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Abstract

Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and
easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor
involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared
with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability
range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the
physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring
the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the
indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix
method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical
factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In turbidity measurement, the rate of turbidity change due to
the aggregation of particles is measured, and the absolute aggre-
gation rate is related to the rate of turbidity change through the
so-called optical factor, which has to be calculated by means of
light scattering theory. The relationship of the absolute aggre-
gation rate constant with the measured turbidity changing rate
can be described as follows [1],

(1)kaggr = (1/τ0)(dτ/dt)0

[C2/2C1 − 1]N1
,

where kaggr is the absolute aggregation rate constant, τ0 is the
turbidity at the beginning of aggregation, (dτ/dt)0 is the tur-
bidity change rate at the beginning of aggregation, and N1 is
the number concentration of particles in the monodisperse sus-
pensions. The dimensionless parameter F = [(C2/2C1) − 1] is
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referred to as the optical factor, where C2 and C1 are the extinc-
tion cross sections of two aggregated particles and one single
particle, respectively.

Because the optical factor F cannot be measured experi-
mentally, a major problem in turbidity measurement is how to
calculate C1 and C2 theoretically. Mie theory and Rayleigh–
Gans–Debye (RGD) theory have been employed to calculate
the optical factor. In a previous paper [2], we have shown that
existing theories are not applicable to large particles and only
the T-matrix method is capable of extending the applicability
range of the turbidity methodology and increasing measure-
ment accuracy. Although an outline of using the T-matrix to
evaluate the extinction cross section was described in Ref. [2],
the application of the T-matrix method to optical factor calcu-
lation is not straightforward for practical implementation. We
found that how to evaluate the relative refractive index of par-
ticle and surrounding medium, which varies with the incident
wavelength, is a crucial element in corrected calculation of the
optical factor, but this part was not discussed, in order not to
hinder the previous paper from its major theme.
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The main focus of this paper is on offering more details on
using the T-matrix to calculate the optical factor. We give spe-
cial attention to the importance of ensuring the correct value of
the refractive indices for the liquid phase and colloidal particle
used in the calculation of optical factors, because the indices
generally vary with the incident wavelength. The optical fac-
tors calculated by the T-matrix method are compared with other
existing theories and experiments. The factors causing uncer-
tainty in determination of the turbidity measurement for the
absolute coagulation rate constant are estimated, and advice on
how to improve the accuracy of the measurement is presented.
Finally, to make it possible for interested readers to easily test
the T-matrix method in turbidity measurement, we list data of
optical factors calculated by the T-matrix method for a range of
particle radii and incident light wavelengths.

2. Theory

2.1. Calculation of optical factors by Mie theory and RGD
theory

The Mie theory is valid for calculating the cross sections
for spheres of any size [3,4]. Therefore it can be used to eval-
uate C1 accurately. The Mie theory, however, cannot evaluate
C2 correctly because it is associated with the extinction cross
section (or scattering cross section for a nonabsorbing particle)
of a doublet composed of two spheres. One way to overcome
this difficulty is to adopt the coalescing assumption for a dou-
blet, in which the aggregated doublet is considered to coalesce
into a spherical particle with the same volume as the two sepa-
rated particles. However, the coalescence does not actually take
place, so the error associated with this coalescence assumption
is unavoidable in the calculation of the optical factor. We will
refer to this approximation method as Mie (coalescence) below.

Another approximation for dealing with the scattering prob-
lems of particles is the Rayleigh–Gans–Debye (RGD) theory. In
this theory, the whole volume of the scattering object is subdi-
vided into many volume elements, and each element represents
a Rayleigh scatterer. As it is developed from Rayleigh theory,
RGD theory is only valid for small particles. Besides single
spherical particles, the RGD theory is also applicable to real
doublets. Therefore, RGD theory can be used to evaluate the
optical factors of small particles. We will refer to this method
as RGD (real).

The RGD method can also be used to calculate the opti-
cal factor with the coalescence assumption. We will call this
method RGD (coalescence). Using the results of Mie (coales-
cence) and RGD (coalescence), Lichtenbelt et al. [1] have tried
to improve the calculation of the optical factor by correcting the
RGD (real) results. The corrected optical factor is calculated us-
ing the formula

(2)
C2

2C1
− 1 = C′

2 (Mie)C2 (RGD)

2C1 (Mie)C′
2 (RGD)

− 1,

where C′
2 (Mie), C2 (RGD), and C′

2 (RGD) are calculated from
Mie (coalescence), RGD (real), and RGD (coalescence), re-
spectively. C1 (Mie) is calculated from Mie theory. We will
refer to this method as RGD (corrected).

It can be seen that all the methods mentioned above either
cannot treat large particles correctly or have to resort to the
coalescing assumption in calculating the optical factors. Thus
all these existing theories may give incorrect optical factors for
large particles.

2.2. T-matrix method

The superiority of the T-matrix method [5–9] over other ap-
proaches discussed above is that it can accurately solve more
complex scattering problems for irregular particles, including
aggregates composed of spherical particles [9–13]. There is no
size limitation (unlike RGD theory, which is limited to small
particles) or shape restriction (unlike Mie theory, which is lim-
ited to spherical particles) on particles as a prerequisite to this
theory. Therefore, the T-matrix method provides powerful tools
for accurate calculation of the optical factors without limita-
tions on particle size.

In the T-matrix method, both incident and scattered electric
fields are expanded in a series of vector spherical wave func-
tions as follows [9]

(3)Einc(r) =
∞∑

n=1

n∑
m=−n

[
amnRgMmn(kr) + bmnRgNmn(kr)

]
,

(4)Esca(r) =
∞∑

n=1

n∑
m=−n

[
pmnMmn(kr) + qmnNmn(kr)

]
,

where k = 2π/λ, and λ is the wavelength. The harmonics
RgMmn and RgNmn have a Bessel-function radial dependence
and are regular (finite) at the origin, whereas the functions Mmn

and Nmn have a Hankel-function radial dependence and vanish
at infinity. Due to the linearity of Maxwell’s equations, the scat-
tered field coefficients p = [pmn, qmn] are related to the incident
field coefficients a = [amn, bmn] by means of the so-called tran-
sition matrix (or T-matrix):

(5)pmn =
∞∑

n′=1

n′∑
m′=−n′

[
T 11

mnm′n′am′n′ + T 12
mnm′n′bm′n′

]
,

(6)qmn =
∞∑

n′=1

n′∑
m′=−n′

[
T 21

mnm′n′am′n′ + T 22
mnm′n′bm′n′

]
.

In compact matrix notation, Eqs. (5) and (6) can be rewritten
as

(7)

[
p
q

]
= T

[
a
b

]
=

[
T11 T12

T21 T22

][
a
b

]
,

which means that the column vector of the expansion coef-
ficients of the scattered field is obtained by multiplying the
transition matrix (T) and the column vector of the expansion
coefficients of the incident field.

For a spherical particle, the T-matrix is diagonal, and its
elements are simply the an and bn coefficients from Mie scat-
tering [4]. Thus the T-matrix method converges with Mie theory
for a single spherical particle. However, the complex T-matrix
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method can be used to calculate the light-scattering proper-
ties of nonspherical and composite scatterers, particularly bi-
spheres. Therefore, it is capable of calculating the scattering
cross section of doublet C2 with no additional assumptions,
such as those involved in conventional Mie theory and RGD
theory.

Consider now the computation of the T-matrix for a cluster
consisting of N spheres. The total scattered electric field can be
written as the sum of the fields scattered by all spheres:

(8)Esca(r) =
N∑

j=1

Esca
j (r).

Because of the electromagnetic interactions between the
components, the total electric field exciting each particle can
be written as the sum of the external incident field Einc

0 (r) and
the partial fields scattered by all other particles:

(9)Einc
j (r) = Einc

0 (r) +
N∑

l=1
l �=j

Esca
l (r), j = 1,2, . . . ,N.

To make use of the information contained in the j th com-
ponent of the T-matrix, the fields incident on and scattered by
this component can be expanded in vector spherical wave func-
tions centered at the origin of the component’s local coordinate
system,

(10)

Einc
j (r) =

∞∑
n=1

n∑
m=−n

[
a

j
mnRgMmn(krj ) + b

j
mnRgNmn(krj )

]

=
∞∑

n=1

n∑
m=−n

[(
a

j0
mn +

∑
l �=j

a
jl
mn

)
RgMmn(krj )

+
(

b
j0
mn +

∑
l �=j

b
jl
mn

)
RgNmn(krj )

]
,

Esca
j (r) =

∞∑
n=1

n∑
m=−n

[
p

j
mnMmn(krj ) + q

j
mnNmn(krj )

]
,

(11)j = 1,2, . . . ,N,

where the index j numbers the spheres and the vector rj orig-

inates at the center of the j th sphere. The coefficients a
j0
mn and

b
j0
mn describe the external incident field, and the expansion co-

efficients a
jl
mn and b

jl
mn describe the contribution of the lth com-

ponent to the field illuminating the j th component.
Similarly to Eq. (7), the expansion coefficients of Eqs. (10)

and (11) are related via the j th component of the T-matrix Tj :

(12)

[
pj

qj

]
= Tj

([
aj0

bj0

]
+

∑
l �=j

[
aj l

bj l

])
.

As shown in Ref. [9], the vector spherical wave functions ap-
pearing here can be expanded in regular vector spherical wave
functions centered at the origin of the j th reference frame,

(13)

Mμν(krl) =
∞∑

n=1

n∑
m=−n

[
Amnμν(krlj )RgMmn(krj )

+ Bmnμν(krlj )RgNmn(krj )
]
,

(14)

Nμν(krl ) =
∞∑

n=1

n∑
m=−n

[
Bmnμν(krlj )RgMmn(krj )

+ Amnμν(krlj )RgNmn(krj )
]
,

where the vector rlj = rl − rj . The explicit expressions for
the translation coefficients Amnuv(krlj ) and Bmnuv(krlj ) can be
found in Ref. [9]. Thus we can write Eq. (12) as[

pj

qj

]
= Tj

([
aj0

bj0

]
+

∑
l �=j

[
A(krlj ) B(krlj )

B(krlj ) A(krlj )

][
pl

ql

])

(15)= Tj

([
aj0

bj0

]
+

∑
l �=j

Aj l

[
pl

ql

])
,

where Tj represents the T-matrix for the particle j , when iso-
lated. Inversion of Eq. (15) gives sphere-centered transition
matrices that transform the expansion coefficients of the inci-
dent field into expansion coefficients of the individual scattered
fields [9,12],

(16)

[
pj

qj

]
=

N∑
l=1

Tj l

[
al0

bl0

]
, j = 1,2, . . . ,N,

where the matrix Tj l transforms the coefficients of the incident
field expansion centered at the lth origin into expansion coeffi-
cients of the partial field scattered by the j th component at the
j th origin.

The expansion coefficients for the incident field at the ori-
gin of sphere i, (ai0, bi0), can be obtained by a translation of
the incident field coefficients expanded about the cluster origin,
(a, b), to origin i through [9,12]

(17)

[
ai0

bi0

]
= Bi

[
a
b

]
,

where the B matrices are similar to the A matrices of Eq. (15).
In a similar fashion, the combined scattered field from all the

spheres can be expressed as a single expansion written about the
cluster origin by a translation of the fields from the j th spheres
origin to the cluster origin. The expansion coefficients repre-
senting the total scattered field are given by Refs. [9,12]:

(18)

[
p
q

]
=

∑
j

Bj

[
pj

qj

]
.

When Eqs. (16)–(18) are combined, the scattered field expan-
sions from the individual spheres will be transformed into a
single expansion based on a single origin of the particle sys-
tem. The incident and scattered coefficients for the system will
be derived as [9,10,13][

p
q

]
=

∑
j

Bj

[
pj

qj

]
=

∑
j,i

Bj Tji

[
ai0

bi0

]
=

∑
j,i

Bj TjiBi

[
a
b

]

(19)= T
[

a
b

]
=

[
T11 T12

T21 T22

][
a
b

]
.

The matrix T defined in Eq. (19) is the T-matrix that we
seek and can be used directly in computing the orientationally
averaged scattering matrix for the aggregated cluster. As in our
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paper, what we need is to calculate the scattering cross section
of two aggregated particles C2, in this case N = 2. The explicit
expressions and calculations for the T-matrix can be found in
Ref. [9].

After getting the T-matrix of two aggregated particles, we
can obtain the extinction cross section by the formula given in
Ref. [9]:

(20)〈Cext〉 = −2π

k2
Re

∞∑
n=1

n∑
m=−n

[
T 11

mnmn + T 22
mnmn

]
.

By this means, the extinction cross section of two aggregated
particles C2 can be calculated by the T-matrix method, without
any further assumptions as required by Mie theory or RGD the-
ory. The extinction cross section of a single particle C1 can be
calculated by Mie theory or by the above-mentioned T-matrix
method. And then the optical factors can be determined from
the results of C2 and C1.

3. Wavelength correction of the refractive index used in
the T-matrix method

Although the deduction of the T-matrix for the extinction
cross section of two aggregated particles may seem compli-
cated, only two parameters are required for the calculation of
the elements of the T-matrix (for a single particle or the aggre-
gates of two particles), namely, the size parameter x = 2πa/λ1
and the relative refractive index m = n2/n1, where a is the ra-
dius of a single particle, λ1 is the wavelength in the medium,
and n2 and n1 are the refractive indices of the particle and the
surrounding medium, respectively. Both x and m are also re-
quired for the calculation of optical factors by RGD theory and
Mie theory.

It is elementary knowledge that the refractive index changes
with the wavelength of the incident light. However, for poly-
styrene particles dispersed in water, as used in this study, fixed
values of n1 = 1.33 and n2 = 1.60 are usually adopted in the de-
termination of cross sections and optical factors [1,13], because
the difference of refractive indices for different wavelengths is
not significant. In this case, m is considered to be a constant
and then the size parameter x becomes the only variable for the
optical factor. Lichtenbelt et al. [1] published their data of opti-
cal factors calculated by Mie theory and RGD theory, with only
one variable x. In their results by Mie (coalescence) and RGD
(corrected), m is taken to be a constant 1.20 in value, while
for RGD (coalescence) and RGD (corrected), m is no longer
a parameter in the expression because of the cancellation for m

contained in C1 and C2 in Eq. (1). Therefore RGD (both coales-
cence and corrected) does not depend on m; the size parameter
x as the only variable should be sufficient in the calculation of
the optical factor.

As has been shown [1,2,4], when the size parameter x is
small, RGD theory provides a reasonable approximation. Since
other theories (including the T-matrix method) can yield opti-
cal factors that are basically equivalent to those from m-inde-
pendent RGD theory, other theories with a constant m or taking
x to be the only parameter should not introduce considerable
error into the calculation of the optical factor as long as x is
small. In this case, the correction to m has little influence on
the calculation of the optical factor. However, our experiments
show that using only one variable, x, to characterize the opti-
cal factor is insufficient, at least for the case with a large size
parameter.

Equation (1) actually suggests an experimental approach to
testing whether a theory is effective for delivering a good opti-
cal factor. From Eq. (1) we can see that

(1/τ0)(dτ/dt)0/N1 = [C2/2C1 − 1]kaggr.

Using R to denote the experimentally measured quantity
(1/τ0)(dτ/dt)0/N1, we will have R = Fkaggr. As kaggr is a
constant for a given colloid system, the F must be proportional
to R. Fig. 1 shows the experimentally measured R with the size
parameter x for particles of a = 250 and 500 nm, respectively.
The experiments were performed with a UV–vis dual-beam
spectrophotometer (Purkinje TU-1901, Beijing), as described
in Ref. [2]. This plot shows that the R ∼ x curve for particles
with a = 250 nm has very different behavior from that for par-
ticles with a = 500 nm, implying that R depends not only on
the size parameter x but also on the particle size itself. There-
fore we conclude that using a single variable x in a theoretical
formulation is not sufficient to determine the optical factor cor-
rectly.

Actually, to keep x unchanged, the wavelength has to be al-
tered as different particle sizes are used. If the correction of
refractive indices with λ is considered, the calculated optical
factors may be different for different particle sizes even with
a fixed x, as in the results of Fig. 1. Therefore, correction of
refractive indices is essential in determining the optical factor.

The dependence of the refractive indices of water and
polystyrene on wavelength has been studied [14–19]. The re-
fractive index of water is a function of the wavelength λ,
salinity S, and temperature T [14–16]. The empirical formu-
las of the refractive index of water in relation to wavelength
given by the references [14–16] are different, but the results are
quite similar. In this study, we will use the formulas given by

Fig. 1. Plot of R = (1/τ0)(dτ/dt)0/N1 changes with x for different-sized par-
ticles (a = 250 and 500 nm).
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Fig. 2. m corrected using Eqs. (21) and (22) with T = 25 ◦C and S = 28 for
different wavelengths available from spectrophotometer.

Ref. [16],

nwater(λ) = 1.447824 + 3.0110 × 10−4S − 1.8029 × 10−5T

− 1.6916 × 10−6T 2 − 4.89040 × 10−1λ

+ 7.28364 × 10−1λ2 − 3.83745 × 10−1λ3

− S
(
7.9362 × 10−7T − 8.0597 × 10−9T 2

+ 4.249 × 10−4λ − 5.847 × 10−4λ2

(21)+ 2.812 × 10−4λ3),
where S is the salinity in �, T is the temperature in degrees
Celsius, and λ is the wavelength in micrometers.

References [17–19] present an empirical formula for the
polystyrene refractive index. However, we have noticed that the
results of Ref. [17] are slightly different from the data of Refs.
[18,19]. In this paper, we use the data given by Ref. [19], and
fit the data to the Cauchy dispersion relation as

(22)nps(λ) = 1.56362 + 0.00884/λ2 + 0.000255627/λ4,

where the unit for wavelength is micrometers.
By using Eqs. (21) and (22), we can obtain the corrected

values for the refractive indices of water and polystyrene for
different wavelengths to get the parameters x and m required
in the calculation of optical factors. The plot in Fig. 2 is the
wavelength-dependence curve of the corrected relative refrac-
tive index m using Eqs. (21) and (22), where T = 25 ◦C and
S = 28. Since the wavelength of the incident light mentioned
here is supposed to be measured in air but λ1 is considered to
be the wavelength in water, the size parameter x = 2πa/λ1 is
also related to the refractive index of water. Fig. 3 shows the
size parameter x of a particle with radius 500 nm for different
wavelengths calculated by using the corrected and constant re-
fractive index of water. The difference between the corrected m

and constant m = 1.20 is small (<8%) for the wavelength avail-
able from a UV–vis spectrophotometer, and the differences in
the size parameter x are even smaller.

However, the differences in optical factors F calculated by
the T-matrix method with corrected refractive indices and con-
stant indices are very different, as shown in Fig. 4 for particles
Fig. 3. The size parameter x calculated from constant refractive index and cor-
rected refractive index of water using Eq. (21) with T = 25 ◦C and S = 28 for
different wavelengths available from spectrophotometer. The particle radius is
500 nm.

Fig. 4. The optical factors F calculated by the T-matrix method with constant
refractive indices and corrected refractive indices using Eqs. (21) and (22) with
T = 25 ◦C and S = 28. The particle radius is 500 nm.

with radius 500 nm. It can be seen that even the shapes and the
changing tendencies of both curves are quite different. There-
fore, small corrections to x and m may result in significant
differences in the calculated optical factor F . To more clearly
show the importance of ensuring the corrected refractive in-
dices used in the calculation of optical factors, Table 1 lists the
percentage differences in m,x, and calculated F , respectively,
corresponding to the corrected and the constant indices. Again
these data provide direct evidence that if the relevant correc-
tions to refractive indices are not made, large errors may appear,
even though there is nothing wrong with the T-matrix method
itself.

4. Results and discussion

We use the fact that the optical factor F is proportional to
R at different wavelengths to examine the performance of a
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Table 1
The percentage differences of m,x, and F corresponding to the constant refractive indices and the corrected refractive indices by using Eqs. (21) and (22) with
T = 25 ◦C and S = 28a

λ in the air (nm) 300 340 380 420 500 550 600 650 740 800 820
�m/m (%) 3.59 2.02 1.04 0.39 0.39 0.70 0.92 1.07 1.18 1.11 1.06
�x/x (%) 2.00 1.58 1.24 0.96 0.58 0.42 0.30 0.19 0.04 0.27 0.37
�F/F (%) 39.35 17.11 2.23 2.13 4.30 14.28 33.93 93.93 92.82 42.42 34.14

a The particle radius is 500 nm. The percentage difference is obtained by dividing the absolute difference between the quantities by the corrected and the constant
relative refractive indices by the former.

(a) (b)

Fig. 5. The optical factors calculated for different size parameters using the T-matrix method and the Mie (coalescence), RGD (coalescence), RGD (real), and RGD
(corrected) methods. The experimental results of R = (1/τ0)(dτ/dt)0/N1 are also compared in the figure. The radius of dispersed particles is 250 nm. (a) The
refractive indices of water and polystyrene are calculated from Eqs. (21) and (22) with S = 28 and T = 25 ◦C. (b) The refractive indices of water and polystyrene
are calculated from Eqs. (21) and (22) with S = 0 and T = 25 ◦C.

(a) (b)

Fig. 6. The optical factors for different size parameters calculated using the T-matrix method and the Mie (coalescence), RGD (coalescence), RGD (real), and RGD
(corrected) methods. The experimental results of R = (1/τ0)(dτ/dt)0/N1 are also compared in the figure. The radius of dispersed particles is 500 nm. (a) The
refractive indices of water and polystyrene are calculated from Eqs. (21) and (22) with S = 28 and T = 25 ◦C. (b) The refractive indices of water and polystyrene
are calculated from Eqs. (21) and (22) with S = 0 and T = 25 ◦C.
theory in the calculation of the optical factor, by comparing
the results of R at different wavelengths with the optical fac-
tor calculated by the theory. For a good theory, the calculated
optical factors should basically coincide with the measured R

for different wavelengths, after an appropriate scaling factor is
multiplied by the vertical coordinate axis.
The results of the optical factors from different theories and
the experimental results of R versus incident wavelength in the
air are compared in Figs. 5 and 6.

Both Figs. 5a and 5b show optical factors calculated by dif-
ferent theories compared with the experimental results of R for
a = 250-nm PS particles at T = 25 ◦C. But the data in Fig. 5a
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Table 2
Optical factors for some typical wavelengths (in air) and particle sizes calculated by the T-matrix methoda

λ

(nm)
Diameter of particle (nm)

100 200 300 400 500 600 800 1000

850 0.760141 0.351878 0.251218 0.212014 0.165216 0.140811 0.09319 0.048585
780 0.718692 0.307114 0.245647 0.195708 0.152869 0.127339 0.077675 0.030255
700 0.660885 0.270121 0.228921 0.170864 0.13887 0.109268 0.055966 0.00395
633 0.601367 0.255205 0.209394 0.15355 0.122053 0.091348 0.031181 −0.02537
600 0.567621 0.252705 0.199244 0.147412 0.112335 0.079757 0.016531 −0.04116
532 0.488165 0.247933 0.170957 0.126896 0.088889 0.05159 −0.01956 −0.07869
500 0.446574 0.240342 0.157603 0.115612 0.07411 0.034873 −0.03959 −0.09713
460 0.392351 0.224137 0.146353 0.097269 0.053074 0.008718 −0.06809 −0.11859
441 0.36665 0.215148 0.139692 0.088317 0.040972 −0.00442 −0.08194 −0.12619
400 0.315189 0.194204 0.118938 0.062058 0.008464 −0.04076 −0.11191 −0.13587
350 0.27207 0.156328 0.084023 0.017581 −0.04415 −0.09302 −0.13717 −0.11684
337 0.266588 0.148101 0.073394 0.00206 −0.06117 −0.10652 −0.13544 −0.10527
325 0.263712 0.14196 0.06153 −0.01511 −0.07659 −0.11925 −0.1337 −0.09758
300 0.262268 0.12331 0.027225 −0.05248 −0.11185 −0.13738 −0.114 −0.07711
275 0.256605 0.091826 −0.01616 −0.09916 −0.13841 −0.13437 −0.08009 −0.08411
250 0.231062 0.045079 −0.07658 −0.13857 −0.13273 −0.09715 −0.07984 −0.10171

a The refractive indices of water and polystyrene are calculated using Eqs. (21) and (22), where S = 28 and T = 25 ◦C are used in the calculation.
corresponding to salinity S = 28 (the case in our experiment),
while those in Fig. 5b are for S = 0. Figs. 6a and 6b are similar
results but for the a = 500-nm particles. The refractive indices
(water/polystyrene) used for different wavelengths in all calcu-
lations are determined by Eqs. (21) and (22), instead of being
fixed.

Figs. 5 and 6 clearly show that the optical factors calculated
by the T-matrix method are consistent with the experimental
results of R for different incident wavelengths, while the data
calculated by RGD theory and Mie theory are quite divergent
from the R curve.

In Fig. 5, the measured R changes from positive to negative
values, while its values are always negative in Fig. 6. However,
the optical factors calculated from the RGD theory (both coa-
lescence and real doublet) are always positive in Figs. 5 and 6,
which means that the RGD theory fails completely when the
size parameter is large. The failure of RGD theory is foresee-
able because the theory itself has been known to be valid only
for small particles.

As C2 (RGD)/C′
2 (RGD) in Eq. (2) is almost uniform for

large size parameters, the curves for optical factors given by
Eq. (2) are similar to Mie (coalescence) in shape. However, the
results of optical factors of Mie (coalescence) and RGD (cor-
rected) given by Eq. (2) are not proportional to the results of R.
These errors may be caused by the assumption of coalescence,
which does not really hold in the aggregate.

As shown by the experiments described above, among all
different theories, the T-matrix method performs best in com-
puting optical factors for large particles.

Our experiments also provide a useful clue as to how to im-
prove the accuracy of the turbidity measurement. Since R (the
measurable quantity) or F (the calculated quantity) changes
with the incident wavelength λ, one should choose an appropri-
ate wavelength to ensure that R or F is large enough; otherwise
a tiny uncertainty of parameters in the calculation of F may re-
sult in significant error. For example, at λ = 349 nm (in air),
the refractive indices of water calculated by Eq. (21) in Figs. 2a
and 2b are 1.35357 and 1.34804, respectively. So the difference
of the refractive index caused by adding salinity is only 0.00553
or 0.4% of its value. With this tiny difference, the calculated op-
tical factors in Figs. 2a and 2b are −0.04582 and −0.05037, re-
spectively, or as high as 10% for its relative difference, although
the absolute difference is only 0.00455. On the other hand, with
almost the same difference of the refractive indices of water, at
λ = 785 and 250 nm, the relative differences in the calculated
optical factors are only 0.5 and 1.3%, respectively. In addition,
when R or F is small, the relative measurement error also be-
comes large. Therefore, selecting the appropriate wavelength in
the turbidity measurement to ensure that the change in turbidity
is sensitive to the aggregation (having large R) is very crucial.

The optical factors calculated by the T-matrix method for a
range of wavelengths and particle sizes are listed in Table 2. The
salinity is S = 28 and the temperature is T = 25 ◦C in the calcu-
lation, and the refractive indices are calculated using Eqs. (21)
and (22).

5. Conclusions

We have provided a detailed description of the calculation of
optical factors using the T-matrix method. The necessity of cor-
recting the refractive indices of particles and their surrounding
medium for different incident wavelengths is discussed in par-
ticular. Apparently, an accurate calculation of the optical factor
cannot be achieved without correct values of the refractive in-
dices. Since the optical factor F is proportional to a measurable
quantity R, we were able to experimentally test the validity of
all theories dealing with the calculation of F . Our experiments
confirmed that the T-matrix method has obvious superiority
over all other theories in providing a more accurate optical fac-
tor for dispersion of large particles. Therefore, our method is
effective in extending the applicability range of the turbidity



114 S. Xu et al. / Journal of Colloid and Interface Science 304 (2006) 107–114
methodology and increasing measurement accuracy, as is con-
cluded in our previous paper [2].

By careful discussion of the possible error in the calcula-
tion of optical factors and measurement of R in this paper, we
have also shown that the accuracy of turbidity measurement can
be improved by choosing the appropriate wavelength to ensure
that the turbidity is sensitive to the aggregation (having large R

or F ). In addition, the data on the optical factors calculated by
the T-matrix method for a range of particle radii and incident
light wavelengths are provided.
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