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Abstract. In this paper we demonstrate a finite-state implementation
of context-aware spell checking utilizing an N-gram based part of speech
(POS) tagger to rerank the suggestions from a simple edit-distance based
spell-checker. We demonstrate the benefits of context-aware spell-checking
for English and Finnish and introduce modifications that are necessary to
make traditional N-gram models work for morphologically more complex
languages, such as Finnish.

1 Introduction
Spell-checking by computer is perhaps one of the oldest and most researched
applications in the field of language technology starting from the mid 20th cen-
tury [3]. One of the crucial parts of spell-checking—both from an interactive
user-interface point of view and for unsupervised correction of errors—is the pro-
duction of spelling suggestions. In this article we test various finite-state methods
for using context and shallow morphological analysis to improve the suggestions
generated by traditional edit distance measures or unigram frequencies such as
[12].

The spell-checking task can be split into two parts, i.e. detection and actual
correction of the spelling errors. The spelling errors can be detected in text as
word forms that are unlikely to belong to the natural language in question, such
as writing ‘cta’ instead of ‘cat’. This form of spelling errors is commonly called
non-word (spelling) errors. Another form of spelling errors is word forms that do
not belong to the given context under certain syntactic or semantic requirements,
such as writing ‘their’ instead of ‘there’. This form is correspondingly called real-
word (spelling) errors. The non-word type of spelling errors can easily be detected
using a dictionary, whereas the detection of the latter type of errors typically
requires syntactic analysis or probabilistic methods [8]. For the purpose of this
article we do not distinguish between them, as the same correction methods can
be applied to both.

The correction of spelling errors usually means generating a list of word forms
belonging to the language for a user to chose from. The mechanism for generat-
ing correction suggestions for the erroneous word-forms is an error-model. The
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purpose of an error-model is to act as a filter to revert the mistakes the user
typing the erroneous word-form has made. The simplest and most traditional
model for making such corrections is the Levenshtein-Damerau edit distance al-
gorithm, attributed initially to [6] and especially in the context of spell-checking
to [3]. The Levenshtein-Damerau edit distance assumes that spelling errors are
one of insertion, deletion or changing of a single character to another, or swap-
ping two adjacent characters, which models well the spelling errors caused by
an accidental slip of finger on a keyboard. It was originally discovered that for
most languages and spelling errors, this simple method already covers 80 % of
all spelling errors [3]. This model is also language-independent, ignoring the dif-
ferences in character repertoires of a given language. Various other error models
have also been developed, ranging from confusion sets to phonemic folding [5].

In this paper, we evaluate the use of context for further fine-tuning of the
correction suggestions. The context is still not commonly used in spell-checkers.
According to [5] it was lacking in the majority of spell-checkers and while the
situation may have improved slightly for some commercial office suite products,
the main spell-checkers for open source environments are still primarily context-
ignorant, such as hunspell1 which is widely used in the open source world. For
English, the surface word-form trigrams model has been demonstrated to be rea-
sonably efficient both for non-word cases [2] and for for real-word cases[7]. As an
additional way to improve the set of suggestions, we propose to use morphosyn-
tactically relevant analyses in context. In this article, we evaluate a model with
a statistical morphological tagger [14].

The system described is fully built on freely available tools and data, available
for download and use from http://hfst.svn.sourceforge.net/viewvc/hfst/
trunk/cicling-2011-contextspell/. The only exception to this is the training
data for Finnish, since there is no available morphological training data for
Finnish as of yet, the download does not contain the source material for training
but only the trigram models compiled into binary format automata.

Furthermore, we test the context-based spelling methods using both English
and Finnish language materials to ensure the applicability of the method for
morphologically different languages. The reason for doing this is two-fold; firstly
the fact that English has rather low morphological productivity may make it
behave statistically differently from other languages. On the other hand, English
has the largest amount of freely available text corpora. For other languages, the
availability of free corpora, especially annotated material, is often seen as a
problem.

The article is laid out as follows: In Section 2, we outline the implemen-
tation of a finite-state context-aware spell-checker and describe the statistical
methods used. In Section 3, we introduce the corpora and dictionaries used for
spell-checking and training material as well as the corpora used for obtaining
the spelling errors with context. In Section 4, we show how the created spelling
correctors improve the results and explain the errors left. In Section 5, we com-

1 http://hunspell.sf.net
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pare our work to other current systems and enumerate possible improvements
for both.

2 Methods

The spelling correction in this article is performed in several phases: assum-
ing misspelled word cta for cat, we first apply the error model to the already
known incorrect string cta to produce candidates for probable mistypings. For
this purpose we use the Damerau-Levenshtein edit-distance algorithm in finite-
state form. When applied to cta we get all strings with one or two typing mis-
takes, i.e. ata, bta, …, acta, bcta, …, ta, ca, …, tca, and the correct cat. This
set of strings is simultaneously matched against the language model, which will
produce a set of corrections, such as cat, act or car. Since both the error-model
and the language model contain information on likelihoods of errors and words
respectively, the resulting list will be sorted according to a combination of the
edit distance measure and the probability of the word in a reference corpus. The
rankings based on edit distance alone and the edit distance combined with word
probabilities form our two baseline models.

The context-based models we introduce here use the suggestion list gained
from a contextless spelling-checker and the context of the words as input to
rerank suggestions based on N-gram models. Each of the suggestions is tried
against the N-gram models, and the ones with higher likelihoods will be lifted.
For example when correcting the misspelling of ‘an’ as ‘anx’ in the sentence “this
is anx example sentence”, as shown in the Table 1, we have the surface trigrams
{this, is, _}, {is, _, example}, {_, example, sentence}, and corresponding analy-
sis trigrams {DET, VVBZ, _}, {VVBZ, _, NN}, {_, NN, NN}. The suggestions
for anx at edit distance one include ‘ax’, ‘an’ (one deletion), ‘ant’, ‘and’, ‘any’
(one change) and so on. To rank the possible suggestions, we substitute s3 with
the suggestions, and calculate the likelihood of their analyses.

Table 1. Example trigram combinations

thiss1 iss2 _s3 examples4 sentences5
DETa1 VVBZa2 _ a3 NNa4 NNa5

2.1 Weighted Finite-State Interpretation of the Method

In this article we use a finite-state formulation of spell-checking. We assume
the standard notation for finite-state algebra and define the language model as
a weighted finite-state automaton assigning a weight to each correctly spelled
word-form of a language, and an error model automaton mapping a misspelled
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string to a set of corrected strings and their weights. The probabilistic interpreta-
tion of the components is such that the weighted fsa as a language model assigns
weight w(s) to word s corresponding to the probability P (s) for the word to be
a correct word in the language. The error model assigns weight w(s : r) to string
pair s, r corresponding to the probability P (s|r) of a user writing word r when
intending to write the word s, and the context model assigns weight w(s3a3) to
word s3 with associated POS tagging a3 corresponding to the standard HMM
estimate P (a3s3) of the analysis being in a 3-gram context given by equation
(1).

P (a3s3) =
5∏

i=3

P (si|ai)P (ai|ai−2, ai−1) (1)

In a weighted finite-state system, the probabilistic data needs to be converted
to the algebra supported by the finite-state weight structure. In this case we use
the tropical semi-ring by transforming the frequencies into penalty weights with
the formula − log f

CS , where f is the frequency and CS the corpus size in number
of tokens. If the language model allows for words that are not in the dictionary, a
maximal weight is assigned to the unseen word forms that may be in the language
model but not in the training corpus, i.e. any unseen word has a penalty weight
of − log 1

CS .
The spelling corrections suggested by these unigram lexicon-based spell-

checkers are initially generated by composing an edit-distance automaton [13]
with an error weight corresponding to the probability of the error estimated
in a corpus, i.e. − log fF

CS+1 , where fF is the frequency of the misspelling in a
corpus. This weight is attached to the edit distance type error. In practice, this
typically still means that the corrections are initially ordered primarily by the
edit distance of the correction, and secondarily by the unigram frequency of
the word-form in the reference corpus. This order is implicitly encoded in the
weighted paths of the resulting automaton; to list the corrections we use the
n-best paths algorithm [9]. This ordering is also used as our second baseline.

For a context-based reordering of the corrections, we use the POS tagging
probabilities for the given suggestions. The implementation of the analysis N-
gram probability estimation is similar to the one described in [14] with the
following adaptations for the spelling correction. For the suggestion which gives
the highest ranking, the most likely analysis is selected. The N-gram proba-
bility is estimated separately for each spelling suggestion and then combined
with the baseline probability given by the unigram probability and the edit
distance weight. The ideal scaling for the weights of unigram probabilities, i.e.
edit distance probabilities with respect to N-gram probabilities, was acquired by
performing tests on an automatically generated spelling error corpus.

The resulting finite-state system consists of three sets of automata, i.e. the
dictionary for spell-checking, the error-model as described in [12], and the new
N-gram model automata. The automata sizes are given in Table 2 for reference.
The sizes also give an estimate of the memory usage of the spell-checking system,
although the actual memory-usage during correction will rise depending on the
actual extent of the search space during the correction phase.
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Table 2. Automata sizes.

Automaton States Transitions Bytes
English

Dictionary 25,330 42,448 1.2 MiB
Error model 1,303 492,232 5.9 MiB
N-gram lexicon 363,053 1,253,315 42 MiB
N-gram sequences 46,517 200,168 4.2 MiB

Finnish
Dictionary 179,035 395,032 16 MiB
Error model 1,863 983,227 12 MiB
N-gram lexicon 70,665 263,298 8.0 MiB
N-gram sequences 3,325 22,418 430 KiB

2.2 English-Specific Finite-State Weighting Methods

The language model for English was created as described in [10]. 2. It consists
of the word-forms and their probabilities in the corpora. The edit distance is
composed of the standard English alphabet with an estimated error likelihood
of 1 in 1000 words. Similarly for the English N-gram material, the initial anal-
yses found in the WSJ corpus were used in the finite-state tagger as such. The
scaling factor between the dictionary probability model and the edit distance
model was acquired by estimating the optimal multipliers using the automatic
misspellings and corrections of a Project Gutenberg Ebook3 Alice’s Adventures
in Wonderland.

2.3 Finnish-Specific Finite-State Weighting Methods

The Finnish language model was based on a readily-available morphological
weighted analyser of Finnish language [11]. We further modified the automaton
to penalize suggestions with newly created compounds and derivations by adding
a weight greater than the maximum to such suggestions, i.e. −A log 1

CS+1 in the
training material. This has nearly the same effect as using a separate dictionary
for suggestions that excludes the heavily weighted forms without requiring the
extra space. Also for Finnish, a scaling factor was estimated by using automatic
misspellings and corrections of a Project Gutenberg Ebook4 Juha.

In the initial Finnish tagger, there was a relatively large tagset, all of which
did not contain information necessary for the task of spell-checking, such as dis-
course particles, which are relatively context-agnostic [4], so we opted to simplify
the tagging in these cases. Furthermore, the tagger used for training produced
2 The finite-state formulation of this is informally de-
scribed in http://blogs.helsinki.fi/tapirine/2011/07/21/
how-to-write-an-hfst-spelling-corrector/

3 http://www.gutenberg.org/cache/epub/11/pg11.txt
4 http://www.gutenberg.org/cache/epub/10863/pg10863.txt
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heuristic readings for unrecognized word-forms, which we also removed. Finally,
we needed to add some extra penalties to the word forms unknown to the dic-
tionary in the N-gram model, since this phenomenon was more frequent and
diverse for Finnish than English.

3 Material

To train the spell-checker lexicons, word-form probabilities can be acquired from
arbitrary running text. By using unigram frequencies, we can assign all word-
forms some initial probabilities in isolation, i.e. with no spell-checking context.
The unigram-trained models we used were acquired from existing spell-checker
systems [10, 12], but we briefly describe the used corpora here as well.

To train the various N-gram models, corpora are required. For the surface-
form training material, it is sufficient to capture running N-grams in the text. For
training the statistical tagger with annotations, we also require disambiguated
readings. Ideally of course this means hand-annotated tree banks or similar gold
standard corpora.

The corpora used are summarized in Table 3. The sizes are provided to make
it possible to reconstruct the systems. In practice, they are the newest available
versions of the respective corpora at the time of testing. In the table, the first
row is the training material used for the finite-state lexicon, i.e. the extracted
surface word-forms without the analyses for unigram training. The second row
is for the analyzed and disambiguated material for the N-gram based taggers
for suggestion improvement. The third line is the corpora of spelling errors used
only for the evaluation of the systems. As we can see from the figures of English
compared with Finnish, there is a significant difference in freely available corpora
such as Wikipedia. When going further to lesser resourced languages, the number
will drop enough to make such statistical approaches less useful, e.g. Northern
Sámi in [12].

Table 3. Sizes of training and evaluation corpora.

Sentences Tokens Word-forms
English

Unigrams 2,110,728,338 128,457
N-grams 42,164 969,905 39,690
Errors 85 606 217

Finnish
Unigrams 17,479,297 968,996
N-grams 98,699 1,027,514 144,658
Errors 333 4,177 2,762



7

3.1 English corpora

The English dictionary is based on a frequency weighted word-form list of the
English language as proposed in [10]. The word-forms were collected from the
English Wiktionary5, the English EBooks from the project Gutenberg6 and the
British National Corpus7. This frequency weighted word-list is in effect used as
a unigram lexicon for spell-checking.

To train an English morphosyntactic tagger, we use the WSJ corpus. In this
corpus each word is annotated by a single tag that encodes some morphosyntactic
information, such as part-of-speech and inflectional form. The total number of
tags in this corpus is 77 8.

The spelling errors of English were acquired by extracting the ones with
context from the Birkbeck error corpus9. In this corpus, the errors are from
a variety of sources, including errors made by children and language-learners.
For the purpose of this experiment we picked the subset of errors which had
context and also removed the cases of word joining and splitting to simplify the
implementation of parsing and suggestion.

3.2 Finnish Corpora

As the Finnish dictionary, we selected the freely available open source finite-
state implementation of a Finnish morphological analyser10. The analyser had
the frequency-weighted word-form list based on Finnish Wikipedia11 making it
in practice an extended unigram lexicon for Finnish. The Finnish morphologi-
cal analyser, however, is capable of infinite compounding and derivation, which
makes it a notably different approach to spell checking than the English finite
word-form list.

The Finnish morphosyntactic N-gram model was trained using a morphosyn-
tactically analyzed Finnish Newspaper12. In this format, the annotation is based
on a sequence of tags, encoding part of speech and inflectional form. The total
number of different tag sequences for this annotation is 747.

For Finnish spelling errors, we ran the Finnish unigram spell-checker through
Wikipedia, europarl and a corpus of Finnish EBooks from the project Guten-
berg13 to acquire the non-word spelling errors, and picked at random the errors

5 http://en.wiktionary.org
6 http://www.gutenberg.org/browse/languages/en
7 http://www.kilgarriff.co.uk/bnc-readme.html
8 We used a deprecated version of the Penn Treebank where the tag set includes
compound tags like VB|NN in addition to the usual Penn Treebank tags. For the final
version of the article we will rerun the tests on the regular WSJ corpus.

9 http://ota.oucs.ox.ac.uk/headers/0643.xml
10 http://home.gna.org/omorfi
11 http://download.wikipedia.org/fiwiki/
12 http://www.csc.fi/english/research/software/ftc
13 http://www.gutenberg.org/browse/languages/fi
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having frequencies in range 1 to 8 instances; a majority of higher frequency non-
words were actually proper nouns or neologisms missing from the dictionary.
Using all of Wikipedia, europarl and Gutenberg provides a reasonable variety of
both contemporary and old texts in a wide range of styles.

4 Tests and Evaluation

The evaluation of the correction suggestion quality is described in Table 4. The
Table 4 contains the precision for the spelling errors. The precision is measured
by ranked suggestions. In the tables, we give the results separately for ranks
1—5, and then for the accumulated ranks 1—10. The rows of the table represent
different combinations of the N-gram models. The first row is a baseline score
achieved by the weighted edit distance model alone, and the second is with
unigram-weighted dictionary over edit-distance 2. The last two columns are the
traditional word-form N-gram model and our POS tagger based extension to it.

Table 4. Precision of suggestion algorithms with real spelling errors.

Algorithm 1 2 3 4 5 1—10
English

Edit distance 2 (baseline) 25.9 % 2.4 % 2.4 % 1.2 % 3.5 % 94.1 %
Edit distance 2 with Unigrams 28.2 % 5.9 % 29.4 % 3.5% 28.2 % 97.6 %
Edit distance 2 with Word N-grams 29.4 % 10.6 % 34.1 % 5.9 % 14.1 % 97.7 %
Edit distance 2 with POS N-grams 68.2 % 18.8 % 3.5 % 2.4 % 0.0 % 92.9 %

Finnish
Edit distance 2 (baseline) 66.5 % 8.7 % 4.0 % 4.7 % 1.9 % 89.8 %
Edit distance 2 with Unigrams 61.2 % 13.4 % 1.6 % 3.1 % 3.4 % 88.2 %
Edit distance 2 with Word N-grams 65.0 % 14.4 % 3.8 % 3.1 % 2.2 % 90.6 %
Edit distance 2 with POS N-grams 71.4 % 9.3 % 1.2 % 3.4 % 0.3 % 85.7 %

It would appear that POS N-grams will in both cases give a significant boost
to the results, whereas the word-form N-grams will merely give a slight increase
to the results. In next subsections we further disect the specific changes to results
the different approaches give.

4.1 English Error-Analysis

In [10], the authors identify errors that are not solved using simple unigram
weights, such as correcting rember to remember instead of member. Here, our
scaled POS N-gram context-model as well as the simpler word N-gram model,
which can bypass the edit distance model weight will select the correct sugges-
tion. However, when correcting e.g. ment to meant in stead of went or met the
POS based context reranking gives no help as the POS stays the same.
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4.2 Finnish Error-Analysis

In Finnish results we can easily notice that variation within the first position in
the baseline results and reference system is more sporadic. This can be traced
back to the fuzz factor caused by a majority of probabilities falling into the same
category in our tests. The same edit-distance and unigram probability leaves the
decision to random factors irrelevant to this experiment, such as alphabetical
ordering that comes from data structures backing up the program code. The
N-gram based reorderings are the only methods that can tiebreak the results
here.

An obvious improvement for Finnish with POS N-grams comes from correct-
ing agreeing NP’s towards case agreement, such as yhdistetstä to yhdisteistä (‘of
compounds’ Pl Ela) instead of the statistically more common yhdisteestä (‘of
compound’ Sg Ela). However, as with English, the POS information does fail
to rerank cases where two equally rare word-forms with the same POS occur
at the same edit distance, which seems to be common with participles, such as
correcting varustunut to varautunut in stead of varastanut.

Furthermore we note that the the discourse particles that were dropped from
the POS tagger’s analysis tag set in order to decrease the tag set size will cause
certain word forms in the dictionary to be incorrectly reranked, such as when
correcting the very common misspelling muillekkin into muillekokin (‘for others
as well?’ Pl All Qst Kin) instead of the originally correct muillekin (‘for others
as well’ Pl All Kin), since the analyses Qst (for question enclitic) and Kin
(for additive enclitic) are both dropped from the POS analyses.

4.3 Performance Evaluation

We did not work on optimizing the N-gram analysis and selection, but we found
that the speed of the system is reasonable—even in its current form. Table 5
summarizes the average speed of performing the experiments in Table 4.

Table 5. The speed of ranking the errors.

Material English Finnish
Algorithm
Unigram (baseline) 10.0 s 51.8 s

399.1 wps 6.2 wps
POS N-grams 377.4 s 1616.2 s

10.6 wps 0.14 wps

The performance penalty that is incurred on Finnish spell-checking but not
so much on English comes from the method of determining readings for words
unknown to the language model, i.e. from the guessing algorithm. The amount of
words unknown to the language model in Finnish was greater than for English
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due to the training data sparseness and the morphological complexity of the
language.

5 Future Work and Discussion

We have shown that the POS based N-gram models are suitable for improving
the spelling corrections for both morphologically more complex languages such
as Finnish and for further improving languages with simpler morphologies like
English. To further verify the claim, the method may still need to be tested on
a typologically wider spectrum of languages.

In this article, we used readily available and hand-made error corpora to
test our error correction method. A similar method as the one we use for error
correction should be possible in error detection as well, especially when detecting
real-word errors [7]. In future research, an obvious development is to integrate
the N-gram system as a part of a real spell-checker system for both detection
and correction of spelling errors, as is already done for the unigram based spell
checker demonstrated in [12].

The article discussed only the reranking over basic edit distance error models,
further research should include more careful statistical training for the error
model as well, such as one demonstrated in [1].

6 Conclusion

In this paper we have demonstrated the use of finite-state methods for trigram
based generation of spelling suggestions. We have shown that the basic word-
form trigram methods suggested for languages like English do not seem to be
as useful without modification for morphologically more complex languages like
Finnish. Instead a more elaborate N-gram scheme using POS n-grams is success-
ful for Finnish as well as English.
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