
Bayesian estimation of bacterial community
composition from 454 sequencing data
Lu Cheng1,*, Alan W. Walker2 and Jukka Corander1

1Department of Mathematics and Statistics, P.O.Box 68 (Gustaf Hällströmin katu 2b), University of Helsinki,
00014 Helsinki, Finland and 2Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK

Received September 2, 2011; Revised January 27, 2012; Accepted February 23, 2012

ABSTRACT

Estimating bacterial community composition from a
mixed sample in different applied contexts is an im-
portant task for many microbiologists. The bacterial
community composition is commonly estimated
by clustering polymerase chain reaction amplified
16S rRNA gene sequences. Current taxonomy-
independent clustering methods for analyzing
these sequences, such as UCLUST, ESPRIT-Tree
and CROP, have two limitations: (i) expert know-
ledge is needed, i.e. a difference cutoff between
species needs to be specified; (ii) closely related
species cannot be separated. The first limitation
imposes a burden on the user, since considerable
effort is needed to select appropriate parameters,
whereas the second limitation leads to an inaccur-
ate description of the underlying bacterial commu-
nity composition. We propose a probabilistic
model-based method to estimate bacterial commu-
nity composition which tackles these limitations.
Our method requires very little expert knowledge,
where only the possible maximum number of
clusters needs to be specified. Also our method
demonstrates its ability to separate closely related
species in two experiments, in spite of sequencing
errors and individual variations.

INTRODUCTION

For simplicity, we use the term ‘bacterial communities’ to
refer to ‘bacterial community composition’ throughout
this article.
It is very challenging to estimate bacterial communities

using traditional sequencing methods due to the high cost,
and therefore, attention has rapidly shifted toward
next-generation sequencing technologies.
Most bacteria share some conserved regions in the

16S rRNA gene (1), which are flanked by more variable

segments. Thus, the variable parts can be used as a finger-
print for a specific bacterial species. Usually the variable
regions are amplified by using the conserved regions as
primers in (PCR). Then the amplicons are sequenced by
next-generation sequencing technologies, such as 454
pyrosequencing, which results in large amounts of
sequence reads.

Sequencing errors (mismatches, insertions and dele-
tions) are inevitably generated during the sequencing
phase. Chimeric sequences, which are hybrids of two or
more parent sequences, are often formed in PCR. These
errors contribute to the diversity of the reads, which easily
leads to an inflated diversity estimate of the true number
of species in the community.

There exists two standard types of algorithms for
estimating bacterial communities: taxonomy-dependent al-
gorithms and taxonomy-independent algorithms. The
ribosomal database project (RDP) classifier (2) belongs to
the first category. The user needs to import a reference
sequence database which contains all relevant species, then
a community label is assigned to each read by the naive
Bayesian algorithm in the software. Taxonomy-dependent
algorithms largely depends on the quality of the reference
sequence database, which have a poor performance when
there are many novel species in the sequencing data.

Current taxonomy-independent algorithms can be
further categorized into hierarchical clustering algorithms
(HC), greedy heuristic clustering algorithms (GHC) and
Bayesian clustering algorithms (BC). As recommended
by Sun et al. (3), we choose a representative software of
each category for comparative purposes; HC: ESPRIT-
Tree (4), GHC: UCLUST (5), BC: CROP (6). There are
also other algorithms available, such as Mothur (7) and
CD-HIT (8). However, earlier comparisons (3) have
already shown that they are outperformed by ESPRIT-
TREE and UCLUST, respectively. Taxonomy-
independent algorithms try to cluster the sequencing
data to several operational taxonomic units (OTUs),
such that all sequences in an OTU are within a certain
distance of its consensus sequence.

*To whom correspondence should be addressed. Tel: +358504155294; Fax: +358919151400; Email: lu.cheng@helsinki.fi

5240–5249 Nucleic Acids Research, 2012, Vol. 40, No. 12 Published online 9 March 2012
doi:10.1093/nar/gks227

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


HC algorithms generally require a distance matrix
between all sequences in the dataset, from which a hier-
archical tree can be constructed. Then, by applying a
user-specified cutoff to the hierarchical tree, leaf nodes
within the cutoff are assigned into an OTU. Two most
important issues of HC are how to define the distance and
how to generate the distance matrix. The distance should
have the following properties (4): (i) d(A, B)= d(B, A),
(ii) d(A, A)=0, (iii) d(A, B)� d(A, C)+d(B, C), where
A, B and C are sequences. The distance given by
pairwise sequence alignment does not necessarily fulfill
the property (iii). Although the distance given by a
multiple sequence alignment (MSA) fulfills all three
properties, the quality of MSA is usually very poor due
to the high divergence in the sequencing data in this
context. Also, MSA suffers from the high computational
cost. ESPRIT-Tree defines a probabilistic distance which
fulfills the distance properties in most cases. It uses a set of
heuristics to avoid calculating the whole distance matrix,
while still managing to generate the hierarchical tree even
for large data sets. ESPRIT-Tree calculates all results for
cutoffs from 1% to 15% in a single run. A lower cutoff
results in more OTUs than that of a higher cutoff.

For each considered sequence, GHC algorithms either
assign it to an existing cluster if the distance to it is within
a certain distance cutoff, or create a new singleton cluster.
GHC algorithms are therefore usually very fast. UCLUST
actually utilizes a reference database, thus it is not a purely
taxonomy-independent algorithm in this sense. UCLUST
usually generates more OTUs than other methods, and it
can label some sequences as noise, which might discard
useful information.

As far as we know, CROP is the only existing BC algo-
rithm for clustering 16S rRNA gene sequencing data.
CROP sets up a Bayesian model to cluster a set of
sequences, which utilizes a Gaussian mixture model and
a birth–death process. First CROP splits the dataset into
small blocks and perform BC on the blocks. After that,
the generated clusters are replaced by their consensus se-
quences. CROP further performs BC on the derived con-
sensus sequences to get the final clustering result. CROP
uses a lower bound and an upper bound as inputs for the
BC, which can be transformed to a cutoff. It usually
produces less OTUs than HC and GHC algorithms.

For all the methods mentioned above, the user needs to
set several different cutoffs (3 and 5% are commonly used)
to cluster the sequencing data. Then, the user needs to
check the results to determine the best cutoff, which
requires a lot of expert knowledge in practice. Also, the
same cutoff does not have the same meaning in different
software, since the distances are defined in different ways.
Thus, it is required that the user has a clear understanding
of properties of the distances before using the software.

Another flaw is that the current methods cannot
separate closely related species into different OTUs, even
when the underlying sequence information is robust
enough to separate them. Instead, closely related species
may be grouped together into one large OTU. It is known
that different bacterial species/genera have different levels
of inherent variation in 16S rRNA gene sequence. Some
harbor more variation, while others might have several

subgroups with only little variation. This means that, in
practice, it is impossible to create a single OTU cutoff
value that will result in accurate species-level designation
in all cases. When we set the cutoff to a low value (e.g.
1%) to detect differences between closely-related species
lots of spurious OTUs are generated due to polymerase
errors, sequencing errors, chimera sequences and align-
ment errors, as well as individual variations in other,
more highly variable, species. When setting the cutoff to
a higher value (e.g. 3 or 5%), then closely-related, but
distinct, species can be erroneously placed into one large
OTU.
Considering the above limitations, we developed a novel

taxonomy-independent method to estimate bacterial
communities. The user only needs to specify the possible
maximum number of clusters in the data. Our method can
separate closely related sequences into different OTUs and
tends not to generate spurious OTUs. Also it generates
highly accurate consensus sequences from the identified
OTUs.
We implemented our method in a software called

BEBaC (Bayesian Estimation of Bacterial Communities),
which can be freely downloaded at: http://www.helsinki.fi/
bsg/software/BEBaC.

MATERIALS AND METHODS

Our method is based on a stochastic search clustering al-
gorithm originally developed for applications in popula-
tion genetics (9–12). The basic idea of the clustering
algorithm is to calculate an unnormalized posterior prob-
ability for an arbitrary partition of the reads, such that
any two partitions can be compared. Thus, the best par-
tition can be inferred through a stochastic search process
over the partition space.
Due to the biological and computational limitations of

meaningfully aligning huge amounts of diverse sequences,
we adopt a divide and conquer strategy to cluster the
reads. First, an alignment free method is used to
separate the reads to several large crude clusters. Then,
aligning the reads within a crude cluster is more sensible
since the reads are more similar and the number of reads is
smaller. Thereafter, fine clusters are derived from the
alignment. Figure 1 shows the workflow of our method,
which consists of three modules: pregroup, crude cluster-
ing and fine clustering.

Pregroup and crude clustering

All the reads are assumed to be preprocessed such that all
the reads are of high quality and similar lengths, e.g.
450�550 bp. In the pregroup phase (Supplementary
Pregroup algorithm), some heuristics are used such that
highly similar reads are assigned to a pregroup, which
significantly reduces the computational burden in the
crude clustering phase.
Here we assume there are n read sequences in total,

which are indexed by a set N={1, 2, . . . , n}. The subset
of sequences for s#N is represented as x(s)= {xi : i2 s},
thus x(N) represents all the reads. We then transform each
sequence xi to a 3-mer count vector yi, where a 3-mer

Nucleic Acids Research, 2012, Vol. 40, No. 12 5241

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://www.helsinki.fi/bsg/software/BEBaC
http://www.helsinki.fi/bsg/software/BEBaC
http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/


means 3 consecutive DNA bases ranging from ‘AAA’ to
‘TTT’. Each element of the 1� 64 vector yi=(yi1, yi2, . . . ,
yij, . . . yi64) represents the count of its corresponding 3-mer
in the given sequence xi. Hence the sequence set x(N) is
transformed to a 3-mer count set y(N)= {y1, y2, . . . yn}.
Since there is information loss in the transformation

from sequences to 3-mer count vectors, we name the clus-
tering process of the 3-mer count vectors as crude cluster-
ing. Let S=(s1, s2, . . . , sk) denote a partition of k crude
clusters for y(N), such that

Sk
c¼1 sc ¼ N and sc \ sc0 ¼1

for all pairs {c, c
0

} ranging between 1 and k. Given the
maximum number of clusters Kmax defined by the user, we
use S to denote the space of all possible partitions S, such
that k�Kmax.
Now we want to find a posterior probability p(Sjy(N))

for a given partition S, which allows us to search the par-
tition space S for the best partition. According to Bayes’s
theorem, the posterior probability of S is

pðSjyðNÞÞ ¼
pðyðNÞjSÞpðSÞP
S2S pðy

ðNÞjSÞpðSÞ
ð1Þ

If we assume a uniform prior probability for any partition
S, i.e. p(S) equals a constant, then the right-hand side of

(1) simplifies to p(y(N)
jS) divided by the constant in the

denominator. Thus

pðyðNÞjSÞ / pðSjyðNÞÞ ð2Þ

For all 3-mer count vectors in a crude cluster c, we
assume the probability to observe any 3-mer is the same.
Here we denote the probabilities to observe the 3-mers in
cluster c as (pc1, pc2, . . . , pc64). Then, the conditional like-
lihood of the data is defined as

pðyðNÞj�;SÞ ¼
Yk
c¼1

pðyðscÞj�;SÞ ¼
Yk
c¼1

Y64
j¼1

p
ncj
cj ð3Þ

where ncj ¼
P

yi2y
ðsc Þ yij is the total count of the j-th 3-mer

in cluster c, and y={pcjj1� c� k, 1� j� 64} is the whole
set of k multinomial probability vectors.

We assume a Dirichlet prior probability for the 3-mer
probabilities in the same cluster, i.e. (pc1, pc2, . . . , pc64) �
Dir(�c1, �c2, . . . , �c64). We use a reference prior, such that
�cj=1/64, j=1 . . . 64. More discussion about choosing
priors for a multinomial likelihood can be found in (13).
Dirichlet prior is a conjugate prior for multinomial
likelihood, so that we can get an analytical form for

Figure 1. BEBaC workflow. BEBaC contains three modules: pregroup, crude clustering and fine clustering. During pregroup phase, highly similar
reads are assigned to pregroups. Here we have seven different pregroups indicated with different colors. In the crude clustering phase, similar 3-mer
count vectors are assigned into crude clusters, which resulted in three crude clusters. In the fine clustering phase, sequences in a crude cluster are
aligned and further assigned into fine clusters. Here one of the crude clusters is further split into two fine clusters. Consensus sequences are then
generated from the fine clusters. The number after each consensus sequence shows how many sequence reads it represents.

5242 Nucleic Acids Research, 2012, Vol. 40, No. 12

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Equation (2). The joint distribution of the counts and y,
conditional on S equals

pðyðNÞ; �jSÞ ¼ pðyðNÞj�;SÞpð�Þ /
Yk
c¼1

Y64
j¼1

p
�cjþncj
cj ð4Þ

Since y are nuisance parameters, we integrate them out
to obtain (2). The resulting marginal likelihood is

pðyðNÞjSÞ ¼

Z
�

pðyðNÞj�;SÞd�

¼
Yk
c¼1

Z
� � �

Z Y64
j¼1

p
�cjþncj
cj dpc1 � � � dpc64

¼
Yk
c¼1

�
P64

j¼1 �cj

� �

�
P64

j¼1 �cj þ ncj

� �Y64
j¼1

� �cj þ ncj
� �
� �cj
� �

ð5Þ

Equation (5) provides an analytical form of the
marginal likelihood of y(N) given the partition S, which
is proportional to the posterior probability as suggested
by Equation (2). Consequently, we define the best parti-
tion as

Ŝ ¼ argmax
S2S

pðSjyðNÞÞ ¼ argmax
S2S

pðyðNÞjSÞ ð6Þ

We propose a greedy stochastic search algorithm to
search for the best partition Ŝ in the partition space S,
where the results from the pregroup phase are used. The
search algorithm is fast and efficient, but it can only be
guaranteed to converge to a local optimum. By our prac-
tical experience, the results yielded by the algorithm are in
general highly accurate and they outperform a Markov
chain Monte Carlo-based approach (14) in terms of com-
putational cost and time required to identify high density
areas of p(Sjy(N)). The greedy search algorithm is designed
as follows:

Input
3-mer count vectors y(N), pregroup partition, maximum
number of clusters Kmax defined by the user

Initialization
Cluster y(N) into Kmax clusters using complete linkage al-
gorithm, set the current partition S as the initial partition.
Note that special programming techniques are used here
such that vectors in a pregroup will always be assigned to
the same cluster.

Stochastic search
Apply each of the four search operators described below
to the the current partition S in a random order. Then, if
the resulting partition leads to a higher marginal likeli-
hood (5), update the current partition S, otherwise keep
the current partition. If all operators fail to update the
current partition, then stop and set the best partition Ŝ
as the current partition S.

(i) In a random order relocate all vectors in a pregroup
to another cluster that leads to the maximal increase
in the marginal likelihood (5). The option of moving

vectors into an empty cluster is also considered,
unless the total number of clusters exceeds Kmax.

(ii) In a random order, merge the two clusters which
leads to the maximum increase in the marginal like-
lihood (5). This operator considers also merging of
singleton clusters (only one pregroup in the cluster)
that might be generated by the other operators.

(iii) In a random order, split each cluster into two
subclusters using complete linkage clustering algo-
rithm, where the distance between two pregroups
are calculated as the average linear correlation co-
efficient between vectors in the two pregroups. Then
try reassigning each subcluster to another cluster
including empty clusters. Choose the split and re-
assignment that leads to the maximal increase in the
marginal likelihood (5).

(iv) In a random order, split each cluster into m
subclusters using complete linkage clustering
algorithm as described in operator (iii), where
m=min(20, nPregroup/5) and nPregroup is the
total number of pregroups in the cluster. Then try
to reassign each subcluster to another cluster;
choose the split and reassignment that leads to the
maximal increase in the marginal likelihood (5).

Output
The best partition Ŝ, the highest marginal likelihood
p(y(N)

jŜ).

Fine clustering

The fine clustering phase further assigns the sequences in a
crude cluster into several fine clusters. Corander and Tang
(CT) (10) proposed a second-order Markov model for un-
supervised clustering of DNA sequence data, in which the
partition is automatically determined given the maximum
number of fine clusters. However, the method is too sen-
sitive to sequencing errors to be directly applied to our
case, because it detects some patterns from the sequencing
errors such that there are usually some anomalous small
clusters in the resulting partition. Barbara et al. (15)
proposed a minimum description length (MDL) based cri-
terion to determine the number of clusters in a similar
problem, in which the description length is calculated
for several candidate partitions and the one with the
MDL is selected. We adopted CT’s method together
with Barbara’s MDL-based criterion to determine the
number of fine clusters, aiming to eliminate small
clusters caused by sequencing errors.
We focus on sequences in a crude cluster which are

indexed by a set M=(1, 2, . . . , m). Next the sequences
are aligned using a MSA algorithm. We denote the set of
aligned sequences by z(M)= {z1, z2, . . . , zm}, where all se-
quences are of the same length d. A specific sequence
zi=(zi1, zi2, . . . , zid) is actually a sequence of length d con-
sisting of bases in {A, C, G, T, �}. Let S=(s1, s2, . . . , sk)
denote a partition of k fine clusters for the set z(M) of the
aligned sequences. Thus sequences belonging to the fine
cluster sc are denoted as zðscÞ ¼ fzi : i 2 scg, which is a
jscj � d matrix.

Nucleic Acids Research, 2012, Vol. 40, No. 12 5243

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Now we consider the MDL criterion proposed by
Barbara et al. Let us think about transmitting z(M) parti-
tioned by S through an optimal noiseless channel (16).
First, we transmit the number of sequences m and the
number of clusters k. Then we transmit the cluster labels
of each sequence. After that we transmit the counts of
each base in each column for a specific cluster zðscÞ, i.e.
the coding table (5� d) for cluster zðscÞ. With the coding
table, we compute the base distribution in each column
and then encode each column of zðscÞ. In the end we
transmit the encoded sequences. In this way, sequences
in each cluster are transmitted. We want to find the par-
tition S of z(M) such that the smallest amount of bits need
to be transmitted.
Table 1 shows the description lengths for all items in the

coding process. The number of sequences m and the
number of clusters k are could be described by a 32-bit
integer, which is fixed length. The cluster labels are m
values ranging [1, k]. For k different values, the average
coding length is log(k) bits. Similarly, each element in the
coding table, i.e. the number of a base in a column for a
specific cluster, takes log(m+1) bits on average since it has
m+1 different values ranging from 0 to m. With the
coding table, we compute the base distribution for the
j-th column in cluster c. We denote the distribution as
(pc1j, pc2j, . . . , pc5j), which are the frequencies of {A, C,
G, T, �}, respectively. Thus the average coding length
for the j-th column is

P5
i¼1�pcij logðpcijÞ, and the sum

over all columns represents the average coding length
for a sequence in cluster c.
Discarding the constant items in Table 1, we define the

description length for partition S of z(M) as

DLðS; zðMÞÞ ¼ m � logðkÞ þ
Xk
c¼1

n
5 � d � logðmþ 1Þþ

jscj � ð
Xd
j¼1

X5
i¼1

�pcijlogðpcijÞÞ
o ð7Þ

Also we define the entropy for partition S of z(M) as

entropyðS; zðMÞÞ ¼
Xk
c¼1

jscj � ð
Xd
j¼1

X5
i¼1

�pcijlogðpcijÞÞ ð8Þ

which is the coded length of z(M) given partition S, i.e. the
sum of the last item in Table 1.
Next we use CT’s method (10) to propose several can-

didate partitions, for which we calculate the description

length and choose the one with MDL. CT’s method works
in a similar fashion as the crude clustering method, where
the user only provides the alignment of the sequences and
the maximum number of clusters Kmax. The method then
searches for the best partition from all possible partitions
with � Kmax clusters.

Assume that the optimal partition has k� clusters and
k�<Kmax. If we set Kmax to k�� 1, then our method is
expected to return an estimate of the optimal partition
having k�� 1 clusters. A simple explanation for why
there are k�� 1 clusters in the estimated partition is as
follows. Since the method aims at detecting k� clusters in
the sequences, when it is forced to detect at most k�� 1
clusters, it merges the most heterogeneous cluster with the
cluster that is the most similar to it, to achieve the
maximum posterior probability. Thus by setting Kmax

from 1 to k�, we obtain partition estimates with
k(1� k� k�) clusters, corresponding to the candidate
partitions.

Then the description length and the entropy are
calculated for the candidate partitions using (7) and (8),
respectively. A good clustering algorithm will make the
clusters more and more homogeneous as the number of
clusters k increases, i.e. sequences in clusters become more
and more similar. Hence it is expected that the entropy
always decreases as k increases from 1 to k�, while the
description length usually achieves its minimum in the
middle. The candidate partition with the MDL is
selected as the final partition Ŝ.

For each fine cluster sc in Ŝ, we construct a consensus
sequence to represent all the sequences in sc. To gain a
better alignment, we first realign the sequences in the fine
cluster sc and denote the resulted alignment as wðscÞ. Then
we choose the majority base for each column of wðscÞ. Next
the majority base of each column is deleted if it is ‘�’, or it
is supported by < 50% sequences in wðscÞ. In the end, the
remaining majority bases are concatenated to generate the
consensus sequence.

RESULTS

Our method has been implemented in the software
BEBaC, which is designed for parallel usage on a
computer cluster. To illustrate the efficiency and
accuracy of our method, we performed two experiments
on different datasets using BEBaC, including a simulated
dataset and a dataset from previous publications.

We compared BEBaC with previous OTU generation
methods, which include UCLUST, ESPRIT-Tree and
CROP. To evaluate the clustering results, we used the
normalized mutual information (NMI) criterion (4). It
measures the degree of information provided by the clus-
tering results with respect to the ground truth, which
ranges from 0 to 1. NMI=1 means the clustering result
agrees with the ground truth, while NMI=0 means that
the clustering result is random.

By default, ESPRIT-Tree provides all results by setting
the cutoff from 1% to 15%. CROP has two cutoff options:
-s and -g, corresponding to 3 and 5%, respectively. It is
possible to adjust the cutoff to other values by setting the

Table 1. Description length for transmitting z(M) partitioned by S

Items Amount Unit length

Number of sequences m 1 Constant
Number of clusters k 1 Constant
Cluster labels of sequences m log(k), element ranges [1, k]
Coding table for cluster c 5� d log(m+1), element ranges [0, m]
Coded sequences for
cluster c

jscj
Pd

j¼1ð
P5

i¼1�pcijlogðpcijÞÞ

pcij denotes the frequency of the i-th base for the j-th column in zðscÞ.

5244 Nucleic Acids Research, 2012, Vol. 40, No. 12

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


-l and -u option, but it is not easy to interpret the two values
to a cutoff. We use -l=0.5 and -u=1 to represent a lower
cutoff than 3%, which is specially denoted by 1.5% here for
convenience. For UCLUST, we set the cutoff to 3 and 5%
for simplicity. Since a lower cutoff than 3% generates lots
of spurious OTUs, we do not use such values. Since
UCLUST typically marks some sequences as noise and
does not assign them to any OTU, it is not possible to
calculate the NMI value for its results. Thus we have
created a singleton OTU for each of these noisy sequences
to enable the calculation.

Experiment 1: simulated dataset

We simulated a 454 pyrosequencing dataset which
contains 11 taxa, as shown by Figure 2. The phylogenetic
tree in Figure 2 is designed such that there are multiple
different distance levels in the tree. As can be seen from
Figure 2, the minimum distance is 1% and the maximum
distance is 25%. Particularly, we want to keep Taxon 9,
Taxon 10 and Taxon 11 as a closely related group.

According to the phylogenetic tree in Figure 2, 11 con-
sensus sequences (500 bp) for the 11 taxa were generated
by Seq-Gen (17) software. Different substitution rates
were applied to different regions in the 500 bp consensus
sequences (Details in Supplementary Experiment 1).

Then, for each taxon i, we used a Gaussian distribution
to model individual variations. That is, the number of
mismatches between an individual sequence and the con-
sensus sequence was obtained using the following three
steps: (i) a random number is drawn from a Gaussian
distribution N(0, si); (ii) the drawn value is multiplied
by the length of the consensus sequence; (iii) the
absolute value is truncated into the nearest integer.
Hence, the average deviation of a random sequence
from the consensus sequence was si. For the 11 taxa, we
set the si (i=1, 2, . . . 11) to: 2, 4, 5, 4, 2, 1, 4, 3, 0.2, 0.6 and
0.4%. Using the specified deviation, we generated 2000
individual sequences (500 bp) for each taxon. The devi-
ations of Taxa 1–8 were randomly selected from 1% to
5%, while the deviations for Taxa 9–11 were randomly
selected from 0% to 1%.

Next, we generated sequencing errors for Taxa 1–8,
while no sequencing errors were generated to Taxa 9–11.
It is known (18) that the error rate is higher in
homopolymer cases, which means a stretch of sequence
containing the same base. We used the error rates shown
in Table 2, which are transformed from those in (18). Here
we counted ambiguous bases as mismatches for simplicity.

As a result, 22 000 sequences (�500 bp) of 11 taxa are
generated. We expect that Taxa 9–11 will be detected as 3
separate OTUs instead of one, since 2000 sequences with
little variations support each taxon to be an independent
OTU. Thus the ground truth is set as 11 clusters, each of
which contains 2000 sequences.

Table 3 shows the results given by different software.
ESPRIT-Tree results from 7% to 15% are omitted here,
since they have relatively low NMI values. As can be seen
from Table 3, BEBaC successfully detected all 11 taxa,
and has the highest NMI value. UCLUST, ESPRIT-
Tree and CROP generate some spurious clusters when

the cutoff is set to a low value. ESPRIT-Tree(3%) and
CROP(3%) have the best NMI values, but they assign
Taxa 9–11 into one OTU, thus only detect 9 OTUs from
the dataset. We also checked that ESPRIT-Tree(2%) and
CROP(1.5%) fail to separate Taxa 9–11. An interesting
observation is that CROP increases the number of OTUs
(9 to 10), when the cutoff is increased from 3% to 5%. It
splits an OTU into two subclusters, which is to some
extent counter-intuitive.
The results clearly show the limitations of current

methods. When the cutoff is low, lot of spurious OTUs
are generated, e.g. 1404 OTUs for UCLUST(3%) and
10 609 OTUs for ESPRIT-Tree(1%). When the cutoff is

Figure 2. Phylogenetic tree of 11 taxa. Taxon 9–11 are 1% different
from each other. Taxon 1 and Taxon 7 differ by � 25%. The distance
matrix between the 11 taxa is shown in Supplementary Experiment 1.

Table 2. Sequencing error rates for simulated data

Match Mismatch Insertion Deletion

Non-homopolymer 0.9922 0.0018 0.004 0.002
Homopolymer 0.9862 0.0018 0.008 0.004

The error rates are transformed from Table 1 in (18), where ambiguous
bases are counted as mismatches. Homopolymer is a stretch of
sequence containing the same base.

Table 3. Simulated dataset results

Software(parameters) Number of
OTUs

NMI Computational time

BEBaC (Kmax=20) 11 0.9981 19.11 CPU hours
UCLUST(3%) 1404 0.7570 30 s
UCLUST(5%) 27 0.9027 30 s
ESPRIT-Tree(1%) 10 609 0.5361 9.72 CPU hours
ESPRIT-Tree(2%) 558 0.8906 –
ESPRIT-Tree(3%) 9 0.9334 –
ESPRIT-Tree(4%) 9 0.9334 –
ESPRIT-Tree(5%) 8 0.9026 –
ESPRIT-Tree(6%) 7 0.8572 –
CROP(1.5%) 24 0.9321 1.88 CPU hours
CROP(3%) 9 0.9327 1.72 CPU hours
CROP(5%) 10 0.9265 1.16 CPU hours

ESPRIT-Tree provides all the results for cutoffs from 1% to 15% at
one time. CROP(1.5%) is specially denoted for option (-l=0.5 -u=1).
The simulated dataset contains 11 taxa, each of which contains 2000
sequences.

Nucleic Acids Research, 2012, Vol. 40, No. 12 5245

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/


higher, the closely related species are assigned into one
OTU.
Regarding the computational time, UCLUST costs the

least time and BEBaC costs the most time. However,
BEBaC can be run in parallel on a computer cluster,
which requires 4.82 h to analyse the simulated dataset.
Moreover, BEBaC actually detected all 11 clusters after
the crude clustering phase, which took 1.02 h (3.12 CPU
hours) on a computer cluster.

Experiment 2: Haas et al.’s eMC dataset

Haas et al. (19) generated an even composition Mock
Communities (eMC) dataset for chimeric sequence detec-
tion, where the bacterial species in eMC were known in
advance. Three regions (V1–V3, V3–V5, V6–V9) of the
16S rRNA gene of eMC were sequenced using 454
sequencing machines in four different sequencing
centers. We used the V3–V5 region datasets since the
PCR worked for all bacterial species. To utilize the
sequencing data, we combined the datasets from four dif-
ferent sequencing centers into one dataset.
There are 114 reference sequences (including all rRNA

operons), encompassing 22 bacterial species in total in the
eMC dataset. Note that many species encode more than
one 16S rRNA gene, and there are usually multiple
distinct 16S rRNA genes for one species. They are
usually quite similar, but this is not necessarily always

the case. Each of the 114 reference sequences repre-
sents a distinct 16S rRNA gene, thus there are multiple
reference sequences for each species. The species
Methanobrevibacter smithii is an archaeon and Candida
albicans is a eukaryote. Thus, C. albicans is a negative
control since the primers are targeted only toward pro-
karyotes. Figure 3 shows the similarities between the 114
reference sequences. As can be seen from Figure 3,
C. albicans and M. smithii are more distant to the other
species, while Staphylococcus aureus and S. epidermidis are
extremely similar to each other, which might result in
a problem in discriminating the two species from each
other.

After removing the chimeric sequences with Chimera
Slayer, as proposed in (19), the eMC dataset contains
around 110 000 sequence reads of varying lengths.
However, BEBaC requires that the input sequences
should be of similar lengths. Thus we removed sequences
shorter than 450 bp and trim sequences longer than 550 bp
to 550 bp from the end. After that, a sequence in the
dataset was removed if < 80% of its sites have a quality
score � 20. In the end, 91 240 sequences ranging 450–550
bp are left in the eMC dataset.

To obtain the ground truth, we aligned (local align-
ment) each of the 91 240 sequences to all the reference
sequences and labeled it with the the highest scored refer-
ence sequence’s species label. Thus we derived the ‘true’
species distribution in the eMC dataset.

Figure 3. Similarity matrix between reference sequences of the eMC dataset. Higher value indicates higher similarity. S. aureus and S. epidermidis are
highly similar. Rows and columns between black lines are reference sequences from the same species. Note that the column size for each species
represents the number of reference sequences, which reflects the number of rRNA operons encoded by each species. The distance matrix was
calculated as described in Supplementary Experiment 2. C. albicans has only one reference sequence, thus it is overlapped by the black lines.

5246 Nucleic Acids Research, 2012, Vol. 40, No. 12

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/


However, we cannot directly compare the clustering
results given by different software with the ground truth.
Different software, or the same software with different
parameters, try to cluster the sequences at different
levels. Thus it is meaningless if we try to compare
sub-species level clustering results with the species level
ground truth.

A common hidden assumption of all the software is that
a cluster can be approximately represented by its consen-
sus sequence. Thus we can project a sub-species level
OTU to species-level using the species-level label of its
consensus sequence. To obtain the species-level label of a
consensus sequence, we first align (local alignment)
the consensus sequence with all the reference sequences,
and then label the consensus sequence using the the highest
scored reference sequence’s species label. In this way, we
reconstructed the species distribution in the eMC data.

Given the ground truth, we calculated the NMI scores
of the reconstructed species distributions by different
software options. Various experiences in the literature
shows that 3 and 5% are good cutoffs for estimating
the species distribution, thus we used these cutoffs
for UCLUST, ESPRIT-Tree and CROP. In addition,
we used a lower cutoff for ESPRIT-Tree(2%) and
CROP(1.5%) to detect closely related species. Also, we
are interested in how accurately the derived consensus
sequences agree with their corresponding reference
sequences. The accuracy is calculated as the number of
matches in the local alignment divided by the sum of the
alignment length and the flank bases of the consensus
sequence (details in Supplementary Experiment 2).

Table 4 shows the results given by different software.
Since ESPRIT-Tree does not provide consensus sequences
for each OTU, we derived the consensus sequence for each
OTU using the same method as described in section ‘Fine
clustering’. The ESPRIT-Tree(1%) result is not included
here, because it generates 4627 OTUs, indicating that
there are many spurious OTUs.

As can be seen from Table 4, BEBaC has a higher NMI
score and accuracy than other software. UCLUST(3%)

generated lots of spurious clusters. ESPRIT-Tree and
CROP actually also generated some spurious clusters.
Although the NMI scores for ESPRIT-Tree and CROP
are relatively high, they fail to detect S. epidermidis, which
is clustered together with S. aureus, as shown in Figure 4.
This indicates that NMI score does not penalize too
much if two original clusters are assigned into one pre-
dicted cluster. As can be seen from Figure 4, the BEBaC
result is almost identical to the ground truth, while
UCLUST(3%) differs a little from the ground truth.
For the eMC dataset, BEBaC requires 0.77 h for the

crude clustering phase and 12.03h for the fine clustering
phase on a computer cluster.

DISCUSSION

Rapid environmental changes have the potential to
generate a considerable amount of novel bacterial vari-
ation. Since bacteria affect human life in different
aspects, estimating resident bacterial communities is
often of interest. Due to the improvements in next-
generation sequencing technology, huge amounts of the
16S rRNA gene sequencing data for estimating bacterial
communities are currently generated. The problem of
estimating bacterial communities thus transforms to clus-
tering huge amounts of sequencing data.
Proper clustering of such sequencing data has thus

become a common concern for many microbiologists.
Comparing the sequences to a bacterial DNA database
cannot detect novel species, but only yield high P-values
for them. As shown by the experiments in the Results
section, current taxonomy-independent algorithms can
only cluster the sequencing data on a crude difference
scale, such that closely related species are assigned into a
large OTU. In many potential cases, separating these
closely related species to independent OTUs is of consid-
erable importance.
It should be noted that acquiring high quality

sequencing data is the fundamental issue for accurately
estimating bacterial communities. PCR bias, chimeric se-
quences, sequencing errors, etc., might lead to a
misprediction of the underlying bacterial communities.
Here only sequencing errors are modeled in the BEBaC
framework. Effective chimera removing methods are
already available (19), (20). PCR bias is generally un-
avoidable, although it can be reduced by using as few
PCR cycles as possible during amplicon generation (21),
and we leave it for future models.
MSA and alignment free methods could be utilized for

quantizing the differences between sequences. MSA is very
accurate in detecting differences between similar se-
quences. However, when there are huge amounts of
highly distinct sequences, generating a MSA is computa-
tionally expensive and not desirable, since it is hard to
generate an accurate MSA and large parts of the MSA
will be filled with non-informative indels, i.e. ‘�’. Current
fast MSA methods, such as MUSCLE (22) and MAFFT
(23), actually also utilize alignment free techniques.
Alignment free methods usually utilize k-mer information
for detecting sequence differences, in which information

Table 4. eMC dataset results

Software(parameters) Numbr
of OTUs

NMI Accuracy (std) Time

BEBaC (Kmax=60) 46 0.9980 0.9993 (0.0020) 34.5 h
UCLUST(3%) 3376 0.9527 0.9915 (0.0114) 2 min
UCLUST(5%) 229 0.9719 0.9734 (0.0328) 2 min
ESPRIT-Tree(2%) 333 0.9717 0.9711 (0.0250) 6.08 h
ESPRIT-Tree(3%) 115 0.9717 0.9620 (0.0361) –
ESPRIT-Tree(5%) 45 0.9719 0.9583 (0.0484) –
CROP(1.5%) 73 0.9722 0.9557 (0.0377) 6.70 h
CROP(3%) 45 0.9720 0.9562 (0.0467) 6.93 h
CROP(5%) 44 0.9719 0.9565 (0.0474) 5.02 h

ESPRIT-Tree provides all the results for cutoffs from 1% to 15% at
one time. The NMI score is calculated using the reconstructed species
distribution and the ground truth. The accuracy column shows the mean
and standard deviation of all consensus sequences. ‘h’ in the time
column means CPU hours and ‘min’ means minutes. CROP(1.5%) is
specially denoted for option (-l=0.5 -u=1). The ESPRIT-Tree(1%)
result is not shown here since it generateed 4627 OTUs.

Nucleic Acids Research, 2012, Vol. 40, No. 12 5247

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/


loss exists and thus sequences are anchored in a crude
difference scale. Alignment free algorithms are fast, but
not so accurate as ‘true’ MSA.
Two fundamental issues of developing an alignment free

method are: which k-mer should be used and how the
k-mer information should be used. As we know, a DNA
sequence can be equivalently represented by its k-mers
arranged in a unique order, e.g. the sequence ‘AAAATT’
can be equivalently represented by its 3-mer in order of
(‘AAA’, ‘AAA’, ‘AAT’, ‘ATT’). When we calculate the
k-mer count vector, as described in crude clustering (see
‘Materials and Methods’), the order information of the k-
mers is lost. If we only calculate the occurrence of a k-mer,
i.e. the count for a k-mer is either 1 or 0, then the count
information of the k-mers is also lost. BEBaC preserves
the k-mer count information, thus 3-mer is enough for the
crude clustering purpose. The RDP classifier only utilizes
the k-mer occurrence information, thus it needs to use
long k-mer (8-mer) to conserve the difference information
for clustering the sequences. The choice of 3-mer arises
from the statistical perspective considering a balance
between preserving order information of the original se-
quences and avoiding spurious clustering results. The
latter would result from higher order k-mers, leading to
extremely small word frequencies for a majority of the
words.
BEBaC combines alignment free methods and

alignment-based methods seamlessly. The dependencies
within 3-mers have been considered both in crude and

fine clustering phases. If two sequences are very similar,
then their 3-mer count vectors should also be similar.
Hence, if two 3-mer count vectors are not similar, then
their corresponding sequences cannot be similar. This
means similar sequences will not be assigned to different
crude clusters in the crude clustering phase.

The greedy search algorithm in the crude clustering
phase of BEBaC does not guarantee the global
optimum, instead it converges to a local optimum. Thus
one might get different results in different runs.
However, the results are usually only slightly different
and their posterior probabilities [Equation (5)] can be
compared. Consequently, one can choose the clustering
result with the highest posterior probability.

With the traditional methods, the user needs to compare
the results given by different cutoffs, which is a tedious
process. BEBaC relieves the users from the issue of select-
ing an appropriate cutoff. Instead, the user only needs to
input the possible maximum number of clusters. If the
detected number of clusters is smaller than the number
Kmax specified by the user, then no further input is
required. Otherwise the user needs to increase the
maximum number of clusters. BEBaC will automatically
double Kmax up to four cycles (24 of the original Kmax)
until the detected number of clusters is less than Kmax.
Thus normally the user does not need to increase the
maximum number of clusters.

The computational time of BEBaC is acceptable on a
computer cluster. Also the running time depends on the

Figure 4. Reconstructed species distributions given by different software. BEBaC(K=60) and UCLUST(3%) is almost the same as the ground
truth, whereas the other software fails to detect the proportions of S. aureus and S. epidermidis. C. albicans is not detected by any software, thus we
did not show it in this figure. M. smithii is correctly detected by all software, although this OTU only contains 14 sequences.

5248 Nucleic Acids Research, 2012, Vol. 40, No. 12

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


purpose of the user. If the interest is only in an approxi-
mate description of the underlying species distribution,
then it is enough to perform only a crude clustering of
the sequencing data, which is quite fast (see RESULTS).

CONCLUSION

We developed a novel method for detecting bacterial
communities from 454 sequencing data. Compared with
traditional methods, it determines the number of bacterial
species automatically, while requiring no external refer-
ence databases. It is capable of separating closely related
species into independent OTUs. The method could also be
used for other problems that require clustering of large
amounts of DNA sequences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figure 1, Supplementary Pregroup
Algorithm, Supplementary Experiment 1 and 2 and
Supplementary Reference [24].

ACKNOWLEDGEMENTS

The authors would like to thank two anonymous referees
for their invaluable comments, which helped to improve
the paper significantly.

FUNDING

Finnish Population Genetics Graduate School (to L.C.);
Sigrid Juselius Foundation (to L.C.); European Research
Council (39784 to J.C.). Funding for opean access charge:
European Research Council (39784 to J.C.).

Conflict of interest statement. None declared.

REFERENCES

1. Neefs,J.M., Van De Peer,Y., De Rijk,P., Chapelle,S. and De
Wachter,R. (1993) Compilation of small ribosomal subunit RNA
structures. Nucleic Acids Res., 21, 3025–3049.

2. Wang,Q., Garrity,G.M., Tiedje,J.M. and Cole,J.R. (2007) Naive
Bayesian classifier for rapid assignment of rRNA sequences into
the new bacterial taxonomy. Appl. Environ. Microbiol., 73,
5261–5267.

3. Sun,Y., Cai,Y., Huse,S., Knight,R., Farmerie,W., Wang,X. and
Mai,V. (2012) A large-scale benchmark study of existing
algorithms for taxonomy-independent microbial community
analysis. Brief. Bioinform., 13, 107–121.

4. Cai,Y. and Sun,Y. (2011) ESPRIT-Tree: hierarchical clustering
analysis of millions of 16S rRNA pyrosequences in quasilinear
computational time. Nucleic Acids Res., 39, e95.

5. Edgar,R.C. (2010) Search and clustering orders of magnitude
faster than BLAST. Bioinformatics, 26, 2460–2461.

6. Hao,X., Jiang,R. and Chen,T. (2011) Clustering 16S rRNA for
OTU prediction: a method of unsupervised Bayesian clustering.
Bioinformatics, 27, 611–618.

7. Schloss,P.D., Westcott,S.L., Ryabin,T., Hall,J.R., Hartmann,M.,
Hollister,E.B., Lesniewski,R.A., Oakley,B.B., Parks,D.H.,
Robinson,C.J. et al. (2009) Introducing mothur: open-source,
platform-independent, community-supported software for
describing and comparing microbial communities. Appl. Environ.
Microbiol., 75, 7537–7541.

8. Li,W., Jaroszewski,L. and Godzik,A. (2001) Clustering of highly
homologous sequences to reduce the size of large protein
databases. Bioinformatics, 17, 282–283.

9. Corander,J. and Marttinen,P. (2006) Bayesian identification of
admixture events using multi-locus molecular markers. Mol. Ecol.,
15, 2833–2843.

10. Corander,J. and Tang,J. (2007) Bayesian analysis of population
structure based on linked molecular information. Math. Biosci.,
205, 19–31.

11. Hanage,W.P., Fraser,C., Tang,J., Connor,T. and Corander,J.
(2009) Hyper-recombination, diversity and antibiotic resistance in
the pneumococcus. Science, 324, 1454–1457.

12. Cheng,L., Connor,T.R., Aanensen,D.M., Spratt,B.G. and
Corander,J. (2011) Bayesian semi-supervised classification of
bacterial samples using MLST databases. BMC Bioinformatics,
12, e302.

13. Bernardo,J.S. and Smith,A.F.M. (1994) Bayesian Theory. Wiley,
Chichester, UK.

14. Corander,J., Gyllenberg,M. and Koski,T. (2009) Bayesian
unsupervised classification framework based on stochastic
partitions of data and a parallel search strategy. Adv. Data Anal.
Classif., 3, 3–24.

15. Barbara,D., Couto,J. and Li,Y. (2002) COOLCAT: an
entropy-based algorithm for categorical clustering. In: Proceedings
of CIKM ’02: pp. 582–589.

16. MacKay,D. (2003) Information Theory, Inference, and Learning
Algorithms.. Cambridge University Press, Cambridge, UK.

17. Rambaut,A. and Grassly,N.C. (1997) Seq-Gen: an application for
the Monte Carlo simulation of DNA sequence evolution along
phylogenetic trees. Comput. Appl. Biosci., 13, 235–238.

18. Gilles,A., Meglecz,E., Pech,N., Ferreira,S., Malausa,T. and
Martin,J.F. (2011) Accuracy and quality assessment of
454 GS-FLX Titanium pyrosequencing. BMC Genomics,
12, e245.

19. Haas,B.J., Gevers,D., Earl,A.M. et al. (2011) Chimeric 16S rRNA
sequence formation and detection in Sanger and
454-pyrosequenced PCR amplicons. Genome Res., 21, 494–504.

20. Edgar,R.C., Haas,B.J., Clemente,J.C., Quince,C. and Knight,R.
(2011) UCHIME improves sensitivity and speed of chimera
detection. Bioinformatics, 27, 2194–2200.

21. Bonnet,R., Suau,A., Dore,J., Gibson,G.R. and Collins,M.D.
(2002) Differences in rDNA libraries of faecal bacteria derived
from 10- and 25-cycle PCRs. Int. J. Syst. Evol. Microbiol., 52,
757–763.

22. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Res., 32,
1792–1797.

23. Katoh,K., Misawa,K., Kuma,K. and Miyata,T. (2002)
MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids
Res., 30, 3059–3066.

24. Edgar,R.C. (2004) MUSCLE: a multiple sequence alignment
method with reduced time and space complexity.
BMC Bioinformatics, 5, 113.

Nucleic Acids Research, 2012, Vol. 40, No. 12 5249

 at N
ational L

ibrary of H
ealth Sciences on A

ugust 21, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gks227/DC1
http://nar.oxfordjournals.org/

