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Abstract The interaction of arbitrarily distributed
penny-shaped cracks in three-dimensional solids is ana-
lyzed in this paper. Using oblate spheroidal coordinates
and displacement functions, an analytic method is devel-
oped in which the opening and the sliding displace-
ments on each crack surface are taken as the basic
unknown functions. The basic unknown functions can
be expanded in series of Legendre polynomials with un-
known coefficients. Based on superposition technique, a
set of governing equations for the unknown coefficients
are formulated from the traction free conditions on each
crack surface. The boundary collocation procedure and
the average method for crack-surface tractions are used
for solving the governing equations. The solution can
be obtained for quite closely located cracks. Numerical
examples are given for several crack problems. By com-
paring the present results with other existing results, one
can conclude that the present method provides a direct
and efficient approach to deal with three-dimensional
solids containing multiple cracks.
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1 Introduction

Generally, brittle materials contain large numbers of mi-
crocracks. Due to the presence of these microcracks, the
materials become weaker and less stiff. This problem
is of considerable interest for researchers in the fields
of solid mechanics, geophysics and materials. Compre-
hensive reviews on this subject are given by Kachanov
[1,2], Nemat-Nasser and Hori [3] and Krajcinovic [4].

In micromechanical fields, due to the complexity of
the analysis of the multiple microcracks, various approx-
imate methods have been proposed, such as the dilute
or non-interacting solution, the self-consistent method
(see e.g. Budiansky and O’Connell [5]), the general-
ized self-consistent model (see e.g. Christensen and Lo
[6]), and the differential scheme (see e.g. Hashin [7])
and Mori-Tanaka method (see e.g. Mori and Tanaka
[8]). In these methods, microcrack interactions are en-
tirely neglected or indirectly accounted, which are only
valid for low or moderate crack density, since loca-
tions of microcracks, and, therefore, the damage and
fracture process of brittle materials are not well consid-
ered. As crack density increases and microcrack spac-
ings are smaller, the mutual positions of cracks become
important and strong interactions between microcracks
should be considered. However, it is much more com-
plicated to consider the interaction of cracks than to
analyze a problem of single crack. Serious mathemati-
cal difficulties arise when we try to consider the interac-
tion of cracks in three-dimensional solids. Due to those
reasons, a relatively small number of publications con-
cerning this kind of problems can be found from the
literature.

For two coplanar penny-shaped cracks under nor-
mal loading, Collins [9] has reduced the problem to an
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infinite set of simultaneous linear Fredholm integral
equations, which he solved approximately by iteration
for the case when the distances between the cracks are
large compared with their radii. A different approach
was used by Andreikiv and Panasyuk [10] who reduced
the problem to a finite set of integral equations, with the
number of equations equal to the number of cracks, but
they also managed to consider only the case of cracks far
apart. An alternating method was used by O’Donoghue
et al. [11] for two or three coplanar elliptical cracks
under mode I loading, the results were restricted to
spacings larger than one-fourth of the minor axis of the
ellipse. The interactions of two parallel elliptical cracks
in an infinite solid subjected to uniform tension normal
to the crack surfaces were studied by Isida et al. [12], and
the smallest spacing between cracks for which numeri-
cal results were given was one-fourth of the crack diam-
eter. Based on the superposition principle of elasticity
theory and Eshelby’s equivalent inclusion method, Xiao
et al. [13-16] studied several problems of two interacting
penny-shaped or elliptical cracks in three-dimensional
solid and analyzed the interaction between a spherical
inhomogeneity and two coplanar penny-shaped cracks.
In addition, Xiao et al. [17] also investigated the problem
of a hoop-like craze formed at the equator of a spherical
inhomogeneity.

Strong interactions were studied by Fabrikant [18]
and Kachanov [19]. Based on Fabrikant’s earlier results
for a single circular crack, a new form of integral equa-
tions for the problem of coplanar cracks was proposed
by Fabrikant [18]; with the advantage that the equa-
tions are non-singular and the iteration procedure is
rapidly convergent even for interactions of very closely
located cracks. Three-dimensional elastic interactions
of arbitrarily located and oriented penny-shaped cracks
were considered by Kachanov and Laures [20], and solu-
tions for the stress intensity factors (SIFs) were ob-
tained for several crack geometries. Kachanov’s method
is simple, and can be used for high microcrack concen-
trations. But in his interaction scheme, the unknown
crack-surface tractions are approximated only by their
averages.

In this paper, based on the basic equations of el-
astostatics and the oblate spheroidal coordinates, the
displacement functions are expressed in Legendre poly-
nomial series with a set of unknown coefficients for each
crack. By superposition technique, using the traction
free conditions on each crack surface, a set of govern-
ing equations are formulated. The boundary collocation
procedure and the average method for crack-surface
tractions are used for solving the governing equations.
The SIFs are given for several crack geometries and
compared with other available results.
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2 Basic formulae and calculation method
2.1 Basic formulae
2.1.1 A single crack

The mathematical formulation of three-dimensional
elastostatic problems involves an appropriate selection
of harmonic functions based upon the solution of the
Navier displacement equations of equilibrium. In the
absence of body forces, Navier’s equations become

pVUi+ (A w0 =0 (=123,
’ 1
U = ujg,
where u; is the component of the displacement vector,
i the shear modulus, v the Poisson ratio, A the Lamé
coefficient, and A = 2vu/(1 — 2v).
Using the solution of Papkovich and Neuber
(Sokolnikoff [21])

2l = K@;j — Xj@ji — 90 2

where ¢r(k = 0,1,2,3) are harmonic functions, k =
3 —4v.

Suppose that F = ¢ + x;¢;, we rewrite Eq. (2) in the
form

oF

2uu; =41 —v)p; — —. 3

12227 ( V)@ 9% 3)
2.1.1.1 Normal loading Based on the work of Kassir
and Sih [22], by setting ¢; = ¢» = 0, 3 = ¥, 99 = o,
F =g¢p+zyanddp/dz = (1-2v)¢ in Eq. (3), the expres-
sions for the corresponding displacements and stresses
are

o L (00 ov
= 7o o T )

1 (3¢ oy
= (=27 4
" 2#(8y+zay), (4a)
1 B
=— (20 -y —z—
Uz 2#[( V)Y zaz]
1 3¢ 92¢ 32y
=— 22— 4 z(1 = 2v)—
M (8x2+ Vg T ”)axz)’
1 2¢ 9% 3%y
=——(2v—=+ =L +z1 - 2v)—
vy 1—2v(”ax Ty T ”)ayz)’
%y
Iz — 8Z BZZ’
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_ e Y
Y dxdy oxdy’
azw
= 4b
Oz 8y3z (40)
a2y
Txz = —2 9xdz

The oblate spheroidal coordinates (see Sect. 5) are used
to solve three-dimensional elastic interactions of penny-
shaped cracks. The harmonic function v must satisfy
Laplace’s equation (44). Its separable solution can be
written as

Y&, n,0) = O (&) P (1) (bymn cos mO + cyy sin mo),
(5)

where P}}', Q" are the Legendre functions of the first
and second kinds, respectively. It is noted that 71, n must
be integers (m < n) in order that the Sturm-Liouville
conditions are satisfied.

Since dp/9z = (1 — 2v)y,

@(&,n,0) =

a(l —2v) [n—l—l—m

o
idt2m L ntiam s

n+m .
Xan+1 (n — m Q;n_l (IS)PZ[_l (7])]
X (b €08 MO =+ Cpypy SIn MO). (6)
Substituting Egs. (5) and (6) into Eq. (4), the displace-

ments and the stresses can be obtained using the MATH-
EMATICA Software

_ mn mn
Uy = (bmnuxc + Cmnllyyg ) s
_ mn mn
uy = (bmnuyc + Cmnityg ) ,

mn mn
Uu; = (bmnuzc + Cmnlyg )7

xxc + CmnOxys ) »

)
Oyy = (b yyc e+ Cmnayy?) (7)
Ozz = (bmnazzc + Canfgl) s
Oxy = (b xyc ¢t Cmnaxys)
Oyz = (b yzc ¢t Cmnayzs)
Oxz = (b xzc ¢t CmnO. xzs) ’
where v/, T o gt are the functions

XC’ Xs 0 XxXxc? Xxso
of £,n,0,m,n. These expressions are quite lengthy, the

detailed formulas are not listed in this paper due to the
space limitation.

For a single interior crack subject to symmetric crack
face normal loading, the boundary conditions are

GyZ(x’y’ 0) = O—XZ(xay’ 0) = 07 (83)
UZZ(x’y, O) = P(X,}’) (E = O, (Sb)
u;(x,y,00=0 (n=0, r>a. (8¢)

r<a,

According to Eq. (4), we have

0x; =0y; =0, whenz=0.

Equation (8a) is satisfied automatically. When z = 0, we
find
1—v . .
—— O GE0) P (1) (byyn cOs MO ~+ Cppypy sin MO)
U
if & =00 < a),
Uz=11- ©)
—— O GE) P (0) (byyn cos MmO + €y sin MmO)
7

ifn =0 > a).
If m, n take opposite signs, P};'(n)],=0 = 0, so that

1-—
==L QM GO P (1) (Byun cOS MO + Cyyy sin M)
w

U, =

if € = 0(r < a), (10)
0 ifn=0@0>a).

One can easily show that

il 1
&=m[ (1+¢&° )g-l-é(l—n )—}. (11)
For z =0,

ii ift& =0(r < a),
s - i aag (12)
dz Ea—n if n =0 > a).
Then,

dy %y
Ozz = B_Z — ZB_ZZ

——éQm(IO)Pm(n)(bmn coS MO + Cpyy Sin MO)
if &€ =00 < a), 13)

1 d

EQ;”(ié)&an(O) (byn cos mO + Cip Sin mo)
if n =0@ > a).

2.1.1.2 Shear loading According to the work of Kassir

and Sih [22], by setting @1 = 3Y1/3z, 92 = 3V2/3z, 93 =

G/2,G = 20991 /0x + 02/0y),0G/0z = 2(d¢1/dx +

d¢2/0y), F = zG in Eq. (3), the corresponding displace-
ments and stresses are given by the following expressions
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1T G
= — |41 — —z—
Uy 2| I-=v)g1 -z 8xi|’
17 G
=5 _4(1 — V)¢ — rm } , (14a)
17 G
=—|(1-21)G—z—
MZ 2[.L _( V) Z az ] )
G 3 aZG
ove = 2057 +4(1 NIl
G dgp 092G
ny—2va +41 - )—— 8y2’
3°G
O, = —7—F=
=T (14b)
Ao 32G

)__

1
=20 - 10— Py
Ory = 21 =w) 7 4 2( oxay
R G %G
oy = 2(1 — )i;—

Ay ayaz’

d¢1 aG 82G

=21 -v)—/— —v— — .
oz ( V) 0z Bx axaz

In the oblate spheroidal coordinates, because ¢; and ¢;
are harmonic functions which satisfy Laplace’s equation
(see 44), they take the form

P1(&,1,0) = Oy GE) Py (n) (dyn cos mO + ey sinmb),
(15)
92(8,1,0) = Q' &) P () (frun cos mO + gy sinmo).
(16)
Since @1 = Y1 /09z, 92 = 3Y2/0z,
B a(1—2v) n+1—m
n— 1(12)‘-) 1(77)i|
X (dmn cos mb + e, sinmb), (17)
gy — all—-2v) [n+1—m
Y2(§,n,0) = idtom |nviem 1 GEYPL ()
S om Ggypr 1(77)}
X (fyun c0s mO + gy sinmo). (18)
Since G = 2(dy1/0x + 0y /0y), we have
G = (dmn +emnG )+ (fmn +gmnG )7 (19)

where Gﬁ”,
&, n,0,m,n.
Substituting Egs. (15)-(19) to Eq. (14), using the
MATHEMATICA Software, the components of the
displacements and the stresses can be expressed as

GT", G5" and G5' are related with
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(ot 5% + mnt35)

At + rntt) + (franttf 3+ gt (202)

mn mn
Uy = ( mnly1c + em”uxls) +
u
mn mn mn mn
u m"uzlc+em"uzls) (fm’luz2c +gmnu125) >

mn mn
mn9yx1c + em"a ) ( mn xx2c + gmnaxes) ’

d
y =
z = (d

— (d

Oyy = (dmnnylc‘I‘ean ) (fmn y2c+gmn yZS)

Ozz = (dmnozzlc + em’lazzls) (fm’lazdc + gmnazz2s) >

xy =

yz =

(
(
(

o dmna;;lc + emna ) (fmn yE’C + gmncf;;gs) ,
mn mn mn

o dm”Oyzlc + €mno zls) ( mnOyzo¢ + 8mno 225) 4
mn

Oxz = dmnalec + emno zls) ( mnO. 22c + 8mno 22s)

(20b)
mn mn mn 1
where ”xlu Wit o 00 Ol - - are functions of

&,n,0,m,n, which are lengthy and will not be repro-
duced here.

For a single interior crack subject to antisymmetric
crack face shear loading, the boundary conditions are

0.:=0 (]x] < o0, |y| <00),
sz(x»y»o) = Qx(xv}’) (g = 07 r< a)a (21)
Uyz(x>y,0) = Qy(xvy) (é = 07 r< a)a
ur(x,y,0) =uy(x,y,00 =0 (n=0,r>a).
According to Eq. (14), we have
0;; =0 whenz=0.
Whenz =0
2(1 —v) .
Q' (0 Py (n)
" X (dyy, cOsmO +ep,, sinmb)  if E=0(r<a),
=121 -v) .
Oy (&) P (0)
X (dyyn cos ml +ep,, sinmb)  if n=0(r> a).
(22)
If m, n take opposite signs, P} () |,=0= 0, so that
2(1 —v) .
O (0) Py (n)
Ux=1 X (dpncosmb+emysinmd) if& =0 < a),
0 ifn=0@r=>a),
(23)
2(1 —v) .
Q' 10) P (n)
W= X(fruncosmb + gmnsinmd) if & = 0(r < a),
0 ifn=0@r>a).
(24)
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2.1.2 A set of arbitrary cracks

For a linear elastic solid with N cracks under remote
loading ¢, the problem can be decomposed into two
problems. The first problem is a homogeneous problem,
in which a homogeneous solid is subjected to remote
load o°. The second problem can further be represented
as a superposition of N subproblems. Each subproblem
is a single crack problem loaded by unknown opening
and sliding displacements on the crack surface and the
stresses are vanished at infinity. Based on superposition
technique, by using the traction free conditions on each
crack surface, a set of governing equation is formulated.

A global Cartesian coordinate system (Oxyz) is used,
together with a local normal-tangential coordinate sys-
tem with origin (Oy) at the center of the k-th crack, rep-
resented by x,x, yor and z,,. We let axis z be the crack’s
normal direction and yy lie in the x-y parallel plane. The
orientation of the k-th crack is specified by the angle
coordinates (o, yx) (see Fig. 1), where 0 < y < /2,
0<oap <m.

The linear elastic solid is subject to remote uniform

loading 0¥, so the traction along the k-th crack surface
produced by ¢

10 =ny -0, (25)
pg]) =ny -0 n; and ‘(IEO) =ny - oV - (I — ngny) are the

normal and shear tractions on the k-th crack induced by
o, where ny is the unit normal vector on the k-th crack
surface, ngny is a dyadic product.

As mentioned in Sect. 2.1.1, the displacement func-
tions V¥, ¢, ¢1, ¢2, ¥1 and Y and the corresponding
stresses ojjx (&, Nk, Ok) (i,] = x,y,z) related with the k-th

v

X

Fig.1 The global and local coordinate system

crack can be expressed in Legendre polynomial series
for the normal and shear loading in the local coordinate
system.

According to the formulae of coordinate system trans-
formation, the tractions along the /-th crack surface in
the local coordinate system (Ox;y;z;) produced by the

k-th crack can be written as follows
k
ff,;l) = BLoijkBri: (26)

where By, is the matrix of coordinate system transfor-
mation between Ogxryizr and O;x;y;z;

B = BB, (27)

where B is the matrix of coordinate system transforma-
tion between Oxyz and Oyxy Vi Zk-

COS Yk COS ) — Sin (g Sin Y COS o
CoS Y sinay cosay  sinyg sinay | . (28)
— sin Y 0 COS Vi

Bi =

According to the superposition scheme, the traction-
free conditions on each crack surface can be written as
follows

o0, 1,6 + Z%zz ©,n1,6) =0,
k=1

a0, 11,6 + Z o) (0, n1,6) =0, (29)
k=1
oy 0, m,ez>+z o O, 0) =0, (=12,....N),
k=1

where azzl (0 01,01, o le(O n;,0p) and oy (O n;,0p) are
the tractions along the /-th crack surface in the local
coordinate system lelyl(fl, 171,01) produced by the
remote loading. Uzzl (0 n,0p, o le (0 n;,0;) and a(k)
(0,n;,6;) are the tractions along the /-th crack surface
in the local coordinate system (O;x;y;z;(&;,11,6;)) pro-
duced by the opening displacement loading and the
sliding displacement loading on the k-th crack surface,
respectively. Thus, Egs. (29) are the governing equations
for determlnlng the unknown coefficients b¥ dk

mn> mn’ mn>
mn>f n’gmn (k=1,...,

N;m,n=0,1,...,00).

2.2 Calculation procedure

2.2.1 Boundary collocation method

The governing equations are solved numerically on the
basis of the crack surface boundary collocation method.

By dividing the k-th crack surface into Cy and Ry ele-
ments in circumferential and axial direction, respectively,
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the collocation points on the k-th crack surface are given
by the following expressions

& (i,)) = 0,

i 2
MGy = |1 - (R—k) , (30)

.. T . .
ek(l’])zc_k], (l=1929’Rk’]:1929’Ck)

The infinite series can be approximated with a suffi-
cient degree of accuracy by the corresponding truncated
series. The governing Egs. (29) are reduced to a system
of linear algebraic equations for the unknown coeffi-
Cients by,. s Ay Epuns Frin a0 &1

When the algebraic equations are solved, the dis-
placement functions and the stress components
produced by each crack are known. According to the
superposition principle, the stress fields produced by the
multiple cracks are obtained through the transforma-
tion formulas from the local coordinate systems into the
global one.

The stress intensity factors can be expressed as

12
i / 2
K1) = EI/IEIO {(al 1+& - ﬂz) 0;11(51,0,91)} ,

G

12
Kn () + iKmi(6)) = slimo [(01\/ 14+& - al)
1=

x [szz(él, 0,6 +ioy (81,0, 9[)] e—i@,]’

(32)

where o7 ,(6,0,0)), 0,,(§,0,0,) and oy*zl(fl, 0,0)) are the
pseudo-tractions produced only by the opening displace-
ment loading and the sliding displacement loading on
the /-th crack surface.

2.2.2 Average method of crack-surface tractions

The average method for crack-surface tractions is used
to solve the governing equations by approximately sat-
isfying the traction-free conditions on the crack surface.
According to the superposition technique, the tractions
on each crack surface can be written as follows

@ Springer

zzl zzcl zzsl  “mn zzlcl

Oput = - © + z I:O_mn(k)bfcnn + o) Lk n O_mn(k)dfcn”
k

mn(k) k

mn(k) ok mn(k) k
+ Uzzlsl €mn + Uzchl fmn + UzzZsl gmrl] ’

(V) mn(k) 1 k mn(k) k mn(k) jk
Oyzl = Oy + > [Uyzcl B + Oyz™ Con + Oyz1er Amn
k

mn(k) k mn(k) ck mn(k) k
+ Gyzlsl €mn T Uychl f mn GyzZsl gmn] ’

xzl xzcl xzsl mn xzlel

o =00 + z [am”(k)bf‘m yombck L pmn gk
k

mn(k) k mn(k) mn(k) k

k
to z1sl Cmn + szch f mn + sz2sl gmn] ’

X

(l=1,2,...,N) (sum overm, n), (33)

and they can be further expressed in the vector form as

=1+ Cll & Sih,
: k q k
C;znfml’l + S;anmm

(sum over k, m and n), (34)

AN g omn
+Clk dmn +Slk €mn +

(l=12,...,N)

where t; is the traction column vector and #; = [0z, 0y,

ozzl]T. t}o) is the traction along the /-th crack surface
in the local coordinate system O;x;y; produced by the
remote loading 0. CJ", Sji", > S Ci and S
are the tractions along the /-th crack surface in the local
coordinate system (Ox;y;z;) produced by the opening
displacement loading and the sliding displacement load-
ing on the k-th crack surface, respectively.

When the first order average of crack-surface trac-
tions is used to yield the traction-free condition on the
crack surface, namely, m = 0,n = 1, the governing equa-
tion is

() = (80)+ () bl + (€00t + (€)1 =0,
LN, (35)

where symbol ( ) characterizes the average on the crack-
surface. Then, the governing equations are reduced to
a system of linear algebraic equations for the unknown

coefficients bgl, d’gl and f(’)‘l. By solving the algebraic
equations, b'gl, dgl and fé‘l can be obtained.

When the second order averages of crack-surface
tractions are used to yield the traction-free condition on
crack surface, namely, m = O,n = 1 and m = 0,n = 3,
the governing equations are
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) = (67) + (CoL) oy + (€l )t + (COR) 1
+(CiR) oy + (€ )als + (CR) s =0, (36)
t1-p) = (- o) +(CiL - ) B
+(Cl - o) dfy +(C - )5+ (€ - o) bl
+(Cli - o) dls + (€2 - o) £ = 0. (37)

where p is the polar coordinate on crack surface. Then,
the governing equations are reduced to a system of 6N
scalar linear algebraic equations for the unknown coeffi-
cients b’&, d’gl , fé‘l, b§3, d’(§3 and fég. By solving the alge-
braic equations, b'gl, dgl, fé‘l, b’0‘3, d§3 and fég can be
obtained. Further, the tractions on crack-surface and
SIFs along the k-th crack edges can be calculated.

When the g-th order averages of crack-surface trac-
tions are used to yield the traction-free condition on
crack surface, namely, m = 0,n = 1,3,5,...,2q — 1, the
governing equations are

{t) =0,

{t;-p)=0,

{tr-p?) =0, (38)
(l‘] . qul) =0.

By solving the algebraic equations, bgn, d(lfn, f(’;‘n (n =
1,3,5,...,2g—1) can be obtained. Further, the tractions
on crack-surface and SIFs along the k-th crack edges can
be calculated.

This paper presents a general method to solve the
interaction problem including the strong interactions of
arbitrary circle cracks. The first order approximation
method given by Kachanov and Laures (1989) can yield
quite good results for strong interacting crack problems.
Hence we only extend their results to the second, third
and g-th order approximations. Meanwhile we only use
the terms with m = 0,n = 1,3,5,... (while Kachanov’s
average method only includes m = 0 and n = 1). Obvi-
ously when some cracks are very close to each other,
we should use more terms including m = 1,2,3,...
and n = m+ 1,m + 3,.... Then Eq. (38) should in-
clude other equations, for example, (t;cos(mf)) = 0,
(t;sin(mB)) = 0, (t;p cos(mB)) = 0, (t;p sin(mb)) =0, ...,
;09 cos(mb)) = 0, (t;p?~1 sin(mb)) = 0 and so on.
Then the calculation cost will increase greatly.

From Eqgs. (29) and (33), the tractions produced by
the opening and sliding displacement loading on crack
surface can be expressed as

o’ (p,6) = —{0(0) +> [amn(k’bfnn tommBk

zzl zzcl zzsl
k#l
mn(k) ik mn(k) k
+ Oz1cl dmn + 0215l Cmn

(k) pk (k) k
+ U;Z;cl fm" + O'z”;gs[ gmn] ]’

_ 0) mn(k) 1 k mn(k) k
U;zl(p’e) - _Hayzl + Z I:Uyzcl bmn + Gyzsl Cmn
k#l

mn(k)
+ Uyzlcl

k mn(k) k
dmn + Gyzlsl €mn

k) rk k) k
R | D

xzl xzcl xzsl
k+#l

+ amn(k)

k mn(k) k
xzlel dmn to

xzlsl Cmn

mn(k) ok mn(k) k
+ UJCZZC[ fmn + OXZZSI gmn:| ],

(l=1,2,---,N) (sumoverm, n).

The SIFs are given as (Kachanov and Laures [20] and
Fabrikant [24])

2
1 /n/a Va2 = pdo.(po.60) podpoddy
X
00

723/2a a’ + p(% —2appcos(@ — 6p)

Ki(0) =

(40)

21 a

1
Kn®) +iKm@®) = —— Ja - o}
1 (0) + 1Ky (0) 2 7‘10/0/ a= — pj

l e 7% (p, 6)

a’ + p(z) — 2apg cos(0 — 6y)

v e (3a— poel 0T (pg, 6)
2—v a(a — poe'@=00)2

x podpodby, (41)

where " = o}, + io,, an overbar denotes a complex

. yz
conjugate.
3 Numerical examples
3.1 Two coplanar cracks under normal loading
3.1.1 Two coplanar cracks of equal size (Fig. 2)
Firstly, the first, second, third and fourth order average

traction methods on crack-surface are used to calculate
the stress intensity factors along the edges of two
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Fig. 2 Two coplanar cracks of equal size under normal loading

coplanar cracks of the same size under normal loading.
The results are presented and compared with those of
Kachanov and Laures [20] and Fabrikant [18] in
Tables 1 and 2. As seen in the tables, the interaction pro-
duces a stress amplification, i.e., K1 /K? > 1 everywhere
along the edge, which agrees with Kachanov’s conclu-
sion. The maximal error of Ky /K? between the present
results and Kachanov’s solutions is less than 0.2%when
the first order average traction method is used, indi-
cating that the present solutions are accurate enough
for very closely spaced and strongly interacting cracks.
The differences of the values of Kj /K? obtained by us-
ing the first and fourth order average traction methods
are less than 0.5% at spacings 0.05 < A/2a < 0.25,
which indicates that the accuracy of the first order aver-
age traction method is high enough. The differences
increase as the spacing decreases and become 0.98%
when A /2a = 0.00025.

& @ > [] a0
I e e —
N O ‘e s >

N

Lol

Fig. 3 Coplanar crack-microcrack interaction under normal
loading
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3.1.2 Coplanar crack-microcrack interaction (Fig. 3)

Stress intensity fractors for two coplanar crack-
microcrack interactions under normal loading are
calculated by using the first and second order aver-
ages. The microcrack size is 1/20 of the main crack size.
The results are given in Tables 3 and 4, along with
Kachanov’s results (see e.g. Kachanov and Laures [20]).
It is observed that the present results are in good agree-
ment with Kachanov’s solutions. When the first order
average is employed, the maximal error of Kj /K? be-
tween the present results and Kachanov’s solutions is
less than 0.2%. Effect of the small crack on the large
one is quite slight except for the points that are closest
to the small crack; effect of the large crack on the small
one is quite significant at all points of the small crack
edge.

3.2 Two stacked cracks in normal loading
3.2.1 Two stacked cracks of the same size (Fig. 4)

Stress intensity fractors of two stacked cracks of the
same size in normal loading are calculated using the
boundary collocation procedure. The results are pre-
sented in Table 5, along with the solutions of other meth-
ods (see e.g. Kachanov and Laures [20], Isida et al. [12],
etc.). As shown in the table, the interaction results not

o A

Fig. 4 Two stacked crack of equal size under normal loading
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Table % The values of max A/2a Ref. [20] Ref. [18] Present results
(K1/K7) for two coplanar - -
cracks of equal size under First order Second order Third order Fourth order
normal loading (v = 0.25) 000025  2.8819 27758 2.87827 2.89272 2.90242 2.90653
0.005 1.9078 1.86131 1.90505 1.911251 1.91234 1.91242
0.05 1.2964 1.28777 1.29588 1.29564 1.29551 1.29547
0.10 1.1711 1.16785 1.17083 1.17060 1.17055 1.17054
0.15 1.1153 1.11518 1.11504 1.11502 1.11502
0.25 1.0639 1.06342  1.06380 1.06375 1.06374 1.06374
0.50 1.0224 1.02348 1.02347 1.02347 1.02347
1.00 1.0067 1.00670 1.00670 1.00670 1.00670
1.50 1.0029 1.00285 1.00285 1.00285 1.00285
Table 2 Two coplanar closely
spaced cracks of equal size P AJ2a = 0.05 A/2a = 0.00025
3:1(31?5 I;(Erlgll %?ﬁgfﬁgg e Ref. [20] Ref. [18] Present results Ref. [20] Ref. [18] Present results
crack edge (v = 0.25) First order Second order First order Second order
0 1.2964  1.2877  1.29588 1.29564 2.8819  2.7758  2.87827 2.89272
15 12192 12131  1.21723 1.21712 1.4393  1.4161  1.43704 1.43745
30 1.128 1.1255  1.12694 1.12651 1.1957  1.1863  1.19412 1.19257
45 1.0791 1.0772  1.07745 1.07725 1.1091 1.1042  1.10752 1.10693
60 1.0529 1.0518  1.05178 1.05146 1.0699  1.0669  1.06827 1.06769
75 1.038 1.0375  1.03756 1.03736 1.0494  1.0473  1.04848 1.04798
90 1.0296  1.0289  1.02889 1.02876 1.0374 1.0361  1.03680 1.03645
105 1.0241 1.0236  1.02373 1.02356 1.0303  1.0291 1.02989 1.02960
120 1.0205 1.0201  1.02020 1.02011 1.0257  1.0247  1.02538 1.02513
135 1.0182  1.0179  1.01803 1.01794 1.0228  1.0219  1.02244 1.02221
150 1.0168 1.0164  1.01654 1.01646 1.0209  1.0201 1.02065 1.02044
165 1.0159  1.0156  1.01576 1.01568 1.0199  1.0191  1.01966 1.01945
180 1.0157 1.0154  1.01544 1.01536 1.0196 1.0188  1.01926 1.01906

Table 3 The values of max
Ki1/K? for coplanar A/2a Ref. [20] Present results
crack-microcrack interaction

under normal loading . . - - - -
(v =0.25) Main crack ~ Microcrack Main crack ~ Microcrack Main crack ~ Microcrack

max(Ki/KY) max(Ki/K?)  max(Ki/K}) max(Ki/KY) — max(Ki/K}) max(Ki/KY)

First order Second order

0.05 1.1662 4.0963 1.16431 4.08925 1.16420 4.09248
0.10  1.0943 3.3527 1.09335 3.34883 1.09293 3.35082
0.15  1.0625 2.9563 1.06199 2.95331 1.06171 2.95483
020  1.0448 2.6947 1.04445 2.69218 1.04426 2.69334
0.30  1.0262 2.3564 1.02605 2.35443 1.02597 2.35526
040 1.0171 2.1394 1.01697 2.13784 1.01694 2.13849
050  1.0119 1.9850 1.01182 1.98370 1.01180 1.98424
1.00  1.0033 1.5856 1.00327 1.58489 1.00327 1.58518
1.50  1.0014 1.4083 1.00139 1.40781 1.00139 1.40800

only show a shielding of the mode I SIF but also see  between cracks is small, our results agree with Kachanov’s
an appearance of mode II SIF, which agrees well with  results; and they are also in good agreement with Isida’s
the conclusion of Kachanov. When the spacing A/2a  solutions for large spacings.
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Table 4 Coplanar

. . . 0 Ref. [20] Present results
crack-microcrack interaction
under normal loading. The First order Second order
values of K1/K{ along the Main crack  Microcrack Main crack  Microcrack Main crack  Microcrack
edges of the main crack and K1/ K? K1/ K? K1/ K? K1/ K? K1/ K? K1/ K?
of the microcrack
(A/2a =0.01,v =0.25) 0 1.0943 3.3527 1.09335 3.34883 1.09293 3.35082
15 1.0024 3.2171 1.00234 3.21577 1.00230 3.21612
30 1.0006 2.9260 1.00061 2.92456 1.00060 2.92484
45 1.0003 2.6313 1.00028 2.62878 1.00028 2.62903
60  1.0002 2.3876 1.00017 2.38690 1.00017 2.38711
90  1.0001 2.0550 1.00008 2.05423 1.00008 2.05436
120 1.0001 1.8679 1.00006 1.86687 1.00005 1.86709
150 1.0000 1.7729 1.00003 1.77233 1.00003 1.77261
180  1.0000 1.7438 1.00002 1.74362 1.00002 1.74374
Table 5 The values of Ki/K? 5 5
and K1 /K? for two stacked Af2a Ki/Kj Ku/Kjy
cracks of equal size under Present results Ref. [20] Ref. [12] Present results Ref. [12]
normal loading (v = 0.25)
0.25 0.767776 0.7678 0.7759 0.13816 0.1390
0.35 0.795536 0.7898 0.11729
0.50 0.831634 0.8249 0.8356 0.09028 0.0910
0.75 0.881329 0.8781 0.8828 0.05506 0.0549
1.00 0.918728 0.9176 0.9189 0.03220 0.0325
1.50 0.961547 0.9614 0.9613 0.01140 0.0115
2.00 0.980182 0.9802
5.00 0.998381 0.9990
r 3.2.2 Stacked crack-microcrack interaction (Fig. 5)
The boundary collocation procedure is employed to an-
alyze SIFs for stacked crack-microcrack interactions in
normal loading. The microcrack size is 1/20 of the main
crack size. The present solutions are given and compared
with Kachanov’s results (see e.g. Kachanov and Laures
[20]) in Table 6. Table 7 shows that the agreement is quite
@ @20 good.. The Yalue of KI/K? for the maip crack is equal
to 1 indicating that the effect of the microcrack on the
main crack is negligible; and microcrack’s K /K(I) <1,
A a which shows the crack-microcrack interaction produces
a shielding for the microcrack.

Fig. 5 Stacked crack-microcrack interaction under normal
loading

@ Springer

3.3 “V” arrangement under normal loading (Fig. 6)
and “H” arrangement under shear (Fig. 7)

“V” arrangement under normal loading and “H” arra-
ngement under shear are considered. SIFs are calculated
by using the first order average traction method. All
cracks have the same size for “V” and “H” crack configu-
ration, respectively. The present and Kachanov’s results
(Kachanov and Laures [20]) are given in Tables 7, 8 and
9, where K? , K% and K?H are the stress intensity factors
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Table 6 The values of max A/2a Ref. [20] Present results

K1/K? for stacked Main crack Microcrack Main crack Microcrack

crack-microcrack interaction max(Ky/ K?) max(K1/K ?) max(Ky/ K?) max(Kr/ K?)

under normal loading

(v = 0.25) 0.0025 1.0000 0.0002 1.0000 0.00019
0.05 1.0000 0.0017 1.0000 0.00167
0.15 1.0000 0.0395 1.0000 0.03951
0.25 1.0000 0.1430 1.0000 0.14307
0.35 1.0000 0.2873 1.0000 0.28735
0.45 1.0000 0.4341 1.0000 0.43419
0.55 1.0000 0.5611 1.0000 0.56113
0.65 1.0000 0.6621 1.0000 0.66203
0.75 1.0000 0.7391 1.0000 0.73907
1.00 1.0000 0.8578 1.0000 0.85779

Table 7 The values of SIFs around the crack edge for “V” crack configuration (v = 0.25)

0 Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results
Ky S Ki K7 Ky K Ky K Kinp Ky LiSiii Koy
o0a o0/a o0/a o0/a o0a o0/a o0/a o0a o0a o0a o0/a o0/a

0 03253 0.2251 0.32591  0.2251 —0.2465 —0.2572 —0.24635 —0.2572 0.0000 0.0000 0.00000  0.0000
30 0.2765 0.2251 0.27704  0.2251 —0.2765 —0.2227 —0.22628 —0.2227 0.0837 0.0964 0.08402  0.0964
60 0.2391 0.2251 0.23934  0.2251 —0.1334 —0.1286 —0.13324  —0.1286 0.1642 0.1670 0.16415  0.1670
90 0.2284 0.2251 0.22883  0.2251 0.0020  0.0000 0.00154  0.0000 0.1961 0.1929 0.19584  0.1929
120 0.2257 0.2251 0.22601  0.2251 0.1331  0.1286 0.13283  0.1286 0.1709 0.1671 0.17083  0.1671
150 0.2250 0.2251 0.22523  0.2251 0.2299  0.2227 022957  0.2227 0.0987 0.0964 0.09856  0.0964
180 0.2248 0.2251 0.22501  0.2251 0.2653  0.2572 0.26503  0.2572 0.0000 0.0000 0.00000  0.0000

Table 8 The values of SIFs around the crack edge of crack 1 for “H” crack configuration (v = 0.25)

0 Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results
Ky K} K1 K} Ky Kh Ky Ky K Khy Ky Ky
/a 0/a 0/a 0/a 0/a a 0/a Nz Nz a a /a

0 —0.0704 0.0000  —0.07038 0.0000 0.4719  0.5144 0.47192  0.51447 0.0000  0.0000 0.00000  0.00000
30 —0.0716 0.0000  —0.07159 0.0000 0.4043  0.4455 0.40482  0.44554 —0.1923 —-0.1929  —0.19255 —-0.19292
60 —0.0674 0.0000 —0.06726 0.0000 02241  0.2572 022461  0.25723  —0.3434 —-0.3341  —0.34303 —0.33416
90  0.0000 0.0000 0.00000 0.0000 0.0000  0.0000 0.00000  0.00000  —0.4187 —0.3858  —0.41864 —0.38585

120 0.0674 0.0000 0.06726 0.0000 —0.2241 —-0.2572  —0.22461 —0.25723 —0.3434 —0.3341 —0.34303 —0.33416
150  0.0716 0.0000 0.07159 0.0000  —0.4042 —0.4455 —0.40482 —0.44554 —-0.1923 —-0.1929 —0.19255 —-0.19292
180  0.0704 0.0000 0.07038 0.0000 —0.4719 —0.5144  —0.47192 —0.51447 0.0000  0.0000 0.00000  0.00000

Table 9 The values of SIFs around the crack edge of crack 2 for “H” crack configuration (v = 0.25)

0 Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results
Ky Ky Ki K7 Ky Ky Ky K) K Ky K Ky
/a /a a 0/a a PNz 0/a 0/a 0/a 0/a 0/a /a

0 0.0000 0.0000 0.0000 0.0000 —0.3161 —0.5144 —0.31644 —0.51447 0.0000 0.0000 0.00000 0.00000
30 0.0000 0.0000 0.0000 0.0000 —0.3738  —0.4455 —0.37391  —0.44554 0.1079  0.1929 0.10808  0.19292
60 0.0000 0.0000 0.0000 0.0000 —0.2786 —0.2572 —0.27845 —0.25723 0.3186 0.3341 0.31885 0.33416
90 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.00000  0.00000 0.3907 0.3858 0.39088  0.38585

120 0.0000 0.0000 0.0000 0.0000 0.2786  0.2572 0.27845  0.25723 0.3186 0.3341 0.31885 0.33416
150  0.0000 0.0000 0.0000 0.0000 0.3738  0.4455 037391  0.44554 0.1079  0.1929 0.10808  0.19292
180  0.0000 0.0000 0.0000 0.0000 0.3161  0.5144 0.31644  0.51447 0.0000  0.0000 0.00000  0.00000
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Fig. 6 “V” arrangement cracks under normal loading
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Fig. 7 “H” arrangement cracks under shear loading

for non-interacting cracks. We can see that the agree-
ment is quite good. For “V” crack configuration, inter-
action produces a noticeable mode I SIF and a relatively
weak effect on Ky and Kij1. For “H” crack configura-
tion, the interaction results in a substantial amplification
of K for the side cracks and the median crack is mildly
shielded by the side cracks. The maximal value of Ky
occurs at the points of the crack edge that are not the
points of the smallest spacing.
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4 Conclusions

Using oblate spheroidal coordinates and series expan-
sions of displacement functions, an analytic method is
developed to solve the problem of strong interacting
and arbitrarily distributed penny-shaped cracks in three-
dimensional solids. The SIFs are calculated for several
crack problems by using the boundary collocation proce-
dure and the average method for crack-surface traction.
When the first order average traction method is em-
ployed, our results are in good agreement with those of
Kachanov [20] for several crack configurations which in-
dicates that the present method is accurate and efficient
for evaluating the SIFs. In addition, more order aver-
ages can be used in the present method. Numerical re-
sults show that the accuracy of the first order average
traction method is high for large spacing; more order
averages must be used for very closely spaced cracks.

5 Appendix Oblate spheroidal coordinates
(Gladwell [23])

The oblate spheroidal coordinates &, 1, 6 are related to
Cartesian coordinates x, y, z by the equations

x=a,/(1+E2)(A —n?)cosh,
y =a,/ 1 +E2)(1 —n?)sinb, (42)

z=aén,

where —1 < n < 1, & > 0. The surface & = const,n =
const are the ellipsoids and hyperboloids (of one sheet)

2 22
a2(1 + £2) + 22 T L
2 z§ (43)

—1,

21 —n2)  an?

respectively; the surfaces & = 0 and n = 0 are the inte-
rior and exterior of the circle r = a, z = 0, respectively.

Laplace’s equation in oblate spheroidal coordinates
is

3 5 Y o[ 59y
%[“*“E}W[“ ’”an]
2 2 2
" E“+n9) 81ﬂ:0’ (44)

(1 +&2) —n?) 962

which has separable solutions

V(,n,0) = BEE)HmOO), (45)



Interactions of penny-shaped cracks in three-dimensional solids

353

where E, H, © satisfy

d ,. dE m?
%[(14‘5 )E}_[W(H"FD—@]L‘—O, (46)
d , dH m? B
d—n|:(l—?7 )d—n]+|:n(n+1)— 1_n2:|H_0, (47)
2
(;T?z—mzﬁ

(48)

The required periodicity of ®(6) and the convergence
of the solutions E, H require that m, n be integers so
that

W(En,0) = [ Py (i) ] | ( Py ] | [Cosm@

omie) [ omam sinmel (49)

where P!, Q" are the Legendre functions of the first
and second kinds, respectively, and m < n.

Now consider which of the combinations shown in
Eq. (44) is valid to represent y. P/'(i§) is unbounded
at & = oo(r = oo, z = 0), while Q7' (n) has logarithmic
singularities at n = £1(r = 0, z = 0); both cases should,
therefore, be excluded. This leaves the combination

Y&, n,0) = Q) - Pt () (byn cos mb + ¢y sinmb),
(50)

where b, ¢ are coefficients.
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