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2 ABBREVIATIONS 

 
aCGH array Comparative Genomic Hybridization 
BAC bacterial artificial chromosome 
bp base pair 
cDNA complementary DNA 
CIN chromosomal instability 
cPARP cleaved poly (ADP-ribose) polymerase protein 
CTG CellTiter-Glo 
DCIS ductal carcinoma in situ 
DSB double stranded break 
EC50 half maximal effective concentration 
ER estrogen receptor 
FISH fluorescent in situ hybridization 
GEO Gene Expression Omnibus 
GINI gene identification by nonsense inhibition 
kb kilobase, i.e. 1000 base pairs 
LMA lysate microarray 
Mb mega base pair, i.e. one million base pairs 
mRNA messenger RNA 
NMD Nonsense-mediated mRNA decay 
pAKT phosphorylated v-akt murine thymoma viral oncogene homolog 
 protein 
PCR polymerase chain reaction 
PR progesterone receptor 
pS6K phosphorylated p70-S6 kinase 
PTC premature termination codon 
RMA robust multiarray average 
RNA-seq RNA-sequencing 
RPKM reads per kilobase per million aligned sequences 
rRNA ribosomal RNA 
TNM tumor, lymph node, metastasis classification of malignant 
 tumors 
TSG tumor suppressor gene 
TSS transcription start site 
UTR untranslated region 
wt wildtype 
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3 ABSTRACT 

Cancer is a disease characterized by the accumulation of somatic cellular 
aberrations, whether in the DNA or epigenetic changes, which are inherited 
from cancer cell generation to generation. During the last decade, many 
different techniques have been developed to comprehensively characterize 
these changes in cancer cells, resulting in thousands of publications on 
various cancer types. Different types of microarrays can now measure the 
expression of essentially all genes or DNA copy number at up to 1 kilo base 
pair (kb) resolution in a tumor. Sequencing, whether targeted to specific 
genes or, increasingly, to all exons (exome sequencing) or whole genome 
sequencing, has identified genes mutated at various frequencies in many 
cancer types. In parallel with the development of laboratory techniques, a 
large variety of bioinformatic methods to analyze data from these have been 
developed. However, many of these concentrate on the analysis of data from 
only one laboratory technique, while it is becoming clear that advances in 
cancer research increasingly depend on integration of multiple different data 
types for the same tumors. Simultaneously, the recent explosive growth in 
sequencing data requires the development of new analythical methods. The 
aim of this thesis was to further characterize the genomic changes in breast 
cancer, with an emphasis on the development and application of 
bioinformatic methods to analyze and integrate data from different high 
throughput analysis techniques. 

In the first part of this work, the Gene Identification by Nonsense 
Inhibition (GINI) method was applied to identify potential tumor suppressor 
genes (TSGs) in breast cancer. The integration of steady state gene 
expression, transcript stabilization and array comparative genomic 
hybridization (aCGH) data for six breast cancer cell lines led to the 
identification of a nonsense mutation in the RIC8A gene located at 11p15, a 
region deleted in ~15% of breast tumors. Despite being unable to identify 
further mutations or methylation of RIC8A in tumors, low RIC8A expression 
was shown to be associated with estrogen (ER) and progesterone receptor 
(PR) negative tumors as well as loss of TP53. This suggests loss of RIC8A 
expression may be important in a subgroup of aggressive breast cancers. 

When study II was started, only a few papers describing fusion gene 
identification using RNA-sequencing (RNA-seq) data had been published, 
and all suffered from a high rate of false positive findings, requiring extensive 
post-sequencing validation. In this study, we developed a bioinformatic 
method for highly specific fusion gene identification from paired-end RNA-
seq data. Application of the bioinformatic pipeline to four breast cancer cell 
lines led to the identification of 24 novel and three previously published 
fusion genes, with 95% specificity. In addition to showing that fusion genes 
are more prevalent in breast cancer than previously thought, several 
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biological characteristics of fusion genes were identified. Most prominently, 
fusion genes were frequently associated with DNA copy number transitions, 
particularly high level amplifications, suggesting that most of them are not 
generated by balanced rearrangements. siRNA knock-down studies 
furthermore provided evidence for the functional importance of the VAPB-
IKZF3 fusion gene in the BT-474 cell line. 

In the final study, we used aCGH to characterize the size distribution of 
the ERBB2 amplicon across 71 amplicon carrying tumors and 10 cell lines. 
The minimal common region of amplification in the tumors was 78.61kb, and 
included the genes STARD3, TCAP, PNMT, PERLD1, ERBB2 and MIEN1 
(C17orf37). To study the possible contribution to cancer of other coamplified 
genes in the amplicon, 23 genes amplified in 60% of tumors were selected for 
siRNA screening in two trastuzumab sensitive, two insensitive and one 
control cell line. In addition to single gene siRNA silencing experiments, 
PPP1R1B, STARD3, PERLD1, GRB7 and PSMD3 were knocked-down 
together with ERBB2 to identify synergistic effects. In all ERBB2 positive cell 
lines, for instance, simultaneous silencing of ERBB2 and PPP1R1B led to a 
synergistic inhibition of the Akt pathway, as measured by phosphorylated 
AKT (pAKT) and phosphorylated S6-kinase (pS6K). Silencing of PPP1R1B 
alone had no effect on pAKT or pS6K in any of the cell lines. Silencing of 
several other genes, either alone or in combination with ERBB2, was also 
found to have an effect on several endpoints. These results suggest that 
cancer cells may be dependent on a number of genes in an amplicon besides 
the primary driver oncogene, a phenomenon termed non-oncogene 
addiction. 
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4 INTRODUCTION 

Breast cancer is the most common cancer in women in Finland, with 4475 
new cases diagnosed in 2009 [1]. It can be classified in a number of ways; 
based on histology, grade, stage as well as the presence or absence of 
molecular markers. Histologically breast cancer is divided into two main 
types, ductal and lobular, depending on the tissue from which the tumor 
arises. Minor subtypes represent ~5% of breast cancers, the most common 
being mucinous, tubular and medullary breast cancer [2, 3]. Gene expression 
microarray data has also been used to subdivide breast cancer into five 
different subtypes; luminal A and B, basal, ERBB2 positive and normal-like, 
which differ from each other in terms of prognosis [4-6].  

Breast cancer incidence starts rising after the age of 45, with a mean age 
at diagnosis of 60 [1]. Factors that increase the risk of breast cancer include 
low age of menarche, late onset of menopause, hormone replacement therapy 
in conjunction with menopause, obesity, alcohol consumption and smoking 
[7]. Factors that protect from breast cancer include low age at the time of the 
birth of the first child as well as the total number of children, breast feeding, 
exercise and a diet rich in vegetables [7]. Inherited mutations in genes such 
as BRCA1, BRCA2, ATM, CHEK2 and PALB2 also significantly increase the 
risk of developing breast cancer [8]. 

Commonly used prognostic factors after a breast cancer diagnosis include 
TNM status, tumor grade and size, patient age, tumor proliferation as 
measured by Ki67 expression, expression of molecular markers such as 
estrogen and progesterone receptors as well as overexpression and possible 
amplification of the HER2 protein [9]. In recent years, bioinformatic 
analyses of gene expression microarray data from large sets of breast cancers 
has lead to the development of multiple expression based classifiers or 
signatures that are able to predict various features related to the cancer. 
Currently, the most widely used are the gene expression based classifiers 
MammaPrint [10] and Oncotype DX [11], the first of which is currently 
undergoing further validation as part of the MINDACT prospective 
randomized phase III clinical trial [12]. Both of them primarily have a role in 
predicting outcome and consequently the benefit of adjuvant chemotherapy 
in patients with early stage cancer. In the MammaPrint test, patients are 
divided into good- and poor prognosis groups based on the correlation 
between the expression levels of 70 genes in their tumor and the average 
expression of the same genes in a set of previously profiled patients with 
good prognosis[10]. The Oncotype DX recurrence score, in turn, is based on 
the weighted sum of the normalized expression levels of 16 cancer associated 
genes, based on which patients are assigned a low, medium or high risk of 
recurrence [13]. Other classifiers which predict survival e.g. on the basis of 
the pattern of DNA amplifications [14] or specific gene expression profiles 
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[15] have also been developed. However, most of these have not entered into 
widespread clinical use. 

The primary treatment for breast cancer is surgery to remove the tumor 
and possible lymph node metastases, possibly preceeded by preoperative 
chemotherapy. After surgery, adjuvant systemic treatments such as 
endocrine therapy or chemotherapy are prescribed for patients with a high 
risk of metastasis and radiation to those with risk of local recurrence [16-18]. 
Adjuvant treatment is estimated to decrease breast cancer mortality by ~30% 
during 15 years of followup [18]. Inhibitors of the protein product of the 
ERBB2 gene, such as trastuzumab, are also used to treat patients whose 
tumors overexpress HER2. The survival benefit of trastuzumab is well 
established when it is given concurrently with chemotherapy, whereas the 
benefit is less clear when given subsequent to chemotherapy [19]. 

In Europe, breast cancer is both the most common cancer in women, 
accounting for 26% of all cases, as well as the leading cause of cancer 
mortality in women, at 17% of all cancer deaths [20]. However, the Europe-
wide average age-standardized 5-year relative survival for breast cancer is 
79%, higher than for several other common cancers, such as colorectal (53%), 
ovarian (36%) and lung (12%) cancer [21]. Breast cancer incidence has 
increased significantly in Finland between 1964 and 2004 [22]. During the 
same period, the prognosis for breast cancer has also improved considerably 
[22]. The reason for improved survival is believed to be improved adjuvant 
treatments, but also earlier diagnosis thanks to screening mammography 
[23, 24]. 

Optimal anti-cancer therapies specifically kill cancer cells, while leaving 
normal cells unaffected. Mutations in oncogenes that the cancer depends on 
for continued survival are therefore good drug targets. Inhibiting the 
mutated protein would block cancer cell survival and, by being unique to the 
cancer cell, hopefully also provide a therapeutic window. The discovery of the 
mutations and epigenetic changes causing cancer is therefore of great 
importance. Even when the mutations are not in directly druggable genes, 
they teach us about the biology and vulnerabilities of the cancer cells and 
thereby may allow us to identify other nodes in the signaling network that 
can be targeted. In breast cancer, the primary example of a therapy 
specifically targeted against a somatic genomic abnormality is trastuzumab, a 
monoclonal antibody recognizing the HER2 protein, used in the treatment of 
patients whose tumors have amplified and overexpressed ERBB2 [25]. 
However, only some patients with ERBB2 amplification respond to 
trastuzumab and even those who do, usually develop resistance over time. A 
significant fraction of breast cancers, so called triple-negative tumors, also 
lack both ER and PR expression as well as ERBB2 overexpression and 
amplification and no molecularly targeted therapies for them exist. There is 
therefore a great need to more thoroughly characterize the aquired genetic 
changes in breast cancer, both in order to identify the mechanisms of 
resistance against existing drugs, as well as to develop new treatments. 
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5 REVIEW OF THE LITERATURE 

5.1 THE MOLECULAR BIOLOGY OF BREAST CANCER 

Breast cancer is a genetic disease in two different ways. On the one hand, 
inherited high and low penetrance mutations may predispose a person to 
developing breast cancer. On the other hand, and more central to this thesis, 
breast cancer is a genetic disease in that the tumor develops as a consequence 
of the accumulation of mutations in the genomes of the evolving cancer cells. 
These mutations range from single point mutations and copy number 
changes affecting only a few nucleotides up to gains, losses or 
rearrangements of significant portions of whole chromosomes. The common 
effect of these different aberrations is to activate cancer promoting genes 
(oncogenes) and inactivate genes that protect cells from malignant 
transformation (tumor suppressor genes, TSGs). A third category of genes 
mutated in cancer are the so-called stability or caretaker genes, although 
these are often classified among TSGs. Mutations in these genes do not, in 
themselves, lead to cancer. Rather, inactivation of these genes either directly 
or indirectly increases the rate at which mutations occur, e.g. through 
defective DNA repair, and thereby increase the likelihood of oncogenic 
mutations arising [26]. 

Several external factors are known or suspected to promote 
carcinogenesis. These include exposure to radiation and chemical agents, 
either natural or man-made [27]. Infectious agents are also known to 
promote cancer formation, either as direct (e.g. expression of virus derived 
oncogene) or indirect (chronic inflammation) carcinogens [28], [29]. In 
addition, inherited mutations may also predispose to specific cancer types 
[30], [31]. Immune suppression caused by HIV infection [32] or 
immunosuppressive drugs required after organ transplantation [33] also 
increase the likelyhood of developing specific types of cancers. Spontaneous 
mutations, caused e.g. by proofreading deficient DNA polymerases [34] also 
occur constantly in human cells, contributing to cancer formation. Most of 
the time, mutations are either harmless, repaired, or cause the cell to enter 
apoptosis, but sometimes the mutations are not eliminated and the cell starts 
on the road towards cancer. The role of randomness and plain bad luck 
should therefore not be discounted as causative factors for cancer. 

Most tumors derive from a single progenitor cell and are therefore clonal. 
However, this does not preclude heterogeneity within the tumor, which 
continuously arises when different subclones follow independent 
developmental trajectories towards increased malignancy [35, 36]. A 
subclone with the greatest growth rate, i.e. largest fitness in evolutionary 
terms, may come to dominate the tumor mass. However, unless the physical 
space that the tumor occupies is restricted, e.g. by the tumor not being able 
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to invade surrounding tissues, the clone is unlikely to outcompete and 
completely replace less fit subclones and heterogeneity will remain. 
Metastases in different parts of the body also frequently differ from the 
primary tumor as well as from each other in terms of mutations [37]. From 
the tumor's point of view, heterogeneity becomes important as it is the pool 
from which treatment resistant subclones may arise. 

When compared to normal cells, cancer cells have aquired a number of 
capabilities necessary for cancer formation, the so-called "hallmarks of 
cancer" [38]. These hallmarks are limitless replicative potential, 
selfsufficiency in growth promoting signals, the ability to evade growth 
suppressing signals, resistance to programmed cell death, the ability to 
induce angiogenes and, most lethally, the capability to invade surrounding 
tissues and metastasize. Two additional hallmarks have recently been 
suggested: reprogramming of energy metabolism and the ability to evade 
destruction by the immune system. In essence, the developing cancer must 
aquire all these capabilities in order to counter and evade the safety 
mechanisms the body has evolved as defenses against cancer formation. 

5.1.1 ONCOGENES AND TUMOR SUPPRESSOR GENES 
Proto-oncogenes are normal genes that, when their function changes, cause 
cancer [26]. A proto-oncogene can be transformed into an active oncogene in 
two different ways. A mutation may change the function of the protein, 
typically making it continuously active, as opposed to the wildtype (wt) form, 
which is only active under strictly controlled circumstances. An example in 
breast cancer is the p110α catalytic subunit of the PI3-kinase, PIK3CA, which 
is mutated in ~30% of tumors [39]. Point mutations in PIK3CA cluster in the 
helical and kinase domains of the protein and both lead to increased kinase 
activity and consequent abnormal activation of the PI3K pathway [39]. The 
second way is to significantly increase the production of the, frequently wt, 
proto-oncogene protein product, thereby activating it. Several mechanisms 
may lead to overexpression of an oncogene. The most commonly amplified 
and overexpressed oncogene in breast cancer is the receptor tyrosine kinase 
ERBB2 (also known as HER2) on chromosome 17. Amplification of ERBB2 is 
observed in 20-25% of breast cancers [40, 41] and leads to overexpression of 
it's protein product, the HER2 protein. This in turn leads to the activation of 
downstream pathways, in particular the PI3K-AKT and MAP-kinase 
pathways [42], which are central in cancer cell growth and survival. 
Irrespective of how an oncogene is activated, it functions by contributing to 
the development one or more of the cancer hallmarks described in the 
previous section. Mutationally activated PIK3CA, for instance, enables both 
anchorage- and growth factor independent growth as well as protects 
immortalized mammary epithelial cells from anoikis, a form of programmed 
cell death induced by loss of contact with extracellular matrix [43, 44]. 
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Tumor suppressor genes (TSGs) function, in the broadest sense, by 
restraining improper cell growth (table 1). Some, such as RB1 and the family 
of cyclin dependent kinase inhibitors function in cell cycle regulation, 
preventing a cell from passing through specific checkpoints and completing 
cell division before the preconditions of each checkpoint are met [26]. 

Table 1. Tumor suppressor genes mentioned in the text and their main 
mechanisms of action. 

Tumor suppressor Mechanisms of action 
RB1 regulation of cell cycle 

cyclin dependent kinase 
inhibitors regulation of cell cycle 

PTEN regulation of growth factor signaling, genomic 
stability 

TP53 many, including DNA damage response and 
regulation of apoptosis 

BRCA1, BRCA2, MLH1 DNA repair 
 
 
Others, such as PTEN, work by negatively regulating growth factor 

signaling. PTEN counteracts PI3K signaling by dephosphorylating 
phosphatidylinositol (3,4,5) trisphosphate, the substrate of the catalytic 
subunit PIK3CA of PI3-kinase. Loss of PTEN function, whether through 
mutation [45], deletion [46], downregulation of expression via methylation 
[47, 48] or inactivation of the PTENP1 pseudogene [49] therefore releases 
PI3K signaling from negative feedback and increases the activity of the 
pathway. However, it has recently been found that PTEN additionally plays a 
role in e.g. maintaining genomic stability, seemingly independent of the PI3K 
pathway [50], suggesting yet another way by which PTEN loss may cause 
cancer. In breast cancer, PTEN protein expression is lost in 37-48% of 
tumors [41, 51]. Contrary to the common assumption that an oncogenic 
pathway typically only needs to be activated by one alteration, PTEN loss is 
not mutually exclusive with PIK3CA mutation [41, 52]. Rather, many breast 
tumors carry both mutated PIK3CA in addition to having lost PTEN. In 
addition to PIK3CA, ERBB2 and PTEN, alterations in several other genes, 
such as AKT1, EGFR, PDK1 and KRAS activate the PI3K pathway in breast 
cancer [53], pointing to the central importance of this pathway in breast 
cancer development. 

Yet other tumor suppressor genes, such as TP53, survey the cell for signs 
of incorrect behaviour, such as DNA damage, and trigger repair processes or 
apoptosis if such is found. In breast cancer, TP53 itself is mutated in 20-40% 
of tumors [54]. Additional mechanisms for TP53 inactivation in breast cancer 
include e.g. amplification of MDM2, a negative regulator of TP53. A study by 
Miller et al. [55] on 251 consecutively collected breast cancers showed that 
58/251 (23%) tumors had TP53 mutations, while a gene expression 
microarray-based classifier developed in the study identified an additional 14 
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(5.6%) tumors that showed an expression profile of TP53 pathway 
inactivation. 

Some TSGs have their main function in e.g. DNA repair and their 
inactivation leads to an increased accumulation of mutations, thereby 
increasing the likelyhood that other oncogenic mutations will occur. In breast 
cancer, the two most significant predisposing genes BRCA1 and BRCA2 both 
play a role in the repair of double stranded breaks (DSBs) through 
homologous recombination, and mutations in them lead to genomic 
instability [56]. 

The classical model for TSG inactivation is the Knudson two-hit model 
[57, 58]. In this model, both alleles of a TSG must be inactivated for cancer to 
develop, with one wt allele being sufficient for normal cellular functions. For 
some TSGs, however, loss of one allele is sufficient for an altered phenotype, 
the phenomenon known as haploinsufficiency. Reduction in PTEN levels, for 
instance, correlates in a dose-dependent manner with prostate cancer 
incidence, latency and progression [59]. High penetrance cancer 
predisposition genes, such as BRCA1, MLH1 and a large number of other 
cancer genes [60] are typically categorized as recessive, in that on a cellular 
level, both copies need to be inactivated, whereas they function dominantly 
on the whole organism level, i.e. inheriting one mutation is sufficient to cause 
disease [61]. Rare exceptions to this rule include the RET oncogene [62]. One 
possible explanation for this is that inherited activating mutations in 
oncogenes would potentially alter and disturb the function of all cell types 
expressing them and thereby not be compatible with normal development. 
Cells carrying one mutated TSG allele, however, would function normally and 
only cells in which both copies are inactivated have altered function [26]. 

It has recently been suggested that, in addition to oncogenes and TSGs, 
cancer cells may become dependent on genes that in themselves do not cause 
cancer, so called "non-oncogene addiction" [63, 64]. This theory proposes 
that the process of malignant transformation causes the cancer cells to 
become dependent on genes that protect them from various kinds of stress, 
creating a synthetic lethal interaction. The source of this stress may be excess 
DNA damage, protein folding related stress, metabolic stress and the general 
stress encountered by a cell in a solid tumor (hypoxia, mechanical stress, low 
nutrient levels) [63, 65]. Examples of such genes include HSF1 [65] and 
PARP1 [64]. Breast cancer cells that have lost both copies of BRCA2 are 
deficient in homologous recombination. This makes the cells dependent on 
PARP1 for repair of this category of DNA lesions and gives rise to a synthetic 
lethal interaction between BRCA2 mutation and PARP1 [64]. PARP1 
inhibition has been shown to be effective in treating especially BRCA2 
mutant breast cancer [66]. 
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5.1.2 GENOMIC ALTERATIONS IN CANCER 

5.1.2.1 Aneuploidy and chromosomal instability 
Practically all cancer genomes are altered by different combinations of point 
mutations, copy number changes and chromosomal rearrangements [67] 
(table 2). Aneuploidy, defined as the gain or loss of whole chromosomes, is 
almost ubiquitous in cancer. It is frequently caused by chromosomal 
instability (CIN), the inability of a cell to correctly divide the chromosomes 
into daughter cells. In that case, aneuploidy is an evolving process, with every 
cell division potentially altering the chromosome composition of the 
daughter cells [68]. However, a cancer may also have a stable though 
aneuploid karyotype, with no continuing CIN [69]. In solid tumors, CIN in 
general is associated with poor prognosis [70]. The relationship may not be 
directly linear, however, as in breast cancer, tumors with the highest level of 
CIN have a better prognosis than those with a more moderate level of 
instability [71]. The manner in which aneupoloidy contributes to cancer 
development is still unclear [72, 73]. Aneuploidy carries a replicative penalty 
in both normal and cancer cells [74, 75], yet it is seen in nearly all cancers. In 
mice with widespread aneuploidy due to haploinsufficiency in mitotic 
checkpoint genes, such as Rae1 and Bub3, aneuploidy has been shown to 
increase carcinogen induced tumorigenesis [76], even when aneuploidy itself 
does not increase cancer incidence [77]. Aneuploidy may also be a 
mechanism by which the cell can get rid of a remaining wt TSG allele or 
duplicate, and thereby increase the dosage of, a mutated oncogene. In 
addition, gain or loss of whole chromosomes or chromosome arms may 
contribute to cancer through dosage effects on a large number of genes, e.g. if 
they create additional genomic instability or provide a buffer of extra copies 
of essential genes, such that functional copies of them are more likely to be 
available even if the mutation rate is high [73]. The importance of the last 
hypothesis could be tested in cancer types, such as lung cancer, that are 
known to carry a large number of mutations due to mutagen exposure [78] or 
individual tumors that have a high mutation rate. If the buffering hypothesis 
would be true, these cancers should, on average, be more aneuploid. 
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Table 2. Genomic aberrations commonly occurring in cancer. 

Genomic 
alteration Description 

point mutation A change of a single nucleotide to another. 
insertion / 
deletion Addition or loss of one or more consecutive nucleotides. 

aneuploidy An abnormal chromosome number. In the context of 
cancer, usually somatically acquired. 

amplification An increase in copy number of a genomic region. 
deletion Loss, either of one or both copies of a genomic region. 

chromosomal 
rearrangement 

A general term for various chromosomal aberrations, 
including inversions and translocations. 

translocation Fusion of part of one chromosome to another, non-
homologous, chromosome. 

 
 
Even under normal circumstances, the genome of every cell daily receives 

and repairs thousands of DNA lesions of various kinds [79, 80]. In most 
cases, the lesions are either repaired or, if their extent is too large, the cell 
goes into apoptosis or senescence [81]. Either way, mutations are not 
transmitted to daughter cells. In cancer, single nucleotide mutations, small 
insertions and deletions (indels) and e.g. microsatellite instability and larger 
genomic rearrangements, such as amplifications and translocations occur 
due to different types of mistakes during DNA repair [82]. Single nucleotide 
mutations and small indels can arise during DNA replication if the DNA 
polymerase makes a mistake [83] or at any other point during the cell cycle, 
mostly as a consequence of normal cellular metabolism. External factors, 
such as mutagenic chemicals and radiation can also cause DNA damage [79]. 
The central role of DNA damage repair in cancer formation is exemplified by 
the large number of tumor suppressor genes that code for proteins involved 
in DNA damage response. 

5.1.2.2 Copy number alterations 
Many solid tumors, including breast cancers, contain amplifications or 
deletions of genomic regions of various sizes [84]. Amplifications are thought 
to arise primarily through breakage-fusion-bridge cycles, caused e.g. by 
telomere attrition, and via the formation of double minute chromosomes 
[85]. High-level amplifications affect cancer development by upregulating 
the expression of one or more genes in the amplicon [84, 86, 87]. Examples 
of amplification targets include ERBB2 and CCND1 in breast cancer [40, 88] 
and the Myc family genes MYCN, MYCL1 and MYC in a variety of cancers 
[89-91]. Amplicons containing multiple interacting oncogenes are also 
known [92, 93], and fusion genes can also be formed within or at the borders 
of high level amplifications [94]. Additionally, presumably independently of 
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the specific genes amplified, the pattern of complex genomic rearrangements 
in a breast tumor is prognostic of outcome [95]. 

Homozygous deletions occur frequently in cancers and are thought to 
primarily affect cancer development through inactivation of TSGs. As an 
alternative to TSG inactivation, deletions may also lead to fusion gene 
formation, as has been shown for TMPRSS2-ERG [96]. However, as 
recurrent homozygous deletions also occur at fragile sites, i.e. parts of the 
genome that are prone to genomic breaks due to some inherent feature, 
homozygous loss of a gene as such is not conclusive evidence of cancer 
relevance. Recent studies indeed suggest that a majority of homozygous 
deletions occur at fragile sites [97, 98]. 

5.1.2.3 Translocations 
Recurrent chromosomal translocations and the resulting gene fusions are 
well known mechanisms for oncogene activation and occur frequently in 
leukemias, lymphomas and sarcomas [99, 100]. Translocations form through 
double stranded breaks, which can be generated by e.g. immunoglobulin 
gene processing in B cells [101, 102], DNA damage e.g. caused by genotoxic 
agents or occuring during DNA replication, double stranded breaks caused 
by chromosome segregation errors [103], chromotripsis [104, 105] and 
during amplification formation [94, 106, 107]. Essentially any process that 
gives rise to two or more double stranded breaks that are then not repaired 
correctly is capable of generating translocations. In addition, the two 
sequences that are fused may need to be in close proximity in the nucleus 
[108]. The best studied example is BCR-ABL in chronic myelogenous 
leukemia [109, 110], which is formed by a translocation between 
chromosomes 9 and 22. The discovery of translocations involving Ets-family 
members in prostate cancer [111], EML4-ALK in lung cancer [112] and CD44-
SLC1A2 in gastric cancer [113] now suggests that fusion genes may play a 
more prominent role in the development of epithelial cancers than previously 
anticipated. In breast cancer, both primary tumors and cell lines have been 
found to contain fusion genes [94, 114-116], but recurrent fusions have only 
been known in rare subtypes, such as ETV6-NTRK3 in secretory breast 
carcinoma [117] and MYB-NFIB in adenoid cystic carcinoma of the breast 
[118]. Recently, rare but recurrent rearrangements of NOTCH and MAST 
family genes as well as the recurrent RPS6KB1-VMP1 fusion have been 
reported in breast cancer [116, 119]. Individual examples of both fusion 
categories have also been reported previously, e.g. NOTCH1-NUP214 and 
RPS6KB1-VMP1 (previously known as RPS6KB1-TMEM49) [94] and 
ARID1A-MAST2 [114]. However, in regard to RPS6KB1-VMP1, Inaki et al. 
[116] suggest that it may rather be a marker of genomic instability or 
amplification of the 17q23 locus in which both genes are located, than an 
oncogenic fusion transcript. 
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5.1.2.4 Driver and passenger mutations 
Although there is significant intertumoral variation in the number of 
mutations they carry, most tumors contain a large number of mutations, 
especially point mutations [120]. Mutations that attain a significant 
frequency in a tumor are unlikely to have a negative impact on cancer cell 
growth, as cells carrying these would have been removed by negative 
selection. Mutations can therefore be divided into two categories, drivers and 
passengers, based on whether they increase the net growth rate of a 
developing cancer cell, or whether they are selectively neutral [120]. The 
average selective growth advantage of an individual driver mutation has been 
estimated to be only ~0.4% [121], suggesting a developing tumor must 
accumulate a surprisingly large number of driver mutations, before 
becoming life threathening. The percentage of all mutations in a tumor that 
are drivers is poorly known, but results from glioblastoma multiforme 
suggest 8% of missense mutations may be drivers [122]. 

5.1.2.5 Epigenetic alterations 
In addition to the DNA changing alterations described above, epigenetic 
changes are also common in cancers [123], and cancer genomes as a whole 
are frequently hypomethylated [123]. However, hypermethylation of CpG 
islands close to the promoters of genes leads to their silencing, and this is a 
common mechanism for TSG inactivation in cancer. Genome wide, several 
cancer types show alterations in CpG island methylation boundaries and 
significantly increased between tumor heterogeneity in the methylation 
status of a large number of specific genomic regions, compared to their 
tissues of origin [124]. This indicates a general loss of epigenetic stability in 
cancer and results in both inter- and intratumoral heterogeneity through its 
effects on gene expression levels [124]. Methylated cytosines in CpG 
dinucleotides are also more prone to mutation, either spontaneously or when 
exposed to ultraviolet light or tobacco carcinogenes [123]. The importance of 
altered methylation in cancer development is also supported by the recent 
discovery of frequent mutations in e.g. the DNMT3A DNA methyltransferase 
in acute myeloid leukemia, myelodysplastic syndrome and T-cell lymphoma 
[125-127] 
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5.2 METHODS FOR DETECTING CANCER 
ALTERATIONS 

5.2.1 ARRAY COMPARATIVE GENOMIC HYBRIDIZATION 
Array comparative genomic hybridization is based on the concept of 
competitive hybridization of DNA from two samples to the probes on a 
microarray [128-131]. Both cDNAs, bacterial artificial chromosomes (BACs) 
and synthetic oligonucleotides have been used as probes, typically printed or 
synthesized onto glass microscope slides [130, 132]. If some part of the 
genome is not present in equal number of copies in both samples, this will be 
visible as either a gain or loss of fluorescent signal from probes measuring 
that region, indicating the presence of an amplification or deletion. aCGH is 
always comparative, in other words, gains and losses are defined in relation 
to a reference sample. This applies also to Affymetrix SNP microarray 
derived copy number data, even if the hybridizations themselves are done 
with one sample per microarray and therefore are not competitive. Current 
aCGH microarrays can contain up to 1 million probes (Agilent SurePrint G3 
Human High-Resolution Discovery 1M arrays), providing an average 
resolution of 3kb across the genome. aCGH does not detect balanced 
genomic rearrangements, such as translocations, in which no genetic 
material is gained or lost. In practice, however, it seems that many, if not 
most, translocations are accompanied by small copy number changes (either 
deletions or gains), which may be visible using aCGH [94, 133]. aCGH has 
been used most widely in cancer research [131]. Compared to G-band 
karyotyping, aCGH is able to identify much smaller copy number variants, 
and is therefore increasingly used in the diagnosis of e.g. idiopathic mental 
retardation and developmental malformations [134] as well as in prenatal 
diagnosis [135]. Beyond medical applications, aCGH has been used to study 
population wide copy number variation in several species, including humans 
[136, 137], various great apes [138] and dogs [139]. 

As aCGH data is comparative, results are nearly universally reported as 
ratios of sample divided by reference, frequently log-transformed to make 
them symmetric around zero. Visualization of the ratios in the context of 
their genomic positions then allows the determination of copy number 
profiles for all examined chromosomes. Simultaneous analysis of copy 
number profiles from multiple samples can be used to identify minimal 
common regions of amplification and deletion, the locations of potential 
oncogenes and TSGs [140, 141]. Minimal common region identification rests 
on dividing the genome into non-overlapping regions of differing copy 
number by segmentation [142-144].  Segmentation provides smoothed DNA 
copy number estimates for genomic regions by using the ratios from multiple 
adjacently located probes to derive an average copy number value for the 
region. Gene level copy number values, for integration with e.g. gene 
expression data, can be derived directly from the values of the segment in 
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which the gene is located. Alternatively, gene level copy number data can be 
calculated, on a gene by gene level, from probes located in a specified window 
surrounding the gene's location [145]. Recently, next generation whole 
genome- or exome sequencing data has also been used for estimation of copy 
number [35, 146, 147], and this may come to replace aCGH in areas of 
research in which sequencing becomes common. 

5.2.2 GENE EXPRESSION ARRAYS & GINI 
Gene expression microarrays are miniaturized assays that enable measuring 
the expression of nearly all protein coding genes in the human genome in a 
single experiment. Expression arrays can be divided into two main types. 
One is based on the competitive hybridization of two samples on the same 
array, as done with aCGH [148]. In the other type, only one sample is 
hybridized onto the microarray, and the quantified signal is therefore the 
absolute fluorescent intensity measured, not a ratio of signal from two 
samples [149, 150]. As with aCGH, the probes may be either cDNAs or 
synthesized oligos, the latter being used almost exclusively these days. Oligo-
based expression arrays range from relatively simple designs using long 60 
base pair (bp) oligos (e.g. Agilent) to the more complex short oligo-based 
design of Affymetrix. Expression arrays have been used extensively in cancer 
research, contributing to identifying, in breast cancer alone, new subtypes [4, 
5, 151], expression profiles predictive of disease outcome [152] and the 
impact of DNA copy number changes on expression levels [86, 87]. Outside 
of cancer research, they have been used in anything from researching the 
effects of parabolic flight on plant gene expression [153] to stydying gene 
expression changes in the brain caused by the domestication of dogs from 
wolves [154]. 

Although the bioinformatic methods used to analyze microarray data are 
almost as varied as the hypotheses being studied, all analyses start with 
preprocessing the microarray data [155]. The first step in data aquisition is 
the segmentation of scanned microarray images to obtain signal intensities 
for all probes [156]. In the literature, the post signal aquisition steps in 
microarray data preprocessing are frequently simply called "data 
normalization", although formally normalization is only one of the steps in 
preprocessing. Microarray preprocessing methods vary depending on the 
type of microarray, but all aim at correcting for technical noise and variation 
in the data [157]. For single-color microarrays, such as Affymetrix, one of the 
most commonly used preprocessing methods is the Robust Multiarray 
Average (RMA) [158]. RMA consists of three processing steps. The first step 
is background adjustment, in which an estimate of background signal 
intensity is subtracted from probe signals, under the assumption that 
background signal represents nonspecific hybridization. After background 
adjustment, probe intensities are normalized using quantile normalization. 
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Finally, data is summarized at the level of probe sets or other probe 
groupings, such as Ensembl gene definitions [159, 160]. 

Clustering and classification methods, also termed unsupervised and 
supervised classification, have frequently been used in microarray data 
analysis, the former especially in exploratory data analysis. Examples include 
the previously mentioned identification of breast cancer subtypes using 
hierarchical clustering [5] and definition of new subtypes of diffuse large B-
cell lymphoma [161]. One major aim of microarray data analysis is the 
identification of genes that are differentially expressed between two or more 
groups of samples, e.g. samples subjected to a treatment compared to an 
untreated control group. Methods range from simple log fold change 
calculation [155] to more complex methods, such as Gene Set Enrichment 
Analysis [162, 163], that do not rely on defining a ratio cutoff for differential 
gene expression, but rather identify simultaneous changes in groups of genes 
that share a biological function. During the last decade, the data from tens of 
thousands of microarray hybridizations has been made public through 
repositories such as Gene Expression Omnibus (GEO) [164] and 
ArrayExpress [165]. This has prompted the development of meta-analysis 
methods to integrate data across multiple studies to be able to answer 
questions that no single study is powered to answer. Examples include 
GeneSapiens [166] and Oncomine [167], both of which concentrate on 
integrating data from cancer microarray studies. GeneSapiens normalizes 
Affymetrix gene expression data for altogether 9783 healthy, cancer and 
other disease samples onto the same scale, enabling e.g. studying the 
expression profile of all kinases across ~5600 different healthy and 
malignant tissue samples [168] as well as determining the origin of cancers of 
unknown primary origin [169]. 

Nonsense-mediated messenger RNA (mRNA) decay (NMD) is an 
eukaryotic quality control mechanism that triggers the decay of mRNAs that 
contain premature termination codons (PTCs) [170]. In addition, NMD also 
regulates the expression of a set of target transcripts under normal 
physiological conditions [171]. A PTC mutation is an effective way for a 
cancer cell to inactivate one copy of a TSG. Methods to identify such 
mutations based on the stabilization of PTC carrying mRNAs after either 
chemical (emetine with or without actinomycin D) [145, 172, 173] or siRNA-
based [174] inhibition of NMD have therefore been developed (figure 1). One 
of the strengths of the gene identification by nonsense inhibition (GINI) 
method is that no a priori information about candidate genes or location in 
the genome is necessary, although if available, this information can be 
integrated with the GINI data [172]. Mutations have been found using an 
NMD-based approach in e.g. EPHB2 in prostate cancer [173], RIC8A and 
ARID1A in breast cancer cell lines [145, 175], as well as several genes in colon 
[176] and prostate cancer [177], mantle-cell lymphoma [178] and melanoma 
[179]. 
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Figure 1 Principle of emetine mediated NMD block. A) If a PTC mutation occurs at least 
50-54 bp before the last exon-exon junction, the mutation will be recognized during 
the pioneer round of translation and the mRNA molecule is degraded. Emetine is a 
general inhibitor of the translation process. Emetine treatment therefore also blocks 
the pioneer round of translation and prevents the NMD machinery from recognizing 
and degrading the mutated transcript, leading to accumulation of mutation carrying 
transcripts. B) An idealized example of the effects of emetine treatment on the 
abundance of mRNA transcripts of gene X. In sample A that carries a PTC mutation 
in X, emetine treatment leads to an increase in mRNA from gene X. Conversely, in 
sample B that has no mutation, transcript levels of X are not affected by emetine 
treatment. Note also that, compared to sample B, continued degradation of mutated 
transcripts from X in sample A leads to lower expression of the gene in the 
untreated state. 

NMD microarray data analysis is in principle simple: a matter of 
identifying the mRNA transcripts that increase in amount following 
inhibition of NMD. In practice, however, a large number of transcripts are 
induced by NMD inhibition, whether chemical or siRNA-based [145, 172]. 
The main task of data analysis is therefore to prioritize a short list of the most 
likely mutation carrying genes. Several of the above mentioned studies have 
arrived at similar filtering algorithms. One of the two main filtering criteria 
follows; increased transcript level in only one out of several cell lines studied, 
this rests on the assumption that only one of the cell lines is likely to have 
inactivated a gene through a PTC, and transcripts upregulated in multiple 
cell lines are therefore likely to be physiological NMD targets. The second 
main criteria is that in untreated cells, expression of the transcript should be 
low compared to other samples, as would be expected based on a PTC 
containing transcript being degraded when NMD is intact [145, 178]. A futher 
criterion used in several publications is that the candidate gene should be 
located in a region of heterozygous deletion or loss of heterozygosity [145, 
173, 175]. 

5.2.3 NEXT GENERATION SEQUENCING 
Next generation sequencing is a collective term used to describe several 
different new sequencing technologies that utilize massive parallelization to 
achieve large increases in sequencing throughput in comparison to 
traditional capillary sequencing (Sanger sequencing) using e.g. ABI Prism 
3730 DNA Sequencer instruments (Applied Biosystems). Currently, the main 
technologies in use are provided by Illumina (HiSeq, MiSeq, GA-family of 
instruments), Applied Biosystems (SOLiD), Roche (454), Life Technologies 
(Ion Torrent) and the technology of Complete Genomics [180, 181]. 
Massively parallel sequencing of RNA allows the comprehensive 
characterization of the features of a transcriptome, including gene expression 
levels, alternative splicing, identification of new transcripts as well as 
chimeric RNA molecules [182-185]. Chimeric RNAs, such as fusion 
transcripts, can be detected using paired-end sequencing of mRNA or 
ribosomal RNA (rRNA) depleted total RNA, in which 35-150 bp are 
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sequenced from both ends of DNA molecules in the sequencing library 
(typically 200-500bp long). Whole-genome sequencing is also able to 
identify chromosomal rearrangements that potentially can create fusion 
genes (figure 2). However, RNA-seq can directly identify the expressed fusion 
genes, out of a potentially large set of rearrangements, and is therefore a 
more cost effective and straightforward method for detecting potentially 
oncogenic gene fusions. 

 

Figure 2 Identification of deletions, inversions and translocations using paired-end 
DNA sequencing data. Vertical arrows indicate sequence read pairs, and arrow 
directions show the strand they align on (arrow pointing to the right: forward strand). 
Vertical dashed lines indicate chromosomal breakpoints. In each subgraph A-C, the 
lower part shows the chromosome after the rearrangement, i.e. the state assayed 
by sequencing. The upper parts of each subgraph show how the reads in the 
readpair align to a normal reference genome. Rearrangements are identified as 
follows. A) When sequencing across a deletion point, the reads align further away 
from each other on the reference genome than would be expected. If the insert size 
is e.g. on average 300bp, reads that align 10kb from each other on the reference 
genome are likely to flank a roughly 9-10kb deletion. B) When sequencing across 
an inversion point, both reads will align on the forward strand when aligning them to 
a normal reference genome. In addition, depending on the size of the inversion, the 
reads may align further from each other than expected. C) When sequencing 
across a translocation point, both reads will align to different chromosomes in a 
normal reference genome. 
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Several pipelines have been published for fusion gene identification [94, 
114, 186-189], but most methods that achieve a high specificity converge on 
very similar solutions. In all approaches, paired-end reads are first aligned 
and filtered to identify those pairs, in which the reads align to two different 
genes. This, however, does not distinguish between true fusion genes and 
readthrough transcription between genes that lie next to each other in the 
genome. Various solutions for filtering out transcriptional readthrough have 
been proposed, such as excluding all gene-gene pairs that lie closer to each 
other than some specified bp distance [114] or only considering gene-gene 
pairs that are separated by at least one other gene that lies between them 
[94]. The exon-exon junction at which the fusion occurs is then identified by 
searching non-aligned single-end reads for ones that align partially to exons 
from both genes. This search is typically done by bioinformatically 
constructing a library of all possible exon-exon junctions, i.e. potential fusion 
junctions, between a candidate gene-gene pair, against which alignments are 
performed. Fusion gene validation is then typically performed by polymerase 
chain reaction (PCR) and Sanger sequencing across the predicted fusion 
junction(s). Additional filtering criteria employed by some pipelines include 
filtering out gene-gene pairs with high sequence similarity, on the 
assumption that they are false positives derived from misaligned sequence 
reads [94, 114]. Additionally, the locations of alignment start positions for 
fusion junction spanning reads have proven to be a good criterion for 
excluding false positive fusion candidates [94]. One of the main points at 
which pipelines differ is whether they can identify fusions that do not occur 
at known exon-exon junctions. Here, the TopHat-Fusion [187] algorithm 
seems to provide the most robust detection of fusion junctions, in which one 
or both fusion breakpoints reside within exons. 
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6 AIMS OF THE STUDY 

In broad terms, the aim of my PhD thesis work was to identify and 
characterize genomic mutations in human breast cancer, as well as to study 
their impact on breast carcinogenesis. In particular developing and then 
applying bioinformatic methods to help answer these questions. 
 

The specific aims of the study were: 
• To identify new tumor suppressor genes in breast cancer using the 

NMD microarray methodology. 
• To develop a bioinformatic method for fusion gene identification 

using RNA-sequencing data. 
• To study whether fusion genes exist in breast cancer, and if they 

do, characterize them and their potential impact on breast 
carcinogenesis. 

• To characterize the ERBB2 amplicon in breast cancer, its extent 
and the biological impact of both ERBB2 and the other genes in the 
core ERBB2 amplicon. 
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7 MATERIALS AND METHODS 

7.1 BREAST CANCER CELL LINES AND CLINICAL 
SAMPLES USED 

Table 3. Cell lines used in studies I-III. Cell lines used in more than one study were 
separately analyzed by aCGH in each. Normal breast total RNA is listed under 
cell lines, even if it was derived directly from in vivo tissue and not cultured. 

Cell line Study Type 
MDA-MB-468 I breast cancer 
MDA-MB-231 I breast cancer 

ZR-75-1 I breast cancer 
MCF-7 I, II, III breast cancer 
BT-474 I, II, III breast cancer, ERBB2 amplified 
T-47D I breast cancer 

HMEC I 
normal human mammary 

epithelial 
IMR90 I normal human lung fibroblasts 
WS1 I normal human skin fibroblasts 

SK-BR-3 II, III breast cancer, ERBB2 amplified 
KPL-4 II, III breast cancer, ERBB2 amplified 

normal breast total 
RNA II normal breast total RNA 

HCC202 III breast cancer, ERBB2 amplified 
UACC812 III breast cancer, ERBB2 amplified 
HCC1954 III breast cancer, ERBB2 amplified 
HCC1569 III breast cancer, ERBB2 amplified 
JIMT-1 III breast cancer, ERBB2 amplified 

SUM190 III breast cancer, ERBB2 amplified 
SUM225 III breast cancer, ERBB2 amplified 

 

Table 4. Clinical microarray datasets used in studies I-III. The samples used for 
sequencing or methylation analyses in study I were first described in the 
references given in the table. IKZF3 expression data was accessed via the 
GeneSapiens database described in Kilpinen et al., 2008. aCGH data used in 
study III is available from GEO with accession numbers GSE17907, GSE32291 
and GSE20394. 
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N of samples Study Purpose Reference 

127 I RIC8A sequencing 
Naume et al. 2007, Wiedswang et 

al. 2003 

115 I RIC8A expression 
Naume et al. 2007, Wiedswang et 

al. 2003 
86 I RIC8A methylation Warnberg et al. 2001 
75 I RIC8A methylation Geisler et al. 2001 
251 I RIC8A expression Miller et al. 2005 
761 II IKZF3 expression Kilpinen et al. 2008 

54 III 
ERBB2 amplicon copy 

number Sircoulomb et al. 2010 

17 III 
ERBB2 amplicon copy 

number Langeröd et al. 2007 
 

7.2 MICROARRAY EXPERIMENTS (I-III) 

7.2.1 NMD MICROARRAYS (I) 
All cell lines were grown in replicate cultures. For inhibition of NMD, half of 
the cultures were treated with 100 µg ml-1 of emetine dihydrochloride hydrate 
(Sigma-Aldrich, St Louis, MO, USA) and incubated for 10h at 37°C, while the 
other half were retained as untreated controls. After incubation, total RNA 
was extracted, subjected to quality control and hybridized onto Affymetrix 
Human Genome U133 plus 2.0 GeneChip oligonucleotide microarrays 
(Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s 
instructions. Microarrays were scanned using a GeneChip Scanner 3000 
(Affymetrix) and images processed using GeneChip Operating Software 1.1 
(Affymetrix). Gene expression microarray data have been deposited in Gene 
Expression Omnibus (GEO) and are accessible through GEO accession 
number GSE15477. 

Microarray data were normalized using the dChip method [190]. All 
further data analysis was carried out using the R statistical programming 
language [191]. NMD candidates for further validation were selected in each 
breast cancer cell line based on the following criteria: 

I. Emetine treatment induced the expression of the gene by at least 
1.5 fold (log2 scale) only in the cell line being analyzed. This filter 
was implemented to exclude the majority of physiological NMD 
substrates, as well as noise caused by emetine treatment. 

II. Expression in the non-emetine treated sample was lower than in 
the untreated sample of any other cell line. This filter was based on 
the asumption that PTC containing transcripts are normally 
degraded by NMD and expression is therefore lower. 



 

29 

III. The gene was located in a heterozygously deleted region. This 
filter restricted the search to TSGs for which the other allele has 
been lost through deletion. 

IV. Expression after emetine treatment was higher than 50 units 
(non-log scale). This filter was used to remove genes expressed at 
levels not measured reliably by the Affymetrix microarrays. 

7.2.2 ARRAY-CGH (I-III) 
During the years the project was ongoing, several versions of Agilent aCGH 
microarrays with increasing probe numbers were used. These were 44k 
Agilent Human Genome CGH microarrays (study I), 244k Agilent Human 
Genome CGH microarrays (study III) and SurePrint G3 Human 1M oligo 
CGH microarrays (study II) (Agilent, Palo Alto, CA, USA). As the labeling, 
hybridization and scanning protocols have not changed significantly, only 
one account of these is given below. 

Overall, aCGH experiments were performed as described previously [96] 
following protocols for respective microarray types (Agilent). Briefly, 
genomic DNA from untreated cancer cells was extracted and labeled using 
Cy5-dUTP. Commercially available female genomic reference DNA (i.e. not 
matching germline DNA) was labeled with Cy3-dUTP and used as reference 
in all experiments. After hybridization and washing, microarrays were 
scanned using a laser scanner (Agilent) and images processed for signal 
acquisition using Feature Extraction Software (Agilent). CGH Analytics or 
Genomic Workbench Lite software (Agilent) was used for data visualization. 

In study I, gene expression and aCGH data were combined by calculating, 
for each Affymetrix probe set, the median log2 ratio of all aCGH oligos 
located between the start and stop base pair positions of the gene the probe 
set mapped to. Mappings between probe sets and genes were retrieved from 
the NetAffx database (april 2005) [192] and all base pair positions are based 
on human genome build hg17 (NCBI 35, May 2004). In study II, the 
association between genes taking part in gene fusions and copy number 
changes was assesed visually using Agilent Genomic Workbench Lite 
(Agilent). In study III, aCGH data for cell lines and tumors from both our 
own cohort, as well as Sircoulomb et al. 2010 [193], were segmented using 
the Piecewise Constant Fit algorithm with settings K-min = 5 and Gamma = 
15 [194]. For a list of cell line and tumor samples, see tables 3 and 4. 
Heatmaps to visualize segmented data were drawn using R [191]. 

For studies I and II, aCGH data have been deposited in GEO and are 
accessible through GEO Series records GSE15477 and GSE23949. aCGH data 
for the cell lines used in study III have been submitted to GEO, accession 
number GSE34236, but remains private pending publication of the paper. 
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7.3 RNA-SEQ AND FUSION GENE IDENTIFICATION (II) 

In brief, RNA-seq libraries were created as follows. Total RNA from the four 
breast cancer cell lines BT-474, SK-BR-3, KPL-4 and MCF-7 was isolated, 
followed by messenger RNA (mRNA) extraction using oligo-dT Dynabeads 
(Invitrogen Inc., Carlsbad, CA, USA). Extracted mRNA was randomly 
fragmented to an average size of 200bp and converted into cDNA using 
random hexamers. Fragment length and cDNA concentration was measured 
using Bioanalyzer DNA 1000 kit (Agilent). The median insert sizes of the 
final sequencing libraries were 100bp for MCF-7 and KPL-4, whereas 
libraries of both 100 and 200bp were created for BT-474 and SK-BR-3. For 
the normal breast sample, median insert size was 200bp. 2*56bp paired-end 
sequencing was carried out using a 1G Illumina Genome Analyzer IIx 
(Illumina). Raw sequencing data have been deposited in the NCBI Sequence 
Read Archive [SRA:SRP003186]. 

A workflow describing the fusion gene identification pipeline is shown in 
figure 3. Short reads were trimmed from 56 to 50bp for all analyses. 
Sequence alignment was done using the Bowtie software [195], allowing a 
maximum of 3 mismatches. Ensembl version 55 was used as reference for all 
analyses concerning BT-474, MCF-7, KPL-4 and normal breast, whereas 
version 56 was used for SK-BR-3. Both are based on human genome build 
NCBI37. Short reads were first filtered by aligning against ribosomal RNA 
(18S, 28S, 5S and 5.8S) and complete repeating unit ribosomal DNA, 
excluding any aligning reads from further analyses. In addition, short reads 
matching adapter sequences, mitochondrial DNA or containing long 
homopolymeric stretches were removed. The filtered short reads were next 
aligned against the human genome and a library of splice site junctions based 
on the transcript structures of each gene. Short reads were divided into three 
categories: 

I. Reads that do not align to the genome. 
II. Reads that align uniquely to the genome. 
III. Reads that align to multiple locations in the genome. 

A short read was considered uniquely aligning if there was a single best 
alignment, defined as having the smallest number of mismatches. 

To identify fusion genes, non-aligned and uniquely aligned short reads 
were aligned to the Ensembl transcript definitions and reads were assigned 
to genes based on the transcript they aligned to. Short read pairs in which the 
two reads align to different genes were selected for further analysis. A first 
set of fusion gene candidates was identified by selecting all the gene-gene 
pairs that were supported by at least two (MCF-7, KPL-4, normal breast) or 
three (BT-474, SK-BR-3) short read pairs. As sequencing depth was higher 
for BT-474 and SK-BR-3, a higher threshold was chosen for them in an effort 
to keep the likelyhood of false positives the same for all samples (table 5).  
These lists were further filtered by excluding all fusion gene candidate pairs 
in which the two genes are either known paralogs or adjacent to each other in 



 

31 

the genome. Both genes in a candidate fusion were also required to be 
protein coding. In addition, fusion gene candidates involving genes taking 
part in more than a few potential fusions were excluded. Paralog and gene 
biotype data were retrieved from Ensembl. Genes were defined as non-
adjacent if there was a third gene, the start and stop positions of which lie 
between the two other genes. 

The exon-exon fusion junctions were identified as follows. A library of 
artificial fusion junctions was created by generating all the potential exon-
exon combinations between the two genes in each candidate fusion gene pair. 
Short reads not aligning to either the genome or the transcriptome were 
aligned against the library of fusion junctions. Short reads were required to 
overlap the exon-exon junction by at least 10 bp. For each candidate fusion 
gene, the exon-exon junction supported by the greatest number of short 
reads was nominated as the most likely fusion junction. This also defined 
which gene is the 5' partner in the fusion. At least two fusion junction 
spanning reads were required. The final list of 28 candidate fusion genes was 
selected for laboratory validation primarily based on the number of unique 
short read alignment start positions across the fusion junction. A secondary 
criterion stating that predicted fusion junctions should lie close to a copy 
number transition was used for fusion junctions with a low number of 
aligning reads. 
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Figure 3 Overview of the fusion gene identification pipeline. 

To determine if fusion gene candidates were in frame, all possible fusions 
between those Ensembl transcripts of both genes that contain the fused 
exons were created. If any of these transcript-transcript fusions retained the 
same reading frame across the junction, the fusion gene was predicted to be 
in frame. Expression of fusion genes and their wt partners was calculated as 
reads per kilobase per million uniquely aligned sequences (RPKM) [184]. 
Reads aligning to the fusion junction were used to calculate fusion gene 
specific RPKM values. 

Graphs visualizing fusion genes together with aCGH data were created 
using R and Circos [196]. The graph illustrating fusion genes in the 
chromosome 17q amplicons was drawn using R and a modified version of the 
Bioconductor [197] package GenomeGraphs [198]. Graphs integrating aCGH, 
sequencing data and gene structures were drawn using GenomeGraphs. 
Unless otherwise noted, all steps in the fusion gene identification and 
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prioritization pipeline are based on custom in-house tools written in Python 
and R. 

7.4 SIRNA EXPERIMENTS (II, III) 

In study III, siRNA screening was performed on five cell lines; BT-474, SK-
BR-3, JIMT-1, KPL-4 and MCF-7. Out of 27 genes in the core ERBB2 
amplicon, 23 were silenced using 2-4 unique siRNAs per gene (Qiagen, 
Hilden, Germany), with siRNAs against PLK1, KIF11 as well as AllStars 
Negative Control and AllStars Cell Death Control (Qiagen) used as controls. 
Screening was performed with one individual siRNA per well on 384 well 
plates. CellTiter-Glo (CTG, Promega) was used to measure cell viability 72 
hours after transfection. Screening data was normalized for plate and 
row/column effects and replicate screens were merged. Co-transfections of 
ERBB2 with other genes were done using two siRNAs for both genes in the 
same well. 

A siRNA screen against genes taking part in the identified fusion genes 
was performed in triplicate in KPL-4, SK-BR-3 and BT-474 cells largely as 
described above. Separate validation was carried out for IKZF3 in BT-474 
using two siRNAs, Hs_IKZF3_3 and HS_ZNFN1A3_5 (Qiagen) in 96 well 
plates using CellTiter-Glo Cell Viability Assay (Promega, Madison, WI, USA) 
as an endpoint after 168 hour incubation. Quantitative RT-PCR using 
LightCycler 480 (Roche Applied Science, Penzberg, Germany) and GAPDH 
as an internal control was used to validate VAPB-IKZF3 fusion knock down. 

7.5 PROTEIN LYSATE MICROARRAYS (III) 

Protein lysate microarray analysis (LMA) was carried out as in Leivonen et 
al.  [199]. Briefly, protein lysates were created from siRNA transfected cells 
in 384-well plates 72 hours after transfection by lysing the cells. Cell lysates 
were printed on nitrocellulose-coated microarray slides and stained with 
antibodies for cleaved PARP (cPARP), Ki67, HER2, phospho-Akt, phospho-
p70-S6K and p27. Scanned signal intensities were normalized using Z-score 
normalization and data analyzed using Array-Pro Analyzer microarray 
software (Median Cybernetics Inc., Bethesda, MD, USA). Hit genes were 
selected using three cutoff levels, in ascending order of reliability: Z-score > 1 
but < 2 for two siRNAs, siRNAs with one Z-score > 1 and another > 2 and the 
third category with two siRNAs with Z-score > 2. 
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7.6 VALIDATION OF MUTATIONS AND GENE FUSIONS 
(I, II) 

In study I, primers were designed to amplify all 10 exons as well as 50bp of 
flanking intronic sequences of RIC8A, PGPEP1 and COL12A1 and the genes 
sequenced in all six breast cancer cell lines using Sanger sequencing. RIC8A 
was further sequenced in two cohorts of 127 and 86 tumors, respectively 
(table 4) using the same primers as described above. The association between 
low RIC8A expression and TP53 mutation was validated using qRT-PCR in a 
subset of 38 tumors from the Naume et al. and Wiedswang et al. [200, 201] 
cohort, using TaqMan Gene Expression Assays (Applied Biosystems, 
Carlsbad, CA, USA) on an ABI Prism 7900 HT sequence detection system 
(Applied Biosystems). Methylation analysis of 98 CpGs in the region from 
-943 to +1338 around the RIC8A transcription start site was performed in 
two cohorts of 86 and 75 tumors (table 4) using pyrosequencing of bisulphite 
treated DNA [202]. 

In study II, several approaches were used to validate fusion gene 
candidates identified using RNA-seq. Predicted fusion genes were first 
validated using RT-PCR across the predicted fusion junctions, followed by 
Sanger sequencing of amplification products. Obtained sequences were 
aligned to human genome build hg19 (february 2009) using the BLAST-Like 
Alignment Tool alignment program [203] to ensure that they uniquely 
matched the exon boundaries of the predicted fusion junctions. DNA level 
rearrangements were validated using long-range genomic PCR and 
fluorescent in situ hybridization (FISH). Primers for genomic PCR were 
placed based on the positions of the fused exons such that the PCR product 
covered the fusion junction. When a copy number transition was evident 
close to the fused exon(s), this information was used to place PCR primers 
closer to the likely genomic fusion point. Interphase FISH was performed 
using BAC probes located as close as possible on each side of the breakpoint. 
Fusions were detected as fused signals from the FISH probes. 

7.7 ANALYSIS OF PUBLICLY AVAILABLE DATA (I, II) 

RIC8A expression was analyzed in two published breast cancer microarray 
studies [55, 200]. The Miller et al. dataset (table 4, GEO accession number 
GSE3494), consisting of 251 breast tumors profiled on both Affymetrix 
U133A and U133B microarrays, was normalized in R using RMA [158] and 
probes summarized on the level of Ensembl gene ids, using the alternative 
CDF file definitions of Dai et al [159]. Data from both array types were 
combined. When genes appeared on both array types, data were combined by 
calculating their median expression values across each sample from both 
arrays. Normalized data together with sample annotations were transformed 
into a Bioconductor ExpressionSet [197] and further into an R data package. 
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PCNA, Ki67 and ERBB2 status was estimated from the expression data and 
tumor subtype classification done based on [6]. An R package, "phenoplots", 
was written to enable automated plotting of gene expression data in relation 
to clinical parameters as either "phenoplots" (figure 5) or annotated 
heatmaps. Functionality to draw correlation plots between two genes as well 
as Kaplan-Meier survival plots based on the expression of a gene was also 
implemented. The functions in the phenoplots package require that data sets 
are formated into Bioconductor ExpressionSets with sample annotations 
stored in the phenoData slot, and transformed into R data packages. 
Statistical association between RIC8A expression and clinical parameters 
was tested using the Mann-Whitney test. IKZF3 expression in breast cancer 
was analyzed using the GeneSapiens database [166]. 
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8 RESULTS 

8.1 IDENTIFICATION OF RIC8A (PUBLICATION I) 

8.1.1 RIC8A IDENTIFICATION VIA NMD MICROARRAYS 
The NMD microarray method identified 51 candidate genes in the six breast 
cancer cell lines MDA-MB-468, MDA-MB-231, ZR-75-1, MCF-7, BT-474 and 
T-47D. Out of these, three genes were selected for further sequencing-based 
validation. The selected genes were PGPEP1 in BT-474 and COL12A1 and 
RIC8A in ZR-75-1. The NMD induction ratios of the genes were 1.89, 5.16 
and 1.51, respectively. Sequencing of the three genes from the genomic DNA 
of all six cell lines identified a CAG -> TAG nonsense mutation in the last 
codon of the third exon of RIC8A in ZR-75-1. No nonsense mutations were 
identified in other cell lines for any of the genes. As can be seen in figure 4, 
RIC8A is heterozygously deleted in ZR-75-1, suggesting that both alleles of 
the gene are lost. Furthermore, based on Affymetrix data, expression of 
RIC8A was significantly lower in the untreated ZR-75-1 cells compared to all 
other cell lines, further pointing to complete loss of the gene. This differential 
expression in untreated cells was also confirmed using qRT-PCR. 
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Figure 4 Heterozygous deletion and down regulation of expression of RIC8A in ZR-75-
1. The x-axis shows the gene copy number for each probe set, while the y-axis 
shows, for each probe set, the log2 expression ratio of the probe set's expression in 
ZR-75-1 divided by its median expression across all cell lines used in the study. 
Candidate NMD target genes are shown in red. The intensity of the blue color 
indicates the number of probe sets located in the region and only the most outlying 
observations are drawn as individual dots. RIC8A stands out as being both 
heterozygously deleted and underexpressed in untreated ZR-75-1. 

8.1.2 CLINICAL RELEVANCE OF RIC8A 
To study whether RIC8A is mutated in clinical breast tumors, all ten exons of 
the gene were sequenced in 127 early-stage breast cancers. No nonsense or 
missense mutations were identified. We additionally performed 
pyrosequencing on 98 CpGs within 1kb upstream of the RIC8A transcription 
start site (TSS), as well as CpGs in the 3' end of the large CpG island 
downstream of the TSS in a total of 161 breast tumors of varying severity (27 
ductal carcinoma in situ (DCIS), 32 invasive tumors with DCIS components, 
27 early invasive tumors and 75 locally advanced tumors). No methylation 
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was observed in the CpGs upstream of the TSS. Downstream of the TSS, in 
the 3' region of the CpG island, methylation levels reached 40-80%, but this 
did not differ from the methylation pattern observed in normal breast tissue 
samples. Taken together, the DNA- and pyrosequencing data suggest RIC8A 
is not a frequent target of mutation or epigenetic silencing by DNA 
methylation. The chromosome band 11p15 is frequently deleted in breast 
cancer [204], suggesting an alternative mechanism for RIC8A loss. To 
examine whether expression of RIC8A is lost in a subset of breast cancers 
through deletion or other mechanisms, we studied its expression in 
published microarray data sets. In the Miller et al. data set of 251 
consequtively collected breast cancers [55], low RIC8A expression was seen 
in 15% of tumors and low expression was statistically significantly associated 
with ER-negativity (P < 0.001), PR-negativity (P < 0.003) and TP53 
mutation (P < 0.0001) (figure 5). Validation in a second data set consisting of 
115 early-stage breast tumors [200] showed a borderline statistically 
significant association between low expression and PR-negativity (P = 0.054) 
and TP53 mutation (P = 0.071). Taqman qRT-PCR validation of the 
association between low RIC8A expression and TP53 mutation in 38 tumors 
from the second cohort was statistically significant (Mann-Whitney test: P = 
0.006). 
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Figure 5 Association of RIC8A expression with clinical parameters. RIC8A 
expression across 251 consequtively collected breast tumors [55], 
stratified by clinical parameters. Grey squares represent expression 
values. The y-axis is drawn on log2 scale. Grey vertical lines separate 
clinical parameters. Red horizontal bars indicate the median expression 
value for each group. For each clinical parameter, data are drawn for all 
tumors for which the parameter is given. Expression data in relation to 
survival is only plotted for tumors from patients that eventually died of 
breast cancer. Stars indicate a statistically significant difference in 
expression between the two groups * p < 0.05, ** p < 0.01, *** p < 0.001, 
- p > 0.05. Statistical testing was only performed for clinical variables 
with two categories.  p53mut = sample is classified as p53 null based on 
the gene expression classifier created in [55]. G1 = grade 1, tsize = 
tumor size, LN- = negative lymph nodes, Normal, LumA, LumB, Basal, 
ERBB2 = breast cancer subtypes. PCNA low =  tumors with low PCNA 
expression, Ki67 low = tumors with low MKI67 expression, ERBB2 low = 
tumors with low ERBB2 expression. 

8.2 FUSION GENE IDENTIFICATION (PUBLICATION II) 

8.2.1 RAW SEQUENCING OUTPUT 
Each cell line was sequenced on one to three lanes on the 1G Illumina 
Genome Analyzer IIx sequencer (table 5). Optimization of the sequencing 
protocol, especially the amount of sequencing library loaded onto the flow 
cell, allowed a significant increase in reads obtained per lane in later 
instrument runs (BT-474, SK-BR-3) compared to the samples sequenced first 
(MCF-7, KPL-4, normal breast). 

Table 5. Summary statistics for alignment results. The number of lanes sequenced 
for each sample is given on row one. Alignment statistics and total read 
numbers are counted after reads aligning to rRNA, mitochondrial DNA and 
adapter sequences were removed. 

	
  	
   BT-­‐474	
   SK-­‐BR-­‐3	
   KPL-­‐4	
   MCF-­‐7	
  
Normal	
  
breast	
  

Number	
  of	
  lanes	
   2	
   2	
   1	
   3	
   1	
  
Uniquely	
  aligning	
  
reads	
   22.729.557  32.131.811  7.979.513  9.391.444  8.554.829  
Multiple	
  aligning	
  
reads	
   3.053.108  4.832.155  1.031.888  1.551.671  1.261.876  
Non-­‐aligning	
  reads	
   3.947.238  5.373.572  1.188.192  1.862.559  1.317.916  
Total	
   29.729.903  42.337.538  10.199.593  12.805.674  11.134.621  

 

8.2.2 A METHOD FOR DETECTING FUSION GENES 
In our preliminary analysis, we identified between 303 and 349 fusion gene 
candidates in each of the four breast cancer cell lines, plus an additional 152 
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in the normal breast sample. A set of 83 candidate fusion genes was selected 
for RT-PCR validation, but only seven of these were validated. This suggested 
that a majority of the 152-349 fusion gene candidates were likely to be false 
positives. In an effort to increase the specificity of our method, we reasoned 
that a true positive fusion gene would be expected to create a staggered 
pattern of alignment start positions across the fusion junction, whereas 
potential PCR artifacts or incorrectly aligned reads would be likely to align all 
in the same position (figure 6). Phrased differently, the number of unique 
alignment start positions across a fusion junction should be large for true 
positive fusion genes, but low for false positives. Comparing the pattern of 
alignment start sites between the seven validated and 76 non-validated 
fusion gene candidates indeed confirmed our hypothesis. Additionally, it 
showed that for false positive fusions, most of the length of the sequencing 
read aligned to one of the exons, suggesting these represent incorrect 
alignments, not PCR artifacts. This was further supported by the fact that the 
paired-end reads of these short reads did not align within close proximity of 
each other. Reanalyzing the data using this additional criterion resulted in 
the identification of 28 fusion gene candidates in the four breast cancer cell 
lines and none in the normal breast sample (table 6). 
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Figure 6 Pattern of alignment start positions across the fusion junction. Examples of 
alignment start position patterns for fusion genes expressed at high and low levels. 
True positive fusions are shown on the left, false positive on the right. Grey 
horizontal lines represent short reads. The exon-exon junction is marked by a 
vertical black line. True positive fusions have a staggered pattern of alignment start 
positions and some reads align equally much to both exons. False positive fusions 
are characterized by piles of reads in the same position or offset by one bp. These 
reads also align to one of the exons for most of their lengths. 

Table 6. 28 fusion gene candidates and their validation. Fusion genes are listed with 
the 5' partner gene first. N. paired-end reads and N. junction reads are the 
number of read pairs and single reads supporting the gene fusion. NA indicates 
that in frame status and validation of a DNA level rearrangement were not 
applicable to RBM41-MAN1A2, as it was not validated with RT-PCR and was 
therefore excluded from all further analyses.
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Cell	
  line	
   5'	
  gene	
   5'	
  chr	
   3'	
  gene	
   3'	
  chr	
  
N.	
  paired-­‐
end	
  reads	
  

N.	
  junction	
  
reads	
   In	
  frame?	
  

RT-­‐PCR	
  
validated?	
  

DNA	
  rearrangement	
  
validated?	
  

BT-­‐474	
   ACACA	
   chr17	
   STAC2	
   chr17	
   57	
   72	
   yes	
   yes	
   yes	
  
BT-­‐474	
   RPS6KB1	
   chr17	
   SNF8	
   chr17	
   43	
   68	
   yes	
   yes	
   yes	
  
BT-­‐474	
   VAPB	
   chr20	
   IKZF3	
   chr17	
   41	
   26	
   yes	
   yes	
   yes	
  
BT-­‐474	
   ZMYND8	
   chr20	
   CEP250	
   chr20	
   35	
   14	
   no	
   yes	
   yes	
  
BT-­‐474	
   RAB22A	
   chr20	
   MYO9B	
   chr19	
   9	
   12	
   no	
   yes	
   yes	
  
BT-­‐474	
   SKA2	
   chr17	
   MYO19	
   chr17	
   8	
   7	
   yes	
   yes	
   yes	
  
BT-­‐474	
   STARD3	
   chr17	
   DOK5	
   chr20	
   4	
   6	
   yes	
   yes	
   yes	
  
BT-­‐474	
   LAMP1	
   chr13	
   MCF2L	
   chr13	
   5	
   3	
   no	
   yes	
   yes	
  
BT-­‐474	
   GLB1	
   chr3	
   CMTM7	
   chr3	
   6	
   2	
   yes	
   yes	
   yes	
  
BT-­‐474	
   CPNE1	
   chr20	
   PI3	
   chr20	
   4	
   2	
   no	
   yes	
   yes	
  
BT-­‐474	
   DIDO1	
   chr20	
   KIAA0406	
   chr20	
   8	
   1	
   yes	
   yes	
   no	
  
SK-­‐BR-­‐3	
   TATDN1	
   chr8	
   GSDMB	
   chr17	
   28	
   447	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   CSE1L	
   chr20	
   ENSG00000236127	
   chr20	
   10	
   20	
   yes	
   yes	
   no	
  
SK-­‐BR-­‐3	
   RARA	
   chr17	
   PKIA	
   chr8	
   13	
   10	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   ANKHD1	
   chr5	
   PCDH1	
   chr5	
   12	
   6	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   CCDC85C	
   chr14	
   SETD3	
   chr14	
   6	
   6	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   SUMF1	
   chr3	
   LRRFIP2	
   chr3	
   14	
   5	
   yes	
   yes	
   no	
  
SK-­‐BR-­‐3	
   WDR67	
   chr8	
   ZNF704	
   chr8	
   3	
   3	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   CYTH1	
   chr17	
   EIF3H	
   chr8	
   38	
   2	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   DHX35	
   chr20	
   ITCH	
   chr20	
   3	
   2	
   yes	
   yes	
   yes	
  
SK-­‐BR-­‐3	
   NFS1	
   chr20	
   PREX1	
   chr20	
   5	
   9	
   yes	
   yes	
   no	
  
KPL-­‐4	
   BSG	
   chr19	
   NFIX	
   chr19	
   22	
   14	
   yes	
   yes	
   yes	
  
KPL-­‐4	
   PPP1R12A	
   chr12	
   SEPT10	
   chr2	
   2	
   6	
   yes	
   yes	
   yes	
  
KPL-­‐4	
   NOTCH1	
   chr9	
   NUP214	
   chr9	
   4	
   6	
   yes	
   yes	
   yes	
  
KPL-­‐4	
   RBM41	
   chrX	
   MAN1A2	
   chr1	
   2	
   2	
   NA	
   no	
   NA	
  
MCF-­‐7	
   BCAS4	
   chr20	
   BCAS3	
   chr17	
   133	
   142	
   yes	
   yes	
   reported	
  previously	
  
MCF-­‐7	
   ARFGEF2	
   chr20	
   SULF2	
   chr20	
   17	
   25	
   yes	
   yes	
   reported	
  previously	
  
MCF-­‐7	
   RPS6KB1	
   chr17	
   TMEM49	
   chr17	
   2	
   7	
   yes	
   yes	
   reported	
  previously	
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8.2.3 FUSION GENE VALIDATION 
From the list of 28 fusion gene candidates in the four breast cancer cell lines, 
we were able to validate 27 using RT-PCR across the fusion junction followed 
by Sanger sequencing. Only the candidate fusion RBM41-MAN1A2 in KPL-4 
was not validated as it did not produce a band in RT-PCR despite multiple 
attempts. When multiple bands were observed for a fusion gene, all were 
picked for sequencing and subsequent validation. One possible mechanism 
for generating false positive fusions that would pass our criteria would be for 
a gene to contain an unannotated exon or a retained intronic sequence that is 
highly homologous to another gene, creating an apparent gene fusion. To 
exclude this possibility, the fusion junction sequences obtained from Sanger 
sequencing were aligned to the human genome to ensure they align uniquely 
only to the expected exons of respective fusion partner genes. All Sanger 
sequences from the 27 validated fusion genes aligned uniquely as expected. 

The three fusion genes identified in MCF-7 (BCAS4-BCAS3, ARFGEF2-
SULF2, RPS6KB1-TMEM49) were previously known [205-207], but the 
remaining 24 were novel. Validation of NFS1-PREX1 is tentative, as only a 
short stretch of NFS1 is included in the fusion, complicating PCR primer 
design and alignment of the short sequence uniquely to the genome. 

mRNA trans-splicing is a mechanism in which exons or other sequences 
from two pre-mRNA molecules, transcribed from different genes, are spliced 
together to form a chimeric mRNA [208]. On the mRNA level, such a 
chimeric mRNA is indistinguishable from a fusion gene formed through a 
genomic rearrangement [209]. To exclude the possibility that fusion genes 
were formed by mRNA trans-splicing we tried to validate an underlying 
genomic rearrangement for all the 24 novel fusion genes by either genomic 
DNA PCR or interphase FISH. We were able to confirm a genomic 
rearrangement with either method for 20 of 24 novel fusion genes. In the 
remaining cases, the intron between the fused exons is likely to be so large 
that a PCR product could not be amplified, although we cannot formally 
exclude the possibility that the fusion transcripts arose through mRNA 
trans-splicing. 

8.2.4 THE BIOLOGICAL FEATURES OF THE FUSION GENES 
Integration of RNA-seq with aCGH data showed that in 23 of 27 fusion genes, 
one or both partner genes were associated with a copy number transition 
close to exons taking part in the fusions. This suggested that most of the 
fusion genes are not balanced translocations in the traditional sense of no 
change in DNA copy number. Additionally, in 17 fusion genes, one or both 
genes were located in high level amplifications on chromosomes 8, 17 and 20. 
Some of the fusion genes, such as TATDN1-GSDMB and VAPB-IKZF3 bridge 
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separate amplification regions on either the same or different chromosomes, 
suggesting that these amplicons reside on the same derivative chromosome 
(figure 7). FISH analysis showed that the fusion genes were on average only 
seen in two to five copies per cell, indicating that they are not amplified to the 
same extent as the amplicons they are associated with. 

 

Figure 7 Association of fusion genes with genomic rearrangements in BT-474. Circos 
plot of chromosomes taking part in gene fusions in BT-474. Chromosomes are 
drawn to scale along the outer rim of the plot, except for chromosomes 17 and 20 
which are drawn at five times magnification. The next track inwards shows aCGH 
data, with amplifications in red and deletions in green. Fusion genes are 
represented by red (intra-) and blue (interchromosomal) arcs. 

Some fusion gene producing rearrangements are quite complex. In the 
ERBB2-amplicon, for instance, six genes take part in gene fusions, some 
being fused to genes outside the amplicon (figure 8). Other genomic regions 
contain genes that take part in gene fusions in several different cell lines. The 
region between 45.8 and 47.8 million bp (Mb) on chromosome 20 contains 
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five genes (ZMYND8, SULF2, PREX1, ARFGEF2, CSE1L) that take part in 
gene fusions in BT-474, SK-BR-3 and MCF-7. Despite this clustering, since 
no gene takes part in a gene fusion in more than one cell line, it is unlikely 
that the gene fusions are functionally important themselves. A more likely 
explanation is that the genomic region is a fragile site [98]. Parts or all of the 
45.8-47.8 Mb region are also amplified in the three cell lines and the 
clustering of fused genes may also be driven by the amplification of a gene in 
the vicinity. 

 

Figure 8 Genes taking part in fusion events in the ERBB2 amplicon. aCGH data for BT-
474 is shown in red and for SK-BR-3 in blue. The axis below the plot denotes bp 
positions. The y-axis is on log2 scale. Several genes in the ERBB2 amplicon in both 
cell lines are fused to either other genes in the same amplicon or other regions of 
amplification on 8q, 17q and 20q. Genes fused in BT-474 are in red, those fused in 
SK-BR-3 in blue. 

Eight out of 27 fusion genes (BSG-NFIX, CCDC85C-SETD3, DHX35-ITCH, 
CMTM7-GLB1, LAMP1-MCF2L, NOTCH1-NUP214, PPP1R12A-SEPT10, 
SUMF1-LRRFIP2) were not associated with high-level amplifications. 
However, in all fusion genes except PPP1R12A-SEPT10, one or both partners 
were associated with low level gains or deletions. This pattern of low level 
copy number changes is similar to that observed for leukemic translocations 
[133] and e.g. TMPRSS2-ERG in prostate cancer [96]. 

In addition to the association between fusion genes and copy number 
changes described above, several other patterns could be discerned. The 
most common feature is that 23 out of 27 fusion genes were predicted to be 
in frame, although as fusion genes were detected from mRNA, this was not 
entirely unexpected. Out of frame fusion genes would likely contain a 
premature stop codon, leading to degradation of the transcripts by the 
nonsense-mediated mRNA decay pathway. Given that a few of the out of 
frame fusion genes, such as ZMYND8-CEP250, were highly expressed, it is 
possible that these are in frame as a result of alternative splicing or 
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secondary mutations that restored correct frame. Second, intrachromosomal 
translocations were found to be twice as common (19) as interchromosomal 
ones (8). The same pattern has been reported based on DNA sequencing of 
breast cancers [106]. In 9 out of 27 fusion genes, the partners are located on 
opposite strands and must therefore have been fused through inversions 
(figure 9). Third, some genes were exclusively expressed as parts of fusion 
genes, since no wt expression could be detected (IKZF3, figure 9). Fourth, 
genes taking part in the fusions contributed both promoters (5’ untranslated 
region (UTR); e.g. TATDN1-GSDMB), coding sequences (e.g. ACACA-STAC2) 
as well as 3’ UTRs (e.g. CSE1L-ENSG00000236127), suggesting they can give 
rise to both fusion proteins as well as alter protein production by promoter 
replacement or altered miRNA-based regulation. Fifth, a small number of 
fusion genes, including SKA2-MYO19 and CPNE1-PI3 displayed alternative 
splicing at the fusion junction. 

8.2.5 FURTHER STUDIES ON VAPB-IKZF3 
To study whether the newly discovered fusion genes were important for 
cancer cell growth, we performed a siRNA screen using siRNAs targeted 
against the exons of the 3' partner genes that were included in the fusion 
transcripts. Based on the screen, VAPB-IKZF3 in BT-474 was selected for 
further validation. In addition, no wt IKZF3 was expressed, simplifying 
validation experiments since it was not necessary to isolate the effect of 
fusion gene knock-down from that caused by knock-down of a wt transcript. 

 

Figure 9 Fusion of VAPB and IKZF3. Gene positions are shown on the ideograms at the 
top of the figure. The structure of the fusion gene is shown at bottom, with gene 
structures above it. Black dots represent aCGH data and red dots RNA-sequencing 
coverage. For IKZF3, only the two most 3' exons taking part in the fusion are 
expressed. As the genes are on opposite strands, the fusion is required to occur via 
an inversion. 
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VAPB-IKZF3 arises through a t(17:20)(q12;q13) translocation that fuses the 
VAPB promoter to the 3' part of IKZF3, and encodes a protein containing two 
Zn-finger domains from IKZF3. Knock-down of VAPB-IKZF3 using two 
different IKZF3 targeting siRNAs in BT-474 lead to an 80% decrease in 
fusion gene expression. It also led to a statistically significant inhibition of 
cancer cell growth (P < 0.001). This suggests that BT-474 growth is 
dependent on the expression of VAPB-IKZF3. 

8.3 ERBB2 AMPLICON PROJECT (PUBLICATION III) 

8.3.1 ERBB2 AMPLICON SIZE 
The primary aim of our project was to study the cancer relevance of other 
genes in the ERBB2 amplicon than ERBB2 itself. We therefore started by 
studying the size of the amplicon using 244K aCGH arrays in 71 tumors and 
our panel of cell lines. The average size of the amplicon in tumors was 1.74 
mb, with a range of 0.31-13.6 mb. 

The minimal common region of amplification was 78.61 kb and included 
the genes STARD3, TCAP, PNMT, PERLD1, ERBB2 and MIEN1 (previously 
known as C17orf37) (figure 10). However, most of the tumors (64/71) shared 
a larger common region of amplification of 255.74 kb. This contained, in 
addition to the genes above, NEUROD2, PPP1R1B, GRB7 and IKZF3 
(previously known as ZNFN1A3). Sixty percent (43/71) of tumors shared a 
common region of amplification containing 27 genes (928.93 kb), delimited 
by RPL19 on the centromeric and NR1D1 on the telomeric side (figure 10). 

Cell lines displayed a very similar pattern of ERBB2 amplicon sizes, 
despite a more narrow size range (figure 10). The average size of the 
amplicon was 1.47 mb, with a range of 0.37-3.29 mb. Trastuzumab-sensitive 
and -resistant cell lines did not differ in amplicon size. The mean 
amplification height was somewhat higher in resistant cell lines (mean log2 
ratio 4.59 in resistant, 3.54 in sensitive). However, as our study only 
identified two sensitive cell lines, this result should be taken with caution. 
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Figure 10 ERBB2 amplicon size in clinical tumors and cell lines. Tumor aCGH data is 
shown on the left, cell lines on the right. The region from which genes were selected 
for siRNA screening is delimited by RPL19 and NR1D1. The minimal common 
region of amplification is shown on the right. 

8.3.2 TRASTUZUMAB RESPONSE AND PIK3CA MUTATION ANALYSIS 
Two out of nine breast cancer cell lines, BT-474 and SK-BR-3, were sensitive 
to trastuzumab with half maximal effective concentrations (EC50) of 1.02 nM 
+/- 0.71 nM and 0.98 nM +/- 0.08 nM, respectively. The corresponding 
decreases in cell viability were 26.7% and 34.3%. KPL-4, JIMT-1, HCC1954, 
HCC1569, HCC202 and SUM225 did not respond to trastuzumab (2 - 18% 
decrease in cell viability). SUM190 had a 22.3% decrease in cell growth in 
response to trastuzumab, but as it had an EC50 value of 0.67 mM +/- 0.6 
mM, it was considered resistant. 

Mutations in the gene PIK3CA have been linked to trastuzumab 
resistance [210]. To study a possible link in our cell lines, we sequenced 
exons 9 and 20, which contain the majority of PIK3CA mutations, in 11 cell 
lines. Both trastuzumab-responsive cell lines, BT-474 and SK-BR-3, as well 
as non-responsive cell lines HCC1569, JIMT-1, UACC812 and SUM225 had 
wt sequence. The non-responsive cell lines HCC202 (exon 9), HCC1954, 
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SUM190, KPL-4 (all exon 20) and the control cell line MCF-7 (exon 9) 
carried mutations. JIMT-1 has previously been reported to have a mutation 
in PIK3CA exon 7 [52]. 

8.3.3 SILENCING THE AMPLICON GENES AND EFFECTS ON 
CELLULAR SIGNALING. 

For both biological and practical reasons, we decided to concentrate our 
siRNA screen on those 27 genes that were amplified in 60% of tumors. 
siRNAs were available for 23/27 genes, and 2-4 siRNAs were utilized for each 
gene, depending on availability. Two trastuzumab sensitive, BT-474 and SK-
BR-3, two resistant JIMT-1 and KPL-4 as well as one control cell line, MCF-7, 
were subjected to siRNA screening with cell viability as the endpoint. Target 
gene silencing was separately validated for ERBB2, GRB7, STARD3, 
PERLD1, PSMD3 and PPP1R1B using Taqman in SK-BR-3 and KPL-4, with 
an average knock-down of 80% for the six genes. 

As expected, ERBB2 silencing decreased cell viability in the trastuzumab-
sensitive cell lines. No significant effect was seen in the resistant cell lines. 
This was separately confirmed by fluorescence-activated cell sorting, which 
showed that ERBB2 silencing caused a significantly larger G1 cell cycle phase 
arrest in the sensitive cell lines. This suggests that KPL-4 and JIMT-1 are not 
only resistant to the specific effects of the drug trastuzumab, but are overall 
less dependent on the ERBB2 pathway for their viability. 

The LMA technique was used to study the impact of silencing the ERBB2 
amplicon genes on other cell signaling endpoints than cell viability. 
Antibodies against HER2, cPARP, Ki67, pAKT, pS6K and p27 Kip1 were used 
in the LMA experiments to quantify either the amount or phosphorylation 
status of key signaling proteins. As expected, after ERBB2 silencing, the Ki67 
proliferation marker was downregulated more in trastuzumab-sensitive cell 
lines when compared to the resistant. Trastuzumab sensitive cell lines also 
had lower phosphorylation of AKT and S6K following ERBB2 silencing, 
which fits with a previous study which showed that trastuzumab treatment 
decreased pAKT in BT-474 but not JIMT-1 [211]. Silencing of ERBB2 was 
equally effective at decreasing HER2 protein in both resistant and sensitive 
cell lines, confirming the functionality of siRNAs in the cell lines used. 
Among the other genes in the ERBB2 amplicon, silencing of STARD3 led to 
an increase in cPARP in three out of four cell lines (SK-BR-3, JIMT-1, KPL-
4), suggesting an increase in apoptosis. PPARBP silencing altered cell cycle 
regulation (p27) in the resistant cell lines. Silencing of both GSDM1 and 
PSMD3, had an effect on several of the signaling markers in all cell lines. This 
suggests an important role in cancer cell signaling irrespective of whether the 
cells are trastuzumab sensitive or not. Alternatively, as the non-ERBB2 
amplified cell line MCF-7 also showed similar results, the genes may be 
generally important for the measured signaling pathways also in ERBB2 
negative breast cancer cells. 
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8.3.4 CO-SILENCING EXPERIMENTS AND THEIR RESULTS 
PPP1R1B, STARD3, PERLD1, GRB7 and PSMD3 were selected for co-
silencing experiments together with ERBB2. Our hypothesis was that 
coamplification of these genes is either directly beneficial for the cancer cell 
or, alternatively, the cell becomes dependent on their functions later during 
its evolution, as a form of non-oncogene addiction (see section 5.1.1). 
Generally, the trastuzumab-sensitive cell lines were more likely to show 
synergistic effects in the double silencing experiments, which fits their higher 
dependence on ERBB2 overall. Synergistic effects were, however, detected 
for some combinations in all cell lines, whether trastuzumab-resistant or -
sensitive. As expected, the cell line MCF-7, which does not contain an ERBB2 
amplification, showed barely any synergistic effects in the double silencing 
experiments. 

Silencing of PPP1R1B alone, for instance, had no effect on 
phosphorylation of AKT, but co-silencing together with ERBB2 caused a 
synergistic inhibition of the AKT pathway, as measured by both AKT and S6K 
phosphorylation, as well as decreased cell viability. This effect was seen in all 
four ERBB2 amplified cell lines. Silencing of ERBB2 together with either 
STARD3 or PERLD1 also synergistically inhibited both AKT signaling 
(downregulation of pAKT and pS6K) and proliferation (downregulation of 
Ki67) in several of the cell lines. Co-silencing of ERBB2 and GRB7 affected 
both cell viability and pAKT in a synergistic manner in the sensitive cell lines. 
This fits previous work, which has shown that silencing of GRB7 leads to 
decreased cell viability, decreased pAKT and enhances the response to the 
HER2 inhibitor lapatinib [212]. 
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9 DISCUSSION 

9.1 DEVELOPMENT OF GENOMIC TECHNOLOGIES 

The projects that form this thesis have been undertaken over a six year 
period, starting with study I in late 2005. The overarching theme has been 
the development of bioinformatic methods and their application to breast 
cancer research, especially the identification and characterization of 
somatically mutated or amplified genes. The new bioinformatic methods and 
biological results presented here expand our knowledge about the biology of 
breast cancer, especially with regards to fusion genes and how they form. 
During the same period of time, genomic technologies, such as microarrays, 
have developed significantly and completely new techniques, such as high 
throughput sequencing, have sprung into existence. For instance, aCGH 
microarrays have developed from cDNA or BAC based low resolution arrays 
to in situ synthesized arrays that interrogate up to 1.000.000 different 
genomic positions. This has necessitated the development of, among others, 
more computationally efficient segmentation algorithms to deal with the 
increased number of data points [213]. The first next generation sequencing 
publications were published in the fall of 2005 [214, 215], and the first full 
cancer genome sequence was reported in late 2008 [216]. As the sequencing 
output of these methods is orders of magnitude larger than that achieved 
with Sanger sequencing, this has required the development of new and 
significantly faster approaches to sequence alignment [195, 217]. These in 
turn have enabled the development of new bioinformatic approaches to 
specific biological questions, exemplified e.g. by the fusion gene 
identification method described in study II. Technology development has 
therefore also significantly driven the need to develop and refine new 
bioinformatic methods. 

9.2 RIC8A AND THE GINI METHODOLOGY 
(PUBLICATION I) 

Study I lead to the identification of biallelic inactivation of RIC8A in the 
breast cancer cell line ZR-75-1, as well as found a link between low RIC8A 
expression and aggressive breast cancer. We were unable to identify 
additional mutations in RIC8A when sequencing it in 127 early stage breast 
cancers. Curation results for RIC8A mutations in 515 cancers of various types 
(primarily glioblastoma, medulloblastoma, pancreatic, breast and colorectal 
cancers) reported in version 57 of the COSMIC database [218] identified one 
somatic missense mutation in a squamous cell carcinoma of the skin [219]. It 
therefore seems that RIC8A is mutated at low frequency or the mutation may 
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be private to the individual from which the ZR-75-1 cell line was derived. 
Alternatively, it may be mutated primarily in late stage breast cancers not 
included in our validation set. The rarity of RIC8A mutations also raises the 
possibility that RIC8A may be a passenger mutation with no cancer 
relevance. However, our results showing biallelic inactivation of RIC8A and 
low gene expression being associated with more aggressive breast cancer 
argues against this. Recent publications have shown that RIC8A plays a role 
in both orienting the mitotic metaphase spindle [220] and is required for 
coupling receptor tyrosine kinases to actin skeleton remodeling [221]. This 
indicates a role for it in the central cancer processes of cell division and 
migration, though in the latter case, RIC8A inhibition puzzlingly inhibits cell 
migration in response to PDGF and EGF [221]. Examining mutations on the 
level of pathways has shown that signaling pathways can be altered at many 
different nodes, with a large variation in how frequently individual nodes are 
mutated [222]. In these kinds of approaches, private and rare mutations such 
as RIC8A can contribute to the identification of the altered pathways and 
therefore be more important than their low frequency alone suggests. 

Despite the successes of the GINI method in finding mutated genes [145, 
172, 173], Buffart et al. have critisized it for producing a high number of false 
positive hits that do not validate in sequencing [174]. Our experience has also 
been that the NMD block leads to stabilization of a large number of 
transcripts, many of which are likely normal physiological targets of NMD. 
This observation led to us to include the data analysis criteria that a gene 
should only be upregulated by NMD inhibition in one cancer cell line and 
none of the non-transformed cell lines, essentially excluding most 
physiological NMD targets or transcripts otherwise upregulated by emetine 
treatment. This greatly decreased the number of false positive candidates. In 
principle, the specificity of the GINI method should increase as more 
samples, either cancers or "normal" cell lines, are added to the analysis. The 
major limitation of this approach is that the same criteria, if strictly applied, 
limits one to the identification of genes inactivated by PTC mutations only in 
one of the cancer cell lines in a study. However, the same gene can be 
inactivated by other types of mutations in other samples. Several recent 
publications have also shown that many genes are mutated at low 
frequencies or are unique to the tumor in which they are found [223-225], 
with few genes reaching even a 10% mutation frequency. This criterion is 
therefore unlikely to prevent the identification of most mutated TSGs, while 
significantly increasing the likelyhood of finding true positive PTC mutations. 

These days, next generation sequencing is videly available and allows the 
validation of many more NMD candidate genes in the same experiment, 
circumventing many of the problems associated with validating a large 
number of candidate mutated genes. However, the cost of exome sequencing 
is rapidly approaching the point at which it will be cheaper to simply 
sequence all exons in the samples, finding both nonsense as well as other 



 

53 

types of mutations. This suggests that the NMD microarray method may not 
remain in use for the purpose of mutation discovery for very much longer. 

9.3 FUSION GENES IN BREAST CANCER 
(PUBLICATION II) 

The same arguments regarding RIC8A cancer relevance based on mutation 
frequency may also be true for many of the fusion genes identified in 
publication II, although this is conjecture as little or no validation data in 
tumors is available for them. The largest study on fusion genes in breast 
cancer to date [119] analyzed 41 breast cancer cell lines and 38 tumors using 
paired-end RNA-seq and Illumina sequencing. Even though they reported no 
highly recurrent fusion genes, they found repeated fusions involving NOTCH 
and MAST family members in several breast tumors and cell lines, suggesting 
that they together may be present in 5-7% of breast cancers. In the 
supplementary material, Robinson et al [119] reported 384 fusion gene 
candidates from the 79 cancer samples. Besides NOTCH1, another 17 of the 
fusion partner genes identified in study II are listed in the appendix to 
Robinson et al.: STARD3, EIF3H, CYTH1, SNF8, TMEM49, GSDMB, 
MCF2L, ACACA, IKZF3, RAB22A, DIDO1, NFIX, RARA, ARFGEF2, ITCH, 
BSG and ZMYND8, suggesting they may also be recurrently fused. However, 
Robinson et al. did not validate most of the 384 fusion gene candidates. 
Since the paper does not discuss the specificity of their fusion gene 
identification pipeline, it remains unclear how many of the fusion gene 
candidates they report are true and therefore whether the 17 genes listed 
above are genuinely recurrent. As a major criterion for defining driver 
oncogenes and mutations is observing them repeatedly, the question remains 
open whether these are driver mutations or not. Of the genes found fused in 
study II, STARD3, SNF8, MCF2L, ACACA and NFIX were each validated 
once by Robinson et al., suggesting they may be recurrently fused. 

In addition to the five genes listed above, Robinson et al. promisingly 
reported two additional validated instances of IKZF3 fusions; the fusion 
CDC6-IKZF3 in UACC812 and MED1-IKZF3 in UACC893. This brings the 
total of observed IKZF3 gene fusions to three, which together with the 
functional data reported in study II increasingly suggest IKZF3 fusion genes 
play a role in a subset of breast cancer. One possible caveat is that all three 
cell lines with IKZF3 fusions contain the ERBB2 amplification. As IKZF3 is 
located ~29kb from ERBB2, the two genes are frequently coamplified, and 
the IKZF3 locus has been reported to be the most common telomeric 
breakpoint of the ERBB2 amplicon [193]. IKZF3 gene fusions may therefore 
in principle be byproducts of ERBB2 amplification, e.g. because the locus is a 
fragile site at which DSBs preferentially occur during amplicon formation. 
Nevertheless, the observation that ERBB2 amplicons frequently end at 
IKZF3 can also be interpreted to support the importance of IKZF3; 
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breakpoint clustering would indicate the location of an important gene. 
Further study of IKZF3 fusion genes in breast cancer therefore seems a 
promising project, both in terms of IKZF3 fusions themselves, as well as the 
possibility that it could point to a more general importance for fusion genes 
in high level amplifications. 

9.4 FUSION GENE IDENTIFICATION (PUBLICATION II) 

In study II, our fusion gene detection pipeline achieved near perfect 
specificity, and the pipeline has since been used to analyze several clinical 
RNA-seq samples, mainly leukemias, achieving comparable specificity 
(unpublished). The main step that provides high specificity in our pipeline is 
the pattern of short read alignments across the fusion junction, which has 
subsequently also been noted by others [187]. False positive fusion gene 
candidates that did not pass this filtering step were almost universally 
supported by short reads that aligned the minimum number of base pairs 
across the fusion junction (10bp in study II), as well as contained several 
mismatches in the 10bp that aligned to the other exon. This suggests that 
false positive rate could be further controlled by both increasing the required 
length of junction overlap, as well as by limiting the number of allowed 
mismatches. The downside would, however, be that some genuine fusion 
genes might be missed. Either due to mutations or single nucleotide 
polymorphisms close to the exon-intron junction creating mismatches 
indistinguishable from mismatches in misaligned reads. Alternatively, some 
true junction spanning short reads could be excluded because they do not 
sufficiently overlap the fusion junction. In either case, a fusion gene 
expressed at a low level might not be identified. 

Besides specificity, the sensitivity of an analysis method is of equal 
importance. The minimum number of fusion mRNA:s that must be 
sequenced to generate the required number of paired-end reads (2 for MCF-7 
and KPL-4, 3 for BT-474 and SK-BR-3) places a theoretical lower bound on 
the abundance a fusion mRNA must have to be detected in each of the breast 
cancer cell lines. This abundance is a direct function of sequencing depth and 
the number of read pairs required to support a fusion. KPL-4 has roughly 
3.989.756 uniquely aligning paired-end read pairs and, since two paired-end 
reads was the limit for detection, a fusion mRNA must be present at at least 
one fusion mRNA per 1.994.878 paired-end reads. This is ~1/3 of the 
theorethical sensitivity for SK-BR-3; 1 fusion mRNA per 5.355.302 paired-
end reads. In practice, however, the sensitivity will clearly be lower, but the 
numbers give an indication of the differences in sensitivity between the cell 
lines. As all the fusion genes are not known in any of our samples, a precise 
sensitivity can not be given, though others have found largely the same fusion 
genes when reanalyzing either our data [187] or conducting independent 
experiments on the same cell lines [114, 116], as well having found new fusion 
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genes. Our reanalysis of the RNA-seq data from study II in the spring of 2011 
also identified several new fusion genes, many of which have also been found 
by e.g. Kim et al. [187]. Direct comparison of the sensitivity of different 
analysis pipelines is complicated if they use different sets of transcript 
definitions, such as those provided by Ensembl and RefSeq. Transcript 
structure definitions may also change between versions of the same database. 
The fusion gene CSE1L-ENSG00000236217, for instance, was not identified 
by Kim et al. [187], as ENSG00000236217 had been removed from the 
Ensembl database version they used. Out of the new fusion genes found in 
our reanalysis, some were not found in study II because it used older versions 
of the Ensembl database. The other main reason was that, in our reanalysis, 
we relaxed the criteria for how many gene fusions the same gene could take 
part in in the same sample, which previously caused us to miss e.g. several 
MED1 fusions in BT-474. More generally, most fusion gene detection 
pipelines are based on the current knowledge of gene and transcript 
structures and will not find fusion genes involving nonannotated exons or 
genes. Periodic reanalysis of RNA-seq data sets for fusion gene identification 
is therefore advisable as long as the identification of new transcript variants 
causes gene models to evolve. TopHat-fusion [187] is the main exception, in 
that it can detect fusion genes involving unknown exons or genes, as long as 
one of the fusion gene partners is a known gene from RefSeq. 

9.5 THE BIOLOGICAL CHARACTERISTICS OF FUSION 
GENES (PUBLICATION II) 

One of the central findings in publication II was the strong link between 
fusion genes and high level amplifications on one hand and lower level copy 
number alterations on the other. Traditionally, recurrent translocations 
observed in leukemias were considered balanced, in that no DNA was lost in 
the process. This now seems more a product of the limited resolution of 
techniques such as G-banding, as a large fraction of leukemic translocations 
have also been shown to involve low level copy number changes, typically 
gains of the fused parts of both genes as well as losses of the parts not taking 
part in the fusion [133]. More broadly, it seems likely that a large number of 
amplicon associated fusion genes will be identified in cancer types that 
typically contain high level amplifications. If that turns out to be true, some 
of the genes will, if the sample set is large enough, be recurrently fused 
simply as a function of the large number of DSBs occuring in the vicinity of 
the driving oncogene during amplicon formation. Therefore, distinguishing 
these random recurrent events from recurrent oncogenic fusion genes 
associated with the amplicon may require functional experiments. 

In study II, we identified two gene fusions, CSE1L-ENSG00000236217 
and ANKHD1-PCDH1, in which the 3' partner gene primarily contributed its 
3' untranslated region (UTR) to the fusion gene. For fusion genes such as 
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these, the primary result of the rearrangement may not be a gene with altered 
protein function. Instead, the result could be altered miRNA mediated 
regulation of the 5' gene due to 3' UTR swapping, analogous to e.g. the 
t(8;14) translocation that place the MYC oncogene next to the highly active 
immunoglobulin heavy chain gene promoter [226]. Gene fusion may also be 
a mechanism for TSG inactivation, either by disrupting the allele taking part 
in the fusion gene or by creating a dominant negative version of the TSG. 
This has e.g. been suggested for SULF2, a potential breast cancer TSG [227], 
in the ARFGEF2-SULF2 gene fusion in MCF-7 [206]. Although as SULF2 has 
also been reported to be an oncogene in hepatocellular carcinoma [228], the 
question is open whether this is a true TSG inactivating event. 

Just as the pattern of single nucleotide or other mutations seen in a tumor 
may reveal the type of mutagens that initiated the tumor or what kinds of 
DNA repair mechanisms have been active [229], so too can the type of copy 
number changes associated with a gene fusion point to the mechanism that 
led to its formation. Gene fusions associated with high level amplifications 
are likely to have arisen together with the amplicon, either as the selectively 
advantageous target of the amplicon or as a byproduct of double strand 
breaks occurring during repeated rounds of e.g. breakage-fusion-bridge 
cycles. This model would imply a continuous accumulation of new fusion 
genes as the magnitude of an amplicon increases, since the DSBs generated 
during each round of amplification provide new opportunities for fusion 
formation. On the other hand, fusion genes associated with low level copy 
number changes may arise through incorrect repair of DSBs occurring as a 
consequence of mutagen exposure or during normal cellular functions. 
Especially if they lie in heavily rearranged genomic regions, the DSBs may 
represent chromothripsis [104]. The causes of chromothripsis, i.e. many 
chromosomal rearrangements ocurring in one or a few narrow regions of the 
genome, are not known, but speculated to be caused by e.g. ionizing radiation 
exposure during mitosis when chromosomes are condensed. 

9.6 THE ERBB2 AMPLICON (PUBLICATION III) 

Sircoulomb et al. [193] identified a minimal common region of amplification 
consisting of only 3 genes: ERBB2, MIEN1/C17orf37 and GRB7, while our 
reanalysis of their data together with 17 additional tumors in study III 
identified a minimal common region containing six genes (STARD3, TCAP, 
PNMT, PERLD1, ERBB2 and MIEN1/C17orf37), which is in accordance with 
previous studies [230]. This is a discrepancy, as adding more samples 
should, at most, further narrow the minimal common region, not enlarge it. 
The most likely explanation is the use of different segmentation methods, 
Genomic Identification of Significant Targets in Cancer [231] in Sircoulomb 
et al. and Piecewise Constant Fit in study III [194]. If data is noisy or 
amplicon boundaries not well defined in some samples, breakpoint definition 
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can be difficult and small differences in algorithm behaviour may lead to 
differences in results. Especially when defining a minimal common region, 
differences in the result for a single sample may be sufficient, if it happens to 
be the one defining either border of the common region.  

Few, if any, tumors however amplify only the minimal common region. 
Our results in study III showed that 10 genes were amplified in 90% of 
tumors and 60% of tumors amplified a region containing 27 genes around 
ERBB2. The concept of non-oncogene addiction suggests that, in individual 
tumors, several genes in the amplicon may contribute to the cancer 
phenotype, even if they are not located in the minimal common region. If 
that is true, then their inhibition may be therapeutically beneficial. Our 
results in study III showed that several genes in the ERBB2 amplicon are 
needed for survival of amplicon containing cells, lending support to the 
notion that several genes in an amplicon may be important for cancer 
development. The results showing synergistic effects on AKT 
phosphorylation in practically all ERBB2 amplified cell lines when silencing 
ERBB2 together with PPP1R1B, STARD3 or PERLD1, also supports this 
theory, as well as points to the importance of the PI3K/AKT signaling 
pathway as a downstream target of several genes in the amplicon. 

One limitation of any siRNA screen is the number of screen endpoints 
that can be detected. An siRNA screen will typically have only one or a few 
endpoints, and may require replicate experiments if the endpoints can not be 
measured from the same wells. The LMA technique used in study III allowed 
us to measure several additional signaling endpoints from the same 
individual screening plates, significantly expanding the scope of our screen 
beyond the primary cell viability endpoint. 

One of the findings in study III is that while the trastuzumab resistant cell 
lines JIMT-1 and KPL-4 showed little or no effect when ERBB2 alone was 
silenced, we were still able to see synergistic effects on AKT signaling in all 
cell lines when it was silenced together with e.g. PPP1R1B. Köninki et al. [52] 
have previously linked trastuzumab resistance in JIMT-1 to activation of the 
PI3K-AKT pathway by both a mutation in PIK3CA exon 7 as well as low 
PTEN expression. This suggests activation of ERBB2 signaling downstream 
of the HER2 protein, thereby possibly making its presence in the cells 
unimportant. Even if the synergistic effect was somewhat lower in the 
resistant cell lines, it is still a puzzling observation, as it implies that ERBB2 
still has a function in the cells that have become resistant to its inhibition. 
One possible model is that in e.g. JIMT-1, the alterations in ERBB2, PIK3CA 
and PTEN all feed into the same downstream signaling network in an 
additive manner. As a result, loss of the oncogenic signal from any one of the 
three aberrant proteins would be largely buffered by the two others, thereby 
resulting in resistance to inhibition of ERBB2 alone. In this scenario, the cells 
would be resistant to ERBB2 inhibition while simultaneously, when 
additional components of the downstream signaling network are inhibited, 
still dependent on it. 
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10 CONCLUSIONS AND FUTURE 
PROSPECTS 

My reasons for studying the genomic alterations found in breast cancer have 
been twofold. Pragmatically, oncogenic mutations make for good drug 
targets, in that the vulnerability is not present in normal cells. This hopefully 
provides a therapeutic window, enabling interference with the functions of 
the cancer cell without significantly affecting normal cells. Even if a mutation 
is not directly druggable, the more we know about the biology of breast 
cancer, the greater our chances are of better tailoring existing treatments for 
individual patients, as well as inventing completely new therapies. The other 
reason, certainly less altruistic, is scientific curiosity; a drive to figure out 
things that are unknown. Much like climbing a mountain because it is there. 

One of the primary lessons I have learned during this project is the need 
to document bioinformatic analyses in an understandable and reproducible 
fashion. As has been noted by Ioannidis et al. [232], many published articles 
do not contain enough details to allow independent bioinformatic reanalysis 
of the data and exact reproduction of the published results. Even though we 
have tried to document bioinformatic analyses in detail and have made all 
data publicly available, the publications that make up this thesis also fall 
short of the full disclosure model proposed by e.g. Baggerly and Coombes 
[233]. Irrespective of how one publishes methods, this question is equally 
acute when it comes to how you document your own analyses, such that you 
can reproduce them years later, or at least understand what was done in 
detail. Since 2005 when work on publication I was started, I have repeatedly 
needed to go back to examine minute details of how something was done, 
often years before, to confirm that I had not made any errors. If I had not 
saved the code of practically every analysis, included comments on what I 
was doing and organized this in a version control system, I would frequently 
have been lost. 

As more and more laboratory methods come to depend on bioinformatic 
analysis of their results, there is a danger that significant fractions of 
molecular biological research will become essentially nonreproducible, 
unless steps are taken towards more transparent publication of the data 
analysis methods used in a paper. In practice, this would mean requiring 
publication of the code used to analyze the data. Frameworks for doing this 
exist, either using literate programming tools such as Sweave [234] or as 
workflows in e.g. GenePattern [235] or Galaxy [236]. My own goal is to move 
towards publishing the code in future projects, and I hope that, just as many 
journals and funding bodies now require that raw data is made public, they 
will also start requiring that data analysis methods are published in a 
reproducible and transparent fashion. 
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It has for some time been clear that most cancers can in practice be 
divided into several different subtypes, with varying prognoses and treatment 
responses. In parallel, the recent explosive growth in sequencing capacity 
and drop in costs has made it both technically and financially feasible to 
sequence the whole exomes, transcriptomes or even genomes of cancer 
patients. This has lead to the establishment of projects aiming to personalize 
cancer treatment through large scale sequencing of cancer and 
corresponding germline genomes in many countries. The low hanging fruit in 
these personalized oncology projects will be the comprehensive identification 
of essentially all currently clinically actionable mutations in a tumor at a 
reasonable cost. Already today, exome sequencing of a tumor and the 
corresponding normal DNA is less expensive than 4-6 single gene tests, 
suggesting these projects will provide costs savings both in diagnostics as 
well as by better identifying those patients that would benefit from, often 
expensive, targeted drugs. In the slightly longer term, these projects will 
identify practically all recurrent cancer mutations, at least in more common 
cancer types. This information, together with detailed information on 
treatment histories should uncover many links between specific sets of 
mutations and treatment success, thereby improving cancer treatments. 
These projects will also generate very large sets of data on different cancer 
types, expanding our knowledge about the molecular biology of cancer and 
hopefully leading to the development of completely new therapies.  

This undertaking will, however, not be quite as straightforward as 
described above. In any sufficiently large collection of data, many spurious 
correlations will show up simply due to chance. Rigorous validation of links 
between specific sets of mutations and treatments through clinical trials 
should therefore be a priority. More generally, the problem, often 
sidestepped in "large data" projects, is that data alone does not equal 
knowledge. To quote the author Henning Mankell, "Many people make the 
mistake of confusing information with knowledge. They are not the same 
thing. Knowledge involves the interpretation of information." [237]. It is 
therefore unreasonable to expect or present these sequencing projects as 
revolutionizing cancer treatment on their own. They will likely generate 
important advances in cancer treatment but, equally importantly, they will 
provide raw material for new hypotheses and targeted studies for years to 
come. 
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