dismutase 1, soluble 
(SOD1) 

Bloomington #4015 cathD1; Sodn1/+ 

swiss cheese (sws) patatin-like phospholipase 
domain containing 7 (PNPLA7) 

Exelixis Collection swsd07605/+; cathD1 

Target of rapamycin (Tor) mechanistic target of rapamycin 
(MTOR) 

Bloomington #7012 elav-GAL4/+; cathD1; UAS-

TorWT/+ 

  Bloomington #7013 elav-GAL4/+; cathD1; UAS-

TorTED/+ 

Thioredoxin reductase-1 (Trxr-
1) 

thioredoxin reductase 2 
(TXNRD2) 

Bloomington #10134 
Trxr-1481/+; cathD1 
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Table 4 continued. Drosophila nomenclature used here is based on FlyBase (www.flybase.org). elav, 

embryonic lethal abnormal vision. 

4.1.2 Cln8mnd MOUSE (II, III) 

Mouse strain B6.KB2-Cln8mnd/MsrJ was obtained from the Jackson Laboratory, backcrossed 

to C57Bl/6JolaHsd and C57Bl/6JRccHsd and congenity verified as described in II and III. 

Homozygous Cln8mnd/Cln8mnd mice (Cln8mnd) and their wild-type (wt) littermates were used. 

The experiments were performed in accordance with good practice of handling laboratory 

animals and using protocols approved by the ethical boards for animal experimentation of the 

National Public Health Institute and University of Helsinki, as well as State Provincial Offices 

of Finland (approval numbers ESLH-2008-00840/Ym-23, STH114A, ESLH-2008-

10286/Ym-23, STH967A, ESAVI-2010-04382/Ym-23 and KEK09-061). Mice were housed 

at the Center for Laboratory Animals, University of Helsinki. 

4.1.3 MOUSE PRIMARY CELL CULTURES (III) 

Mouse primary neurons, astrocytes and oligodendrocytes were produced as described in III, 

modified from (Heinonen et al. 2000; Pedraza et al. 2008). Shortly, the hippocampal / cortical 

tissue was dissected from mouse embryos of the embryonic day (E) 15.5-17.5 and triturated 

to one-cell-stage using trypsin (Sigma). For neuron cultures, cells were plated in Neurobasal® 

Medium supplemented with 1x B-27, 1x GlutaMAX™-I, penicillin (50 U/ml) and 

streptomycin (50 µg/ml) (all from Gibco). Primary astrocytes were dissected similarly and 

cultured in DMEM (Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L Glucose, 

BioWhittaker®) with 10% fetal calf serum (FCS; Promo Cell®), 1x GlutaMAX™-I and 

antibiotics. Oligodendrocytes were differentiated in DMEM containing 1x B-27 and 3% FCS 

after the neural progenitor / oligodendrocyte progenitor cell expansion (according to Pedraza 

et al. 2008). Primary cells were differentiated for 7 days as described in III. 
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4.2 METHODS 

Description of the key techniques utilized is presented in this section. Full list of methods is 

presented in Table 5. 

Table 5. Methods used in this study. 

Method Used in 

DNA extraction I 

Drosophila crosses I 

Molecular cloning I 

Polymerase chain reaction I 

Histologic processing I, II, III 

Light microscopy I, II, III 

(Immuno)histochemistry I, II, III 

Quantitative PCR I, III 

Reverse transcription I, III 

RNA extraction I, III 

Stereology II, III 

Statistical analysis II, III 

Cell culture III 

Cell proliferation assay III 

Enzyme activity measurement III 

Fractional anisotropy III 

Immunocytochemistry III 

Lipid mass spectrometry III 

Magnetic resonance imaging III 

Transmission electron microscopy III 

Myelin g ratio measurements III 

Western blotting III 

Nerve conduction velocity measurements Unpublished 

  

4.2.1 HISTOLOGICAL PROCESSING (I, II, III) 

Adult Drosophila were fixed in 4% formalin at least overnight in +8C at 1, 10, 20, 30 and 45 

days of age. After fixation, flies were transferred to 70% ethanol and embedded in paraffin 

through a graded ethanol series (service provided by the Institute of Biomedicine/Anatomy, 



 

65 
 

University of Helsinki). Flies were decapitated and heads embedded in paraffin blocks. 

Coronal sections of 4 µm thickness were cut and transferred to SuperFrost Plus glass slides 

(Menzel-Gläser) and dried +37C overnight. 

The Cln8mnd mice and their littermate controls were sacrificed at 1, 3, 5 and 8 months of age, 

when their brains were dissected and fixed in 4% paraformaldehyde in phosphate buffered 

saline (PBS). The cryoprotection and cryosectioning were performed as described in II. The 

mouse primary cell cultures were fixed for 15 min in 4% paraformaldehyde solution and 

stored in PBS +4C until stained. 

4.2.2 HISTOLOGY AND IMMUNOHISTOCHEMISTRY (I, II, III) 

The staining methods utilized in this study are listed in Table 6. For Drosophila adult heads 

standard haematoxylin-eosin staining was used. Briefly, it consisted of paraffin elimination 

through a graded ethanol series, followed by standard haematoxylin-eosin staining and graded 

ethanol series to xylene. The phenotypic enhancements were estimated in these sections 

under the 40x objective. Compared to the cathD1 phenotype, enhancement was considered 

when more than 10 times vacuoles were present and weak enhancement, if more than 2 times 

but less than 10 times vacuoles were present. 

Mouse brain sections for stereology were mounted onto gelatin-chrome alumin coated glass 

slides and air-dried. The slides were incubated for 30 minutes at 60C in Nissl stain solution 

consisting of 0.05% Cresyl fast violet (VWR)/0.05% acetic acid, rinsed in distilled water, 

differentiated through a graded series of alcohols and xylene (VWR) and coverslipped with 

DPX (VWR). In addition, immunohistochemical stainings were performed to detect GFAP, 

CD68, NeuN, MBP and MOG (II, III). Mouse primary cells were stained as described in III. 

Details of the antibodies used are given in Table 6. 

 

Table 6. Basis of the histological stains and antibodies used for immunohistology, 

immunocytochemistry and the immunostaining of protein blots. Antibody dilutions used in 

experiments are shown here; protocols in full are given in the original publications. 

Staining Basis Used in 

Histological stains  

Haematoxylin-
Eosin 

Hematoxylin is a basic dye staining nuclei and rough ER due to its affinity to 
nucleic acids; eosin is an acidic dye staining the cytoplasm. 

I 

Nissl (crecyl 
violet) 

Stains cell nuclei and rough ER nucleic acids due to its affinity to nucleic acids. II, III 
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Table 6 continued. 

Staining Basis Used in 

Immunohistochemistry  

GFAP Glial fibrillary acidic protein, an astrocytic intermediate filament. Staining is 
regarded as highly specific for reactive astrocytes (Sofroniew & Vinters 2010). 
rabbit anti-GFAP, 1:4000, Z0334, DAKO 

II 

CD68 Cluster of differentiation 68 or macrosialin is a member of the lysosomal-
associated membrane protein (LAMP) family expressed by macrophages 
(Sanchez-Guajardo et al. 2010). 
rat anti-CD68, 1:2000, MCA1957, AbD Serotec 

II 

NeuN Neuronal Nuclei, recognizes the neuronal specific protein RBFOX3 (RNA 
binding protein, fox-1 homolog (C. elegans) 3) (Kim et al. 2009). 
mouse anti-NeuN, 1:1000, MAB377, Millipore 

II 

MBP Myelin basic protein is a structural component of myelin and a marker for 
mature oligodendrocytes (Bradl & Lassmann 2010). 
rat anti-MBP, 1:500, MAB386, Millipore 

III 

MOG Myelin and oligodendrocyte glycoprotein is a marker of differentiated 
oligodendrocytes (Bradl & Lassmann 2010). 
rat anti-MOG, 1:200, MAB2439, R&D Systems 

III 

Immunocytochemistry  

MBP rat-anti-MBP 1:100, see above. III 

GalC Galactoceramide is a myelin-enriched lipid and a marker for differentiating pre-
oligodendrocyte and mature oligodendrocytes (Bradl & Lassmann 2010). 
anti-GalC 1:100, MAB142, Millipore 

III 

A2B5 Stains gangliosides and serves as a marker for oligodendrocyte progenitors and 
oligodendrocytes in their early-development (Baumann & Pham-Dinh 2001). 
anti-A2B5 1:200, MAB312, Millipore 

III 

Olig2 Transcription factor of the oligodendrocytic lineage, which is expressed 
throughout the oligodendrocyte development but higher in oligodendrocyte 
progenitors (Bradl & Lassmann 2010). 
anti-Olig2 1:500, AB9610, Millipore 

III 

Western blotting  

MBP rat anti-MBP, 1:250, see above III 

PLP Proteolipid-protein is a marker for differentiated oligodendrocytes (Bradl & 
Lassmann 2010). 
mouse anti-PLP, 1:1000, ab9311, Abcam 

III 

MOG rabbit anti-MOG, 1:500, 12690-1-AP, ProteinTech Group III 

NG2 Chondroitin sulphate proteoglycan 4 is a marker for oligodendrocyte 
progenitors (Bradl & Lassmann 2010). 
rabbit anti-NG2, 1:500, AB5320, Millipore 

III 
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4.2.3 LIGHT MICROSCOPY (I, II, III) 

Immunostained mouse brain sections and adult Drosophila sections were observed and imaged 

using the using Zeiss Axioplan2 microscope, AxioCam HRc camera and AxioVision Release 

4.6 software (Carl Zeiss). Images were processed (brightness/contrast, scaling) using the 

Adobe Photoshop CS4 software (Adobe Systems). Confocal microscope (LSM 510 Meta, 

Zeiss Inc.) was used for imaging the immunofluorescently stained oligodendrocytes as 

described in III. 

4.2.4 STEREOLOGY (II, III) 

A stereological optical dissector was used for the analysis of the neuron number and a 

Cavalieri estimator for the volumetric analyses. Analysis included 4-6 animals per genotype 

and age. From the one in six series of the Nissl-stained sections the appropriate anatomical 

region was defined using the Paxinos and Franklin mouse brain atlas (Paxinos & Franklin 

2001) and performed using StereoInvestigator program (MBF Bioscience) as described in II 

and III. All analyses were performed with no prior knowledge of the genotype of the sample. 

4.2.5 ELECTRON MICROSCOPY, G RATIO ANALYSIS (III) 

For electron microscopy sample preparation, 1 and 4 month old mice were perfusion fixed 

with 4% PFA, the brains dissected and post-fixed in 6% glutaraldehyde solution overnight. 

Samples were cut to appropriate size (approximately 1mm3) selecting the regions of brain 

stem and the frontal region of corpus callosum and transferred to phosphate buffer, pH 7.4. 

Sectioning and staining was provided as a service of the Institute of Biotechnology Electron 

Microscopy Unit, University of Helsinki. Under the electron microscope a set of 

representative pictures was taken choosing locations of bundles of myelinated axons. For g 

ratio analyses these pictures were analysed using the Fiji image analysis package by measuring 

the length of individual axon diameters versus corresponding fiber diameters as described in 

III. 

4.2.6 MAGNETIC RESONANCE IMAGING, FRACTIONAL ANISOTROPY (III) 

MRI was performed as described in detail in III resulting in data sets with and without 

diffusion weighting (diffusion tensor imaging, DTI). Volumetry for corpus callosum and 

internal capsule and the corpus callosum thickness were measured from the anatomical 

images without diffusion weighting. Diffusion tensor images were used from fractional 

anisotropy analyses. The region of interest (ROI) analysis for white matter structures is 

explained in III. In addition, a hypothesis free analysis method, track based spatial stastistics, 

TBSS (Smith et al. 2006; Smith et al. 2007), was applied to the DTI data set. 
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4.2.7 LIPID ANALYSES, ENZYME ACTIVITY MEASUREMENTS (III) 

Mouse brain samples were homogenized with chloroform/methanol (9:1) and the lipids 

extracted as described in (Folch et al. 1957). Quantification of sphingolipids was performed 

using a liquid chromatography / mass spectrometry based analysis, as previously described 

for human EPMR samples (Hermansson et al. 2005). Free cholesterol was quantitated 

according to (Gamble et al. 1978). 

For CGT enzyme activity measurements, mouse cerebral cortices were homogenized and 

protein concentrations determined to adjust them to 4 mg/ml (Zoller et al. 2005). Samples 

were incubated with the radioactive substrate, [14C]-UDP-galactose (I). Radioactivity 

detection was performed as described in (Zoller et al. 2005). 

4.2.8 WESTERN IMMUNOBLOTTING (III) 

Mouse brain samples were lysed and prepared for polyacrylamide gel electrophoresis as 

described in III. Proteins were blotted and detected using immunostaining and either 

enhanced chemiluminiscence or infrared imaging based methods as described in III. 

4.2.9 QUANTITATIVE PCR (I, III) 

Total RNA was extracted from cells and tissues using the Qiagen RNeasy mini kit (Qiagen). 

Complementary DNA (cDNA) synthesis was performed using Moloney murine leukemia 

virus (MMLV) reverse transcriptase and random hexamers as primers (Promega) using a 

standard protocol (Joensuu et al. 2008). Real-time reverse transcriptase PCR was performed 

using commercial, mRNA specific primer/probe assays (III) or designed by the 

PrimerExpress software (Applied Biosystems). The Drosophila assays designed for cathD, 

cathepsin B (cathB) and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) were as follows: Gapdh (F - 

AGC GCT GGT GCC GAA TAC, R - AGT GAG TGG ATG CCT TGT CGA T, probe - 

TGG AGT CCA CTG GCG TGT TCA CCA), cathB (F - TGC CGT GGA AGC CAT GT, 

R - CCG AAA AGT GGA AAT TCA CCT T, probe - CGA TCG CGT GTG CAT CCA 

TTC C), cathD (F - CAT CGG TGG TCA GTA TGT GGT T, R - CGC CCA GCA CAA 

ACT TGA TT, probe - CTT GCG ATC TCA TTC CCC AAT TGC C). Probes contained 6-

carboxyfluorescein (FAM) and tetramethylrhodamine (TAMRA) fluorophores at their 5’ and 

3’ ends, respectively. 

4.2.10 NERVE CONDUCTION MEASUREMENTS (UNPUBLISHED) 

One and 4 month old mice (n=6 per genotype per age group) were analysed for peripheral 

nerve (sciatic) conduction velocity using a protocol modified from (Amadio et al. 2006; Haupt 
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& Stoffel 2004). The mice were anesthetized using 50 mg/kg sodium pentobarbital 

(Mebunat®, Orion) by intraperitoneal injection. During measurements, the mice were 

spontaneously breathing and their body temperature was maintained within the physiological 

range. To limit movement-related artefacts the hind limbs were fixed to a styrofoam base 

with thin needles. 

For recordings of motor evoked potentials a concentric bipolar electrode (Rhodes NE-100) 

was inserted into the hind paw muscle. The signal was amplified and filtered using standard 

techniques. Stimulation electrodes (27G needles) were placed into 1) the lumbar spine, close 

to the emergence of the sciatic nerve roots, and 2) the metatarsal right below the calcaneum. 

The distance between these sites was measured with a calliper. The electrical stimuli were 

generated by a constant current stimulator (PSIU6 and Grass S88, Grass Instruments). For 

stimulation, 0.2 ms impulses with an intensity of 1.5x the motor threshold were used at a rate 

of 1 Hz. 

At least 20 motor evoked potentials were acquired for each analysis. Data sampling was 

performed with a computer connected to a CED Micro 1401 interface and using Spike 2 

software (Cambridge Electronic Design). 

4.2.11 STATISTICAL ANALYSIS (II, III) 

Results were statistically tested by Student’s t-test, two-way analysis of variance (ANOVA) 

with Bonferroni post-hoc test, or Mann-Whitney U-test, when applicable, using Microsoft 

Excel and GraphPad Prism program (GraphPad Software Inc.). P values of <0.05 were 

considered significant. 
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5 RESULTS AND DISCUSSION 

Who could have guessed that the lowly fruit fly might hold the key for decoding 

heredity? Or that the mouse might one day disclose astonishing evolutionary 

secrets? 

-‘Of Flies, Mice, and Men’ by François Jacob, from the book description, 

Amazon.com 

 

5.1 MODULATORS OF CLN10 NEUROPATHOLOGY IN 

DROSOPHILA 

The cathD1 Drosophila model for CLN10 disease is characterized by modest neurodegeneration 

and autofluorescent storage (Myllykangas et al. 2005). In this study, late-onset retinal 

degeneration was observed. In order to find modulators of the cathD1 phenotype and possible 

pathways relevant for CLN10 disease, the cathD1 retinal phenotype was utilized for 

hypothesis-based candidate modifier screening. 

5.1.1 RETINAL PATHOLOGY OF cathD1 DROSOPHILA (I) 

The neuronal apoptosis in aged (45 days old) flies localizes especially to the brain areas 

receiving retinal input, the medulla and lamina (Myllykangas et al. 2005). Thus, the retinal 

pathology was further characterized in this study. The 45 days old cathD1 retina showed 

vacuolization (Fig. 2A in I), a finding indicative of cell death and typical for Drosophila models 

of neurodegenerative diseases (Kretzschmar 2009). Compared to many previously described 

neurodegenerative mutant Drosophila, the cathD1 retinal vacuolization was rather modest and 

late appearing. However, it was specific to the cathD1 mutation, since the phenotype was 

rescued by the expression of the cathD gene (Fig. 2B in I). This could be established through 

the use of the UAS-GAL4 system, where elav-GAL4 targeted the UAS-cathD expression to 

neurons and photoreceptor cells (Robinow & White 1988; Robinow & White 1991). 

Pathological changes in the retina are consistent with the results from previously described 

CTSD deficiencies. The Ctsd–/– mouse shows prominent retinal atrophy and apoptotic 

photoreceptor cell death (Koike et al. 2000; Koike et al. 2003). In human disease both 

congenital and juvenile onset CLN10 is characterized by evident retinal atrophy (Brown et al. 

1954; Steinfeld et al. 2006). A significant reduction in CTSD enzymatic activity may be 

required for the retinal pathology to develop since the CLN10 disease in American bulldogs 
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with residual CTSD activity does not present with visual impairment (Awano et al. 2006; 

Evans et al. 2005). 

CTSD has been implicated as the major protease involved in photoreceptor turnover 

(Rakoczy et al. 1996; Regan et al. 1980). Retinal pigment epithelial cells are involved in the 

phagocytosis of photoreceptor debris by their microvilli that penetrate to photoreceptor cell 

layers (Strauss 2005). The presence of a mutated or inactive CTSD in retinal pigment 

epithelial cells correlates with the efficacy of photoreceptor clearance both in vitro and in vivo 

and affects the survival of these cells in aging mice (Rakoczy et al. 1996; Rakoczy et al. 1997; 

Rakoczy et al. 2002; Zhang et al. 2002; Zhang et al. 2005). Furthermore, the recently generated 

zebrafish model of CTSD deficiency was shown to lack the microvillar structures that are 

required for the phagocytosis (Follo et al. 2011). Since Drosophila and vertebrate retinal 

pigment cells share functional properties (Wang & Montell 2007), retinal degeneration 

observed in cathD1 Drosophila could be caused by dysfunctional retinal pigment cells. 

5.1.2 GENETIC MODIFIER STUDIES IN cathD1 DROSOPHILA (I) 

The retinal degenerative phenotype of cathD1 was utilized to screen for the effects of 

candidate modifiers, in order to to link cathD to genetic pathways relevant for NCL 

pathogenesis. Due to the relative mildness of cathD1 retinal pathology, only enhancement of 

the phenotype could be screened for. In addition, the requirement of histological analyses to 

observe modifications excluded the use of large-scale screening. However, 17 candidate 

mutant lines (Table 4) were studied representing biological processes previously described to 

be affected by CTSD deficiency and/or NCL disease (see Table 4 and Table 1 in I). An 

mRNA expression database FlyAtlas (www.flyatlas.org) was used to confirm the expression 

of these candidates in Drosophila eye. Based on the analysis of the Drosophila carrying cathD1 

together with the candidate modifier mutation, 7 candidate mutants were shown to enhance 

the cathD1 retinal pathology. Here, the results of the screen are discussed focussing on 

Drosophila pathways of lipid metabolism regulation (section 5.1.2.1) and on the common 

themes found in the modifier screens in different Drosophila models for NCL disease (section 

5.1.2.2). 

5.1.2.1 Genes involved in lipid metabolism 

The sphingolipid biosynthetic pathway is well-conserved and most genes in the pathway are 

shared between Drosophila and vertebrates (Acharya & Acharya 2005), Fig. 16. In this study, 

we focussed on the ceramide synthase schlank, a Drosophila homologue of the yeast longevity 

assurance gene, lag1. The homozygous lethal lag1G0061 Drosophila line carries a P-element in 

the 5’ coding sequence of the lag1 gene. lag1 was shown to act as a ceramide synthase that 

controls the balance between lipogenesis and lipolysis in Drosophila (Bauer et al. 2009). 
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lag1G0061 enhanced the cathD1 degeneration, indicating that reduced ceramide synthesis has a 

detrimental effect on the cathD deficiency. 

 

Figure 16. Sphingolipid and mevalonate pathways in Drosophila. Pathways are simplified to illustrate 

the selected candidate genes (circled) and their functions. The sterol branch of the mevalonate 

pathway is lost in insects. lag1, longevity assurance gene homologue; CDase, Ceramidase; HMG-CoA, 

3-hydroxy-3-methyl-glutaryl coenzyme A; Hmgcr, HMG-CoA reductase; loe, AMP-activated protein 

kinase gamma subunit. 

 

Overexpression of the Drosophila neutral ceramidase, CDase, which converts ceramide to 

sphingosine, did not have an effect on the retinal phenotype of cathD1. Ceramide has been 

shown to bind and activate CTSD and affect its targeting, especially when excess ceramide is 

present (De Stefanis et al. 2002; Heinrich et al. 1999). However, since we did not test the effect 

of excess ceramide on the cathD1 pathology by overexpressing ceramide synthase lag1 or 

deleting the CDase activity, this aspect requires further studies in cathD1 Drosophila. 

Saposins are involved in glycosphingolipid catabolism and have previously been reported to 

affect CTSD maturation and transport (Gopalakrishnan et al. 2004; Laurent-Matha et al. 2002; 

Zhu & Conner 1994). In addition, CTSD has a role in prosaposin maturation (Hiraiwa et al. 

1997). Furthermore, saposins A and D are the major protein components of storage in 

human and ovine CLN10 disease (Siintola et al. 2006; Tyynela et al. 2000). Mutated Drosophila 

saposin-related, a homologue of prosaposin, did not enhance retinal degeneration of cathD1 

either in a heterozygous or homozygous state. 

Overexpression of Drosophila HMG-CoA reductase homologue, columbus (Hmgcr, clb), 

enhanced the cathD1 phenotype in our study. The highly conserved HMGCR functions in the 

mevalonate pathway responsible for sterol and isoprenoid biosynthesis, and it is the primary 

target of therapies to regulate cholesterol levels (Burg & Espenshade 2011). Indeed, abnormal 

cholesterol levels and trafficking characterize CTSD deficiency both in mouse and in human 

macrophages (Haidar et al. 2006; Mutka et al. 2010). Furthermore, CTSD has been linked to 
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HMGCR by a study where atorvastatin, an HMGCR inhibitor, was shown to negatively 

regulate the level of CTSD expression in atherosclerotic plaques (Duran et al. 2007). 

The Drosophila mevalonate pathway does not, however, participate in de novo cholesterol 

synthesis although many genes and regulatory mechanisms are conserved (Gertler et al. 1988, 

Fig. 16). The mevalonate pathway controls the biosynthesis of isoprenoids, which have been 

shown to act as chemoattractants in migrating germ cells in Drosophila (Santos & Lehmann 

2004). Mevalonate is a precursor for the insect juvenile hormone, JH (Belles et al. 2005). 

While cathD1 does not appear to have a developmental phenotype, these pathways are not 

obvious mechanisms through which the Hmgcr would enhance the cathD1 adult-onset 

degenerative phenotype. It is of note that accumulation of isoprene compounds, dolichols, 

have been observed in many forms of NCLs (Rider et al. 1992). It is possible that the 

increased production of dolichols by Hmgcr overexpression contributes to the enhancement 

of retinal pathology in cathD1. 

The effect of AMP-activated protein kinase subunit  homologue löchrig (loe) was selected as a 

candidate because of its inhibitory action towards Hmgcr (Tschape et al. 2002, Fig. 16). Since 

the Hmgcr pathway appears to affect the cathD1 induced degeneration, introducing extra copies 

of loe could be beneficial to the degeneration of cathD1 mutant. Unfortunately, due to not 

being able to observe suppressive effects to the cathD1 phenotype, we were unable to assess 

this in our study. 

These results warrant further studies of the involvement of lipid metabolism regulation in 

CLN10. Specifically, ceramide synthesis and mevalonate pathway should be studied 

biochemically and in the Ctsd–/– mouse to clarify their role in CTSD functions and CLN10 

disease. While the effects of genetic modifications are more laborious to study in the mouse, a 

treatment with HMGCR inhibiting statins could be an achievable assay to perform. 

5.1.2.2 Common pathways with other NCL proteins? 

Drosophila models have been generated for two other NCL diseases, CLN1 and CLN3 (Table 

7). The Drosophila Ppt1 and Cln3 deficiencies present with NCL-like phenotypes (Hickey et al. 

2006; Tuxworth et al. 2011). In addition, overexpression models have been generated which 

lead to rough eye phenotypes (Korey & MacDonald 2003; Tuxworth et al. 2009; Tuxworth et 

al. 2011). The CLN3 overexpression model also shows Notch-like wing, bristle and 

macrochaetae phenotype (Tuxworth et al. 2009). These models have been used for unbiased, 

large-scale genetic modifier screening (Table 7). While these screens have been performed in 

overexpression models, it is of note that our cathD1 screen utilized the loss-of-function model 

and may thus better indicate phenomena relevant for the CLN10 disease. 
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There are no individual modifier genes that would be shared between the three NCL proteins 

(Table 7). However, especially cathD and Ppt1 may share genetic pathways of 

endocytosis/synaptic functions and lipid regulation (Buff et al. 2007). Both Cln3 deficiency 

and overexpression appear sensitive to oxidative stress (Tuxworth et al. 2011) which may be 

the case for cathD1 as well. These pathways are discussed in more detail below. 

The fact that cathepsin B, CG10992, was identified as a weak enhancer of cathD1 may indicate a 

role for cathepsin B in NCL pathogenesis. Interestingly, the Cathepsin B / Cathepsin L 

double knock-out mouse closely resembles the Ctsd–/– mouse and shows similar storage 

material accumulation (Koike et al. 2005). 

Synaptic functions/endocytosis 

CTSD is involved in the proteolysis of presynaptic -synuclein, accumulation of which causes 

Parkinson’s disease through a toxic effect (Cullen et al. 2009; Feany & Bender 2000). 

Aggregates of -synuclein were found in human, mouse and sheep CLN10 tissue, indicating 

that -synuclein toxicity might contribute to CLN10 disease (Cullen et al. 2009). These 

findings were confirmed in Drosophila, where enhanced retinal pathology was observed 

through the expression of human -synuclein (the Drosophila genome itself lacks -synuclein 

gene) in the cathD1 background (Cullen et al. 2009). 

In our study mutated Drosophila dynamin, shibire, enhanced cathD1 degeneration. Dynamin/shi 

functions in endocytosis and synaptic vesicle recycling (Robinson 2007; Seto et al. 2002; van 

de Goor et al. 1995), yet the enhancement effect may be caused by the disturbed endocytic 

properties of shi. The temperature sensitive mutant shi1 used in this study was not activated, 

and no synaptic phenotype has been suggested for shi1 under permissive temperatures 

(Kawasaki et al. 2000; van de Goor et al. 1995). The mouse Dynamin 1 mutant also needs to 

be challenged for the synaptic phenotype, yet endocytic failure was observed without 

stimulation (Ferguson et al. 2007). In addition, Drosophila shi1 has been shown to modify the 

phenotype of liquid facets, a Drosophila epsin involved in clathrin dependent endocytosis even in 

permissive temperatures (Cadavid et al. 2000), suggesting that the shi1 allele may cause an 

effect combined with other mutations in the shared pathway. Further supporting the 

importance of endocytic defects in cathD1 pathology, Target of rapamycin, Tor, and Hsc70-4 were 

identified as additional modifiers. A genetic interaction between Tor, Hsc70-4 and shi has been 

described in substrate specific endocytic degradation (Hennig et al. 2006), a process to which 

cathD could logically connect. 

The Drosophila cathD1 synaptic phenotype was examined in the 3rd instar larval neuromuscular 

junction, but the cathD1 mutation did not appear to have an obvious effect on the size and 

distribution of synaptic boutons (unpublished observations, M. Kuronen, R.I. Tuxworth, G. 

Tear). However, more comprehensive studies are required to determine the synaptic 
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properties in cathD1, since presymptomatic accumulation of readily releasable synaptic vesicles 

and decreased frequency of miniature excitatory postsynaptic currents have been observed in 

Ctsd–/– mice (Koch et al. 2011; Partanen et al. 2008). 

In the Ppt1–/– mouse model of CLN1 disease, abnormal synaptic properties have been 

observed in the cortical neuron cultures (Virmani et al. 2005). Synaptic changes have also been 

postulated to precede the pathology of these mice (Kielar et al. 2009; Kim et al. 2008). Indeed, 

a clear effect of the synaptic/endocytosis related genes to the Drosophila Ppt1 overexpression 

phenotype has been observed (Buff et al. 2007, Table 7). Interestingly, DNAJC5/CSP, a 

recent addition to the list of NCL causative genes, could be modelled with Drosophila cysteine 

string protein mutants that cause impaired presynaptic neurotransmission and 

neurodegeneration (Noskova et al. 2011; Umbach et al. 1994; Zinsmaier et al. 1994). Thus, 

synaptic pathology is one of the common themes not only between different NCL subtypes 

but also between different animal models of NCLs. 

Oxidative stress 

Another such theme may be the sensitivity to oxidative stress, which has been proposed as a 

mechanism of neurodegeneration in NCL pathogenesis (Wei et al. 2008). Antioxidant dietary 

supplementation has been of slight benefit in human CLN3 patients (Santavuori et al. 1989) 

and the antioxidant therapy with resveratrol has shown beneficial effects in the Ppt1–/– mouse 

(Wei et al. 2011) and in Cln3 deficient mouse cells (Yoon et al. 2011). CTSD has also been 

linked to oxidative stress induced apoptosis (reviewed in Pivtoraiko et al. 2009). The Drosophila 

cathD may also participate to oxidative stress-related pathways, since we found that the 

mutated thioredoxin-reductase, Trxr-1, enhanced the cathD1 degenerative phenotype. Trxr-1 and 

the Superoxide dismutase (Sod) / catalase constitute the most important defense systems against 

oxidative damage in Drosophila (Missirlis et al. 2001). Yet the cathD1 phenotype was unaffected 

by the Sod mutation, indicating that the Trxr-1 pathway is of specific importance in cathD1 

induced pathology. Oxidative stress related pathways appear also affected in the CLN3 

Drosophila models. Sod and catalase overexpression rescued the eye phenotype of Cln3 

overexpressing Drosophila (Tuxworth et al. 2011). The lifespan of Cln3 deficient Drosophila was 

decreased under induced oxidative stress (Tuxworth et al. 2011), however, H2O2 induced 

oxidative stress showed no significant effect on the cathD1 lifespan (unpublished observations, 

M. Kuronen, M. Talvitie, L. Myllykangas). 

Comparison between the different NCL Drosophila models is now possible. The modifier 

effects observed in one model could be tested in other models to achieve conclusions on the 

involvement of a genetic pathway for different Drosophila NCL genes. As such, assessment of 

highly conserved synaptic functions and oxidative stress pathways in Drosophila would benefit 

the field of NCLs by possibly generating novel, unbiased molecules for further studies. 
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Table 7. Drosophila models of NCL disease. 

Model, phenotype Modulators, pathways 

cathD1 

Modest neurodegeneration, typical NCL 
storage material accumulation (1) 

Endocytosis: Shi (I) 

Chaperone: Hsc70-4 (I) 

Lipid metabolism-related: lag1, Hmgcr (I) 

Lysosomal: CG10992 (Cathepsin B) (I) 

Oxidative stress: Trxr-1 (I) 

Synaptic: α-synuclein (2) 

Ppt1 deficiency 

Modest reduction in lifespan, storage 
material accumulation (3), defective 
endocytic trafficking (4) 

_ 

Ppt1 overexpression 

Rough eye (5) 

Synaptic: endophilin A, blue cheese, synaptotagmin, stoned A, IGF-II mRNA 
binding protein (6, 4) 

Lipid metabolism: phosphatidylserine decarboxylase, ATP-binding cassette 
homolog (6) 

Chaperone: Hsc70-3 (6) 

Zinc transport: Fear of Intimacy (4) 

Phosphorylation: C-terminal Src kinase (4) 

Sumoylation: Smt3 (4) 

Bone morphogenetic protein signaling: Twisted gastrulation (4) 

Cln3ΔMB1 

Modest reduction in lifespan, no storage, 
hypersensitivity to oxidative stress (7) 

_ 

Cln3 overexpression 

Rough eye, Notch-like phenotype (7, 8) 

JNK pathway: basket, hemipterous, puckered (8) 

Stress responses and apoptosis: MAP kinase kinase kinase 1, thioredoxin 
peroxidase (JafRac2), Tollo, falafel, thread (7) 

RNA processing and translation regulation: boule, pumilio, alternative 
splicing factor (Rox8) (7), mago nashi, tsunagi (8) 

Notch signaling: Hairless, E(spl) region transcripts m5 and m7 (7) 

Neurodegenerative disease-associated genes: Molybdenum cofactor 
biosynthesis protein 1 (7) 

Protein turnover and stability: cullin-5, septin interacting protein 3, vihar (7) 

Vesicle trafficking:schizo, like-AP180, signal recognition particle 9kD (7) 

Cytoskeletal regulation and small GTPase signaling: tarsal-less, 
microtubule associated protein 205, Small Protein Effector of Cdc42, klarsicht 
(7) 

Ras signaling: MAP kinase phosphatase 3, daughter of sevenless, pointed (7) 

Transcriptional regulation and chromatin remodeling: without children, 
stonewall, jim, jing interacting gene regulatory 1, serendipity β, methyl-CpG-
binding like, meiosis I arrest (7) 
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Table 7 continued. Phenotypes for different models are summarized, together with the results from 

genetic modifier studies. References: I, Study I of this thesis, 1) Myllykangas et al. 2005, 2) Cullen et al. 

2009, 3) Hickey et al. 2006, 4) Saja et al. 2010, 5) Korey & MacDonald, 2003, 6) Buff et al. 2007, 7) 

Tuxworth et al. 2011, 8) Tuxworth et al. 2009. 
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5.2 NEUROPATHOLOGY OF THE Cln8mnd MOUSE 

The Cln8mnd mouse is characterized with retinal degeneration, behavioural abnormalities and 

motor deficits that lead to premature death (Bolivar et al. 2002; Chang et al. 1994; Messer & 

Flaherty 1986; Messer et al. 1987; Messer et al. 1993). In this part of the work, the brains of 

presymptomatic/early symptomatic (1-3 months of age), moderately symptomatic (5 months) 

and late symptomatic (8 months) Cln8mnd mice were analysed. Observed neuron loss and glial 

activation is discussed in sections 5.2.1 and 5.2.2. A specific defect in galactolipid content and 

synthesis was accompanied by a myelination delay that preceded any observed pathological 

changes in the brains of the Cln8mnd mouse (sections 5.2.3 and 5.2.4). Finally, the sequence of 

these changes and their possible significance for CLN8 disease are discussed in sections 5.2.5 

and 5.2.6. 

5.2.1 NEURON LOSS IN SENSORY AND MOTOR PATHWAYS (II, UNPUBL.) 

We studied neuron loss in Cln8mnd mouse brains by assessing stereological cell counting 

methods. Disease progression was analysed in sensory thalamocortical pathways, which have 

previously been shown to be affected in NCL disease (reviewed in Cooper 2010). Due to the 

motor neuron degeneration phenotype of the Cln8mnd mouse (Messer et al. 1986; 1987) the 

pathology of the motor cortex was also investigated. 

5.2.1.1 Somatosensory thalamocortical pathway is affected first in Cln8mnd 

Within the sensory pathways studied, neuron loss showed earliest onset in the Cln8mnd 

somatosensory thalamocortical pathway (Fig 5 in II). The thalamic ventral posterior complex, 

VPM/VPL, had lost 20% of neurons at 5 months of age. Similar redution was seen in the 

somatosensory cortical layers IV and VI that receive thalamic inputs or project to the 

thalamus. The somatosensory pathway is also affected in other mouse models of NCLs 

(Kielar et al. 2007; Partanen et al. 2008; Pontikis et al. 2005; von Schantz et al. 2009). Abnormal 

somatosensory evoked potentials (SEPs) in NCL patients further underline the relevance of 

somatosensory defects in NCL disease (see section 5.2.6). 

5.2.1.2 Visual thalamocortical pathway is affected late in comparison to the Cln8mnd 

retinal pathology 

Visual loss is a prominent symptom in most forms of human and animal NCL disease 

(Jalanko & Braulke 2009). Retinal degeneration, with varying onset and severity, is observed 

in most NCL mouse models. Cln8mnd photoreceptor loss is evident from postnatal day (P) 15-

21 (Messer et al. 1993; Seigel et al. 2005). ERG shows reduced photoreceptor responses from 
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2 months onward and becomes undetectable by 6 months (Chang et al. 1994). Thus, it is 

intriguing that in our thalamocortical analysis we found evidence of largely intact visual cortex 

and thalamus until the late symptomatic, 8 month old Cln8mnd mouse (Fig. 9 in II), when 60% 

of the neurons in LGNd and 20% in visual cortex were lost. This suggests that the visual 

areas of the Cln8mnd brain remain intact for a markedly long period of time after dimimished 

or lost input signal from the retina. 

This sequence of events in the visual pathway distinguishes Cln8mnd from previously 

characterized NCL mouse models (Fig. 17), although absolute comparisons cannot be made 

e.g. due to the effects of different strain backgrounds. A completely reversed sequence 

appears in Cln3–/– mice where the retina remains functionally intact, as assessed by ERG at 

12 months, and shows mild apoptosis only at 18 months (Seigel et al. 2002). The optic tract 

conduction velocity is reduced already at 6 months of age with a concomitant neuron loss in 

LGNd (Weimer et al. 2006). The visual cortex was not assessed in these mice, which carry an 

exon 1-6 deletion, yet in Cln3Δex7/8, with a deletion of Cln3 exons 7 and 8, cortical thinning 

and neuron loss were observed at 12 months of age (Pontikis et al. 2005). 

Yet another sequence is found in Ppt1 and Cln5 deficiency, where the retina and either one of 

the visual thalamocortical pathway components are affected concomitantly (Fig. 17). The 

Ppt1–/– mice show reduced ERG response from 2 months onwards and significant loss of 

photoreceptors at 5 months (Griffey et al. 2005). Loss of LGNd neurons is evident from 3 

months onwards, whereas cortical neuron loss begins at 5 months (Kielar et al. 2007). In 

Cln5–/– mice visual cortical neurons are lost from 4 months onwards, but in thalamic LGNd 

neuron loss was observed only at 12 months (von Schantz et al. 2009). In these mice loss of 

vision occurs at 4-5 months of age, assessed by the forelimb extension test (Kopra et al. 2004). 

Of other NCL mouse models, Ctsd–/– shows retinal thinning at P12 and photoreceptors are 

nearly abolished by P25, while the mice die at P262 (Koike et al. 2003). Visual cortical 

thinning was observed at the end stage of the disease (Partanen et al. 2008), however, the 

visual pathway has not been systematically studied in these mice. The Cln6nclf mouse is 

phenotypically very similar to Cln8mnd, although demonstrating slightly delayed pathology 

(Bronson et al. 1998). Retinal cell loss is demonstrated by 4 months of age (Bronson et al. 

1998), but to date thalamocortical pathology of Cln6nclf has not been described. 

Apart from the photoreceptor cell loss, which is observed early, the Cln8mnd retinal ganglion 

cells appear to contain storage material as early as from P0 (Seigel et al. 2005; Chang et al. 

1994) and may thus have compromised functions. It is not clear why the retina shows specific 

sensitivity in Cln8mnd disease. Cln8mnd retinal pathology has been linked to oxidative stress 

(Guarneri et al. 2004). CLN8 has been linked to many other mechanisms, which may have 

particular effect in the retina, such as mitochondrial dysfunction or calcium signalling 

(Bertamini et al. 2002; Kolikova et al. 2011; Pardo et al. 1994). 
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Figure 17. Comparison of the onset of retinal and visual thalamocortical pathology in the mouse 

models of NCL disease. The X axis represents mouse age in months and the reported lifespan of the 

models is indicated with boxes (Cln3 and Cln5 deficient mice survive beyond 18 months of age). 

Ctsd-/- and Cln6nclf mice are not illustrated since the thalamocortical pathology is not well described. 

thal, thalamus (LGNd); ctx, cortex (V1). 

 

5.2.1.3 Neuron loss progresses more rapidly in the Cln8mnd thalamus 

The sequence of thalamocortical pathology appears to vary within the NCL mouse models, 

which is also illustrated by Fig. 17. The thalamus appears to be the primary site of pathology 

in Ppt1 and Cln3 deficiencies, (Griffey et al. 2005; Kielar et al. 2007; Pontikis et al. 2005; 

Weimer et al. 2006) while cortical cell loss appeared first in the Cln5–/– mouse (von Schantz et 

al. 2009). In the Cln8mnd mouse the thalamic and cortical areas were affected concomitantly, 

however, neuron loss was more pronounced and progressed more rapidly in the thalamic 

VPM/VPL and LGNd (Fig. 5 and 9 in II). 

Thus it appears that thalamic neurons are more susceptible to NCL-related neuron loss than 

their cortical counterparts. This may arise from multiple causes. Thalamic neurons may be 

more sensitive to storage material accumulation, however, all NCL mouse models contain 

subcellular storage, yet the timing of thalamic pathology is different. The primary defect could 

be dysfunctional signalling from other regions of the CNS. This hypothesis would be 

favoured by a CLN3 study, where decreased optic nerve conductivity and LGNd pathology 

were concomitantly observed (Weimer et al. 2006). Since the thalamus is a major relay system 

in corticocortical pathways, thalamic neuron loss may arise from the dysfunction in cortical 

signalling. These aspects, such as determining the rate of storage material accumulation in 

different regions of the brain require further studies in all NCLs. 
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5.2.1.4 Primary motor cortex shows late onset neuron loss in Cln8mnd 

Since Cln8mnd mice present with the pathology of upper (motor cortical) and lower (spinal 

cord) motor neurons and progressive motor deficits, it was originally characterized as an ALS 

model (Messer and Flahety 1986; 1987), see Fig 14. Here, we studied the effect of the Cln8mnd 

mutation in the primary motor cortex (M1). As with the visual cortex, Cln8mnd motor cortex 

appears to retain its integrity until the end-stages of the disease, since neuron loss was 

observed only in 8 month old animals (Fig. 18; unpublished). At this age, approximately 20% 

of neurons in layers V and VI were lost. Layer V contains the large pyramidal neurons that 

send their axons to synapse with lower motor neurons in the spinal cord (Kandel et al. 2000). 

This neuron loss indicates diminished potential for motor commands from the cortex when 

motor symptoms are already evident. 

 

Figure 18. Late-onset neuron loss in the primary motor cortex (M1) of Cln8mnd mouse and no 

presymptomatic abnormalities in the peripheral nerve conduction. A) Schematic representation of M1 

in a bisected coronal section of a mouse brain. B, C) As quantified using the stereological optical 

fractionator, neuron numbers are reduced in layers V and VI by 20% in 8 month old Cln8mnd. D) 

Schematic illustration of the mouse sciatic nerve. E) There was no reduction in Cln8mnd nerve 

conduction velocity, measured from the motor evoked potentials of sciatic nerve in 1 and 4 month old 

mice. Data represented as mean + standard error (B,C) and standard deviation (E). mo, month(s) old. 

 

The Cln8mnd spinal cord pathology has been investigated in a number of studies, showing 

neurodegeneration, accumulation of storage material and glial activation (Callahan et al. 1991; 

Mennini et al. 2004; Messer et al. 1987; Messer & Plummer 1993). Unfortunately, no 
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systematically collected data exist on the quantity of neuron loss. Yet it appears to be quite 

mild (over 80% of neurons are spared at 7 months of age, Gorio et al. 1999) or not different 

from wildtype (a study in 8-9 month old Cln8mnd mice by Zeman et al. 2004). Thus, it appears 

that the onset of motor symptoms is triggered by a dysfunction in upper and/or lower motor 

neurons rather than their overt loss. We preliminarily assessed this question by studying the 

Cln8mnd mouse peripheral nerve function. We measured the motor evoked potentials prior to 

the onset of motor symptoms in 1 and 4 month old Cln8mnd mouse sciatic nerve (Fig. 18; 

unpublished). The Cln8mnd nerve conduction velocities were not different from wildtype, 

indicating that peripheral axonal conduction is not compromised in these early symptomatic 

mice. Unfortunately, our analysis did not include later stages of the disease or, despite 

repeated attempts, quantify the motor cortical potentials. 

While our study does not form a complete picture of the motor pathway, we did 

comprehensively assess cortical integrity and peripheral nerve functionality. Our results 

combined with previous descriptions of the spinal cord pathology suggest that in the 

corticospinal motor pathway, the peripheral component degenerates concomitantly with the 

motor cortex and that these changes largely coincide with the observed motor symptom 

onset. The cerebellum, brain stem, thalamus and basal ganglia are also involved in motor 

functions and their regulation and furthermore, the motor systems receive feedback from the 

sensory pathways (Kandel et al. 2000). These aspects require further studies in the Cln8mnd 

mouse. 

5.2.2 GLIAL ACTIVATION (II, UNPUBL.) 

Glial activation has been shown to precede neuron loss in previously analysed NCL models 

(Cooper 2010). Similarily, astrocytosis but especially microglial activation occurred early in the 

Cln8mnd mouse. CD68 positive microglia with reactive appearing morphology were present at 

3 months of age in Cln8mnd somatosensory, visual and motor pathways. Microglial activation 

occurred well before neuron loss, especially in visual and motor pathways where neuron loss 

was observed only at 8 months (Fig. 19 and Figs 7, 8 in II). Similar findings have been 

reported in Cln8mnd hippocampus and spinal cord where GFAP positive astrocytes and cluster 

of differentiation 11b (CD11b) positive microglia are present at 4-5 months of age (Mennini 

et al. 2004, Melo et al. 2010). 

5.2.2.1 Role of glial activation in disease? 

Dual roles for microglia have been proposed in neurodegenerative diseases such as 

Alzheimer’s disease. Microglial activation appears to be neuroprotective through inducing 

amyloid β phagocytosis and proteolysis, while detrimental effects are mediated by the 

production of pro-inflammatory cytokines (Napoli & Neumann 2009). Microglia have been 
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suggested to phagocytose NCL storage material, implicated by the microglial localization of 

mitochodrial ATP synthase subunit c in Ctsd–/– mouse brain. However, it appears that Ctsd–/– 

microglia, not only neurons, accumulate storage material since in vitro microglia without 

neurons also contain subunit c (Nakanishi & Wu 2009). The presence of storage material 

might compromise normal functions and signalling of microglia and lead to neurotoxicity, for 

instance through nitric oxide overproduction which is observed in Ctsd–/– mice (Nakanishi et 

al. 2001; Yamasaki et al. 2007). 

In addition, there is evidence of increased pro-inflammatory signaling in the Cln8mnd mouse. 

Levels of tumor necrosis factor alpha, TNFα, and its receptor have been shown to be 

elevated in Cln8mnd mouse brain and spinal cord (Galizzi et al. 2011; Ghezzi et al. 1998; Melo et 

al. 2010; Mennini et al. 2004). Due to the pro-inflammatory nature of TNFα, its upregulation 

is likely to be detrimental to Cln8mnd neurons. 

 

 

Figure 19. Glial activation precedes neuron loss also in the primary motor cortex of Cln8mnd mice. A) 

GFAP staining shows activation of astrocytes, especially in layers V and VI, already at 5 months of 

age. B) Microglial activation is evident in CD68 staining especially in layer V. Scale bars 200 µm. 

 

The major astrocytic glutamate transporter GLT-1 has been shown downregulated in Cln8mnd 

spinal cord already at 3-4 months of age (Mennini et al. 1998). The concomitant increase in 
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GFAP expression indicates a specific reduction in the properties of glutamate recycling in 

Cln8mnd reactive astrocytes (Mennini et al. 1998). Reduced expression of GLT-1 has been 

observed in various neurodegenerative diseases such as ALS and Alzheimer’s disease 

(Maragakis & Rothstein 2006; Sofroniew & Vinters 2010). A defective glutamate cycle may 

cause excitotoxicity and contribute to the seizure phenotype of the Cln8mnd mouse (Melo et al. 

2010). 

The function of reactive astrocytosis in NCL disease was recently investigated in a CLN1 

mouse model without the ability to upregulate astrocytic intermediate filaments, a hallmark of 

reactive astrocytosis. The Ppt1–/–, Gfap–/–, Vimentin–/– triple knockout mouse shows earlier 

disease onset and increased neurodegeneration, possibly due to increased neuroinflammation 

mediated by microglial activation, an overt increase in pro-inflammatory cytokines and 

immune cell infiltration to the CNS (Macauley et al. 2011). This implies that reactive 

astrocytes, by diminishing the inflammatory reaction in the brain, may have protective effects 

in NCLs. 

5.2.2.2 Differential glial activation in Cln8mnd thalamic pathways  

While in the late stages of Cln8mnd disease glial activation is widespread, it does not affect all 

areas of the brain identically (Table 8). Apart from primary sensory and motor 

thalamocortical pathways, the posterior thalamic nucleus – somatosensory cortex pathway 

showed obvious glial activation in Cln8mnd. This pathway was not investigated for neuron loss 

in this study, and has not been analysed in other NCL models. Interestingly, in the mouse 

model of another neurodegenerative epilepsy syndrome, progressive myoclonus epilepsy 

EPM1, this pathway showed neuron loss and glial activation (Tegelberg et al. 2012).  

The reticular thalamic nucleus, which performs the major inhibitory action in the rodent 

thalamus, showed activation of both microglia and astrocytes in Cln8mnd. The Ppt1–/– reticular 

nucleus is affected by neuron loss and glial activation (Kielar et al. 2007). Loss of the 

inhibitory influence of the reticular nucleus may contribute to the death of thalamic relay 

neurons or affect the seizure phenotype of Cln8mnd mice (Melo et al. 2010). 

The olfactory sensations from olfactory cortex (piriform cortex) are relayed by the thalamic 

medial dorsal nucleus, which appears affected in the Cln8mnd mouse. Degenerative changes 

were observed in the olfactory pathway of the CLN2 mouse model, Tpp1–/– (Sleat et al. 2004). 

The limbic system pathology may be significant in the Cln8mnd mouse, since clear glial 

activation was observed in Cln8mnd amygdala, cingulate cortex and hippocampus (data not 

shown). 
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Table 8. Microglial activation and astrocytosis in the 8 month old Cln8mnd mouse thalamocortical 

pathways.  

  

Degree of glial activation was determined from GFAP and CD68 stained brain sections by observing 

the region full of intense staining (three symbols);less than half of the region stained (two symbols);or 

few scattered cells (one symbol) in Cln8mnd compared to wt). Yellow symbols represent microglial 

activation (CD68) and red astrocytosis (GFAP). n=6 per genotype and age. 

 

5.2.3 MYELINATION (III, UNPUBL.) 

Even prior to microglial activation, we observed a developmental delay in the myelination of 

Cln8mnd mouse brains. In addition, a specific function for CLN8 in myelin formation was 

indicated by the expression pattern of Cln8. In the developing brain the expression of Cln8 

mRNA was induced at the beginning of myelinogenesis and downregulated after 1 month of 

age (Fig 5A in III). Of the in vitro CNS cell types studied, Cln8 was expressed most by the 

oligodendrocytes (Fig 5B in III). Similar results have been observed in previous studies, 

where the expression of Cln8 was found to peak in early postnatal development (Lonka et al. 

2005). Cln8 mRNA has been found to be upregulated in in vitro oligodendrocytes and during 
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oligodendrocyte differentiation by comparative microarray analyses of different CNS cell 

types (Cahoy et al. 2008; Fulton et al. 2011). Of other NCL genes, expression of Cln5 appears 

also to be induced during oligodendrocyte maturation (Cahoy et al. 2008; Fulton et al. 2011). 

and decreased myelination and oligodendrocyte maturation was shown to characterize the 

early disease of Cln5–/– mice (Schmiedt et al. 2012). 

As a whole, myelination has not received detailed attention in NCL research, since it does not 

appear primarily affected in NCL disease. Myelination requires the repid and well-

orchestrated synthesis and transport of the myelin membrane components (see section 

2.1.3.1). Since the cellular transport pathways are probably affected in most NCLs, it is not 

surprising that there would be effects to the myelination process as well. In addition, 

myelinating cells could therefore be useful tools to study NCL-related trafficking defects. 

5.2.3.1 Delayed myelin maturation in early Cln8mnd disease 

A moderate decrease in brain myelin was found to characterize especially the early 

symptomatic Cln8mnd mice. The thinning of Cln8mnd mouse white matter tracts, including the 

corpus callosum, anterior commissure and internal capsule, was evident in 1 and 3 month old 

mice (Fig. 3 in III). Likewise, reduced immunostaining of myelin markers MBP, PLP and 

MOG was observed in 1 month old Cln8mnd brain samples (Fig. 2 and 5 in III). The mRNA 

expression of Mbp and Mog was also reduced (Fig. 5 in III). Ultrastructural analysis of myelin 

showed thinner myelin sheets in Cln8mnd brains (Fig. 4 in III) suggesting that the myelination 

defect is due to the inability of Cln8mnd to produce sufficient amounts of myelin membrane. 

Indeed, Cln8mnd oligodendrocytes showed reduced expression of mature, myelinating 

oligodendroglial markers Mbp and Mog in vitro, while the expression of early markers Ng2 and 

Olig2 were normal (Fig. 7 in III). Thus, we propose that the observed decrease in myelination 

is due to delayed oligodendrocyte maturation and myelin membrane production in the 

Cln8mnd mouse. Functionally, the Cln8mnd myelin itself appears normal, since we were unable 

to show dramatic disturbances in white matter integrity, as measured by diffusion tensor 

imaging in 4 month old Cln8mnd mice. Nerve conduction velocity was also normal in Cln8mnd 

peripheral nerves (Fig. 18), indicating preserved insulation capacity of Cln8mnd myelin. 

5.2.3.2 Increased myelination in late stages of the disease? 

Reduction in myelin content was not observed later in disease and there was no evidence of 

late-onset demyelination in Cln8mnd mouse. White matter tract volumes or the expression of 

myelin markers were not different from wildtype in Cln8mnd mice of 4-5 months of age (Figs 

2, 3 and 5 in III). At 8 months of age, the corpus callosum thickness of Cln8mnd was similar to 

wildtype (Fig. 20 A). 
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Figure 20. Increased MBP expression in the 8 month old Cln8mnd mouse. A) Corpus callosum 

thickness did not differ from wildtype at 8 months of age B) Frontal brain section of an 8 month old 

wildtype mouse. C) Frontal brain section of an 8 month old Cln8mnd mouse, showing increased MBP 

staining in corpus callosum, frontal cortex (motor and somatosensory areas) and in striatum. 

 

Surprisingly, in the end stage of Cln8mnd disease, we observed an increase in MBP staining in 8 

month old Cln8mnd mouse brains (Fig. 20 B, C). Since signals from reactive astrocytes promote 

myelination (Nash et al. 2011), increased MBP staining could reflect the presence of reactive 

glial cells in the Cln8mnd brains at this stage. 

5.2.4 ALTERATIONS IN LIPID METABOLISM (III, UNPUBL.) 

A role for CLN8 in lipid metabolism regulation has been proposed through its TLC protein 

domain possession (Winter and Ponting, 2002) and through the observed abnormalities in 

brain lipid composition in EPMR patients (Hermansson et al. 2005). In addition, hints 

towards a lipid regulatory role for CLN8 have come from another lysosomal storage disease, 

as CLN8 overexpression was recently shown to protect from severe phenotypes of Gaucher 

disease caused by glucocerebrosidase deficiency (Zhang et al. 2012). 

 

Fig 21. Free cholesterol content in the cerebral cortical tissue of mouse was similar to wildtype (wt). 

Ratio is given as cholesterol (nmol) to total phospholipids (nmol), error bars indicate standard 

deviation from mean. 
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A large-scale lipid profiling was performed to study the molecular events in the pathogenesis 

of Cln8mnd. By liquid chromatography / mass spectrometry, a reduction in galactolipids GalC 

and sGalC was observed (Fig 1 in III). The reduction was significant only in the early period 

of the Cln8mnd pathology (at one month of age). Later in disease, at 5 months, the level of 

sphingomyelin was slightly increased. The content of free cholesterol was normal (Fig 21). 

Since the galactolipids are myelin-specific, we analyzed the Cln8mnd brains for their 

myelination status. These findings were discussed in the previous section 5.2.3. 

In addition to the reduced galactolipid content, the key enzyme in galactolipid synthesis, 

CGT, showed moderately reduced activity in 1 and 5 month old Cln8mnd mice (Fig 1 in III). 

This persistent decrease may link CLN8 to the CGT enzyme and galactolipid synthesis. Both 

CLN8 and CGT are expressed by oligodendrocytes and subcellularly reside in the 

endoplasmic reticulum (Lonka et al. 2000; Lonka et al. 2004; Neskovic et al. 1986; Nilsson & 

Warren 1994; Schulte & Stoffel 1993; van Meer 1998). CLN8 has also been suggested to bind 

GalC and ceramide (Rusyn et al. 2008). Taken together, CLN8 could act as a mediator of 

galactolipid synthesis, but further studies will be needed to pinpoint the exact mechanism. 

Galactolipid synthesis deficient Cgt–/–mice are viable but show tremor, hindlimb paralysis and 

death in the end of the myelination period (Bosio et al. 1996; Coetzee et al. 1996). Surprisingly, 

Cgt–/– mutant mice display compacted myelin, yet the organization of myelin in the paranodal 

regions is abnormal, resulting in severe defects in myelin insulation properties (Bosio et al. 

1996; Coetzee et al. 1996; Marcus & Popko 2002). Based on these findings galactolipids have 

been postulated to be essential for proper axon-glial interactions in the paranodes (Marcus & 

Popko 2002). The axon-oligodendrocyte signaling may also be disrupted Cln8mnd mice, which 

show abnormal oligodendrocyte maturation and myelination defects.  

5.2.5 SEQUENCE OF EVENTS 

Taken together, we found notable effects of the Cln8mnd mutation on the mouse phenotype. 

The temporal relationship of abnormal myelin maturation, reactive changes in microglia and 

astrocytes together with neuron loss in the Cln8mnd mouse is presented in Fig. 22, which also 

summarises earlier knowledge on the Cln8mnd mouse pathology. 

Early studies on Cln8mnd mice characterized the disease progression based on the motor 

symptoms, and considered mouse age points until 5-6 months to be asymptomatic (Callahan 

et al. 1991, Messer and Plummer, 1993, Plummer et al. 1995). It is clear, however, that disease 

progression in the Cln8mnd mouse starts already earlier. This is evident especially in the Cln8mnd 

retina but also indicated by the early changes in Cln8mnd glial cells. 

Indeed, while the precise timing of thalamocortical pathology varies in different pathways, 

glial and especially microglial activation appeared to predict later occurring neuron loss in all 
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pathways studied in Cln8mnd mouse. Delayed myelination, which precedes these changes, was 

found in all Cln8mnd white matter tracts studied and is not restricted to the thalamocortical 

pathways. Abnormal myelination may affect the stability of axonal integrity and the neural 

circuits they form (Barres 2008; Nave 2010) while galactolipid deficiency results in inproper 

axon-oligodendrocyte signalling (Marcus & Popko 2002). These effects may be pronounced 

on long axons that could contribute to the pathology of cortical pyramidal neurons and 

thalamic relay neurons in the Cln8mnd mouse. 

 

Figure 22. Neuropathology of the Cln8mnd mouse. Mouse age is represented in months. 

Retinal/spinal cord pathology is represented by a light grey background and (thalamo)cortical changes 

by a dark grey background. 

 

Microglia and astrocytes may respond to abnormalities in the signalling between neurons and 

glial cells, or to the accumulating neuronal storage material. Loss of inhibitory interneurons 

(Cooper et al. 1999) and defects in astrocytic glutamate recycling (Mennini 1998) may induce 

excitotoxicity in Cln8mnd brain. This may be sensed by glial cells, which activate compensatory 

mechanisms such as microglia-mediated phagocytosis of excitatory synapses (Tambuyzer et al. 

2009). However, the effects of glial activation may be detrimental in Cln8mnd brain, as 

suggested by increased pro-inflammatory signaling (Galizzi et al. 2011, Ghezzi et al. 1998, 

Mennini et al. 2004, Melo et al. 2010). 

While thalamocortical pathology is evident in Cln8mnd brain, the origin of defects is not clear 

and may not be uniform across distinct pathways. The integrity of the somatosensory 

pathway is the first to be compromised in Cln8mnd brain and appears to precede major 
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neurodegeneration in the spinal cord (Gorio et al. 1999; Zeman et al. 2004). Nevertheless, the 

pathology of sensory receptors connecting to spinal cord has not been studied. In the 

corticospinal motor pathway motor cortex and spinal cord show largely simultaneous 

pathology, although systematic analysis of these events is lacking and a thorough investigation 

of other regions involved in motor regulation would also be required. Finally, since these 

pathways are interconnected, the primary problems in the somatosensory pathway might be 

reflected as motor deficits in the Cln8mnd mouse. 

The sequence appears clearer in the Cln8mnd mouse visual pathway, where an abnormal input 

from the retina is likely to induce the thalamocortical pathology. There is a considerable delay, 

however, that would make the Cln8mnd mouse an appealing model system for future therapies 

in trying to correct the NCL-related, retinal-onset visual loss. . One such approach could be a 

gene transfer based therapy with neurotrophic factors, supported by the beneficial effect of 

insulin-like growth factor 1 treatment to the Cln8mnd neuropathology (Cooper et al. 1999). 

However, in order to prevent cell loss in retina, it needs to be targeted very early. 

5.2.6 SIGNIFICANCE TO HUMAN NCL DISEASE? 

There are two distinct human NCL diseases caused by mutations in CLN8. Our findings 

indicate that the Cln8mnd mouse is a better model for the late infantile onset NCL than for the 

protracted EPMR disease. Patients with late infantile CLN8 disease show abnormal or 

extinguished ERG and diminished or loss of visual evoked potential (VEP) responses (Allen 

et al. 2011; Cannelli et al. 2006; Ranta et al. 2004; Reinhardt et al. 2010; Topcu et al. 2004; 

Vantaggiato et al. 2009). EPMR disease is not characterized with retinal degeneration and only 

a subset of patients has diminished visual acuity and abnormal VEPs (Hirvasniemi et al. 1995; 

Lang et al. 1997). Somatosensory pathology is indicated by the presence of myoclonus in late 

infantile CLN8 patients (Allen et al. 2011; Cannelli et al. 2006; Kousi et al. 2009; Kousi et al. 

2012; Ranta et al. 2004; Reinhardt et al. 2010; Topcu et al. 2004; Vantaggiato et al. 2009; Zelnik 

et al. 2007). Myoclonus is not observed in EPMR and no alterations in somatosensory evoked 

magnetic fields were observed (Lauronen et al. 2001).  

The Cln8mnd mouse mutation predicts a truncated CLN8 protein or degradation of the Cln8 

mRNA (Ranta et al. 1999). However, according to the current knowledge on genotype-

phenotype correlations in CLN8 disease, the nature of the causative mutation does not 

explicitly underlie the differences between the two human CLN8 diseases. Most CLN8 

disease mutations are missense mutations (Kousi et al. 2012). The EPMR mutation is a 

missense mutation outside of the TLC protein domain (Ranta et al. 1999). Mutations that are 

not within the TLC domain can also cause the more severe late infantile CLN8 disease, thus 

the more severe disease is not always caused by disruption of the TLC domain. 
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Studying the Cln8mnd mouse has provided information on disease progression in yet another 

NCL model. The recognition of early glial activation and the role for the thalamus in the 

NCL disease progression have evolved from studies in animal models (Cooper 2010). While 

human studies are limited to fairly low-resolution imaging methods and to the use of post 

mortem material, animal models are important in elucidating early events in NCL disease. 
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6 CONCLUSIONS 

If you can look into the seeds of time, 

And say which grain will grow and which will not, 

Speak then to me. 

-William Shakespeare 

 

This thesis delineated cellular and molecular changes influencing the pathogenesis of neuronal 

ceroid lipofuscinosis (NCL) in two animal models, the cathepsin D deficient Drosophila model 

for CLN10 disease, cathD1, and the Cln8mnd mouse model for CLN8 disease. Since other NCL 

diseases have been previously modeled in mouse and Drosophila, we were able to compare our 

results to previous research. In addition, by utilizing these two systems, it was possible to 

compare the benefits and limitations of two different animal models. 

In Drosophila, effects of second-site mutations on the cathD1 degenerative phenotype were 

tested in vivo, an approach that would have been limited to only a few candidates in 

mammalian model systems. While the cathD1 Drosophila phenotype is recessive and relatively 

mild, a large-scale unbiased genetic modifier screen was infeasible, and thus the best potential 

of Drosophila modelling could not be exploited. However, by our hypothesis-based screen we 

were able to test different mechanisms that have been suggested relevant to CTSD induced 

neurodegeneration. Pathways related to endocytosis, oxidative stress and lipid regulation were 

proven applicable for future studies in Drosophila. 

The most widely used model system for NCL disease is the mouse. With the comprehensive 

characterization of the Cln8mnd mouse in this study, there is now a plethora of data from 

existing NCL mouse models. Some phenomena of NCL disease pathogenesis have 

specifically appeared through studying these mice, such as the relevance of neuron loss and 

glial activation in the thalamus. In human NCL patient brain imaging the thalamus shows 

pathological changes, which may prove to be important for the progression of the disease. 

Yet the cerebral cortical pathology is very pronounced in human NCLs while in mouse 

models such as Cln8mnd the cortex is relatively spared. Differences in the regulation of 

thalamocortical pathways between mouse and human, such as the lack of local interneurons 

in the rodent thalamus, might explain some of these differences. However, thalamocortical 

pathways represent a well-characterized system where the NCL disease progression and 

interventions to it can be effectively monitored. Thus, our study has enabled the use of these 

pathways for the evaluation of treatment efficacy in the Cln8mnd mouse. Of particular interest 
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might be the Cln8mnd mouse visual system, where the relatively ample time frame between 

retinal and thalamocortical neuron loss could be utilized to target the NCL-related visual loss. 

However, therapies to prevent retinal cell loss need to be started very early. 

It is probable, however, that markedly more information on the CLN8 protein will be needed 

before the development of such therapies become feasible. The function of the CLN8 

protein was assessed in this study as well, and the link to galactolipid synthesis may open 

novel avenues for research. While this link indicates an oligodendrocyte-related function for 

CLN8, in other cell types CLN8 may execute other functions described in previous studies, 

such as regulation of calcium signaling and neurotransmitter balance. Indeed, robust 

involvement of glial cells in NCL pathogenesis suggests that the disease may involve 

abnormal function of both neurons and glial cells. These aspects are being dissected in other 

NCL models and in the future they should be tackled in CLN8 as well. 

In this study, two NCL subtypes with defects in two very different proteins were investigated 

in two animal models. It was possible to pinpoint similarities, such as the vulnerability of 

retina and the involvement of lipid metabolism regulation, as common phenomena in the 

pathogenesis of these two NCL diseases. Yet when comparing the results to other NCL 

models it is not obvious that there would be a common cellular pathway disrupted in all 

NCLs. The thalamocortical pathology of the Cln8mnd mouse differs from other NCL mouse 

models, and the cathD is linked to different genetic pathways in comparison to other NCL 

Drosophila models. In this regard, our study underlines the contradiction of NCLs: 

mechanisms leading to very similar diseases are similar and yet very different. 
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aivoihin, ruumiiseen ja sosiaaliseen elämään ihan uusia verkostoja ja se on upeaa! 

Ja lopuksi kiitos äiti-Mirjalle ja isä-Erkille. Teidän geeneillä ja aikaansaamillanne 
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erityisesti siitä, että olet elänyt mukana ja kannustanut, niin koulussa, musiikkikoulussa ja 
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hankalampinakin hetkinä. Kiitokset myös lähimmille sukulaisilleni, etenkin Riitalle ja 

mummulle kun olette olleet mukana koko elämän. Papan olisin kovasti halunnut pitää 

näkemässä väitöspäiväni ja kauas tästä eteenpäinkin. 
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