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Abstract

Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been

investigated by electron beam remelting process and optical microscopy observation. It is indicated that the

morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the

original materials. Also, the microstructures were greatly refined after the electron beam irradiation.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that rapid solidification of
alloys allows the extension of solubility limitation
and refinement of microstructure as well as often
leads to the appearance of metastable or amor-
phous phases. These effects could find use in a
variety of application such as improving the
mechanical and corrosion resistance properties of
materials [1,2]. Therefore, it is of very important
significance to understand fundamentally the

microstructure evolution of materials during rapid
solidification for the full development of rapid
solidification processing technologies.

Recently, laser and electron beam surface
remelting, as a newly developed rapid solidifica-
tion technique, has been extensively used in surface
modification of materials and studies on rapid
solidification theories due to its unique advantages
[3–9]. However, most current research works
are focused on laser surface rapid solidification
whereas the studies on electron beam surface
rapid solidification are very rare so far. Based
upon this, AISI 321 stainless steel and 2024
aluminum alloy were irradiated by electron beam,
then the microstructure evolution of the molten
pool during electron beam rapid solidification was
studied.
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2. Experimental

The materials used in this study were AISI 321
stainless steel and 2024 aluminum alloy with the
chemical compositions as shown in Tables 1 and 2,
respectively.

Electron beam surface remelting experiments
were carried out on a 60 kW moderate voltage
electron beam welding machine made in Russia.
The operation conditions for both stainless
steel and aluminum alloy were as follows: 60 kV

for accelerating voltage, 18mA for beam
current, 1.8m/min for scanning speed of the
electron beam.

To comprehensively understand the morpholo-
gies of the resolidification microstructure, long-
itudinal section of the electron beam traces were
cut as specimens for metallographic examination
by optical microscopy (OM). All the specimens
were ground and polished. Etching for stainless
steel was performed using a solution containing
33ml HNO3 and 67ml HCl while etching for

Table 1

Chemical composition of AISI 321 stainless steel (wt%)

C Cr Ni Ti Mn Si S P Fe

0.097 18.17 9.58 0.42 1.48 0.47 0.007 0.033 Bal.

Table 2

Chemical composition of 2024 aluminum alloy (wt%)

Cu Mg Mn Al

4.50 1.60 0.50 Bal.

Fig. 1. Optical micrographs showing the microstructure of base AISI 321 stainless steel (a); and electron beam melted pool bottom (b);

center (c); and surface (d).
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aluminum alloy was performed using a solution
containing 0.5ml HF and 95.5ml distilled water.

3. Results and discussion

3.1. Microstructure of stainless steel

Fig. 1 shows the microstructures of base AISI
321 stainless steel (Fig. 1a) and a single remelting
track in longitudinal section (Fig. 1b–d). The
structure of base stainless steel is typically hot
rolling austensite, i.e. the corase austenitic grains
were elongated along the rolling direction. From
the boundary between the melted layer and the
substrate to the surface, it can be seen that the
microstructure morphologic transition of the
planar crystal growth of a few micrometers at
the maximum depth (Fig. 1b),-cellular/dendritic
structures at the center of the melted layer
(Fig. 1c)-random dendrites near the surface
(Fig. 1d). According to the principles of solidifica-
tion [10], the morphology of solidified material is
controlled by the temperature gradient (G) in the
liquid near the advancing interface and by the
growth rate (R). With an increase in the ratio G=R;
solidification morphology evolves from dendritic,
to cellular, and to planar. In the present case, there
exists a high positive temperature gradient at the
side of liquid nearby the liquid–solid interface
while just solidifying at the melted pool bottom, so
that the liquid–solid interface moves forward very
slowly, hence the ratio G=R is rather big. More-
over, there exists strongly a composition super-
cooling at the melted pool bottom. Therefore, the
solidification proceeds in planar crystal growth
and a thin band at the melted pool bottom is
formed, namely, a few micrometers white-bright
layer. With the liquid–solid interface advancing
from the pool center towards the pool surface, the
growth rate significantly increasing, and the ratio
G=R decreasing, thus the planar crystal growth is
broken down to take on a cellular/dendritic
growth at the melted pool center and a dendritic
growth at the melted pool surface. It should be
clear that the random dendrites near the surface is
mainly dependent on the irregular orientation of
the substrate grain. Compared with that of the

substrate, the microstructures of the melted layer
are greatly refined.

3.2. Microstructure of aluminum alloy

Fig. 2 shows the microstructures of base 2024
aluminum alloy and a single remelting track in

Fig. 2. Optical micrographs showing the microstructure of base

2024 aluminum alloy and electron beam melted pool bottom

(a); center (b); and surface (c).
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longitudinal section (Fig. 2a–c). Typical epitaxial
growth can be clearly seen in the melted layer. The
morphologies of the resolidified grains varied with
their position in the melted pool, i.e. cells near the
interface between the melted layer and the
substrate (Fig. 2a)-cells/dendrites at the center
of the melted pool (Fig. 2b)-dendrites near the
surface (Fig. 2c). This transition is also related to
the variation in the ratio G=R: However, it is
worth noticing that the usual planar crystal growth
at the pool bottom did not occur in Fig. 2a, the
reason maybe that G at the start of solidification
was not high enough to meet the planar crystal
growth condition. At the melted pool bottom, the
cells grew directionally along the heat flow
direction because of high-temperature gradient
existing; the preferred crystal orientation of
different grains also showed remarkable influence
on the direction of the growing cells. It can also be
seen from Fig. 2a that the microstructure of the
melted layer is much finer than that of base 2024
aluminum alloy.

4. Summary

The electron beam surface rapid solidification of
both AISI 321 stainless steel and 2024 aluminum
alloy induces significant changes in the micro-
structure morphologies of the modified zones
compared to the starting materials. There are
different solidification parameters at different

positions in the melted layer, hence the morphol-
ogies selection of the modified zones at different
positions exhibiting very different. The micro-
structures after electron beam irradiation have
been much refined.
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