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Abstract The interaction of arbitrarily distributed
penny-shaped cracks in three-dimensional solids is ana-
lyzed in this paper. Using oblate spheroidal coordinates
and displacement functions, an analytic method is devel-
oped in which the opening and the sliding displace-
ments on each crack surface are taken as the basic
unknown functions. The basic unknown functions can
be expanded in series of Legendre polynomials with un-
known coefficients. Based on superposition technique, a
set of governing equations for the unknown coefficients
are formulated from the traction free conditions on each
crack surface. The boundary collocation procedure and
the average method for crack-surface tractions are used
for solving the governing equations. The solution can
be obtained for quite closely located cracks. Numerical
examples are given for several crack problems. By com-
paring the present results with other existing results, one
can conclude that the present method provides a direct
and efficient approach to deal with three-dimensional
solids containing multiple cracks.

Keywords Three-dimensional problem ·
Penny-shaped cracks · Interaction

The English text was polished by Keren Wang.

S. Zhan
Department of Mathematical and Physical Sciences, NSFC,
Beijing 100085, China
e-mail: zhansg@nsfc.gov.cn

T. Wang (B)
LNM, Institute of Mechanics, Chinese Academy of Sciences,
Beijing 100080, China
e-mail: tcwang@imech.ac.cn

1 Introduction

Generally, brittle materials contain large numbers of mi-
crocracks. Due to the presence of these microcracks, the
materials become weaker and less stiff. This problem
is of considerable interest for researchers in the fields
of solid mechanics, geophysics and materials. Compre-
hensive reviews on this subject are given by Kachanov
[1,2], Nemat-Nasser and Hori [3] and Krajcinovic [4].

In micromechanical fields, due to the complexity of
the analysis of the multiple microcracks, various approx-
imate methods have been proposed, such as the dilute
or non-interacting solution, the self-consistent method
(see e.g. Budiansky and O’Connell [5]), the general-
ized self-consistent model (see e.g. Christensen and Lo
[6]), and the differential scheme (see e.g. Hashin [7])
and Mori-Tanaka method (see e.g. Mori and Tanaka
[8]). In these methods, microcrack interactions are en-
tirely neglected or indirectly accounted, which are only
valid for low or moderate crack density, since loca-
tions of microcracks, and, therefore, the damage and
fracture process of brittle materials are not well consid-
ered. As crack density increases and microcrack spac-
ings are smaller, the mutual positions of cracks become
important and strong interactions between microcracks
should be considered. However, it is much more com-
plicated to consider the interaction of cracks than to
analyze a problem of single crack. Serious mathemati-
cal difficulties arise when we try to consider the interac-
tion of cracks in three-dimensional solids. Due to those
reasons, a relatively small number of publications con-
cerning this kind of problems can be found from the
literature.

For two coplanar penny-shaped cracks under nor-
mal loading, Collins [9] has reduced the problem to an
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infinite set of simultaneous linear Fredholm integral
equations, which he solved approximately by iteration
for the case when the distances between the cracks are
large compared with their radii. A different approach
was used by Andreikiv and Panasyuk [10] who reduced
the problem to a finite set of integral equations, with the
number of equations equal to the number of cracks, but
they also managed to consider only the case of cracks far
apart. An alternating method was used by O’Donoghue
et al. [11] for two or three coplanar elliptical cracks
under mode I loading, the results were restricted to
spacings larger than one-fourth of the minor axis of the
ellipse. The interactions of two parallel elliptical cracks
in an infinite solid subjected to uniform tension normal
to the crack surfaces were studied by Isida et al. [12], and
the smallest spacing between cracks for which numeri-
cal results were given was one-fourth of the crack diam-
eter. Based on the superposition principle of elasticity
theory and Eshelby’s equivalent inclusion method, Xiao
et al. [13–16] studied several problems of two interacting
penny-shaped or elliptical cracks in three-dimensional
solid and analyzed the interaction between a spherical
inhomogeneity and two coplanar penny-shaped cracks.
In addition, Xiao et al. [17] also investigated the problem
of a hoop-like craze formed at the equator of a spherical
inhomogeneity.

Strong interactions were studied by Fabrikant [18]
and Kachanov [19]. Based on Fabrikant’s earlier results
for a single circular crack, a new form of integral equa-
tions for the problem of coplanar cracks was proposed
by Fabrikant [18]; with the advantage that the equa-
tions are non-singular and the iteration procedure is
rapidly convergent even for interactions of very closely
located cracks. Three-dimensional elastic interactions
of arbitrarily located and oriented penny-shaped cracks
were considered by Kachanov and Laures [20], and solu-
tions for the stress intensity factors (SIFs) were ob-
tained for several crack geometries. Kachanov’s method
is simple, and can be used for high microcrack concen-
trations. But in his interaction scheme, the unknown
crack-surface tractions are approximated only by their
averages.

In this paper, based on the basic equations of el-
astostatics and the oblate spheroidal coordinates, the
displacement functions are expressed in Legendre poly-
nomial series with a set of unknown coefficients for each
crack. By superposition technique, using the traction
free conditions on each crack surface, a set of govern-
ing equations are formulated. The boundary collocation
procedure and the average method for crack-surface
tractions are used for solving the governing equations.
The SIFs are given for several crack geometries and
compared with other available results.

2 Basic formulae and calculation method

2.1 Basic formulae

2.1.1 A single crack

The mathematical formulation of three-dimensional
elastostatic problems involves an appropriate selection
of harmonic functions based upon the solution of the
Navier displacement equations of equilibrium. In the
absence of body forces, Navier’s equations become

µ∇2ui + (λ+ µ)ϑ,i = 0 (i = 1, 2, 3),
ϑ = ui,i,

(1)

where ui is the component of the displacement vector,
µ the shear modulus, ν the Poisson ratio, λ the Lamé
coefficient, and λ = 2νµ/(1 − 2ν).

Using the solution of Papkovich and Neuber
(Sokolnikoff [21])

2µui = κϕi − xjϕj,i − ϕ0,i, (2)

where ϕk(k = 0, 1, 2, 3) are harmonic functions, κ =
3 − 4ν.

Suppose that F = ϕ0 + xjϕj, we rewrite Eq. (2) in the
form

2µui = 4(1 − ν)ϕi − ∂F
∂xi

. (3)

2.1.1.1 Normal loading Based on the work of Kassir
and Sih [22], by setting ϕ1 = ϕ2 = 0, ϕ3 = ψ , ϕ0 = ϕ,
F = ϕ+zψ and ∂ϕ/∂z = (1−2ν)ψ in Eq. (3), the expres-
sions for the corresponding displacements and stresses
are

ux = − 1
2µ

(
∂ϕ

∂x
+ z

∂ψ

∂x

)
,

uy = − 1
2µ

(
∂ϕ

∂y
+ z

∂ψ

∂y

)
, (4a)

uz = 1
2µ

[
2(1 − ν)ψ − z

∂ψ

∂z

]
,

σxx = − 1
1 − 2ν

(
∂2ϕ

∂x2 + 2ν
∂2ϕ

∂y2 + z(1 − 2ν)
∂2ψ

∂x2

)
,

σyy = − 1
1 − 2ν

(
2ν
∂2ϕ

∂x2 + ∂2ϕ

∂y2 + z(1 − 2ν)
∂2ψ

∂y2

)
,

σzz = ∂ψ

∂z
− z

∂2ψ

∂z2 ,



Interactions of penny-shaped cracks in three-dimensional solids 343

σxy = − ∂2ϕ

∂x∂y
− z

∂2ψ

∂x∂y
,

σyz = −z
∂2ψ

∂y∂z
, (4b)

σxz = −z
∂2ψ

∂x∂z
.

The oblate spheroidal coordinates (see Sect. 5) are used
to solve three-dimensional elastic interactions of penny-
shaped cracks. The harmonic function ψ must satisfy
Laplace’s equation (44). Its separable solution can be
written as

ψ(ξ , η, θ) = Qm
n (iξ)P

m
n (η)(bmn cos mθ + cmn sin mθ),

(5)

where Pm
n , Qm

n are the Legendre functions of the first
and second kinds, respectively. It is noted that m, n must
be integers (m ≤ n) in order that the Sturm–Liouville
conditions are satisfied.

Since ∂ϕ/∂z = (1 − 2ν)ψ ,

ϕ(ξ , η, θ) = a(1 − 2ν)
i(1 + 2n)

[
n + 1 − m
n + 1 + m

Qm
n+1(iξ)

×Pm
n+1(η)− n + m

n − m
Qm

n−1(iξ)P
m
n−1(η)

]

×(bmn cos mθ + cmn sin mθ). (6)

Substituting Eqs. (5) and (6) into Eq. (4), the displace-
ments and the stresses can be obtained using the MATH-
EMATICA Software

ux = (
bmnumn

xc + cmnumn
xs

)
,

uy =
(

bmnumn
yc + cmnumn

ys

)
,

uz = (
bmnumn

zc + cmnumn
zs

)
,

σxx = (
bmnσ

mn
xxc + cmnσ

mn
xxs

)
,

σyy =
(

bmnσ
mn
yyc + cmnσ

mn
yys

)
,

σzz = (
bmnσ

mn
zzc + cmnσ

mn
zzs

)
,

σxy =
(

bmnσ
mn
xyc + cmnσ

mn
xys

)
,

σyz =
(

bmnσ
mn
yzc + cmnσ

mn
yzs

)
,

σxz = (
bmnσ

mn
xzc + cmnσ

mn
xzs

)
,

(7)

where umn
xc , umn

xs , . . ., σmn
xxc , σmn

xxs , . . . are the functions
of ξ , η, θ , m, n. These expressions are quite lengthy, the
detailed formulas are not listed in this paper due to the
space limitation.

For a single interior crack subject to symmetric crack
face normal loading, the boundary conditions are

σyz(x, y, 0) = σxz(x, y, 0) = 0, (8a)

σzz(x, y, 0) = p(x, y) (ξ = 0, r < a), (8b)

uz(x, y, 0) = 0 (η = 0, r > a). (8c)

According to Eq. (4), we have

σxz = σyz = 0, when z = 0.

Equation (8a) is satisfied automatically. When z = 0, we
find

uz=




1 − ν

µ
Qm

n (i0)P
m
n (η)(bmn cos mθ + cmn sin mθ)

if ξ = 0(r < a),
1 − ν

µ
Qm

n (iξ)P
m
n (0)(bmn cos mθ + cmn sin mθ)

if η = 0(r > a).

(9)

If m, n take opposite signs, Pm
n (η)|η=0 = 0, so that

uz =




1 − ν

µ
Qm

n (i0)P
m
n (η)(bmn cos mθ + cmn sin mθ)

if ξ = 0(r < a),

0 if η = 0(r > a).

(10)

One can easily show that

∂

∂z
= 1

a(ξ2 + η2)

[
η(1 + ξ2)

∂

∂ξ
+ ξ(1 − η2)

∂

∂η

]
. (11)

For z = 0,

∂

∂z
=




1
aη

∂

∂ξ
if ξ = 0(r < a),

1
aξ

∂

∂η
if η = 0(r > a).

(12)

Then,

σzz = ∂ψ

∂z
− z

∂2ψ

∂z2

=




1
aη

d
dξ

Qm
n (i0)P

m
n (η)(bmn cos mθ + cmn sin mθ)

if ξ = 0(r < a),
1

aξ
Qm

n (iξ)
d

dη
Pm

n (0)(bmn cos mθ + cmn sin mθ)

if η = 0(r > a).

(13)

2.1.1.2 Shear loading According to the work of Kassir
and Sih [22], by setting ϕ1 = ∂ψ1/∂z,ϕ2 = ∂ψ2/∂z,ϕ3 =
G/2, G = 2(∂ψ1/∂x + ∂ψ2/∂y), ∂G/∂z = 2(∂ϕ1/∂x +
∂ϕ2/∂y), F = zG in Eq. (3), the corresponding displace-
ments and stresses are given by the following expressions
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ux = 1
2µ

[
4(1 − ν)ϕ1 − z

∂G
∂x

]
,

uy = 1
2µ

[
4(1 − ν)ϕ2 − z

∂G
∂y

]
,

uz = 1
2µ

[
(1 − 2ν)G − z

∂G
∂z

]
,

(14a)

σxx = 2ν
∂G
∂z

+ 4(1 − ν)
∂ϕ1

∂x
− z

∂2G
∂x2 ,

σyy = 2ν
∂G
∂z

+ 4(1 − ν)
∂ϕ2

∂y
− z

∂2G
∂y2 ,

σzz = −z
∂2G
∂z2 ,

σxy = 2(1 − ν)
∂ϕ1

∂y
+ 2(1 − ν)

∂ϕ2

∂x
− z

∂2G
∂x∂y

,

σyz = 2(1 − ν)
∂ϕ2

∂z
− ν

∂G
∂y

− z
∂2G
∂y∂z

,

σxz = 2(1 − ν)
∂ϕ1

∂z
− ν

∂G
∂x

− z
∂2G
∂x∂z

.

(14b)

In the oblate spheroidal coordinates, because ϕ1 and ϕ2
are harmonic functions which satisfy Laplace’s equation
(see 44), they take the form

ϕ1(ξ , η, θ) = Qm
n (iξ)P

m
n (η)(dmn cos mθ + emn sin mθ),

(15)

ϕ2(ξ , η, θ) = Qm
n (iξ)P

m
n (η)(fmn cos mθ + gmn sin mθ).

(16)

Since ϕ1 = ∂ψ1/∂z, ϕ2 = ∂ψ2/∂z,

ψ1(ξ , η, θ) = a(1 − 2ν)
i(1 + 2n)

[
n + 1 − m
n + 1 + m

Qm
n+1(iξ)P

m
n+1(η)

− n + m
n − m

Qm
n−1(iξ)P

m
n−1(η)

]

×(dmn cos mθ + emn sin mθ), (17)

ψ2(ξ , η, θ) = a(1 − 2ν)
i(1 + 2n)

[
n + 1 − m
n + 1 + m

Qm
n+1(iξ)P

m
n+1(η)

− n + m
n − m

Qm
n−1(iξ)P

m
n−1(η)

]

×(fmn cos mθ + gmn sin mθ). (18)

Since G = 2(∂ψ1/∂x + ∂ψ2/∂y), we have

G = (dmnGmn
1c + emnGmn

1s )+ (fmnGmn
2c + gmnGmn

2s ), (19)

where Gmn
1c , Gmn

1s , Gmn
2c and Gmn

2s are related with
ξ , η, θ , m, n.

Substituting Eqs. (15)–(19) to Eq. (14), using the
MATHEMATICA Software, the components of the
displacements and the stresses can be expressed as

ux = (
dmnumn

x1c + emnumn
x1s

) + (
fmnumn

x2c + gmnumn
x2s

)
,

uy =
(

dmnumn
y1c + emnumn

y1s

)
+

(
fmnumn

y2c+gmnumn
y2s

)
, (20a)

uz = (
dmnumn

z1c+emnumn
z1s

)+(
fmnumn

z2c+gmnumn
z2s

)
,

σxx = (
dmnσ

mn
xx1c + emnσ

mn
xx1s

) + (
fmnσ

mn
xx2c + gmnσ

mn
xx2s

)
,

σyy =
(

dmnσ
mn
yy1c+emnσ

mn
yy1s

)
+

(
fmnσ

mn
yy2c+gmnσ

mn
yy2s

)
,

σzz = (
dmnσ

mn
zz1c + emnσ

mn
zz1s

) + (
fmnσ

mn
zz2c + gmnσ

mn
zz2s

)
,

σxy =
(

dmnσ
mn
xy1c + emnσ

mn
xy1s

)
+

(
fmnσ

mn
xy2c + gmnσ

mn
xy2s

)
,

σyz =
(

dmnσ
mn
yz1c + emnσ

mn
yz1s

)
+

(
fmnσ

mn
yz2c + gmnσ

mn
yz2s

)
,

σxz = (
dmnσ

mn
xz1c + emnσ

mn
xz1s

) + (
fmnσ

mn
xz2c + gmnσ

mn
xz2s

)
,

(20b)

where umn
x1c, umn

x1s, . . ., σ
mn
xx1c, σmn

xx1s, . . . are functions of
ξ , η, θ , m, n, which are lengthy and will not be repro-
duced here.

For a single interior crack subject to antisymmetric
crack face shear loading, the boundary conditions are

σzz = 0 (|x| < ∞, |y| < ∞) ,
σxz(x, y, 0) = qx(x, y) (ξ = 0, r < a),
σyz(x, y, 0) = qy(x, y) (ξ = 0, r < a),
ux(x, y, 0) = uy(x, y, 0) = 0 (η = 0, r > a).

(21)

According to Eq. (14), we have

σzz = 0 when z = 0.

When z = 0

ux =




2(1 − ν)

µ
Qm

n (i0)P
m
n (η)

×(dmn cos mθ+emn sin mθ) if ξ=0(r<a),
2(1 − ν)

µ
Qm

n (iξ)P
m
n (0)

×(dmn cos mθ+emn sin mθ) if η=0(r>a).

(22)

If m, n take opposite signs, Pm
n (η) |η=0= 0, so that

ux =




2(1 − ν)

µ
Qm

n (i0)P
m
n (η)

×(dmn cos mθ+emn sin mθ) if ξ = 0(r < a),

0 if η = 0(r > a),

(23)

uy =




2(1 − ν)

µ
Qm

n (i0)P
m
n (η)

×(fmn cos mθ + gmn sin mθ) if ξ = 0(r < a),

0 if η = 0(r > a).

(24)
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2.1.2 A set of arbitrary cracks

For a linear elastic solid with N cracks under remote
loading σ 0, the problem can be decomposed into two
problems. The first problem is a homogeneous problem,
in which a homogeneous solid is subjected to remote
load σ 0. The second problem can further be represented
as a superposition of N subproblems. Each subproblem
is a single crack problem loaded by unknown opening
and sliding displacements on the crack surface and the
stresses are vanished at infinity. Based on superposition
technique, by using the traction free conditions on each
crack surface, a set of governing equation is formulated.

A global Cartesian coordinate system (Oxyz) is used,
together with a local normal-tangential coordinate sys-
tem with origin (Ok) at the center of the k-th crack, rep-
resented by xok, yok and zok. We let axis zk be the crack’s
normal direction and yk lie in the x-y parallel plane. The
orientation of the k-th crack is specified by the angle
coordinates (αk, γk) (see Fig. 1), where 0 ≤ γk ≤ π/2,
0 ≤ αk ≤ π .

The linear elastic solid is subject to remote uniform
loading σ 0, so the traction along the k-th crack surface
produced by σ 0 is

ttt(0)k = nnnk · σ 0, (25)

p(0)k = nnnk · σ 0 · nnnk and τ (0)k = nnnk · σ 0 · (III − nnnknnnk) are the
normal and shear tractions on the k-th crack induced by
σ 0, where nnnk is the unit normal vector on the k-th crack
surface, nnnknnnk is a dyadic product.

As mentioned in Sect. 2.1.1, the displacement func-
tions ψ , ϕ, ϕ1, ϕ2, ψ1 and ψ2 and the corresponding
stresses σijk(ξk, ηk, θk) (i, j = x, y, z) related with the k-th

Fig. 1 The global and local coordinate system

crack can be expressed in Legendre polynomial series
for the normal and shear loading in the local coordinate
system.

According to the formulae of coordinate system trans-
formation, the tractions along the l-th crack surface in
the local coordinate system (Olxlylzl) produced by the
k-th crack can be written as follows

σ
(k)
ijl = βββT

klσijkβββkl, (26)

where βββkl is the matrix of coordinate system transfor-
mation between Okxkykzk and Olxlylzl

βββkl = βββT
kβββ l, (27)

whereβββk is the matrix of coordinate system transforma-
tion between Oxyz and Okxkykzk.

βββk =

 cos γk cosαk − sin αk sin γk cosαk

cos γk sin αk cosαk sin γk sin αk
− sin γk 0 cos γk


 . (28)

According to the superposition scheme, the traction-
free conditions on each crack surface can be written as
follows

σ
(0)
zzl (0, ηl, θl)+

N∑
k=1

σ
(k)
zzl (0, ηl, θl) = 0,

σ
(0)
xzl (0, ηl, θl)+

N∑
k=1

σ
(k)
xzl (0, ηl, θl) = 0, (29)

σ
(0)
yzl (0, ηl, θl)+

N∑
k=1

σ
(k)
yzl (0, ηl, θl) = 0, (l = 1, 2, . . . , N),

where σ
(0)
zzl (0, ηl, θl), σ

(0)
xzl (0, ηl, θl) and σ

(0)
yzl (0, ηl, θl) are

the tractions along the l-th crack surface in the local
coordinate system Olxlyl(ξl, ηl, θl) produced by the
remote loading. σ (k)zzl (0, ηl, θl), σ

(k)
xzl (0, ηl, θl) and σ

(k)
yzl

(0, ηl, θl) are the tractions along the l-th crack surface
in the local coordinate system (Olxlylzl(ξl, ηl, θl)) pro-
duced by the opening displacement loading and the
sliding displacement loading on the k-th crack surface,
respectively. Thus, Eqs. (29) are the governing equations
for determining the unknown coefficients bk

mn, ck
mn, dk

mn,
ek

mn, f k
mn, gk

mn (k = 1, . . . , N; m, n = 0, 1, . . . , ∞).

2.2 Calculation procedure

2.2.1 Boundary collocation method

The governing equations are solved numerically on the
basis of the crack surface boundary collocation method.
By dividing the k-th crack surface into Ck and Rk ele-
ments in circumferential and axial direction, respectively,
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the collocation points on the k-th crack surface are given
by the following expressions

ξk(i, j) = 0,

ηk(i, j) =
√

1 −
(

i
Rk

)2

, (30)

θk(i, j) = π

Ck
j, (i = 1, 2, · · · , Rk; j = 1, 2, · · · , Ck) .

The infinite series can be approximated with a suffi-
cient degree of accuracy by the corresponding truncated
series. The governing Eqs. (29) are reduced to a system
of linear algebraic equations for the unknown coeffi-
cients bk

mn, ck
mn, dk

mn, ek
mn, f k

mn and gk
mn.

When the algebraic equations are solved, the dis-
placement functions and the stress components
produced by each crack are known. According to the
superposition principle, the stress fields produced by the
multiple cracks are obtained through the transforma-
tion formulas from the local coordinate systems into the
global one.

The stress intensity factors can be expressed as

KI(θl) = lim
ξl→0

{(
al

√
1 + ξ2

l − al

)1/2

σ ∗
zzl(ξl, 0, θl)

}
,

(31)

KII(θl)+ iKIII(θl) = lim
ξl→0

{(
al

√
1 + ξ2

l − al

)1/2

×
[
σ ∗

xzl(ξl, 0, θl)+ iσ ∗
yzl(ξl, 0, θl)

]
e−iθl

}
,

(32)

where σ ∗
zzl(ξl, 0, θl), σ ∗

xzl(ξl, 0, θl) and σ ∗
yzl(ξl, 0, θl) are the

pseudo-tractions produced only by the opening displace-
ment loading and the sliding displacement loading on
the l-th crack surface.

2.2.2 Average method of crack-surface tractions

The average method for crack-surface tractions is used
to solve the governing equations by approximately sat-
isfying the traction-free conditions on the crack surface.
According to the superposition technique, the tractions
on each crack surface can be written as follows

σzzl = σ
(0)
zzl +

∑
k

[
σ

mn(k)
zzcl bk

mn + σ
mn(k)
zzsl ck

mn + σ
mn(k)
zz1cl dk

mn

+ σ
mn(k)
zz1sl ek

mn + σ
mn(k)
zz2cl f k

mn + σ
mn(k)
zz2sl gk

mn

]
,

σyzl = σ
(0)
yzl +

∑
k

[
σ

mn(k)
yzcl bk

mn + σ
mn(k)
yzsl ck

mn + σ
mn(k)
yz1cl dk

mn

+ σ
mn(k)
yz1sl ek

mn + σ
mn(k)
yz2cl f k

mn + σ
mn(k)
yz2sl gk

mn

]
,

σxzl = σ
(0)
xzl +

∑
k

[
σ

mn(k)
xzcl bk

mn + σ
mn(k)
xzsl ck

mn + σ
mn(k)
xz1cl dk

mn

+ σ
mn(k)
xz1sl ek

mn + σ
mn(k)
xz2cl f k

mn + σ
mn(k)
xz2sl gk

mn

]
,

(l = 1, 2, . . . , N) (sum over m, n), (33)

and they can be further expressed in the vector form as

tttl = ttt(0)l + CCCmn
lk bk

mn + SSSmn
lk ck

mn

+C̄CC
mn
lk dk

mn + S̄SS
mn
lk ek

mn + ¯̄CCCmn
lk f k

mn + ¯̄SSSmn
lk gk

mn,

(l = 1, 2, . . . , N) (sum over k, m and n), (34)

where tttl is the traction column vector and tttl = [σxzl, σyzl,

σzzl]T. ttt(0)l is the traction along the l-th crack surface
in the local coordinate system Olxlyl produced by the
remote loading σ 0. CCCmn

lk , SSSmn
lk , C̄CC

mn
lk , S̄SS

mn
lk , ¯̄CCCmn

lk and ¯̄SSSmn
lk

are the tractions along the l-th crack surface in the local
coordinate system (Olxlylzl) produced by the opening
displacement loading and the sliding displacement load-
ing on the k-th crack surface, respectively.

When the first order average of crack-surface trac-
tions is used to yield the traction-free condition on the
crack surface, namely, m = 0, n = 1, the governing equa-
tion is

〈tttl〉 =
〈
ttt(0)l

〉
+

〈
CCC01

lk

〉
bk

01 +
〈
C̄CC

01
lk

〉
dk

01 +
〈 ¯̄CCC01

lk

〉
f k
01 = 0,

(l = 1, 2, . . . , N), (35)

where symbol 〈 〉 characterizes the average on the crack-
surface. Then, the governing equations are reduced to
a system of linear algebraic equations for the unknown
coefficients bk

01, dk
01 and f k

01. By solving the algebraic
equations, bk

01, dk
01 and f k

01 can be obtained.
When the second order averages of crack-surface

tractions are used to yield the traction-free condition on
crack surface, namely, m = 0, n = 1 and m = 0, n = 3,
the governing equations are
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〈tttl〉 =
〈
ttt(0)l

〉
+

〈
CCC01

lk

〉
bk

01 +
〈
C̄CC

01
lk

〉
dk

01 +
〈 ¯̄CCC01

lk

〉
f k
01

+
〈
CCC03

lk

〉
bk

03 +
〈
C̄CC

03
lk

〉
dk

03 +
〈 ¯̄CCC03

lk

〉
f k
03 = 0, (36)

〈tttl · ρ〉 =
〈
ttt(0)l · ρ

〉
+

〈
CCC01

lk · ρ
〉

bk
01

+
〈
C̄CC

01
lk · ρ

〉
dk

01 +
〈 ¯̄CCC01

lk · ρ
〉

f k
01 +

〈
CCC03

lk · ρ
〉

bk
03

+
〈
C̄CC

03
lk · ρ

〉
dk

03 +
〈 ¯̄CCC03

lk · ρ
〉

f k
03 = 0, (37)

where ρ is the polar coordinate on crack surface. Then,
the governing equations are reduced to a system of 6N
scalar linear algebraic equations for the unknown coeffi-
cients bk

01, dk
01, f k

01, bk
03, dk

03 and f k
03. By solving the alge-

braic equations, bk
01, dk

01, f k
01, bk

03, dk
03 and f k

03 can be
obtained. Further, the tractions on crack-surface and
SIFs along the k-th crack edges can be calculated.

When the q-th order averages of crack-surface trac-
tions are used to yield the traction-free condition on
crack surface, namely, m = 0, n = 1, 3, 5, . . . , 2q − 1, the
governing equations are

〈tttl〉 = 0,

〈tttl · ρ〉 = 0,〈
tttl · ρ2〉 = 0,
...〈
tttl · ρq−1〉 = 0.

(38)

By solving the algebraic equations, bk
0n, dk

0n, f k
0n (n =

1, 3, 5, . . . , 2q−1) can be obtained. Further, the tractions
on crack-surface and SIFs along the k-th crack edges can
be calculated.

This paper presents a general method to solve the
interaction problem including the strong interactions of
arbitrary circle cracks. The first order approximation
method given by Kachanov and Laures (1989) can yield
quite good results for strong interacting crack problems.
Hence we only extend their results to the second, third
and q-th order approximations. Meanwhile we only use
the terms with m = 0, n = 1, 3, 5, . . . (while Kachanov’s
average method only includes m = 0 and n = 1). Obvi-
ously when some cracks are very close to each other,
we should use more terms including m = 1, 2, 3, . . .
and n = m + 1, m + 3, . . .. Then Eq. (38) should in-
clude other equations, for example, 〈tttl cos(mθ)〉 = 0,
〈tttl sin(mθ)〉 = 0, 〈tttlρ cos(mθ)〉 = 0, 〈tttlρ sin(mθ)〉 = 0, . . .,
〈tttlρq−1 cos(mθ)〉 = 0, 〈tttlρq−1 sin(mθ)〉 = 0 and so on.
Then the calculation cost will increase greatly.

From Eqs. (29) and (33), the tractions produced by
the opening and sliding displacement loading on crack
surface can be expressed as

σ ∗
zzl(ρ, θ) = −

{
σ
(0)
zzl +

∑
k �=l

[
σ

mn(k)
zzcl bk

mn + σ
mn(k)
zzsl ck

mn

+ σ
mn(k)
zz1cl dk

mn + σ
mn(k)
zz1sl ek

mn

+ σ
mn(k)
zz2cl f k

mn + σ
mn(k)
zz2sl gk

mn

] }
,

σ ∗
yzl(ρ, θ) = −

{
σ
(0)
yzl +

∑
k �=l

[
σ

mn(k)
yzcl bk

mn + σ
mn(k)
yzsl ck

mn

+ σ
mn(k)
yz1cl dk

mn + σ
mn(k)
yz1sl ek

mn

+ σ
mn(k)
yz2cl f k

mn + σ
mn(k)
yz2sl gk

mn

] }
, (39)

σ ∗
xzl(ρ, θ) = −

{
σ
(0)
xzl +

∑
k �=l

[
σ

mn(k)
xzcl bk

mn + σ
mn(k)
xzsl ck

mn

+ σ
mn(k)
xz1cl dk

mn + σ
mn(k)
xz1sl ek

mn

+ σ
mn(k)
xz2cl f k

mn + σ
mn(k)
xz2sl gk

mn

] }
,

(l = 1, 2, · · · , N) (sum over m, n).

The SIFs are given as (Kachanov and Laures [20] and
Fabrikant [24])

KI(θ) = 1

π2
√

2a
×

2π∫
0

a∫
0

√
a2 − ρ2

0σ
∗
zz(ρ0, θ0)ρ0dρ0dθ0

a2 + ρ2
0 − 2aρ0 cos(θ − θ0)

,

(40)

KII(θ)+ iKIII(θ) = 1

π2
√

2a

2π∫
0

a∫
0

√
a2 − ρ2

0

×
{

e−iθ τ ∗(ρ0, θ0)

a2 + ρ2
0 − 2aρ0 cos(θ − θ0)

+ ν

2 − ν

eiθ (3a − ρ0ei(θ−θ0))τ ∗(ρ0, θ0)

a(a − ρ0ei(θ−θ0))2

}

×ρ0dρ0dθ0, (41)

where τ ∗ = σ ∗
xz + iσ ∗

yz, an overbar denotes a complex
conjugate.

3 Numerical examples

3.1 Two coplanar cracks under normal loading

3.1.1 Two coplanar cracks of equal size (Fig. 2)

Firstly, the first, second, third and fourth order average
traction methods on crack-surface are used to calculate
the stress intensity factors along the edges of two
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Fig. 2 Two coplanar cracks of equal size under normal loading

coplanar cracks of the same size under normal loading.
The results are presented and compared with those of
Kachanov and Laures [20] and Fabrikant [18] in
Tables 1 and 2. As seen in the tables, the interaction pro-
duces a stress amplification, i.e., KI/K0

I > 1 everywhere
along the edge, which agrees with Kachanov’s conclu-
sion. The maximal error of KI/K0

I between the present
results and Kachanov’s solutions is less than 0.2%when
the first order average traction method is used, indi-
cating that the present solutions are accurate enough
for very closely spaced and strongly interacting cracks.
The differences of the values of KI/K0

I obtained by us-
ing the first and fourth order average traction methods
are less than 0.5% at spacings 0.05 < �/2a < 0.25,
which indicates that the accuracy of the first order aver-
age traction method is high enough. The differences
increase as the spacing decreases and become 0.98%
when �/2a = 0.00025.

Fig. 3 Coplanar crack-microcrack interaction under normal
loading

3.1.2 Coplanar crack-microcrack interaction (Fig. 3)

Stress intensity fractors for two coplanar crack-
microcrack interactions under normal loading are
calculated by using the first and second order aver-
ages. The microcrack size is 1/20 of the main crack size.
The results are given in Tables 3 and 4, along with
Kachanov’s results (see e.g. Kachanov and Laures [20]).
It is observed that the present results are in good agree-
ment with Kachanov’s solutions. When the first order
average is employed, the maximal error of KI/K0

I be-
tween the present results and Kachanov’s solutions is
less than 0.2%. Effect of the small crack on the large
one is quite slight except for the points that are closest
to the small crack; effect of the large crack on the small
one is quite significant at all points of the small crack
edge.

3.2 Two stacked cracks in normal loading

3.2.1 Two stacked cracks of the same size (Fig. 4)

Stress intensity fractors of two stacked cracks of the
same size in normal loading are calculated using the
boundary collocation procedure. The results are pre-
sented in Table 5, along with the solutions of other meth-
ods (see e.g. Kachanov and Laures [20], Isida et al. [12],
etc.). As shown in the table, the interaction results not

Fig. 4 Two stacked crack of equal size under normal loading
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Table 1 The values of max
(KI/K0

I ) for two coplanar
cracks of equal size under
normal loading (ν = 0.25)

�/2a Ref. [20] Ref. [18] Present results

First order Second order Third order Fourth order

0.00025 2.8819 2.7758 2.87827 2.89272 2.90242 2.90653
0.005 1.9078 1.86131 1.90505 1.911251 1.91234 1.91242
0.05 1.2964 1.28777 1.29588 1.29564 1.29551 1.29547
0.10 1.1711 1.16785 1.17083 1.17060 1.17055 1.17054
0.15 1.1153 1.11518 1.11504 1.11502 1.11502
0.25 1.0639 1.06342 1.06380 1.06375 1.06374 1.06374
0.50 1.0224 1.02348 1.02347 1.02347 1.02347
1.00 1.0067 1.00670 1.00670 1.00670 1.00670
1.50 1.0029 1.00285 1.00285 1.00285 1.00285

Table 2 Two coplanar closely
spaced cracks of equal size
under normal loading. The
values of KI/K0

I around the
crack edge (ν = 0.25)

θ �/2a = 0.05 �/2a = 0.00025

Ref. [20] Ref. [18] Present results Ref. [20] Ref. [18] Present results

First order Second order First order Second order

0 1.2964 1.2877 1.29588 1.29564 2.8819 2.7758 2.87827 2.89272
15 1.2192 1.2131 1.21723 1.21712 1.4393 1.4161 1.43704 1.43745
30 1.128 1.1255 1.12694 1.12651 1.1957 1.1863 1.19412 1.19257
45 1.0791 1.0772 1.07745 1.07725 1.1091 1.1042 1.10752 1.10693
60 1.0529 1.0518 1.05178 1.05146 1.0699 1.0669 1.06827 1.06769
75 1.038 1.0375 1.03756 1.03736 1.0494 1.0473 1.04848 1.04798
90 1.0296 1.0289 1.02889 1.02876 1.0374 1.0361 1.03680 1.03645

105 1.0241 1.0236 1.02373 1.02356 1.0303 1.0291 1.02989 1.02960
120 1.0205 1.0201 1.02020 1.02011 1.0257 1.0247 1.02538 1.02513
135 1.0182 1.0179 1.01803 1.01794 1.0228 1.0219 1.02244 1.02221
150 1.0168 1.0164 1.01654 1.01646 1.0209 1.0201 1.02065 1.02044
165 1.0159 1.0156 1.01576 1.01568 1.0199 1.0191 1.01966 1.01945
180 1.0157 1.0154 1.01544 1.01536 1.0196 1.0188 1.01926 1.01906

Table 3 The values of max
KI/K0

I for coplanar
crack-microcrack interaction
under normal loading
(ν = 0.25)

�/2a Ref. [20] Present results

First order Second order

Main crack Microcrack Main crack Microcrack Main crack Microcrack
max(KI/K0

I ) max(KI/K0
I ) max(KI/K0

I ) max(KI/K0
I ) max(KI/K0

I ) max(KI/K0
I )

0.05 1.1662 4.0963 1.16431 4.08925 1.16420 4.09248
0.10 1.0943 3.3527 1.09335 3.34883 1.09293 3.35082
0.15 1.0625 2.9563 1.06199 2.95331 1.06171 2.95483
0.20 1.0448 2.6947 1.04445 2.69218 1.04426 2.69334
0.30 1.0262 2.3564 1.02605 2.35443 1.02597 2.35526
0.40 1.0171 2.1394 1.01697 2.13784 1.01694 2.13849
0.50 1.0119 1.9850 1.01182 1.98370 1.01180 1.98424
1.00 1.0033 1.5856 1.00327 1.58489 1.00327 1.58518
1.50 1.0014 1.4083 1.00139 1.40781 1.00139 1.40800

only show a shielding of the mode I SIF but also see
an appearance of mode II SIF, which agrees well with
the conclusion of Kachanov. When the spacing �/2a

between cracks is small, our results agree with Kachanov’s
results; and they are also in good agreement with Isida’s
solutions for large spacings.
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Table 4 Coplanar
crack-microcrack interaction
under normal loading. The
values of KI/K0

I along the
edges of the main crack and
of the microcrack
(�/2a = 0.01, ν = 0.25)

θ Ref. [20] Present results

First order Second order

Main crack Microcrack Main crack Microcrack Main crack Microcrack
KI/K0

I KI/K0
I KI/K0

I KI/K0
I KI/K0

I KI/K0
I

0 1.0943 3.3527 1.09335 3.34883 1.09293 3.35082
15 1.0024 3.2171 1.00234 3.21577 1.00230 3.21612
30 1.0006 2.9260 1.00061 2.92456 1.00060 2.92484
45 1.0003 2.6313 1.00028 2.62878 1.00028 2.62903
60 1.0002 2.3876 1.00017 2.38690 1.00017 2.38711
90 1.0001 2.0550 1.00008 2.05423 1.00008 2.05436

120 1.0001 1.8679 1.00006 1.86687 1.00005 1.86709
150 1.0000 1.7729 1.00003 1.77233 1.00003 1.77261
180 1.0000 1.7438 1.00002 1.74362 1.00002 1.74374

Table 5 The values of KI/K0
I

and KII/K0
I for two stacked

cracks of equal size under
normal loading (ν = 0.25)

�/2a KI/K0
I KII/K0

I

Present results Ref. [20] Ref. [12] Present results Ref. [12]

0.25 0.767776 0.7678 0.7759 0.13816 0.1390
0.35 0.795536 0.7898 0.11729
0.50 0.831634 0.8249 0.8356 0.09028 0.0910
0.75 0.881329 0.8781 0.8828 0.05506 0.0549
1.00 0.918728 0.9176 0.9189 0.03220 0.0325
1.50 0.961547 0.9614 0.9613 0.01140 0.0115
2.00 0.980182 0.9802
5.00 0.998381 0.9990

Fig. 5 Stacked crack-microcrack interaction under normal
loading

3.2.2 Stacked crack-microcrack interaction (Fig. 5)

The boundary collocation procedure is employed to an-
alyze SIFs for stacked crack-microcrack interactions in
normal loading. The microcrack size is 1/20 of the main
crack size. The present solutions are given and compared
with Kachanov’s results (see e.g. Kachanov and Laures
[20]) in Table 6. Table 7 shows that the agreement is quite
good. The value of KI/K0

I for the main crack is equal
to 1 indicating that the effect of the microcrack on the
main crack is negligible; and microcrack’s KI/K0

I < 1,
which shows the crack-microcrack interaction produces
a shielding for the microcrack.

3.3 “V” arrangement under normal loading (Fig. 6)
and “H” arrangement under shear (Fig. 7)

“V” arrangement under normal loading and “H” arra-
ngement under shear are considered. SIFs are calculated
by using the first order average traction method. All
cracks have the same size for “V” and “H” crack configu-
ration, respectively. The present and Kachanov’s results
(Kachanov and Laures [20]) are given in Tables 7, 8 and
9, where K0

I , K0
II and K0

III are the stress intensity factors



Interactions of penny-shaped cracks in three-dimensional solids 351

Table 6 The values of max
KI/K0

I for stacked
crack-microcrack interaction
under normal loading
(ν = 0.25)

�/2a Ref. [20] Present results

Main crack Microcrack Main crack Microcrack
max(KI/K0

I ) max(KI/K0
I ) max(KI/K0

I ) max(KI/K0
I )

0.0025 1.0000 0.0002 1.0000 0.00019
0.05 1.0000 0.0017 1.0000 0.00167
0.15 1.0000 0.0395 1.0000 0.03951
0.25 1.0000 0.1430 1.0000 0.14307
0.35 1.0000 0.2873 1.0000 0.28735
0.45 1.0000 0.4341 1.0000 0.43419
0.55 1.0000 0.5611 1.0000 0.56113
0.65 1.0000 0.6621 1.0000 0.66203
0.75 1.0000 0.7391 1.0000 0.73907
1.00 1.0000 0.8578 1.0000 0.85779

Table 7 The values of SIFs around the crack edge for “V” crack configuration (ν = 0.25)

θ Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results

KI
σ 0√

a
K0

I
σ 0√

a
KI
σ 0√

a
K0

I
σ 0√

a
KII
σ 0√

a
K0

II
σ 0√

a
KII
σ 0√

a
K0

II
σ 0√

a
KIII
σ 0√

a
K0

III
σ 0√

a
KIII
σ 0√

a
K0

III
σ 0√

a

0 0.3253 0.2251 0.32591 0.2251 −0.2465 −0.2572 −0.24635 −0.2572 0.0000 0.0000 0.00000 0.0000
30 0.2765 0.2251 0.27704 0.2251 −0.2765 −0.2227 −0.22628 −0.2227 0.0837 0.0964 0.08402 0.0964
60 0.2391 0.2251 0.23934 0.2251 −0.1334 −0.1286 −0.13324 −0.1286 0.1642 0.1670 0.16415 0.1670
90 0.2284 0.2251 0.22883 0.2251 0.0020 0.0000 0.00154 0.0000 0.1961 0.1929 0.19584 0.1929

120 0.2257 0.2251 0.22601 0.2251 0.1331 0.1286 0.13283 0.1286 0.1709 0.1671 0.17083 0.1671
150 0.2250 0.2251 0.22523 0.2251 0.2299 0.2227 0.22957 0.2227 0.0987 0.0964 0.09856 0.0964
180 0.2248 0.2251 0.22501 0.2251 0.2653 0.2572 0.26503 0.2572 0.0000 0.0000 0.00000 0.0000

Table 8 The values of SIFs around the crack edge of crack 1 for “H” crack configuration (ν = 0.25)

θ Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results

KI
τ 0√

a
K0

I
τ 0√

a
KI
τ 0√

a
K0

I
τ 0√

a
KII
τ 0√

a
K0

II
τ 0√

a
KII
τ 0√

a
K0

II
τ 0√

a
KIII
τ 0√

a
K0

III
τ 0√

a
KIII
τ 0√

a
K0

III
τ 0√

a

0 −0.0704 0.0000 −0.07038 0.0000 0.4719 0.5144 0.47192 0.51447 0.0000 0.0000 0.00000 0.00000
30 −0.0716 0.0000 −0.07159 0.0000 0.4043 0.4455 0.40482 0.44554 −0.1923 −0.1929 −0.19255 −0.19292
60 −0.0674 0.0000 −0.06726 0.0000 0.2241 0.2572 0.22461 0.25723 −0.3434 −0.3341 −0.34303 −0.33416
90 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 −0.4187 −0.3858 −0.41864 −0.38585

120 0.0674 0.0000 0.06726 0.0000 −0.2241 −0.2572 −0.22461 −0.25723 −0.3434 −0.3341 −0.34303 −0.33416
150 0.0716 0.0000 0.07159 0.0000 −0.4042 −0.4455 −0.40482 −0.44554 −0.1923 −0.1929 −0.19255 −0.19292
180 0.0704 0.0000 0.07038 0.0000 −0.4719 −0.5144 −0.47192 −0.51447 0.0000 0.0000 0.00000 0.00000

Table 9 The values of SIFs around the crack edge of crack 2 for “H” crack configuration (ν = 0.25)

θ Ref. [20] Present results Ref. [20] Present results Ref. [20] Present results

KI
τ 0√

a
K0

I
τ 0√

a
KI
τ 0√

a
K0

I
τ 0√

a
KII
τ 0√

a
K0

II
τ 0√

a
KII
τ 0√

a
K0

II
τ 0√

a
KIII
τ 0√

a
K0

III
τ 0√

a
KIII
τ 0√

a
K0

III
τ 0√

a

0 0.0000 0.0000 0.0000 0.0000 −0.3161 −0.5144 −0.31644 −0.51447 0.0000 0.0000 0.00000 0.00000
30 0.0000 0.0000 0.0000 0.0000 −0.3738 −0.4455 −0.37391 −0.44554 0.1079 0.1929 0.10808 0.19292
60 0.0000 0.0000 0.0000 0.0000 −0.2786 −0.2572 −0.27845 −0.25723 0.3186 0.3341 0.31885 0.33416
90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.3907 0.3858 0.39088 0.38585

120 0.0000 0.0000 0.0000 0.0000 0.2786 0.2572 0.27845 0.25723 0.3186 0.3341 0.31885 0.33416
150 0.0000 0.0000 0.0000 0.0000 0.3738 0.4455 0.37391 0.44554 0.1079 0.1929 0.10808 0.19292
180 0.0000 0.0000 0.0000 0.0000 0.3161 0.5144 0.31644 0.51447 0.0000 0.0000 0.00000 0.00000
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Fig. 6 “V” arrangement cracks under normal loading

Fig. 7 “H” arrangement cracks under shear loading

for non-interacting cracks. We can see that the agree-
ment is quite good. For “V” crack configuration, inter-
action produces a noticeable mode I SIF and a relatively
weak effect on KII and KIII. For “H” crack configura-
tion, the interaction results in a substantial amplification
of KI for the side cracks and the median crack is mildly
shielded by the side cracks. The maximal value of KII
occurs at the points of the crack edge that are not the
points of the smallest spacing.

4 Conclusions

Using oblate spheroidal coordinates and series expan-
sions of displacement functions, an analytic method is
developed to solve the problem of strong interacting
and arbitrarily distributed penny-shaped cracks in three-
dimensional solids. The SIFs are calculated for several
crack problems by using the boundary collocation proce-
dure and the average method for crack-surface traction.
When the first order average traction method is em-
ployed, our results are in good agreement with those of
Kachanov [20] for several crack configurations which in-
dicates that the present method is accurate and efficient
for evaluating the SIFs. In addition, more order aver-
ages can be used in the present method. Numerical re-
sults show that the accuracy of the first order average
traction method is high for large spacing; more order
averages must be used for very closely spaced cracks.

5 Appendix Oblate spheroidal coordinates
(Gladwell [23])

The oblate spheroidal coordinates ξ , η, θ are related to
Cartesian coordinates x, y, z by the equations

x = a
√
(1 + ξ2)(1 − η2) cos θ ,

y = a
√
(1 + ξ2)(1 − η2) sin θ , (42)

z = aξη,

where −1 ≤ η ≤ 1, ξ ≥ 0. The surface ξ = const, η =
const are the ellipsoids and hyperboloids (of one sheet)

r2

a2(1 + ξ2)
+ z2

a2ξ2 = 1,

r2

a2(1 − η2)
− z2

a2η2 = 1,
(43)

respectively; the surfaces ξ = 0 and η = 0 are the inte-
rior and exterior of the circle r = a, z = 0, respectively.

Laplace’s equation in oblate spheroidal coordinates
is

∂

∂ξ

[
(1 + ξ2)

∂ψ

∂ξ

]
+ ∂

∂η

[
(1 − η2)

∂ψ

∂η

]

+ (ξ2 + η2)

(1 + ξ2)(1 − η2)

∂2ψ

∂θ2 = 0, (44)

which has separable solutions

ψ(ξ , η, θ) = �(ξ)H(η)�(θ), (45)
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where �, H,� satisfy

d
dξ

[
(1 + ξ2)

d�
dξ

]
−

[
n(n + 1)− m2

1 + ξ2

]
� = 0, (46)

d
dη

[
(1 − η2)

dH
dη

]
+

[
n(n + 1)− m2

1 − η2

]
H = 0, (47)

d2�

dθ2 = −m2�.

(48)

The required periodicity of �(θ) and the convergence
of the solutions �, H require that m, n be integers so
that

ψ(ξ , η, θ) =
{

Pm
n (iξ)

Qm
n (iξ)

}
·
{

Pm
n (η)

Qm
n (η)

}
·
{

cos mθ
sin mθ

}
(49)

where Pm
n , Qm

n are the Legendre functions of the first
and second kinds, respectively, and m ≤ n.

Now consider which of the combinations shown in
Eq. (44) is valid to represent ψ . Pm

n (iξ) is unbounded
at ξ = ∞(r = ∞, z = 0), while Qm

n (η) has logarithmic
singularities at η = ±1(r = 0, z = 0); both cases should,
therefore, be excluded. This leaves the combination

ψ(ξ , η, θ) = Qm
n (iξ) · Pm

n (η)(bmn cos mθ + cmn sin mθ),

(50)

where bmn, cmn are coefficients.
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