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2. Abbreviations 

AMA  antimitochondrial antibody 
ANA antinuclear antibody  
Arbovirus arthropod-borne virus 
BFV Barmah Forest virus 
CHIKV Chikungunya virus 
CI confidence/credible interval 
CPE cytopathic effect  
ct cycle threshold 
EEV eastern equine encephalitis virus 
EIA enzyme immunoassay 
FAM 6-carboxyfluorescein 
FCS fetal calf serum 
HI hemagglutination inhibition 
HLA human leukocyte antigen 
IF immunofluorescence 
IFN interferon 
Ig immunoglobuline 
IL interleukin 
MAYV Mayaro virus 
MEM minimum essential medium 
MGB minor groove binder 
MHC major histocompatibility complex 
NIDR National Infectious Disease Registry 
ONNV O´Nyong Nyong virus 
mOR matched odds ratio 
ORF open reading frame 
p.i. post infection 
PAR  population attributable risk 
PCR polymerase chain reaction 
PFU plaque forming unit  
RF rheumatoid factor 
RRV Ross River virus 
RT reverse transcriptase 
SINV  Sindbis virus 
VEEV Venezuelan equine encephalitis virus 
WEEV  western equine encephalitis virus 
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3.  Abstract 

Sindbis virus (SINV), an arthropod-borne, enveloped single-stranded RNA virus 

belongs to genus Alphavirus in the family Togaviridae. SINV is found in Eurasia, 

Africa, and Australia but clinical SINV infections occur mostly in Northern Europe 

and particularly in Finland where the infection is known as Pogosta disease. SINV 

epidemics have a peculiar cyclic appearance in Finland and since 1974, major 

outbreaks involving hundreds or even thousands of cases have occurred 

approximately every seven years. This study aimed to characterise descriptive, 

analytical and molecular epidemiology, to develop a PCR-based detection method 

and to study the pathogenesis and genetic susceptibility to SINV infection.   

The epidemiology of a SINV outbreak in 2009 was described and compared to 

the outbreak pattern of previous major epidemics. The anticipated seven-year 

cycle did not recur as a relatively mild epidemic was observed. The data indicated 

that changes in grouse population and weather factors may contribute to the 

human epidemiology of SINV infection as speculated earlier and supported by 

another recent study. We identified risk factors for SINV infection in a large 

population based case-control study including 337 cases and 934 controls and 

extended the data on clinical features and patient characteristics. In the final 

multivariable logistic regression analysis, mosquito bites and spending time in 

woods or marshland remained as independent risk factors with a significant dose-

response effect. Exposure to other arthropods was not positively associated with 

SINV infection. Population attributable risk for mosquito bites was 87.2%. A new 

estimate of the median incubation period of SINV infection was 4 days. The SINV-

infected patients were found to have previous or ongoing medical conditions 

affecting joint or connective tissues more frequently than controls. 

SINV was isolated from mosquitoes in Finland for the first time. Sequence 

analyses on the full-length coding sequences of all Finnish SINV strains, 

significantly expanding the available data on SINV sequences, demonstrated that 

the novel SINV isolate is closely related to Finnish human SINV isolates and to 

strains isolated previously from mosquitoes in Sweden and Russia. The data 
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further established that SINV has had a local circulation in the endemic Northern 

Europe during the past decades. Sequence analyses also identified amino acid 

signatures, particularly in the nsP3 protein, shared by Northern European strains 

that may be associated with vector or host species adaptation. 

We developed a specific and sensitive real-time RT-PCR assay for the 

detection of SINV RNA with a detection limit of 9 copies/reaction. The assay 

demonstrated low levels of viraemia (<103 copies/ml) in sera of SINV-infected 

patients and only 12% of the serum samples were positive in the assay. Thus, the 

assay was found to have limited value as a diagnostic technique using serum 

samples but could be used for screening SINV in e.g. wildlife. These findings on 

low viral load may be associated with the pathogenesis and epidemiology of SINV 

infection.  

The pathogenesis of myalgia was studied by examining a unique muscle 

biopsy obtained from a SINV-infected patient with chronic myalgia and arthralgia 

and by performing SINV infections of primary human myoblasts and myotubes. 

Evidence of muscle regeneration due to previous necrosis likely caused by earlier 

SINV infection was found in the biopsy. We further showed that human primary 

myoblasts and myotubes were susceptible in vitro for SINV infection. Overall, the 

study provided new information on SINV tropism and the mechanisms behind 

myalgia in SINV infection.  

 The role of HLA and complement C4 genes in the susceptibility and outcome 

of SINV infection were investigated. The frequency of DRB1*01 allele was 

significantly higher in patients with SINV infection than in the reference population 

(OR=3.3, P=0.003). The frequency of DRB1*01 allele was particularly prominent 

among patients who at three years post infection experienced joint manifestations. 

The data further suggested that the combination of HLA-B*35- DRB1*01 alleles 

and C4B deficiency may be associated with a more prominent or persistent form 

of the disease. A set of autoantibodies was measured in SINV-infected patients at 

the acute phase and three years post infection to assess autoreactivity. The 

frequency of rheumatoid factor at three years post infection was 29.5% and 

showed significant increase (P=0.02) during the three-year follow-up. The 

antinuclear and anti-mitochondrial antibodies were also present in serum three 
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years post infection with frequencies of 15.9% and 6.8%, respectively. Thus, the 

data demonstrated that symptomatic SINV infections show association to the HLA 

system and that autoantibody titres are elevated in patients three years post 

infection. These findings indicate that SINV-induced arthritis shares features with 

autoimmune diseases. 
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4. Review of the literature 

4.1 Arthropod-borne viruses – emerging cause of epidemics 

Numerous medically important viruses are arboviruses (arthropod-borne viruses). 

Almost all arboviruses are RNA viruses that have a potential to rapidly adapt to 

new vectors and hosts due to high genetic plasticity and mutation rates, which are 

characteristic features of RNA viruses. The viruses replicate in their arthropod 

vectors such as mosquitoes or ticks before transmission to vertebrates. These 

viruses circulate in wild animals and are occasionally responsible for major 

epidemics in humans. The ability of these infectious agents to cause disease in 

humans is associated with epidemiological and ecological factors, host genetics, 

as well as changes in viral genetics. The possible effects of ongoing global 

warming on the epidemiology of arboviruses have been investigated and it has 

been strongly suggested that global warming is associated with increased vector 

distribution and that it enhances the transmission potential particularly in 

temperate climates [207]. However, it has also been argued that climate change is 

not the most significant factor behind the increased incidence of vector-borne 

disease although the contribution is evident. Factors such as deforestration, 

decreased hygiene and importantly, increased frequency of travel to and from 

vector-borne disease endemic areas have a major impact [120,153]. Examples of 

increasingly important arboviruses that have during recent years caused large 

outbreaks include dengue virus, a major arboviral pathogen responsible for 

severe and sometimes fatal hemorrhagic fever/shock syndrome, West Nile virus 

(WNV), which caused a widespread epidemic in North America in 1999, and 

Chikungunya virus (CHIKV) (reviewed below in detail) [207].  
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4.2 General introduction to alphaviruses 

4.2.1 Taxonomy and phylogeny 

The family Togaviridae is comprised of two genera: Alphavirus and Rubivirus. The 

Rubivirus genus includes the causative agent of rubella (German measles), 

namely rubella virus. The Alphavirus genus is divided into seven antigenic 

complexes (Table 1) based on serological cross-reactivity and contains 29 

recognized species [147, 149]. 

 
Table 1. The recognized species of Alphavirus genus [43,147]. 
 

Virus species Antigenic 
complex 

Abbreviation Origin 

Salmon pancreatic 
disease 

 SPDV United Kingdom 

Southern elephant 
seal 

 SESV Australia, 2001 

Barmah Forest  BF BFV Australia, 1974 

Middelburg  MID MIDV South Africa, 1957 

Ndumu NDU NDUV South Africa, 1959 

Getah SF GETV Malaysia, 1955 

Ross River SF RRV Australia, 1959 

Bebaru SF BEBV Malaysia, 1956 

Semliki Forest SF SFV Uganda, 1942 

Mayaro SF MAYV Trinidad, 1954 

Una SF UNAV Brazil, 1959 

Chikungunya SF CHIKV Tanzania, 1953 

O’nyong nyong SF ONNV Uganda, 1959 

Venezuelan equine 
encephalitis 

VEE VEEV Venezuela, 1938 

Mosso das Pedras 
virus  

VEE - Brazil, 1978 

Everglades VEE EVEV Florida, US,1963 

Tonate VEE TONV French Guiana, 1973 

Mucambo VEE MUCV Brazil, 1954 

Pixuna VEE PIXV Brazil, 1961 

Cabassou VEE CABV French Guiana,1968 



 

 
 
 
 

14

Rio Negro 
(Ag80-663) 

VEE RNV - 

Eastern equine 
encephalitis 

EEEV EEEV Maryland,US,1933 

Aura WEE AURAV Brazil, 1959 

Fort Morgan WEE FMV Colorado, US, 1973 

Highlands J WEE HJV Florida,US, 1960 

Sindbis WEE SINV Egypt, 1952 

Trocara WEE TROV Brazil, 1984 

Western equine 
encephalitis 

WEE WEEV California, US,1930 

Whataroa WEE WHAV New Zealand,1962 

 
 

A phylogenetic tree based on full-length genomes of alphaviruses shows similar 

grouping as the serological classification (Figure 1). Studies on the evolutionary 

history of alphaviruses have proposed that the origin of the genus could be either 

in the Old or the New World and several transoceanic introductions must have 

occurred to explain the current distribution [103,149]. Recombination, rarely 

occurring among alphaviruses, of Sindbis virus (SINV) and eastern equine 

encephalitis virus (EEEV) resulted in western equine encephalitis virus (WEEV) in 

the New World approximately 1300-1900 years ago [209]. A recent phylogenetic 

study, however, suggested that alphaviruses originate from the Pacific Ocean and 

thereafter spread to terrestrial vertebrate hosts and mosquito vectors in the New 

World as well as the Old World [43]. The proposed model was based on the 

finding that alphaviruses found in the ocean are at root positions in the 

phylogenetic trees indicating that they represent ancestral viruses. Since the 

ancestral alphaviruses assumingly spread between the continents long before 

human travel, it is likely that the zoonotic hosts, most likely birds, are responsible 

for virus dissemination across the world [43]. For instance, the geographical 

distribution of SINV, a member of the WEEV complex, shows apparent correlation 

to major bird migration patterns [115].  
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Figure 1. The radial layout of maximum likelihood phylogenetic tree based on full-genome 
alignment of the coding sequences of different species of alphaviruses and their subtypes. The 
antigenic complexes are indicated with circles and bolded text. To prevent bias, recombinant 
WEEV complex alphaviruses were excluded. The tree was constructed with maximum likelihood 
algorithm on RAxML program [181] using general time reversible model (GTR) with gamma 
distribution. The abbreviations of the viruses are clarified in Table 1.  
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4.2.2 Genome structure and replication strategy 

Alphaviruses are enveloped, positive-sense single-stranded RNA viruses. The 

virions of alphaviruses are spherical and approximately 70 nm in diameter. The 

size of the genome is roughly 11.7 kb and includes 5´ teminal cap structure and 

3`poly (A) tail [184]. It encodes two separate open reading frames that are 

separated by a short non-coding sequence. The 5´-region of the genomic RNA 

encodes four non-structural proteins (nsP1-nsP4) while the 3´-region, the 

subgenomic 26S RNA, is translated into structural proteins C, E3, E2, 6K and E1 

[184,185] (Figure 2). The lipid bilayer, derived from the host cell, encloses 

heterodimeric protein spikes (n=80) composed of two envelope glycoproteins, E1 

and E2, that are the immunodominant proteins. The interaction between E1 and 

E2 in a one-to-one relationship results in a firm structure across the membrane. 

Small quantities of the membrane-associated protein, 6K, are also found in virus 

particles and some alphaviruses contain a third envelope protein, E3. It has been 

suggested that E3 may have an enzymatic or functional role in virus assembly 

[142]. The nucleocapsid core consists of 240 copies of capsid proteins, which 

interact with the genomic RNA. Both nucleocapsid and envelope proteins are 

organized in a T=4 icosahedral symmetry [51,185,202].  

The alphavirus life cycle starts with virus attachment to the receptors on the 

host cell surface (Figure 2). C-type lectins DC-(Dendritic Cell) and L-(Liver/Lymph 

Node) SIGN (Specific ICAM-3 Grabbing Non-Integrin), expressed in many early 

target cells of arbovirus infection including DCs and other cells of monocyte 

phagocyte system, have been implicated as attachment receptors for SINV [88]. 

In addition, heparan sulphate (HS) has been shown to act as a binding or capture 

receptor for several alphaviruses [217]. After the attachment, the virus enters the 

cell by receptor-mediated endocytosis in clathrin coated pits [33,67] where low pH 

triggers the destabilization of E1-E2 heterodimers [54,60]. Subsequently, the 

trimerisation of E1 occurs and its fusion peptides are exposed. As a consequence, 

viral and endosomal membranes fuse and the nucleocapsid core is disassembled 

and released into the cytoplasm of the host cell. The non-structural proteins are 

initially translated from the full-length genomic RNA. In most alphaviruses, the 



 
 
 
 

17

translation results in two different polyproteins, P123 or larger P1234 that are 

proteolytically cleaved by viral proteases to yield individual proteins [185]. A study 

on SINV showed that the larger polyprotein occur as a result of translational read 

through of an opal termination codon. The read through takes place with only 10–

20% efficiency and thus, P123 is the principal translational product [105].  

However, some alphaviruses lack opal codon and only produce P1234 [188]. The 

non-structural proteins are responsible for the replication and formation of 

complementary minus-stranded RNA, which serves as a template for further 

synthesis of the positive-stranded RNA. The nsP1 protein, carrying RNA 

methyltransferase activity, is important in capping of viral RNA and initiation of 

minus-stranded RNA synthesis [8]. The nsP2 region encodes helicase and 

protease domains [161] whereas the nsP4 is the viral RNA polymerase [81]. The 

nsP3 is probably involved in the transcription process at an early stage of the 

infection but its role is still less well understood. A recent study found that the C-

terminal  proline-rich sequence motif of the nsP3 protein, common for many 

alphaviruses, serve as a target site for Src-homology 3 (SH3) domains  of 

amphiphysin-1 and -2 and the SH3 domain-mediated binding of nsP3 with 

amphiphysin is important in promoting viral RNA replication [131].   

Subgenomic mRNA is synthesized from the full-length intermediate minus-

stranded RNA later in the infection and the translation of the mRNA produces the 

structural proteins. The capsid protein C is translated first and the assembly of the 

newly synthesized genomic RNA and capsid make the nucleocapsid [185]. The 

viral membrane glycoproteins E1 and pE2 (precursor to the E3 and E2) are 

assembled in the endoplasmic reticulum (ER) and cleaved by signalase [110]. 

pE2 is cleaved by furin in the Golgi and the E1-E2 heterodimers are then 

transferred to the plasma membrane. At the plasma membrane, nucleocapsid 

interacts with the cytoplasmic part of E2, becomes enveloped and the virion buds 

from the membrane [185].  
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Figure 2. The lifecycle of alphaviruses. Modified from [193]. The insert above shows the 
organisation of the alphavirus genome.  

4.3 Epidemiology of alphaviruses 

Alphaviruses have been isolated throughout the world except in the Antarctica 

and are responsible for a wide range of diseases in humans and animals. The 

alphavirus genus includes two distinct subgroups, the Old World and the New 

World alphaviruses, based on the geographical distribution and the differences in 
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the associated clinical disease (Figure 3). The Old World alphaviruses including 

Ross River virus (RRV), O´Nyong Nyong virus, (ONNV), SINV, Barmah Forest 

virus (BFV) and CHIKV are arthritogenic viruses and characteristically cause a 

disease manifesting as febrile rash-arthritis with myalgia [186]. Semliki Forest 

virus (SFV), found in Africa, is classified as an Old World alphavirus but the 

association to arthritogenic disease is poorly described. Alphaviruses found in the 

New World including Venezuelan equine encephalitis virus (VEEV), EEV, and 

WEEV, are associated with severe neuropathogenic disease often resulting in 

encephalitis [149,216]. However, Mayaro virus (MAYV) cause arthritogenic 

disease and is sometimes grouped as an Old World alphavirus in the literature 

[149] due to the similarities in the clinical features but the virus is only found in the 

New World [103]. The neuropathogenic alphaviruses have been classified as 

possible biological weapons [35].  

 
 
Figure 3. Geographical distribution of medically important alphaviruses. The areas where most of 

the human infections of each virus have been reported are indicated with the virus name. The 

arthritogenic alphaviruses are bolded and the neuropathogenic viruses marked with italics. 

Countries where people have become infected with CHIKV are highlighted with grey and the 

arrows show the spread of the CHIKV epidemic in 2004–2009. Data obtained from 

[148,182,206,207].  
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4.3.1 New World alphaviruses 

WEEV is found in the western U.S. and South America, and statistics from the 

Centers for Disease Control and Prevention [6] show that 640 human cases have 

been reported in the U.S. from 1964 to 2010. However, no cases have been 

reported during the last decade. The mortality in humans is 3-7% [216]. EEV 

infections are reported in the eastern and northern U.S.  The human mortality is 

high, up to 75%, and in 1964–2010, 270 human cases were reported in the U.S. 

(10 cases were reported in 2010) [6]. The distribution of VEEV includes Central 

America, and the northern and eastern parts of South America [208]. Severe 

encephalitis in humans infected with VEEV is rare compared to EEV and WEEV 

and the human mortality is approximately 1% [208]. Horses in particular are 

susceptible to neurological disorders caused by VEEV. However, VEEV was 

responsible for a major outbreak in 1995 in Venezuela and Colombia where up to 

100,000 human cases were reported [210]. MAYV has been associated with 

several small sporadic epidemics of rash-arthritis in South America, particularly in 

Brazil and Bolivia [192].  

4.3.2 SINV epidemiology in Finland 

SINV and antibodies to SINV are widely found in wildlife and in humans across 

Eurasia, Africa and Oceania [74,206]. However, clinical SINV infections have 

been reported mostly in Northern Europe and particularly in Finland where the 

infection is known as Pogosta disease [96].  The underlying factors explaining the 

high incidence in Finland are unclear. SINV epidemics in Finland have emerged in 

approximately seven-year cycles with hundreds or even thousands of reported 

annual cases (Figure 4) [18,96]. The first epidemic took place in 1974, and the 

largest epidemic occurred in 1995 when 1,310 serologically confirmed cases were 

reported. Since 1995, all laboratory-confirmed cases of SINV infection have been 

reported to the National Infectious Disease Registry (NIDR) at the National 

Institute for Health and Welfare (THL). Two accredited laboratories in Finland (in 

Helsinki and Turku) perform serological testing for SINV, of which approximately 
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70-80% is performed in Helsinki. SINV infections occur mostly in August and 

September. It has been estimated that the age-standardised seroprevalence of 

SINV infection in Finland is 5.2% and that the prevalence as well as the average 

annualised incidence have been highest in North Karelia in eastern Finland [94]. 

The incidence has been highest among females aged 50–59 years and the 

seroprevalence increases with age peaking at the age group 60-69 [94]. It has 

been estimated that there are 17 times more subclinical than symptomatic SINV 

infections [18]. A recent study indicated that certain climatic conditions such as 

temperature and precipitation as well as the density of hatch-year black grouse 

are significant determinants of occurrence and incidence of human SINV 

infections in Finland [75].  

 

 
Figure 4. The number of serologically confirmed SINV infections in Finland annually, 1981-2011. 
Data from National Infectious Disease Registry (1995-2011) and [18] (1981–1994, diagnoses 
made at the Department of Virology, University of Helsinki, which accounted for 70–80% of all 
laboratory confirmed SINV infections in Finland).  
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4.3.3 Other Old World alphaviruses  

RRV is responsible for approximately 5,000 and BFV for 1,000 human infections 

annually in Australia [7]. ONNV is found in Africa and during 1959–1962, the virus 

caused a major outbreak that began in Uganda and roughly 2 million cases were 

reported in Kenya, Tanzania and Uganda [214]. After years of silence with only a 

few sporadic cases reported, ONNV re-emerged again in Uganda in 1996 [162]. 

Outbreaks of CHIKV have occurred sporadically in Africa, Southeast Asia and 

India during the past 50 years [148,182]. The outbreaks have mostly been 

relatively mild but in 2004, a massive re-emergence of CHIKV started from the 

coast of Kenya [148,169].  

4.3.4 Re-emergence of Chikungunya in 2004–2009 – more to come? 

After the appearance of CHIKV in Kenya in 2004, the epidemic spread to the 

Island of Comoros in 2005 where 6,000 cases were reported (Figure 3). The 

massive outbreak spread further to other islands in the Indian Ocean, including 

Madagascar, Mayotte, Mauritius and Réunion [148]. The burden of CHIKV 

infection was particularly high on the island of Réunion where approximately 

300,000 cases were reported, representing more than one third of the population 

of the island [169]. At the end of 2005, a separate epidemic caused by the same 

viral genotype spread from East Africa to India where millions of people became 

infected [207]. During 2006–2009 CHIKV spread further to Southeast Asia [62] 

and also to Europe (Emilia-Romagna, Italy) where local transmission of CHIKV 

had never occurred before [203]. More than 200 cases, including one fatal case, 

were reported in this north-eastern part of Italy in 2007. Further expansion of the 

outbreak was at least partly limited due to the relatively rapid implementation of an 

active surveillance system [203]. Overall, the case-fatality rate during the 

explosive outbreak of CHIKV was estimated to be between 0.1– 4.9% [156].  

Lack of herd immunity in humans and in unknown hosts in the new areas 

where CHIKV emerged may partly explain the magnitude of CHIKV re-

emergence. Probably the most important factor, however, was a single point 
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mutation that resulted in a change of amino acid (alanine to valine) at the position 

226 of the E1 protein [169]. This change facilitated the adaption of the virus to a 

new vector, Aedes albopictus, and enhanced CHIKV transmission in areas where 

the distribution of the classical CHIKV vector, Aedes aegypti, was limited. 

Currently there is no evidence that the A226V mutation affects the viral virulence 

in humans. Due to the increased distribution of Aedes albopictus, assisted by tyre 

shipments [154], it is considered highly likely that CHIKV could spread further on 

and possibly even become endemic in Europe or in tropical America. This 

mosquito species was for example only recently found in Germany for the first 

time ever [211]. The spread of CHIKV, and other arboviruses, is further aided by 

the increased global travel, deforestation and widespread tropical urbanization 

[55,207].  

4.3.5 Vectors, reservoir hosts and transmission 

The geographical distribution of individual alphaviruses is constrained by certain 

ecological factors including reservoir host and vector restrictions. Genetic 

changes in viruses may enable vector adaptation and thus lead to emergence of 

alphaviruses to new geographical areas as was shown for CHIKV. Alphaviruses 

are mainly transmitted by various mosquito species, and numerous vertebrate 

species are known to be associated with the transmission cycle. However, trout 

and salmon infecting salmon pancreatic disease virus (SPDV) and its subtype 

sleeping disease virus (SDV) as well as Southern elephant seal virus (SESV) do 

not have established arthropod vectors although it has been speculated that sea 

louse, Lepeophtheirus salmonis, may be involved in the transmission of SPDV 

[43,149].   

Ornitophilic mosquito species, Culex and Culiseta, have been suspected to be 

the primary vectors of SINV [45,135]. However, also Aedes species are involved 

since SINV has been isolated from Aedes mosquitoes [45,117]. SINV has also 

been isolated from ticks in Italy [57] but it has been unclear whether other 

arthropods could transmit the virus. SINV antibodies have been detected in 

grouse [18,94] and studies have hypothesized that grouse, as probable amplifying 
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hosts, may play a role in the occurrence of SINV outbreaks because SINV 

outbreaks have previously coincided with a decrease in grouse populations [111]. 

Migratory birds have also been found positive for SINV antibodies, thus 

suggesting that migratory birds may also play a role in the distribution of the virus 

[20, 94].   

For RRV the principal vectors are the mosquitoes Culex annulirostris and 

Aedes vigilax and the vertebrate hosts include native marsupials [64,136]. BFV is 

transmitted by Aedes and Culex species [15,204] and ONNV by Anopheles 

[27,215] but the reservoir host is currently unknown for both viruses.  The vectors 

of CHIKV in the urban transmission cycle in Asia, where humans act as major 

hosts, are Aedes aegypti and Aedes albopictus [126,127,150]. Aedes albopictus, 

as described above, was particularly involved in the recent CHIKV outbreak. 

Although similar urban transmission does also occur in Africa, African CHIKV 

circulates predominantly in an enzootic cycle, where non-human primates are the 

likely hosts and primatophilic Aedes mosquitoes act as principal vectors [34].   

MAYV is transmitted by Haemagogus species and monkeys are the main 

amplifying hosts of the virus [72]. Culex tarsalis is  the  primary  vector  for  WEEV 

and rodents as well as birds, such as house finches, have been indicated as 

reservoir hosts [63]. Birds and rodents have also been suggested as hosts for 

VEEV, which is transmitted by various mosquito species including Aedes, Culex 

and Psorophora species [208]. VEEV has a distinct enzootic and 

epidemic/epizootic cycle in which the epizootic strain arises by mutation from the 

enzootic virus [202] (Figure 5). EEV is primarily transmitted by Culex melanura in 

North America, where passerine birds are considered main hosts, and probably 

by Culex melanoconion in South America, where rodents possibly function as 

vertebrate hosts [171].  
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Figure 5. Transmission cycle of VEEV illustrating an example of an alphavirus for which 

epizootic/epidemic strains are generated by mutations from the enzootic viral strains resulting also 

in human infections. Modified from [206].  

4.4 Clinical features of arthritogenic alphaviruses 

4.4.1 Acute symptoms 

Arthritogenic alphaviruses SINV, CHIKV, RRV, MAYV, ONNV and BFV cause 

disease typically presenting with fever, (poly)arthralgia or arthritis, myalgia, 

maculopapular rash, fatigue and headache 

[85,95,144,145,148,180,186,190,192,197]. In general, infections caused by 

CHIKV are considered most severe. Table 2 shows a comparison of the clinical 

features of acute CHIKV and SINV infections. The typical incubation period for 

arthritogenic alphaviruses ranges from 1 to 12 days [49,182,186]. For example in 

SINV infection, the incubation period was estimated to be 8–9 days based on one 

patient case [95]. The joints most commonly affected include knees, ankles, feet, 

fingers, and wrists [95,180,186,190]. Lymphadenopathy has been reported in 

CHIKV [187], ONNV [85], MAYV [192] and RRV infections [186] and a single case 
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of glomerulonephritis has been described both in RRV and BFV infections [47,83]. 

Two cases of foethal deaths in women who at the time had serologically 

confirmed acute SINV infection have been reported but the causality between 

SINV infection and the delivery of stillborn children is unclear [18]. Regarding 

gender distribution of arthritogenic alphavirus infections, no significant differences 

have been reported in general, but studies suggest that clinical SINV infection is 

more common among females than males [95,197].  

During the recent CHIKV epidemic, atypical symptoms of CHIKV infection such 

as meningoencephalitis, myocarditis, pericarditis, nephritis and retinitis were for 

the first time associated with CHIKV and primarily observed in children, in the 

elderly and in patients with comorbidities [36,152]. Furthermore, more than 200 

deaths were reported during the epidemic on the islands in the Indian Ocean [12].   

 
Table  2. Clinical features of acute SINV and CHIKV infection: +, typical symptom; +/-, occur 
occasionally. Data from [95,180,182,190,197]  
 

 CHIKV SINV 
Fever + + 

Joint symptoms + + 
Myalgia + + 

Headache + + 
Gastrointestinal 

symptoms 
+ - 

Rash + + 
Fatigue + + 

Petechiae and other 
mild haemorrhages 

+/- - 

Severe 
complications 

Neurological complications, hepatitis, 
myocarditis, pericarditis, acute renal 
failure, ocular manifestations 

- 

Leukopenia +/- - 
Thrombocytopenia +/- - 

Elevated liver 
enzymes  

+/- - 

Subclinical infection 3-25 % Occurs frequently 
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4.4.2 Persistent sequelae 

The symptoms in the arthritogenic alphavirus infections are generally self-limiting 

but the viruses can cause prolonged joint manifestations that are particularly 

important from a public health perspective. A recent study on SINV indicated that 

one year after an acute SINV infection, 50% of the patients had joint symptoms 

and three years post infection (p.i.), 25% of the patients still suffered from joint 

pain attributable to previous infection and 4% had arthritis [93]. Persistent joint 

symptoms in SINV infection have also been observed in earlier studies 

[99,133,134,197]. Persistent, debilitating polyarticular arthralgia [13,16,151] as 

well as arthritis [44] have been reported in CHIKV infection. Prolonged joint 

manifestations also occur in RRV [25,186], BFV [41] and MAYV infections [191]. 

Long-term sequelae of ONNV infection are currently poorly known.  

4.4.3 Diagnostics 

Laboratory tests for arthritogenic alphaviruses are available in several countries 

and primarily based on serological assays that detect IgM and IgG antibodies 

including enzyme immunoassays (EIA), haemagglutination inhibition (HI) test, 

neutralization tests, indirect immunofluorescence (IFA) or immunoblot assays 

[76,100,118,159,182,186,200]. In the laboratories in Finland, EIA is mainly used in 

diagnostics. For the laboratory-confirmed diagnosis, seroconversion in paired 

serum samples and/or positive IgM result in EIA in a single serum sample is 

usually required [100,118,186]. For example in SINV infection, IgM and IgG 

antibodies become detectable within the first 8 and 11 days of illness, respectively 

[95]. Several methods based on viral RNA detection with PCR have also been 

developed [73,100,102,141,172] but mainly for CHIKV, since CHIKV infections, 

unlike SINV or RRV infections, cause high levels of viraemia that can last for days 

[100,141]. Figure 6 illustrates the diagnostic findings in CHIKV infection during the 

first days of symptoms [141].  
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Days  
 
Figure 6.  The percentage of IgM (grey bar), IgG (black) and viral RNA (white) positive samples 
during the acute phase of CHIKV infection. Reprinted from [141] with permission.  

4.4.4 Treatment and prevention 

 
Alphaviral arthritides are treated symptomatically as no specific antivirals are 

available. Nonsteroidal anti-inflammatory drugs (NSAID) can be used. However, a 

study in mice found that certain steroids are effective and selective inhibitors of 

alphaviruses [107], and a recent in vitro screening study identified compounds 

that are able to inhibit entry and replication of CHIKV replicons and infectious SFV 

[146]. Furthermore, a combination of ribavirin and recombinant interferon alpha 

(IFN- ) was found to have an anti-CHIKV and anti-SFV effect in vitro [17] .  

The most efficient way to prevent alphavirus infections is to avoid mosquitoes 

using repellents, nets and suitable clothing [64]. Human vaccines against 

arthritogenic alphaviruses are currently not available although following the recent 

CHIKV outbreak, vaccine development against CHIKV has advanced. A study by 

the US army showed earlier that a live attenuated CHIKV vaccine was effective in 

safety and immunogenicity studies [37] and recently, a vaccine based on virus-like 

particles was shown to protect nonhuman primates against CHIKV [9]. The 

current understanding is that alphavirus infection confers lifelong immunity against 

repeat infections [206].  
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4.5 Pathogenesis of arthritogenic alphaviruses 

Studies on the pathogenesis of arthritogenic alphaviruses have focused on 

arthralgia/arthritis, but also the mechanisms behind myalgia have recently been 

investigated. It has previously been implied that virus replication and subsequent 

cytopathic effect (CPE) in target tissues would be the major cause of pathogenic 

events, but several studies have recently highlighted the significant role of indirect 

mechanisms involving the immune-mediated pathogenesis, particularly in the 

persistence of arthralgia and myalgia [108,160,170,186]. The vast majority of the 

studies addressing the pathogenesis of arthritogenic alphaviruses have been 

performed on RRV and CHIKV.  

4.5.1 Cell and tissue tropism  

SINV is considered the prototype member of alphaviruses and has been widely 

used in studies of neural pathogenesis of alphaviruses in mice [58,89,175,195]. 

These studies focusing on central nervous system (CNS) manifestations have 

showed that SINV replicates in neural tissue causing encephalitis [58]. However, 

SINV is not associated with CNS symptoms in humans, and the studies on neural 

pathogenesis of SINV in mice are not further reviewed in this thesis summary. 

Yet, mouse models of SINV infection have also shown that in mice infected 

subcutaneously, virus replication is detected in skeletal muscle, showing onset of 

myositis, skin and connective tissue adjacent to articular joints [66,89,195]. A 

recent study found that SINV is able to replicate in human macrophages [10].  

RRV has been shown to target bone, joint and skeletal muscle tissue in a mouse 

model [125], and in humans, RRV RNA has been detected in synovial fluid 

samples [178]. Moreover, macrophages have been found susceptible for RRV 

infection [79,112,205]. RRV infection in the skeletal muscle tissue of humans has 

not been directly demonstrated.  

A study characterizing the tropism of clinical CHIKV strains from the recent 

epidemic found that CHIKV replicates in several human cells including epithelial 

and endothelial primary cells, fibroblasts as well as monocyte-derived 
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macrophages [179]. This in vitro study also found that peripheral blood 

mononuclear cells including B cells, T cells and monocytes were not susceptible 

to CHIKV infection [179]. However, another study concluded that blood 

monocytes are the main targets of CHIKV infection in the acute phase of illness 

as the cells were found susceptible in vitro and CHIKV-antigen positive 

monocytes were isolated from a patient with an acute CHIKV infection [68]. 

CHIKV has also been found in perivascular macrophages in a patient with chronic 

symptoms 18 months p.i. [71].  Replication of CHIKV has been evident in vitro in 

human muscle satellite cells, but not in differentiated myotubes [139]. 

Furthermore, CHIKV antigens were detected in the satellite cells of muscle 

biopsies from two patients with myositis [139]. In a non-human primate model, 

CHIKV was found to infect joints, muscles, lymphoid tissue and liver, and 

persistent infection was observed in macrophages [98].  

4.5.2 Role of innate immunity 

Antiviral cytokines, type I interferons IFN-  and – , are abundantly produced, 

mainly by leukocytes (IFN- ) and fibroblasts (IFN- ), in various alphavirus 

infections [206]. In vitro studies have shown that fibroblasts [168] and monocytes 

[68] infected by CHIKV produce high levels of type I IFNs that are able to control 

the infection by binding to the IFN-  receptor (IFNAR) which then initiates an 

antiviral effector programme in infected and neighbouring cells. In patients with 

chronic CHIKV infection, high levels of IFN-  mRNA have been observed in blood 

mononuclear cells [71]. Inefficient type I IFN signalling was recently shown to 

cause severe CHIKV-associated disease in mice [28], highlighting an important 

role of IFN system in antiviral defence. RRV was found to induce type I IFN 

production in myeloid dendritic cells [174] and the induction of IFN- /  has also 

been observed in SINV mouse models [194]. NK cells, which have an important 

role in innate immunity against viruses, have been detected in inflammatory 

infiltrates around joint and skeletal muscle both in CHIKV and RRV mouse models 

[52,125]. NK cells have also been observed in patients with CHIKV [71] and RRV 

infection [48]. Furthermore, a study showed that the activation of complement 
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system, also a fundamental part of the innate immune response, contributed to 

inflammatory tissue destruction in RRV infection [124]. The role of complement 

factor C3 and its receptor was highlighted as a subsequent study demonstrated 

that mice deficient in complement receptor 3 (CR3) developed milder disease and 

reduced tissue destruction compared to RRV-infected wild-type mice. CR3 

deficiency had no effect on viral replication [123].  

Recent studies have highlighted the crucial role of macrophages and 

proinflammatory cytokines/chemokines in the pathogenesis of arthritogenic 

alphaviruses supporting the view that alphavirus-induced arthritis/arthralgia and 

myalgia is an inflammatory, immune-mediated disease. The major constituent of 

the inflammatory infiltrates in the skeletal muscles of RRV-infected mice was 

found to be macrophages [122,125] and by using compounds toxic to 

macrophages, muscle inflammation was prevented and the clearance of 

macrophages was found to correlate with the recovery [109].  Mouse and non-

human primate models of CHIKV infection have also showed a high degree of 

macrophage and monocyte infiltration in the infected tissues (joints in particular) 

[52,98] and demonstrated that depletion of macrophages improved the rheumatic 

disease [52]. As reviewed above, CHIKV, RRV and SINV can infect human 

macrophages and it has been shown that particularly the macrophage-derived 

proinflammatory factors triggered by the infection are critical factors in the 

development and persistence of joint and muscle manifestations [52,108]. It was 

recently shown that upregulation of macrophage migration inhibitory factor (MIF), 

which also has a recognized role in the pathogenesis of rheumatoid arthritis (RA), 

is associated with severe inflammatory disease in RRV-infected mice [70]. MIF-

deficient mice, however, developed only a mild disease. Elevated levels of 

proinflammatory cytokines and chemokines including tumour necrosis factor-  

(TNF- ), IFN- , and macrophage chemoattractant protein-1 (MCP-1) have been 

detected in mouse model of RRV and in synovial fluid of RRV-infected patients 

[108]. These factors as well as interleukin- 6 (IL-6) were also found to be 

increased in CHIKV mouse model [52]. In patients with acute CHIKV infection, an 

increase  in  IL-1 ,  RANTES  and  IL-6  was  associated  with  the  disease  severity  

[132] and in a longitudinal case-control study, persistent arthralgia was found to 
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be connected with high levels of IL-6 and granulocyte macrophage colony-

stimulating factor [24]. Furthermore, secretion of MIF, TNF- , IL-1  and IL-6 was 

induced by SINV infection in human macrophages [10].  

4.5.3 Role of adaptive immunity 

CD4+ and CD8+ T lymphocytes have been detected in inflammatory infiltrates of 

RRV-infected and CHIKV-infected mice, although to a lesser extent than 

macrophages and NK cells [52,125]. In addition, CD4+ and CD8+ T cells have 

been detected in human synovial biopsies taken from patients with RRV-infection 

[48]. The role of adaptive immune response in the development of RRV-induced 

disease was investigated with RAG-1-deficient mice lacking functional T and B 

cells [125]. It was found that such mice developed a similar inflammatory disease 

characterized by a more widespread myositis than wild-type mice. Therefore, it is 

believed that the adaptive immunity does not play a major role in the 

immunopathogenesis of arthritogenic alphaviruses.  

4.6 Host genetic factors in arthritogenic alphavirus infection 

Genetic factors are important in the predisposition to several diseases.  Regarding 

viral diseases in general, the susceptibility as well as the course of disease is 

often determined by a combination of environmental, pathogen-related and host-

genetic factors. Some studies have found robust human leukocyte antigen (HLA) 

associations to viral diseases such as the human immunodeficiency virus (HIV) 

infection [22] and Puumala hantavirus infection [91,129] but only a few studies on 

the role of host genes in alphavirus infections have been conducted. It was 

recently shown that persons with rhesus (Rh) positive blood are more susceptible 

to CHIKV infection than individuals with Rh-negative blood [92,113]. Furthermore, 

a few studies have investigated the possible HLA association to SINV, CHIKV and 

RRV infections. These studies and the function of the HLA system are reviewed in 

detail below.  
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4.6.1 Major histocompatibility complex (MHC) 

MHC gene region, also called HLA in humans, on the chromosome 6, consist 

of approximately 240 genes of which roughly 130 are functional [87]. Of these 

functional genes, more than 40% contribute to immune response [1]. When a 

pathogen invades the human body, the immune system recognizes the intruder 

and initiates an adaptive immune response. MHC molecules are needed for 

presenting peptides of viral antigens, which is the initial step for the activation of T 

cells. There are two classes of MHC molecules that play a major role in antigen 

presentation, namely MHC class I and class II. The genes encoding for the MCH 

class I and II are extremely polymorphic, which ensures that each individual can 

present a broad repertoire of antigenic peptides to T cells. It is thought that 

selection for resistance to infections drives the generation of MHC variation [196]. 

The classical MHC class I molecules, HLA-A, -B, and -C, present products 

derived from endogenous proteins in the cytosol to cytotoxic CD8+ T cells. MHC 

class II molecules, HLA-DR,-DQ, and and -DP, present exogenous antigens, 

taken from the extracellular environment by phagocytosis or endocytosis, to CD4+ 

T cells, which leads to cytokine and antibody production [86,87] (Figure 7). 

However, cross-presentation of antigens also occurs [121]. Each MHC class I 

molecule consist of -chain, encoded by the respective HLA genes, and 2- 

microglobulin originating from chromosome 15.  MHC class II molecules include 

one -and -chain but HLA-DR -chain is encoded by 4 loci unlike HLA-DP and 

HLA-DQ (Figure 7). The class I molecules are expressed on the surface of all 

cells, except erythrocytes, but  the expression of class II proteins is limited to 

certain antigen-presenting cells such as DCs, B cells and macrophages [86,87]. In 

addition, the MHC region also includes class III molecules that are mostly proteins 

with immune functions. The most polymorphic genes within the class III molecules 

are complement C4A and C4B genes that encode complement C4 protein, which 

has an important role in the activation of the classical pathway of the complement 

system [23]. The majority of humans have two C4 loci coding for C4A and C4B 

proteins, respectively (Figure 7). C4A and C4B proteins differ in their chemical 
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reactivities. C4B displays higher affinity for antigens containing hydroxyl group,  

whereas C4A shows stronger affinity for amino-group-containing antigens [23]. 

Strong associations with MHC genes have been found in more than 100 

diseases, of which many are autoimmune diseases and only a few are infectious 

diseases [53,176,196]. Regarding arthritogenic alphavirus infections, the role of 

HLA alleles in the occurrence and consequence of RRV infection has been 

reported in one study. The prevalence of HLA-DR7 antigen was found to be 

higher among RRV patients than controls indicating a probable association [50]. A 

study on patients with chronic CHIKV infection showed that HLA-DRB1*01 and 

DRB1*04 alleles were frequently found among patients who also developed RA 

post infection [14]. The role of HLA alleles B*27 and DRB1*04 was earlier 

investigated in a study on 21 patients with SINV infection but no association was 

found [99].  

 

 
 
Figure 7. Localisation of the MHC genes on chromosome 6. The major HLA genes as well as the 

C4 genes are shown.  

 

 

 

 

 



 
 
 
 

35

5. Aims of the study 

 

The specific aims of the study were: 

 To characterise epidemiology and to identify risk factors for 

SINV infection in Finland 

 To study the molecular epidemiology of Finnish SINV strains 

isolated from patients with SINV infection and from mosquitoes  

 To develop and evaluate a real-time RT-PCR assay for the 

detection and diagnostics of SINV infection 

 To study factors behind pathological processes leading to 

myalgia in SINV infection 

 To study the role of genetic factors in the susceptibility and 

outcome of SINV infection  

 To study the autoreactivity in SINV infection  
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6. Materials and methods 

The materials and methods used in the study are described below.  

6.1 Study materials 

6.1.1 Ethics statement 

Ethical approval for this study was obtained from the coordinating Ethics 

Committee of the Hospital District of Helsinki and Uusimaa (permission nr 

127/13/03/00/2009). A written informed consent was received from the patients. 

For in vitro experiments in V, informed consent was obtained from all patients or 

legal representatives prior to the tissue being donated to the tissue bank, in 

accordance with the French legislation on bioethics.  

6.1.2 Patients and controls in a case-control study (II) 

A case-patient was defined as a person with rash-arthritis in whom the diagnosis 

of acute SINV infection was confirmed by serology and notified to National 

Infectious Disease Registry (NIDR) between July 15 and October 22, 2002. The 

criteria for confirmed laboratory diagnosis were seroconversion in paired serum 

samples and/or positive IgM result in EIA [118]. The presence of SINV antibodies 

was also confirmed using HI test in some cases. Notified cases were excluded 

from the study if they reported a previous physician-diagnosed SINV infection in a 

questionnaire or were absent from their permanent place of residence during the 

10-day exposure period before the onset of first symptoms of SINV. Cases 

reported from the health district of North Karelia were excluded due to another 

ongoing study on SINV infection in the area [95]. 

Healthy control subjects were selected among the general population. For 

every enrolled case-patient, persons who matched the patient according to year of 
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birth, sex, and postal code or residency were listed from the National Population 

Information System. Control subjects who reported in a questionnaire rash illness 

or arthralgia during the two months prior to data collection, or a previous physician 

diagnosed SINV infection, were excluded from the study. Furthermore, persons 

who were absent from their permanent place of residence for more than a day 

during the 10-day period before the respective case-patient’s s onset of illness 

were excluded.  

6.1.3 Blood specimens (IV and VI) 

Patient serum samples (n=44) from the acute phase of SINV infection and 3 years 

p.i. as well as whole-blood samples from the acute phase (n=35) collected during 

the earlier follow-up cohort study [93] were used in the original publications IV (24 

of the 44 serum samples) and/or VI. Additionally, acute-phase serum samples 

from SINV-infected patients (n=34) and SINV-negative controls (n=24) collected 

during an outbreak in 2009 were used in the original publication IV. The serum 

samples were obtained from the Department of Virology and Immunology of 

Helsinki University Hospital Laboratory (HUSLAB), which is a major diagnostic 

laboratory in Finland. The sera were aliquoted and stored at -70°C or -20°C. 

6.1.4 Patient case with persistent SINV infection (V) 

The patient participated in the study by personally contacting the investigators 

during an ongoing study recruitment. The study patient was a previously healthy 

51-year old male from eastern Finland with prolonged symptoms of SINV 

infection. In September 2009 the patient had rash and swelling and prominent 

tenderness in wrists and ankles as well as in knees, elbows and shoulders at a 

later stage. Other symptoms of acute SINV infection included fever, lower back 

pain, headache, dizziness, and fatigue. The patient had been exposed to 

mosquitoes earlier during outdoor activities. The musculoskeletal symptoms 

resulted in diminished walking and hand function. SINV IgM and IgG antibody 

seroconversion, determined with EIA [118], was seen between paired sera in the 
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acute phase. At six months p.i. the following data and specimens were obtained 

from the patient: serum samples, leukocyte samples, muscle biopsy specimen 

taken from deltoid muscle, questionnaire, and results from blood parameters. 

Monocytes were further isolated from blood by a previously described method 

based on Percoll density gradient [157]. IgM and IgG titres in serum were 

determined with end-point titration. 

6.1.5 Database material (I,VI) 

The notifications of laboratory-confirmed cases of SINV infection reported to the 

NIDR included information on date of sample collection, date of birth, sex, and 

place of treatment. Multiple notifications of persons with identical birth date, sex 

and place of treatment received within a 12-month period were combined as one 

case. Data were analysed by sex, age, week and month of disease onset and by 

hospital district of treatment.  

Data available on 90 Finns from bone marrow donor registry [4] and on healthy 

150 voluntary individuals from an occupational health survey [173] were used as 

reference populations for HLA allele and C4 gene number frequency comparisons 

(VI). 

6.1.6 Cell lines (III, IV, V) 

Cells lines including Vero and Vero E6 cells lines (African green monkey kidney 

epithelial cells), grown in cell culture flasks in minimum essential medium (MEM) 

supplemented with 10% fetal calf serum (FCS), glutamine and antibiotics, were 

obtained from the American Type Culture Collection (ATCC). The human 

myogenic precursor cells, myoblasts, were initially isolated from the quadriceps 

from three different healthy donors as previously described [31]. The cells were 

provided by the AFM Tissue Bank (Paris, France). Myoblasts were grown in 

Ham’s F-10 nutrient mixture with Glutamax medium (Gibco/Invitrogen, Carlsbad, 

CA, USA) including gentamycin (50 µg/ml) and 20% FCS. Myoblasts were 

differentiated into myotubes by substituting the growth medium by differentiation 
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medium, including D-MEM with Glutamax supplemented with gentamycine, insulin 

and transferring, for 3 to 5 days. 

6.1.7 Viruses (III,IV, V) 

SINV strains Ilomantsi-2002A, -2002B, -2002C, Kiihtelysvaara-2002 and 

Johannes-2002, previously isolated from human skin biopsies and whole-blood 

sample in Finland, [96] as well as one SINV strain isolated from mosquitoes in 

Russia [117], were used in the study. Partial sequences of these strains have 

been published earlier (1268nt within the nsP3-nsP4 region) [96]. Viruses were 

passaged two or three times in Vero cells except for LEIV-9298, which had been 

passaged two times in suckling mice and once in Vero cells.  

6.1.8 Mosquito samples (III) 

Mosquitoes (approximately 8100) were collected by our research group using 

hand nets and BG-Sentinel trapping system (Biogents, Regensburg, Germany) 

during the years 2005-2009 in Central, Southern and Eastern Finland. The 

mosquitoes were snap frozen at -20°C, placed in tubes and transported on dry ice 

to storage at- 70°C.   

6.2 Methods 

6.2.1 Questionnaires (II, V) 

All case-patients and their five randomly selected controls who met the selection 

criteria, received a self-administered, standard-questionnaire by mail. A reminder 

was mailed to non-responders twice. The questionnaire included questions 

regarding demographic and household information, symptoms and treatment of 

illness, physician visits, occupational (logging, gardening, farming) and leisure 
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(hiking, camping, hunting) outdoor activities, animal contacts, untreated water 

exposure, insect bites and measures used to protect against insect bites. For the 

case-patients, the questions addressed the 10 days before the onset of SINV 

infection (the exposure period) and for the control subjects, the 10-day period 

before the date when the first serum sample was obtained from the respective 

case-patient. Study subjects were asked to use a calendar as a memory aid to 

recall their activities and potential exposures. Epidemiological data using a similar 

questionnaire as described above was also collected from the patient with 

persistent SINV infection in V.   

6.2.2 Statistical analyses (II, IV, VI) 

Cochran and Mantel-Haenzel statistics were used to calculate matched odds 

ratios (mOR) and 95% confidence intervals (CI) in univariate analyses (II). 

Conditional logistic regression models were developed to identify independent risk 

factors associated with SINV infection (II). Due to the survey design, the variables 

in the model had varying proportions of missing responses. The assumption in the 

univariate analyses was that the missing data were approximately missing at 

random [166,183]. Therefore, only cases with complete information were included 

in the analyses. P-value of 0.15 was used as the screening criterion for selection 

of variables for the multivariable analysis. The initial multivariable analysis (Model 

1) was performed using frequentist conditional logistic regression in which missing 

data were assumed to be missing completely at random [26]. The likelihood ratio 

test was used to determine the statistical significance of each variable, and 

backward elimination was utilized for determining the best model.   

We addressed the problem of missing data by means of Bayesian full 

likelihood modelling, (conditional logistic regression, Model 2), in which the 

missing data become an additional parameter and the influence of missing data is 

taken into account. The variable selection indicators were also included in the 

model and Gibb´s variable selection was performed [26]. The significant variables 

with >50% probability for inclusion were included in the final model.  
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The significant variables in the multivariable Model 2 were further subjected to 

dose-response analyses. The dose was defined as the average number of insect 

bites or hours of outdoor activity per day multiplied by the number of exposure 

days. The variables were considered ordinal and quartiles of doses were used as 

cut-offs. The dose-response analyses were done by frequentist (univariate) and 

Bayesian (multivariable) conditional logistic regression.  

The statistical analysis in the original publication IV included Probit regression 

model with 95% probability endpoint [40], which was used to estimate the 

analytical sensitivity. Two tailed Chi-square or Fisher’s exact test was used for 

comparison of HLA and C4 gene as well as autoantibody frequencies between 

different groups (VI). Mc Nemar’s test was done to compare paired proportions. P 

value was corrected with Holm-Bonferroni algorithm for multiple testing when 

appropriate (VI).  

Statistical significance was considered at 5% level and P values were two-

tailed in all the analyses. The analyses including descriptive, univariate and 

frequentist multivariable analyses were completed using SPSS software (version 

17 or 18, USA). Winbugs software (version 1.4.3, UK) was used for creating 

Bayesian models and adjusted population-attributable risk (PAR) was calculated 

as reported earlier [19,130] (II).  

6.2.3 Virus isolation (III, IV, V) 

Virus isolation was attempted from serum samples (IV), muscle biopsy (V) and 

mosquitoes (III). The isolation trial on serum samples or muscle specimen was 

performed using a modification of a previously described protocol [96]. The Vero 

cells were rinsed with phosphate buffered saline (PBS) containing antibiotics to 

remove the culture media and subsequently 50 µl of serum was added to cells in 

25-cm2 flasks. After 1 hour incubation, fresh MEM + 2% FCS with a mixture of 

glutamine, ampicillin and penicillin, was added. Frozen muscle tissue was first cut 

into small pieces, homogenized in a mortar with sterile sand and suspended in 

150 µl Dulbecco´s MEM+ 0.2% bovine serum albumin.  A volume of 100 µl of this 

suspension diluted in 500 µl of MEM was added to confluent Vero cells. The cells 
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were then incubated for 1 h and fresh MEM was added. The cell cultures were 

examined daily for CPE. To detect viral antigens, the cells were studied further 

with IFA using SINV IgG-positive serum as previously described [96]. The cell 

culture supernatants were also subject to RNA extraction in order to attempt viral 

RNA detection with real-time reverse transcriptase (RT) PCR (developed in 

original publication IV).  

The mosquitoes were homogenised in pools consisting of 8-10 mosquitoes. 

After homogenisation using sterile sand in PBS containing 0.2% bovine serum 

albumin and antibiotics, mosquito homogenates were added on confluent cells. 

The cells were rinsed with PBS before the infection with mosquito pool filtrates. 

After 1 h of incubation, fresh MEM was added. The virus isolation was performed 

on mosquito C6/36 (Aedes albopictus) and mammalian Vero E6 cells in 25-cm2 

bottles. When cytopathic CPE was observed, the cells were further studied by IFA 

and the supernatant was stored at -70 ºC for further studies.  

6.2.4 RNA extraction (III, IV, V) 

 
RNA was extracted from cell culture supernatants and sera with QIAamp Viral 

RNA Mini Kit (QIAGEN, Hilden, Germany) and from monocytes and muscle 

biopsy using RNAeasy mini kit (QIAGEN) according to the manufacturer’s 

instructions. 

6.2.5 RT-PCR (III, IV) 

The cDNA synthesis was mainly performed with RevertAidTM H Minus M-MuLV 

Reverse Transcriptase 451 (Thermo Fisher Scientific, Waltham, MA, USA) in a 

final volume of 20 µl containing 11.5 µl of template RNA, 4 µl of reaction buffer, 20 

pmol of SINV specific primers, 20 units RiboLock™ RNase inhibitor,1 mM of each 

dNTP and 200 units of M-MuLV Reverse Transcriptase. The mixture was 

incubated at 42ºC for 60 minutes and the reaction was completed by heating at 

70°C for 10 minutes. The cDNA was in some cases synthesized with random 

hexamers in a reaction containing 8 µl of template RNA using Superscript III First-
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Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer’s instructions.  

PCR was done with Phusion High-Fidelity DNA Polymerase (Thermo Fisher 

Scientific) in a final volume of 50 µl including 5 µl of template cDNA, 10 µl of 

5Xphusion HFbuffer, 200 µM of each dNTP, 0.5 µM of forward and reverse primer 

and 0.02 U/µl of Phusion DNA Polymerase. After 30s initial denaturation at 98°C, 

the PCR reactions were amplified in 30 cycles with the following cycling 

parameters: 10s at 98°C, 30s at 64°C, 30s or 3.5 min (long amplicons) at 72°C 

followed by a final extension of 10 min at 72°C. Annealing temperature was based 

on the melting temperature (Tm) of the lowest Tm primer calculated by a Tm 

calculator using nearest-neighbour method specified by the manufacturer 

(Thermo Fisher Scientific). Nested RT-PCR targeting the E2 gene region was 

performed on patient serum samples (IV) using a previously published protocol 

[95].  

Attempt to determine mosquito species in the pool of mosquitoes, positive for 

SINV, was performed with PCR (performed with Phusion High-Fidelity DNA 

Polymerase) targeting the mitochondrial cytochrome c oxidase subunit I genes 

(COI) using previously described primers UEA3/FLY10 [116,163] and 

LCO1490/HCO2198 [42]. DNA from mosquitoes was extracted with Qiagen 

DNeasy Blood& Tissue kit (QIAGEN). The PCR products were directly sequenced 

and the sequences recovered from the mosquito pool were compared to GenBank 

and Barcode of Life Data Systems (www.barcodinglife.com) databases. 

6.2.6 Sequencing and sequence analyses (III, IV) 

PCR products were purified with Qiaquick Gel extraction kit or Qiaquick PCR 

purification kit (QIAGEN). The sequencing of Ilomantsi-2005M and Ilomantsi-

2002A was performed by amplifying 15 overlapping fragments covering the full-

length protein coding region of SINV.  The sequencing was carried out with ABI 

PRISM dye terminator sequencing kit (Applied Biosystems, Foster City, CA, 

USA).  
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The strains Ilomantsi-2002B, -2002C, Kiihtelysvaara, Johannes and LEIV-9298 

were sequenced using high-throughput pyrosequencing. PCR products amplified 

by 3 primer pairs (Table 1; III) resulting in amplicon sizes of 4067 nt, 3591 nt and 

5214 nt, and covering the complete protein coding area, were used as material for 

pyrosequencing. Pyrosequencing was performed with 454 GS FLX genome 

sequencer (Roche, Basel, Switzerland) at the DNA sequencing and Genomics 

laboratory of the Institute of Biotechnology, University of Helsinki.  

Sequences were aligned with MUSCLE (Multiple Sequence Comparison by 

Log-Expectation) algorithm [38]. The alignments were displayed and the 

nucleotide and deduced amino acid differences calculated with Bioedit Sequence 

Alignment editor [59]. Maximum likelihood (ML) phylogenetic tree was constructed 

using RAxML program with bootstrap analysis on 100 replicates. As a 

phylogenetic model that best described the data, general time reversible model 

with gamma distribution of rate heterogeneity was employed. The model was 

selected based on Akaike information criteria in FindModel [5]. The ratio of 

synonymous to non-synonymous (ds/dn) substitutions was calculated with the 

program SNAP (www. hiv.lanl.gov/content/hiv-db/SNAP) using the Nei–Gojobori 

model of evolution. 

Median joining network analysis (Network version 6.0 software) [11] was 

performed to visualize genetic relationships based on single mutations between 

the SINV strains. The software connects existing sequences within the network 

with median vectors that are hypothetical (ancestral) sequences and represents 

specific mutational steps. The DNA alignment prior to Network analysis was 

performed with DNA alignment software and the output figure from Network was 

modified with Network Publisher.   

 

6.2.7 One-step real-time RT-PCR (IV,V) 

A one-step real-time RT-PCR was developed for the detection of SINV RNA as 

part of this study (IV). The primers and the probe were designed using Primer 

Express Software version 3.0 (Applied Biosystems) and chosen within the nsP1 

gene region (Table 3). The real-time RT-PCR was done with Quantitect One Step 
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Probe RT-PCR Kit (QIAGEN) in a volume of 25 µl containing 5 µl of template 

RNA, 400 nM of primers and 250 nM of probe. The TaqMan® probe (Applied 

Biosystems) was labeled at the 5’-end with reporter 6-carboxyfluorescein (FAM) 

and at the 3’-end with minor groove binder (MGB)-non-fluorescent quencher 

(NFQ). The ABI Prism 7700 Sequence Detection System (Applied Biosystems) 

was used for the assay with the following parameters: 50°C for 30 min, 95°C for 

15 min, 45 cycles of 95°C for 15 s and 60°C for 1 min. Alternative primers and a 

probe labeled with quencher tetramethyl-6-carboxyrhodamine (TAMRA) were 

additionally designed within the E1 protein region and a subset of samples was 

analysed with this test format.  

Table 3. Primers and the probe in the nsP1 gene region used in SINV real-time RT-PCR. Genome 
position according to SINV Ockelbo strain (GenBank accession number M69205). 
 
Name Sequence 5’ to 3’ Genome position 
Forward primer GGTTCCTACCACAGCGACGAT 

 
227-247 

Reverse primer  TGATACTGGTGCTCGGAAAACA 
 

280-301 

Probe FAM-TTGGACATAGGCAGCGCA-MGB-NFQ 
 

249-266 

 
 

The specificity of the assay was evaluated using viral RNA from supernatants 

of the five cell cultured Finnish SINV strains. Additionally, RNA from SFV 

(expression vector VA7) [199] and CHIKV alphaviruses, tick-borne encephalitis 

flavivirus (TBEV, strain Kumlinge A52), and Puumala (PUUV) hantavirus-positive 

(assessed with PCR) spleen and liver tissue from a patient with PUUV infection 

were tested.  Serum samples (n=24) from patients suspected with SINV infection 

but confirmed SINV-antibody negative were also analysed to evaluate the 

specificity. The precise analytical sensitivity was determined by ten-fold dilutions 

of in vitro transcribed SINV RNA in 8 replicates at each concentration.  

6.2.8 Plaque titration assay (IV) 

The sensitivity of PCR assay was also approximated in plaque forming units 

(PFU) by determining the lowest concentration at which a positive result was 
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attained. Plaque titration assay for Ilomantsi-2002A virus strain was performed. In 

brief, serial dilutions of virus were added to Vero E6 cells. After 1 hour incubation 

at 37°C, agarose (0.5%) overlay medium was added to the cells and the plates 

were incubated for 4 days. The cells were then stained with crystal violet and the 

plaques were counted. RNA was extracted from ten-fold dilutions of this virus 

stock and analysed with the real-time RT-PCR assay.  

6.2.9 Production of SINV RNA transcript (IV) 

The real-time RT-PCR target region was amplified from Ilomantsi-2002C and 

Ilomantsi-2002B strain and cloned into pGEM®-T cloning vector (Promega, 

Madison, WI, USA). The presence of the insert was confirmed by sequencing and 

restriction enzyme analysis. Following linearization of the plasmid by digestion 

with BsaI, RNA was generated using RiboMAXTMLarge Scale RNA production 

system with SP6 polymerase (Promega) according to the manufacturer´s 

instructions. The transcribed RNA was then treated with DNAse and purified with 

RNeasy Mini Kit (QIAGEN). RNA was quantified by spectrophotometer and RNA 

copy number was calculated based on its concentration, length, and the molecular 

weight.  

6.2.10 HLA and complement C4 genotyping (V, VI) 

DNA extracted (NucleoSpin® Tissue kit, Macherey-Nagel) from whole blood 

(n=35) was genotyped for HLA alleles using genomic real-time PCR. Unlabeled 

primers with SYBR green QPCR (Stratagene, Cedar Creek, TX, USA) or Absolute 

QPCR SYBR Green Mix (Abgene, Epsom, UK) were used according to the 

manufacturers’ instructions with minor modifications. Complement C4 allotypes 

were determined with electrophoresis followed by immunofixation [119]. Copy 

numbers of C4A and C4B genes were determined using isotype-specific genomic 

real-time PCR amplification. The typing analyses were performed in an EFI- 

accredited (European Federation for Immunogenetics) laboratory (HaartBio, 

Helsinki, Finland).  
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6.2.11 Cryosectioning and staining of muscle biopsy (V) 

The muscle specimen was snap frozen at -170°C in isopentane pre-cooled with 

liquid nitrogen. Frozen biopsy was stored at -80°C prior to cryosectioning. 

Cryosections were stained with routine histological [haematoxylin and eosin 

(H&E), Herovici, PAS and OilRedO] and histochemical methods [for fibre typing 

ATPase with preincubations at pH 4.3 and 10.4, and for oxidative enzymes 

NADH-tetrazolium reductase (NADH-TR) and cytochrome-C-oxidase + succinate 

dehydrogenase (COX-SDH)]. Immunohistochemical staining for fetal, neonatal, 

fast and slow myosin heavy chains (MyHCd, MyHCn, MyHCf and MyHCs) and 

inflammatory cells (CD20 for B-cells, CD3 for T-cells and CD68 for histiocytes; 

DAKO, Glostrup, Denmark) was performed. A mouse monoclonal anti-Semliki 

Forest virus directed against a conserved region of the alphavirus nucleocapsid 

protein [56] or a mouse polyclonal anti-SINV (National Reference Centre for 

Arbovirus, Pasteur Institute, Paris, France) was used for the detection of SINV. 

6.2.12 Electronmicroscopy (V) 

A selected part of the muscle biopsy was fixed in 3% phosphate-buffered 

glutaraldehyde and processed to be embedded in Epon. Toluidine blue stained 

semithin sections were used to choose the regions for thin sectioning. Thin 

sections were examined in a JEOL JEM 1400 electron microscope. 

6.2.13 In vitro infection of muscle cell cultures (V) 

These experiments were performed by the collaborator at Institut Pasteur in Paris, 

France. The sensitivity of primary human myoblasts and myotubes to SINV 

infection was assessed at different multiplicity of infection (MOI) 10, 1, and 10-1. 

Ilomantsi-2002B and Ilomantsi-2002C strains were used for the experiments. At 

different days post-seeding, cells were incubated for 2 h with viral strains, washed 

once in PBS after which the culture medium was added. At certain days p.i., 

cultures were processed for SINV antigen detection by IF or viral titration. For IF, 

cells were fixed for 20 min in 4% paraformaldehyde, incubated for 30 min in PBS 
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with 10% normal goat serum (Vector, Burlingame, CA, USA) and then 

permeabilised with 0.1% Triton X-100 (Sigma,St Louis,MO,USA). 

Permeabilisation medium was removed and primary antibodies (anti-alphavirus 

nucleocapsid in dilution 1/50 or polyclonal anti-SINV in dilution 1/100) were 

incubated on cells for 90 min at room temperature. Then, secondary antibody 

(horse anti-mouse antibody, coupled to FITC,1/100; Vector) was incubated for 90 

min at room temperature after 3 washes with PBS. Muscle cell identification was 

done using a rabbit polyclonal anti-desmin antibody (dilution 1/1000) and a goat 

anti-rabbit serum (dilution 1/100, Vector). F-actin cytoskeleton was visualized 

using Rhodamine-Phalloidine (dilution 1/200; Molecular Probes, Eugene, OR, 

USA). After 3 washes, cultures were mounted in Fluoromount G medium 

(Southern Biotech Birmingham, USA). Preparations were observed with a Zeiss 

Axiovision fluorescence microscope and image acquisition was done with a Zeiss 

Axiocam camera. Supernatants from cell cultures were collected and plaque-

titrated on Vero cells at different timepoints p.i. Culture supernatants were also 

collected at 8 and 24 h p.i. for cytokine studies. The concentration of 5 cytokines 

and 1 chemokine (IL-6, IL-8, TNF- , IFN- , IFN-  and MCP-1) was assessed 

using Luminex® assay (Cytokine Human Singleplex; Invitrogen) according to the 

manufacturer’s instructions. 

6.2.14 Analyses of autoantibodies (VI) 

Autoantibodies were measured (at the Department of Virology and Immunology, 

HUSLAB) in serum of SINV-infected patients (n=44) in the acute phase and 3 

years p.i. Nuclear (ANA), mitochondrial (AMA), smooth muscle (SMA), and 

parietal cell (PCA) antibodies were determined by the indirect 

immunofluorescence assay. For ANA, sera were screened at 1:80 dilution and 

titrated further at four fold dilution steps using HEp-2 slides (Nova Lite HEp-2 

assay, INOVA Diagnostics Inc, San Diego, CA, USA) as substrates.  For tissue 

antibodies, unfixed 5 µm cryostat sections of tissue blocks of rat kidney, rat 

stomach, mouse liver, and mouse stomach were used as previously described 
[97]. As secondary antibodies, anti-human IgG coupled with FITC (DAKO) were 
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used. Extractable nuclear (ENA) and cyclic citrullinated peptide antibodies (CCP) 

were measured by fluorescence enzyme immunoassay (ImmunoCap250, Phadia, 

Uppsala, Sweden) and rheumatoid factor (RF) using N LatexRf Kit and BN 

ProSepc nephelometer (Siemens, Munich, Germany). The following reference 

titres or units were used as cut-offs (based on the accredited methods of 

HUSLAB): ANA (<320), AMA (<50), RF (<20 IU/ml), CCP (<7 U/ml), SMA (<50), 

ENA (<0.7U).  
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7. Results and discussion 

 
 
The main results of the original publications of the study are summarised and 

discussed below. In addition, some unpublished data are presented.  

7.1 Descriptive epidemiology–2009 SINV outbreak (I) 

Since the first documented outbreak of SINV infection in 1974, larger epidemics 

have occurred approximately every seven years. Previously it has been 

suggested that tetraonid birds, which also have been found SINV-antibody 

positive [18,94], may contribute to the cyclic appearance of human epidemics. 

There is evidence that the grouse population crashed concurrently with SINV 

outbreaks in the 1970s–80s [111]. However, the bird cycles have been less 

regular since the 1980s. The latest major outbreak occurred in 2002 when 597 

human cases were reported. We described the epidemiology of SINV infection in 

Finland in 2009 when another major epidemic was again expected to occur and 

compared the epidemic pattern to the previous ones.  

    A total of 105 laboratory-confirmed cases (incidence of 2.0/100,000/year) were 

reported to NIDR from June through October, 2009 (Fig.1; I). Most of the cases 

occurred in September (n=60) and August (n=33). The majority of the patients 

were females (60%) and the highest incidence was reported among the persons 

aged 50–59. North Karelia had the highest incidence, followed by East Savo, 

Central Ostobothnia and Central Finland together with Southern Ostrobothnia 

(Fig.2; I and Table 4).  
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Table 4. Number and annual incidence rates of laboratory confirmed SINV infections in different 

health care districts (HD) in 2009 and 2002.  The geographical location of each HD is shown in the 

inserted map. * Incidence rate per 100,000 population. 

 

The number of cases was the highest in Central Finland (n=15) where most of 

the cases occurred in July–August. In the traditional endemic area of North 

Karelia, only one case was reported during this time period. However, the majority 

of the cases in North Karelia were reported in September–October (n=13) 

whereas only 5 cases were confirmed in Central Finland during these months 

(Fig. 3a and 3b; I and Figure 8). 

Health Care District 2009 No of cases 
(Incidence rate*) 

2002 No of cases 
(Incidence rate*) 

1 - Helsinki and Uusimaa 7 (0.5) 59 (4.2) 
2 - Varsinais-Suomi 0 (0.0) 10 (2.2) 
3 - Satakunta 1(0.4) 12 (5.2) 
4 - Kanta-Häme 0 (0.0) 5 (3.0) 
5 - Pirkanmaa 12 (2.5) 59 (13.0) 
6 - Päijät-Häme 5 (2.4) 6 (2.9) 
7 - Kymenlaakso 3 (1.7) 3 (1.7) 
8 - South Karelia 0 (0.0) 9 (7.0) 
9 - South Savo 4 (3.9) 31 (29.0) 
10 - East Savo 4 (6.9) 11 (16.7) 
11 - North Karelia 14 (8.2) 140 (81.2) 
12 - North Savo 9 (3.6) 95 (37.8) 
13 - Central Finland 15 (5.5) 72 (27.2) 
14 - Southern Ostrobothnia 11 (5.5) 32 (16.4) 
15 - Vaasa 7 (4.2) 11 (6.6) 
16 - Central Ostrobothnia 5 (6.4) 10 (12.9) 
17 - Northern Ostrobothnia 8 (2.1) 27 (7.3) 
18 - Kainuu 0 (0.0) 3 (3.6) 
19 - Länsi-Pohja 0 (0.0) 1 (1.5) 
20 - Lapland 0 (0.0) 1 (0.8) 
21 - Ahvenanmaa 0 (0.0) 0 (0.0) 
Total 105 (2.0) 597 (11.5) 
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Figure 8. Laboratory confirmed SINV infections in North Karelia and Central Finland in 1995, 2002 

and 2009. Data obtained from NIDR.   

 

The epidemic season in 2009 was considerably milder than the previous 

outbreaks in 1995 and 2002. Nevertheless, the number of cases was higher than 

the average number (n=57) reported during the non-epidemic years. To compare, 

only 5 cases were reported in Sweden in 2009. Regarding the role of grouse, it 

was reported that the density of grouse in 2007 was well above average but 

dropped in 2008 [2]. The population decline continued unexpectedly in 2009 and 

the density reached the lowest figures ever. It is possible that the further decline in 

grouse population in 2009 could have diminished their role as amplifying hosts 

resulting in a milder epidemic than expected. Thus, this descriptive data indicates 

that grouse may play a significant role in the human epidemiology of SINV 

infection. As in previous epidemics, the highest incidence was reported in North 

Karelia. However, the difference to other regions in central and northwestern 

Finland was smaller than before possibly reflecting the increased human 

seroprevalence towards SINV in the region.   

There were differences in the peak month of incidence between North Karelia 

and Central Finland, not observed during the last epidemic in 2002 or 1995 (Fig. 

3a and 3b; I and Figure 8). This phenomenon could be associated with variation in 

mosquito activity and population size due to differences in weather conditions in 

these areas. It was observed that May was drier than normally in Joensuu (the 
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largest city in North Karelia) but the precipitation in June–July was significantly 

higher than on average [3]. The dry May possibly contributed to fewer cases in 

July–August whereas the high rainfall in June and July created suitable 

environmental conditions for mosquitoes to develop and thus, more SINV 

infections were reported in early autumn. 

The role of environmental factors is supported by a recent study on the 

climatic, ecological and socioeconomical factors as predictors of SINV infection in 

Finland [75]. This study, utilising an advanced time series regression model, 

showed that high mean temperatures in May and June as well as high monthly 

precipitation in June were significantly (positively) associated with both the 

occurrence and incidence of SINV infection. It was also found that hatch-year 

black grouse density was positively significant for the occurrence of the SINV 

infection, further highlighting the role of grouse as amplifying hosts for SINV 

infections in Finland. The model was able to give quite accurate predictions for the 

number of cases, for example the prediction for 2009 was 85 cases (95% CI; 2-

1187).  

7.2 Description of case-patients and analytical epidemiology 
(II) 

Few controlled studies have previously been conducted to assess epidemiological 

risk factors for arthropod-borne viral diseases [61,78,128] and only one such 

study on alphaviruses has been reported [64]. Factors associated with clinical 

SINV infection have not been previously evaluated in controlled studies. We 

conducted a population-based case-control study to determine factors associated 

with acquiring acute SINV infection and to identify opportunities for its prevention. 

The study also collected information on the clinical features of the disease and 

patient characteristics. 

A total of 597 laboratory-confirmed cases of SINV infection were reported in 

2002. There were 140 cases in North Karelia health district, which was excluded 

from the study. The questionnaires were returned by 369 of 391 (94.4%) eligible 

case-patients and 1216 of 1832 (66.4%) control subjects. As a number of case-
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patients and control subjects were excluded according to the study protocol, 337 

cases and 934 controls in total were included in the analyses. The median age for 

case-patients was 49 years (range, 1–94 years) and 58% were females.  

The typical symptoms of SINV-infected case-patients included papular rash 

(96%), joint symptoms (96%), fatigue (77%), muscle pain (62%), and headache 

(49%) (Table 1; II). Fever and, surprisingly, upper respiratory tract symptoms were 

reported by 36% of case-patients. Regarding underlying illnesses or previous 

injury affecting joint or connective tissue, joint injury was reported significantly 

more often by cases (P=0.02). Current or previous osteoarthritis and bacterial joint 

infection were also reported more commonly by cases than controls (P=0.06 and 

0.05, respectively) (Table 1; II). Rash was mostly located in the upper and lower 

limbs and in the torso and the most often affected joints were ankles, wrists and 

knees. The median duration of rash and joint symptoms among the cases who 

were able to report the date when symptoms subsided was 6 (range; 1–80 days) 

and 10 days (range; 1–47), respectively. Of the cases, 69% reported ongoing 

symptoms at the time they completed the questionnaire. The median time 

between the onset of symptoms and completing the questionnaire was 32 days in 

the case-patients. The estimated median incubation period of SINV infection was 

4 days (range; 2–18) based on data from 13 cases who reported a probable day 

of exposure. Previous estimation (8–9 days) was based only on a single case 

report [95]. 

Twenty cases (6%) required hospitalization for a median duration of 4 days 

(range; 1–19 days). Prescription medicines, primarily NSAIDs and antihistamines, 

were consumed by 62% of cases and 61% had taken over-the-counter drugs. 

Median time between the onset of symptoms and the first medical contact was 2 

days (range; 0–102 days).  

Univariate analyses on risk factors showed that cases were significantly more 

likely to report bites by any insect as compared to controls (mOR=31.8; 95% CI 

11.5–87.8) but of the specific arthropods, only mosquito bites were significantly 

associated with SINV infection (mOR=19.7; 95% CI 9.0–43.1) (Table 2; II). Deer 

fly bites appeared to be inversely associated with SINV infection, a finding that 

may be by chance and related to the high degree of missing responses for this 
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variable. The reported protective measures against insect bites including insect 

repellents, mosquito coils and nets were not associated with a decreased 

likelihood for SINV infection (Table 2; II). Most outdoor activities (Table 3; II) as 

well as handling sick or dead animals or having observed them near the residence 

were associated with SINV infection.  

In the multivariable Model 1, exposure to mosquito bites was the only variable 

significantly associated with SINV infection but in the Model 2, spending time 

outdoors in the woods/marshland also remained independently associated with 

increased odds of the disease (mOR=1.8; 95% CI 1.3–2.5), in addition to 

mosquito bites (mOR=16.7; 95% CI 9.1–33.4) (Table 4; II). The number of case-

patients and control-subjects included in the analysis was substantially greater in 

the Bayesian model where the missing data were taken into account (Table 4; II). 

No significant interaction was found between the variables in the final model. The 

adjusted PAR for mosquito bites in the multivariable model was 87.2% (0.872; 

95% CI 0.78–0.94). Furthermore, significant dose-response relations were found 

for insect bites overall and time spent outdoors in woods or marshland (Fig 2; II 

and Table 5).  

 
Table 5. Dose-response associations for number of insect bites and time spent in woods or 
marshland and odds of SINV infection. CI= Bayesian credible interval. 
 
Exposure variable  

  
 

1stdose 
quartile 

    
mOR (95%CI)  
 

2nd dose 
quartile 
 

 
 

 
3rddose 
quartile 
 

 
 

 
4thdose 
quartile 

Exposure to insect bites  1 
 

23.8  
(7.6-63.4) 

29.9  
(10.4-81.4) 

72.5  
(25.4-187) 

Spending time in woods or 
marshland 

1 1 1.3 (0.8-2)  2.2 
(1.5-3.3) 

As the time spent in woods or marshland was zero hours for 50% of participants, the first quartile and median (2nd quartile) 

were equal (mOR=1). The dose was defined as the average number of insect bites (or hours of outdoor activity) per day 

multiplied by the number of days of exposure. 

 

 
To our knowledge, our study represents the largest report of risk factors for 

arthropod-borne viral diseases. The study increased knowledge about risk factors 

for SINV infection and provided a comprehensive description of its clinical 
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characteristics. SINV infection was strongly associated with the number of insect 

bites, reflecting primarily mosquito bites, with no evidence for other vectors to be 

involved. Although mosquitoes have been suspected to be the probable vectors of 

SINV in Finland [45,135], SINV has also been isolated earlier from ticks in Italy 

[57] and it has been uncertain whether other arthropods could transmit the 

disease, particularly since other viruses like WNV circulating between mosquitoes 

and birds can also be transmitted by ticks [104]. Time spent outdoors in woods or 

marshland was independently associated with SINV infection in Model 2 also with 

a significant dose-response. Although the involvement of an unknown vector 

cannot be excluded, it is plausible that some participants may not have noticed 

being bitten by mosquitoes while spending time outdoors.  

The study had limitations, such as possible misclassification and recall bias, 

but the strength of association with dose-response relations increased the 

confidence in our findings. The problem of missing information, common in self-

reported surveys, was tackled by using Bayesian full likelihood modelling 

approach, which is less sensitive for bias caused by missing data [26]. It was 

observed that for some covariates data were not missing completely at random, 

as assumed in frequentist conditional logistic regression. By using the Bayesian 

approach somewhat different results compared to the frequentist model were 

obtained due to increased statistical power. These results highlight the advantage 

of using current statistical methods for dealing with missing information in self-

reported surveys to increase the validity of the results.  

Reported protective measures against insect bites were not significantly 

associated with reduced likelihood of SINV infection. In contrast, a study on RRV 

in tropical Australia [64] concluded that protective measures significantly reduced 

the disease incidence. In tropical countries, the use of insect repellents and nets 

to protect against mosquito-borne viruses is often promoted by public health 

authorities [69,138]. The reasons for lack of association in the study may be 

related to the problems in measuring the extent of protection and the lack of 

statistical power due to a small number of study subjects reporting protective 

measures. Use of protective measures could also be less common in Finland than 
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in tropical regions where the awareness of mosquito-borne pathogens is high and 

life-threatening illnesses are present.  

The findings of this study add to the knowledge-base of clinical features of 

SINV infection and are generally consistent with previous studies 

[95,99,134,135,197]. However, in contrast with previous reports, one third of case-

patients reported upper respiratory tract infection symptoms. It is unclear whether 

these symptoms were caused by SINV infection or resulted from simultaneous 

infection with respiratory viruses as has been reported for CHIKV infection [165]. 

Our data also further highlight that persistent joint symptoms are common among 

persons infected with SINV as only 32% of cases were able to report the time 

when joint symptoms ended at the time of completing the questionnaire.  

The finding that past/active joint injury (significantly) and ongoing/past bacterial 

joint infection or osteoarthritis were more commonly reported among cases than 

controls raises interesting questions. The presence of underlying damage to the 

joint tissue may predispose to more severe SINV infection symptoms. Common 

genetic factors which are associated with both an increased susceptibility for 

rheumatic diseases and symptomatic SINV infection are also a possibility. This 

issue is further discussed later in this section and in original publications V and VI.   

7.3 Molecular epidemiology (III) 

In addition to classical epidemiology, we performed a molecular epidemiological 

study to investigate the genetic relationships and characteristics of different SINV 

strains. We isolated one SINV strain from a pool of mosquitoes, observed as a 

strong CPE and a positive IFA result in the Vero cells, collected from an endemic 

area for human SINV infections in Eastern Finland (Ilomantsi municipality). We 

sequenced the full-length protein coding region, 11292nt, of this novel SINV 

strain, which was designated as Ilomantsi-2005M. This strain represented the first 

SINV strain isolated from mosquitoes in Finland. Additionally, we sequenced the 

full-length protein coding region of five SINV strains isolated from humans in 

Finland (Ilomantsi-2002A, -2002B, -2002C, Kiihtelysvaara-2002 and Johannes-

2002) in 2002 [96] and of a strain isolated from mosquitoes in Russia in 1983 
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(LEIV-9298) [117]. As only 8 full-length sequences of SINV were available in the 

GenBank prior to our study, this study significantly increased the data on SINV 

sequences allowing for more detailed phylogenetic analyses.  

Unfortunately the species of the mosquito vector of the mosquito-isolated SINV 

could not be determined in this study with adequate accuracy as individual 

mosquito homogenates were not available and mosquitoes were not identified by 

entomologist prior to pooling. However, we were able to amplify COI sequences of 

Ochlerotatus spp (98-99% identity to Ochlerotatus annulipes) in the virus isolation 

pool. These mosquitoes are known to be anthropophilic and endemic in Finland 

[198] and thus, could potentially act as vectors for SINV. Prior to year 2000,  

Ochlerotatus genus was classified as a member of Aedes genus [155] from which 

LEIV-9298 strain was isolated in Russia, close to the border of Finland.  

 Analysis of nucleotide and deduced amino acid identities (Supplementary 

Table 1; III) showed that Ilomantsi-2005M shared very high nucleotide and amino 

acid homology with all the Finnish strains isolated from humans and with the 

strains isolated from mosquitoes in Russia and Sweden in the 1980s. These 

Northern European SINV strains were further shown to cluster together sharing a 

common ancestor in the phylogenetic analyses based on full-length protein-

coding region (Fig.1A; III and Figure 9).  
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Figure 9. The radial layout of maximum likelihood phylogenetic tree based on full-length protein 
coding nucleotide sequences of SINV strains. For clarity, the cluster including the Northern 
European strains is shown enlarged. The bootstrap support values >70% are shown.  

 

Similar clustering was observed in the phylogenetic tree based on partial 

structural polyproteins (2189 nt), which also included SINV strains recently 

isolated from mosquitoes in Germany (Fig.1B; III). These German SINV strains 

showed high genetic relatedness to Northern European strains. The median 

joining network also demonstrated the clustering of the German strains observed 

in the phylogenetic tree. Overall, the data on full-length sequences of the coding 

region further support the presumption that SINV has a local circulation in the 

endemic regions in Northern Europe. The observed separate clustering of strains 

from Northern Europe and Africa additionally suggest that new SINV strains are 

not frequently being introduced to Finland or Northern Europe, although SINV has 

probably been originally imported from Africa by migratory birds as suggested 

earlier [96,115]. It is plausible that the introduction of SINV to Northern Europe 

has occurred in the late 1960s since antibodies to SINV were not found in large 
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seroprevalence studies in humans and birds conducted in the early 1960s in 

Finland [18] and since the first clinical cases of SINV infections have been 

reported in Sweden in 1967 [135] and in Finland in 1974 [18].  

The sequence analyses did not indicate significant differences between the 

endemic, isolated from mosquitoes, and epidemic, isolated from humans, SINV 

strains in Finland and no amino acid changes were shared exclusively by the 

strains isolated from mosquitoes. The average ds/dn ratio for the full-length 

protein-coding sequences of SINV strains was 20.9 indicating that positive 

selection is not acting significantly on SINV. When comparing individual SINV 

genes, the lowest ds/dn ratio was observed in the nsP3 gene (ds/dn=11.2) and 

the highest in the nsP4 gene (ds/dn=57.7) (Fig.S2; III).  

Alignment of the deduced amino acid sequences of the complete SINV 

polyprotein showed that Finnish, Swedish and Russian SINV strains shared 9 

identical amino acid changes. Interestingly, 6 of these changes occurred in the 

nsP3 protein and 5 of these changes were found in the C-terminal region of the 

nsP3 protein (Fig.S3; III). The C-terminal region of nsP3, the function of which is 

not well understood, encodes a cluster of serines and threonines that are heavily 

post-translationally phosphorylated [101,106]. Two amino acid changes in the C-

terminus of nsP3 protein shared by the Northern European strains were mutations 

from serine or threonine to other amino acids. It has been shown that reduced 

phosphorylation in SINV nsP3 leads to decreased production of minus-strand 

RNA [30]. Also, a deletion of the phosphorylated residues in the nsP3 of SFV 

decreases the level of RNA synthesis [201]. It would be of interest to further 

investigate whether these mutations shared by the Northern European strains are 

associated with a decreased level of RNA synthesis and/or with the adaptation of 

the virus into new vectors or host species when SINV was first introduced to 

Northern Europe.  

7.4 The presence of viraemia in SINV infection (IV) 

The laboratory diagnosis of SINV is based on serology, and IgM antibodies 

become detectable within the first week of illness only in approximately 40% of the 
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patients [95]. We developed a one-step real-time RT-PCR assay for the detection 

of SINV and evaluated its applicability as a diagnostic tool for human SINV 

infection in acute-phase serum samples. Prior to our study, a few conventional 

PCR [73,95] and real-time RT-PCR assays [65,77] for SINV detection have been 

published but the validity and performance of these methods have not been 

properly evaluated with clinical samples.  

The  assay  detected  viral  RNA  of  all  Finnish  SINV  strains  (Fig.2;  IV)  in  cell  

culture supernatants. The 95% detection limit determined by probit analysis was 9 

copies/reaction (Fig 2; IV). The lowest template concentration that gave positive 

signal was 1.4 copies/reaction (120 copies/ml) and using plaque-titrated virus 

stock, 0.001 PFU/reaction (0.09 PFU/ml). Cell culture supernatants of SFV, 

CHIKV and TBEV, as well as PUUV-infected tissue samples did not give any 

false-positive signals. All the repeatedly SINV-seronegative (n=24) control sera 

were non-reactive in the test.  

Of the acute-phase serum samples from SINV-infected patients, 7/58 (12%) 

were positive in the real-time RT-PCR assay. All the SINV-RNA positive samples 

were negative for SINV IgM and IgG. In 4/7 (57%) of the samples only one of the 

duplicates was positive in repeated runs indicating a very low viral load and 

uneven Poisson distribution of template in the replicates. The viral load of the 

samples approximated from the in vitro RNA standard dilutions (Figure 10) was in 

the range 130–660 viral copies/ml of serum. The detection sensitivity was not 

increased by using higher primer concentration (up to 900 nM) or longer reverse 

transcription time (45 min).  
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Figure 10.  Standard curve generated from ten-fold dilutions of in vitro transcribed SINV RNA.  
 

The positive samples were also tested with primers and TAMRA-labelled probe 

designed within the E1 protein but an inferior sensitivity was obtained with this test 

format. SINV RNA was detected by conventional nested PCR in 2/7 of the 

samples positive with the real-time RT-PCR. These samples originated from 

patients whose skin biopsies were previously found positive with nested PCR and 

from whom two SINV strains were isolated [96]. No infectious virus could be 

recovered from any of the seven serum samples in virus isolation trials. 

Previous studies have suggested that acute SINV infection is characterised by 

a narrow viraemic window and low level of viraemia [96,118]. This assumption is 

supported by our data as only 12% of the serum samples were positive with high 

Ct values in the novel real-time RT-PCR assay corresponding to levels of <103 

SINV copies/mL of sample. On the contrary, high viral loads, up to 109 copies/mL 

of plasma, have been reported in acute CHIKV infection [141]. Our findings 

evidently suggest that real-time RT-PCR from serum samples is not a practical 

approach for the laboratory diagnosis of SINV but may be used for screening the 

virus for example in mosquitoes and potential vertebrate hosts. Due to highly 

conserved primer binding region of the nsP1 protein, the assay can potentially 

detect all SINV strains. 

The sensitivity of the assay may have improved by increasing the extraction 

volume and concentrating the samples. However, the volume used in RNA 

extraction (140 µl) has been found optimal for the kit (QIAGEN) and generally 
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works well  for  real-time RT-PCR assays used in the routine diagnosis of  CHIKV 

infection for example, where viral RNA is frequently found during the first week of 

infection [39,141]. Moreover, a protocol requiring considerably larger volumes 

would likely diminish the applicability of the assay for clinical purposes as extra 

time-consuming steps would be required.  

The low viral load in serum may be linked to the pathogenesis of SINV 

infection. Since SINV can infect human macrophages, it is possible that after 

inoculation, SINV targets cells circulating in blood such as monocytes that further 

spread the virus to different tissues and the presence of SINV in serum remains 

transient. SINV RNA was previously detected in 5 out of 73 acute-phase whole 

blood samples with nested RT-PCR [95]. Our preliminary data show that SINV 

RNA can be detected in whole blood with our novel real-time assay but 

comprehensive comparative analyses of whole blood and serum have not yet 

been performed due to the lack of sample material. The specific role of viral load 

in the pathogenesis and the mechanisms behind the considerable difference in 

the viral load between CHIKV and SINV (although both replicate to high titres in 

cell cultures) remains to be determined. In addition, the low viraemia in serum 

probably affects the epidemiology of SINV infection since the probability that 

mosquitoes become infected with SINV when they feed on an infected person and 

subsequently spread the virus to other humans is markedly decreased.  

Isolation of CHIKV has been successful only from serum samples containing 

>107 RNA copies/ml [141], which significantly exceeds the levels of SINV RNA 

found in our study. Regardless of frequent attempts by us (unpublished data) and 

others [73,80], only one isolate has ever been recovered from human serum in 

China [218]. Nevertheless, doubts have been raised about the authenticity of the 

isolate due to very high sequence similarity with the widely used laboratory strain 

AR86 [115]. 
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7.5 Clinical description of a patient with persistent SINV 
infection (V) 

The patient who had a serologically confirmed acute SINV infection earlier was 

examined by a rheumatologist 6 months p.i. when the symptoms, arthralgia and 

myalgia, were still present. This patient was unable to work due to the symptoms. 

In the clinical examination, tenderness was observed in the right 

metacarpophalangeal joints. The right wrist was swollen, and dorsal swelling on 

the wrist within the tendon sheaths of the extensor muscles was observed. 

Prominent tenderness was observed during extension and flexion, with a 

considerably weakened handgrip. Tenderness was also observed in 

acromioclavicular joint and myalgia particularly in the right supraspinatus insertion 

area. Otherwise the rheumatological status was normal. The blood parameters 

(detailed in V) were otherwise within normal range except for leukocyte count, 

neutrophil count, and C4 complement level, which were slightly elevated. A 

persistently positive SINV-IgM antibody level was observed, suggestive of active 

virus replication in some parts of the body (likely in the joints), and the end-point 

titres of IgM and IgG antibodies were 77 and 434, respectively. The first acute-

phase serum sample of the patient was part of the study material in IV and found 

negative for SINV RNA.  

7.6 Factors behind the pathogenesis of myalgia (V) 

Since the studies on tissue tropism and pathophysiological mechanisms of 

arthritogenic alphavirus infection have primarily focused on RRV and CHIKV 

infections, the data on SINV are scarce.  We investigated the factors behind the 

pathogenesis of myalgia in SINV infection by studying a unique muscle biopsy 

obtained from the SINV patient described above, and by in vitro experiments on 

primary human myoblasts and myotubes.  

Histology and immunohistochemistry on the muscle biopsy showed no signs of 

necrosis or inflammatory cell infiltrates (phagocytes, B- and T-cells). However, 

ATPase staining used for fibre typing showed several medium dark type 2C 
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(immature) fibres (Fig 1A; V). Also, increased number of internal nuclei, indicative 

of regeneration of muscle cells, were observed (Fig.1B: V). In the COX-SDH 

staining, five COX-negative fibres were encountered (Fig.1C;V). 

Immunohistochemistry staining to show regeneration revealed several MyHCn-

positive fibres, also indicative of regeneration (Fig 1D; V). SINV antigen was not 

detected immunohistochemically in the muscle biopsy. Structures resembling viral 

particles were not seen in EM but an increased quantity of glycogen in the 

myofiber sarcoplasm was observed further demonstrating an ongoing 

regeneration process. SINV RNA was not detected in the muscle biopsy and no 

infectious virus could be recovered from the biopsy by virus isolation. Blood 

monocytes were also negative for SINV RNA.  

SINV antigens (Ilomantsi-2002B strain) were detected in primary human 

myoblasts and myotubes (from three different donors) using an antibody targeting 

the capsid of alphaviruses at 24h p.i. (Fig 2B and 2C; V). Immunoreactivity was, 

however, already observed 12h p.i. (data not shown).  Desmin staining confirmed 

the myogenic origin of the cells positive for SINV and the specificity of viral 

immunoreactivity was confirmed by the absence of staining in mock-infected cells 

(Fig.2A; V) or by omitting the primary antibody.  Infected cells were found positive 

for SINV proteins also by using the SINV-specific polyclonal mouse antibody 

(Fig.2D; V). Similar results were obtained when using the Ilomantsi-2002C strain 

(data not shown). The experiments were performed with MOI of 10, but 

immunoreactivity was also detected with lower MOI, although with less positive 

muscle cells. The infection rate stayed around 50% for both viral strains in 

myoblasts and in myotubes, even at later time points, suggesting the existence of 

muscle cells refractory to infection (Fig.2E and F; V). Viral infection of the muscle 

cells was productive reaching a peak in viral yield at 48h p.i. After this time point, 

the virus titre started to decrease (Fig.3; V) and cell rounding and detachment was 

observed. At later time points, for example 20 days p.i., only some individual cells 

were found immunoreactive. Studies on cytokine secretion showed that infected 

muscle cells did not exhibit any significant changes in the production of IFN- , 

IFN- ,  TNF- ,  IL-6,  IL-8 or  MCP-1 at  8 h or  24h post-infection,  although a small  
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increase in MCP-1 production was observed 24h p.i. in myotubes (data not 

shown). 

Only a single study performed with CHIKV has previously investigated the 

susceptibility of primary human muscle cells to alphavirus infection. The study 

showed that CHIKV can infect and cause CPE in human skeletal muscle satellite 

cells. In addition, CHIKV antigens were detected by immunohistochemistry in the 

satellite cells of muscle biopsies from two patients with myositis [139].  Access to 

muscle biopsies from SINV-infected patients is constrained and difficult to obtain 

but in this study we were able to extensively investigate this unique tissue 

specimen. In the biopsy we found evidence of muscle regeneration due to 

previous necrotic lesions. The necrosis was likely caused by previous SINV 

infection in muscle cells but no active viral replication was detectable at 6 months 

p.i. as demonstrated by negative result from virus isolation, PCR and 

immunohistochemistry. The regeneration process was already in an advanced 

stage due to the long time since the infection. However, instead of direct virus- 

induced damage, the necrosis of muscle tissue may also have been caused by 

secondary immune-mediated response triggered by the SINV infection. We also 

acknowledge that other factors apart from SINV infection as a cause of the 

findings cannot be excluded and further studies on muscle biopsies, if available, 

should be performed. 

The in vitro experiments showed that differentiated (myotubes) and non-

differentiated (myoblasts) human muscle cells were susceptible for SINV infection 

and were able to produce infectious viruses. These findings support our 

speculation that an earlier SINV infection could have caused necrosis resulting in 

regeneration evident in the muscle biopsy. Our in vitro findings are somewhat 

different from a study on CHIKV as myotubes were found refractory to CHIKV 

infection [139]. Based on this finding and the fact that some myotubes and 

myoblasts cells remained refractory to infection in our study suggest that cell 

differentiation may have an effect on the susceptibility.  

The biopsies in the study on CHIKV were taken during the acute phase of 

infection and 3 months p.i. Fewer immunoreactive satellite cells but more 

infiltrating inflammatory cells were detected in the biopsy taken in the chronic 
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phase as compared to the biopsy taken earlier [139]. Since the muscle biopsy 

from the SINV-infected patient was taken considerably later, it seems probable 

that the virus had already been eliminated and the inflammation had faded at this 

time. Interestingly, a study on RRV-infected mice showed that internal nuclei, 

indicating regeneration, were abundant in muscle cells when inflammation and 

pathology had already resolved 30 days p.i. [125].  

The finding on COX-negative fibres, indicating mitochondrial DNA deletions, 

was unexpected. These deletions commonly increase in number with age but the 

finding was pathological as the patient was relatively young. COX-negative fibres 

are frequently seen in a condition called sporadic inclusion body myositis (sIBM) 

and studies have speculated that chronic persistent viral infection may be a 

triggering factor for sIBM [29]. However, whether the mtDNA deletions result from 

previous SINV infection remains unclear and definitely warrants further studies.   

7.7 Genetic factors in the susceptibility of clinical SINV 
infection (V, VI) 

As only a minority of SINV infections are symptomatic [18] with a defined  

geographical distribution and earlier chronic joint symptoms possibly predispose 

to progressive symptoms in arthritogenic alphavirus disease (II and [13]), we 

aimed to characterise the genetic predisposition factors influencing the 

occurrence and/or consequence of SINV infection. 

We first determined the HLA and C4 genes in the patient with persistent 

symptoms of SINV infection from whom the muscle biopsy was obtained (V). DNA 

extracted from whole blood was genotyped for HLA-A, -B, -C and -DR. The 

patient was found homozygous for HLA-A*03 and- B*35 alleles and heterozygous 

for HLA-DRB1*01 and- DRB1*03 alleles. The C4 gene and protein analyses 

showed that the patient had a total deficiency of C4B genes and proteins but an 

increased quantity of C4A proteins. As the total C4 level in the patient was slightly 

elevated, these results showed that the lack of C4B protein is compensated by an 

increased concentration of C4A proteins.  
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Previous studies have identified HLA-B*35 as  a  risk  factor  for  infectious  

diseases, most importantly for the progression of HIV to AIDS [196]. In addition, it 

has been shown that DRB1*01 allele and C4B deficiency are associated with 

rheumatic diseases, particularly with RA [53,140,158]. Encouraged by the results 

of this single case, we aimed to determine HLA and C4 genes in a cohort of SINV-

infected patients from which blood samples were available. The cohort had been 

followed over three years and at 3 years p.i., the patients were classified into four 

clinical categories (A to D) based on objective findings in a clinical examination 

performed by a rheumatologist, as well as subjective joint symptoms reported in 

an interview [93]. The clinical categories were defined as follows: (A) Arthritis, 

defined as swelling, pain on palpation or tenderness in joint movement assessed 

by a rheumatologist (n=2) ; (B) Objective joint pain, defined as pain on palpation 

or tenderness in joint movement assessed by a rheumatologist (n=5); (C) 

Subjective joint pain, defined as joint pain reported in the standardized interview 

(n=5); (D) No joint symptoms that could be associated with SINV infection (n=37) 

[93]. Thus, as detailed earlier [93], 12/49 (24.5%) of the patients had persistent 

joint pain attributable to the previous SINV infection.  

A set of HLA alleles that have been reported to have an association with 

rheumatic and infectious diseases [196]  (Table 6), including the alleles 

determined in the patient case described above, as well as the copy number of C4 

genes were determined.   
 
Table 6. HLA alleles determined in the study VI and examples of significant autoimmune and 

infectious disease associations reported with these alleles. [53,196] 

 

HLA allele Disease associations 

B*27 Ankylosing spondylitis 

B*35 Rapid progression from HIV to AIDS  

DRB1*01 Rheumatoid arthritis 

DRB1*03 Systemic lupus erythematosus 

DRB1*04 Rheumatoid arthritis 

DRB1*15 Multiple sclerosis 
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The allele frequency of DRB1*01 was significantly higher in SINV-infected 

patients than in the reference population (32.9% vs. 12.8%, corrected P=0.003, 

OR= 3.3; 95% CI 1.7-6.5) (Table 1; VI). Overall, 18/35 (51.4%) patients were 

carrying DRB1*01 allele, of whom five were homozygous for DRB1*01. Among 

those positive for DRB1*01 allele, 12 had also HLA-B*35 allele and C4B 

deficiency (0 or 1 allele). It is known that these alleles are often detected together 
[32]. The frequency of C4B or C4A deficiency did not significantly differ between 

those with SINV infection and the reference group (51.4% vs, 39% and 8.6% vs. 

18% for C4B and C4A deficiency, respectively). Patients with SINV infection had 

more often three copies of C4A gene but the difference to reference group was 

not significant. The HLA and C4 frequencies were also compared between the 

clinical categories. Patients who experienced persistent joint pain 3 years p.i. and 

were classified into category A, B or C were considered one group and patients 

from category D another group. The differences in the HLA allele or C4B 

deficiency distribution between the groups were not statistically significant (Table 

2; VI) but there was a trend towards DRB1*01 being more common (allele 

frequency of 50%) among patients in categories A-C (P=0.07). The patients (n=2) 

from category A (arthritis), had B*35 and DRB1*01 alleles (one of them was 

homozygous for DRB1*01) and partial C4B deficiency.  

Our data showed that symptomatic, clinical SINV infection shows strong 

association with the HLA system. The frequency of HLA-DRB1*01 in patients with 

SINV infection was remarkably high. It was particularly frequent in patients who at 

3 years p.i. experienced joint manifestations associated with the previous SINV 

infection [93] implying that HLA association may be particularly related to the 

persistence of joint manifestations in SINV infection.  

The main strength of this study was the access to a unique, prospective follow-

up material from patients with SINV infection. The reference populations, 

however, were not from the same area of residence as our patients with SINV 

infection. Although HLA-B*35 seems to be more common in eastern Finland [177], 

the DRB1*01 allele does not display similar frequency deviations and thus, the 
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validity of our findings is not threatened. In addition, the reference populations 

were not tested for SINV antibodies, resulting in a possible misclassification bias, 

which however would have made the detection of an association more difficult. 

Unfortunately we could not perform more detailed analyses of HLA genes due to 

the limited amount of DNA available from the only whole blood samples collected 

in the beginning of the study.  

Twelve patients (34%) in the study cohort (VI), including the two patients in 

category A diagnosed with arthritis, as well as the separate patient case with 

persistent arthralgia/myalgia (V) had HLA-B*35- DRB1*01 alleles and partial C4B 

deficiency. Interestingly, patients in category A were previously shown to have 

persisting IgM antibodies 3 years p.i. The persistence of IgM for 6 months p.i. was 

also observed in the patient described earlier (V). Thus, the data suggest that the 

combination of the HLA-B*35- DRB1*01 alleles and C4B deficiency may be 

associated with a more prominent or persistent form of the disease although only 

DRB1*01 remains as a statistically significant risk factor in the overall patient 

population.  

7.8 Autoreactivity in SINV infection (VI) 

In addition to genetic analyses on MHC region, we aimed to study the association 

between SINV infection and autoimmunity by measuring various autoantibodies in 

the acute phase and 3 years p.i. from the same cohort of patients. Autoantibodies 

were determined in serum of 44 patients.  

We observed significant seroconversion of RF in 11/44 (25%) of the patients 

(P=0.022) (Table 3; VI). RF levels 3 years p.i. ranged from 21–179 IU/mL (median 

32). One patient had CCP antibodies, highly specific markers of RA, both in the 

acute phase and 3 years p.i. The frequency of seroconversion for AMA and ANA 

was not significant within the cohort although one patient became positive for 

AMA and 3 patients for ANA during the 3-year follow up period. Antibodies to 

pyruvate dehydrogenase, indicative of primary biliary cirrhosis were not found in 

any of the AMA-positive patients. Three years p.i. all AMA-positive patients had 

titres of 250, and the titres of ANA positive patients ranged from 320 to >5000. In 
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the two patients positive for ANA already at the acute phase, the titre increased 

over 3 years from 320 to 1280, and 1280 to 5000, respectively. The patients in 

category A were both positive for ANA 3 years p.i and one was positive for RF. 

Overall, the differences in the frequency of autoantibodies between the patient 

categories (A-C vs. D) were not statistically significant. Data on both HLA and C4 

genes and autoantibodies were available for 31 patients.  Patients with C4B 

deficiency had seroconversion of RF more often than patients without C4B 

deficiency (P=0.05). Amongst the RF-positive patients 3 years p.i., 8/10 had C4B 

deficiency and 7/10 had DRB1*01 allele. 

The frequencies of RF, AMA and ANA in the SINV-infected patients 3 years 

p.i. were 29.5%, 6.8% and 15.9%, respectively (Table 2; VI and Table 7). These 

prevalences are clearly higher than those reported in normal healthy individuals 

(Table 7) although a proper statistical comparison cannot be made due to lack of 

appropriate Finnish reference populations. In addition, the methods used to 

determine the prevalences in the reference populations cited in Table 7 were not 

in all cases identical to the ones used in our study.  

 
Table 7. Patients with autoantibodies (AMA, RF and ANA) at acute phase and 3 years after SINV 
infection and the prevalence of autoantibodies in healthy reference population. 

 
Autoantibodies Acute phase 

n (%) 
  3 y p.i. 
   n (%) 

 

Reference 
population 
(%) 

Mitochondrial 
antibody (AMA) 

2/44 (4.5) 3/44 (6.8) 0.5-0.9 
[137]  

Rheumatoid factor 
(RF) 

4/44 (9) 13/44 (29.5) 2 [90] 

Antinuclear 
antibody (ANA) 

4/44 (9) 7/44 (15.9) 3.3 [189] 

 

7.9 SINV-induced and autoimmune arthritides – similarities? 
(VI) 

One of the hallmarks of autoimmune diseases is association with HLA [21]. The 

risk allele identified in this study, DRB1*01, has been linked to rheumatic diseases 



 

 
 
 
 

72

such as juvenile idiopathic arthritis [143] and RA [82,212]. Interestingly, the same 

allele is also associated with symptomatic parvovirus B19 infection [84]. 

Parvovirus B19 infection shares the main clinical features with SINV infection 

such as rash and arthralgia and has been implicated as the causative agent of 

autoimmune disorders including RA [114]. Another hallmark of autoimmune 

diseases includes the presence of autoantibodies in serum, demonstrating 

ongoing tissue destruction and autoinflammation.  Autoantibodies, particularly RF, 

are regularly detected in acute viral infections [46,164,167] as well, but the 

appearance is often transient. In some serum specimens of patients with SINV 

infection, autoantibodies were still detected at 3 years p.i. and in fact several 

patients seroconverted to RF during the follow-up. Furthermore, a characteristic 

feature of autoimmune diseases is the female predominance [213], which has 

also been observed in SINV-infected patients. 

Thus, our combined data on host genetics and autoantibodies suggest that 

similar genetic predisposing factors may contribute to the development of SINV-

induced and autoimmune arthritides resulting in a disease with similar features 

although different etiologies are involved. It remains, however, unclear whether 

SINV or other arthritogenic alphaviruses in general are able to trigger the 

development of autoimmune diseases. It would be interesting to study the 

expression profile and kinetics of proinflammatory cytokines/chemokines in SINV-

infected patients, since recent studies have shown that RA and alphavirus-

induced arthritis share notable similarities in cytokine/chemokine profiles such as 

upregulation of MIF expression [10,70].  



 
 
 
 

73

8. Concluding remarks and future prospects 

Many viruses in the genus Alphavirus are medically important arboviruses 

widely distributed throughout the world and responsible for encephalitic and 

arthritogenic disease. Due to the ongoing changes in the climate and the 

environment as well as increased transportation of goods and human travel, the 

emergence and re-emergence of these viruses to new geographical areas is 

conceivable. The massive outbreak of CHIKV in 2004–2009, which also reached 

the Western world, has in recent years increased interest into research 

particularly on arthritogenic alphaviruses. This study focused on SINV and aimed 

in an interdisciplinary fashion to increase knowledge on (molecular) epidemiology 

and risk factors, to develop an assay for detection as well as to study the 

pathogenesis and genetic susceptibility of SINV infection.  

The findings on SINV epidemiology were compatible with the presumption that 

changes in the grouse population and weather factors contribute to the human 

epidemiology of SINV infection, which was further supported by a recent, larger 

statistical study [75]. The population-based case-control study identified risk 

factors for SINV infection, e.g. confirmed the role of mosquitoes in the 

transmission, and expanded data on clinical features and patient characteristics. It 

is central to identify the factors, and their interactions, associated with the 

emergence of outbreaks to be able to better predict future outbreaks and design 

intervention strategies. Detailed knowledge of epidemiological risk factors and 

case-patient characteristics also helps generate hypotheses that can further be 

investigated in intervention and laboratory studies. Future studies should further 

address the public health and economic impact of SINV epidemics in Finland, 

particularly the long-term effects of persistent arthralgia on the quality of life.  

The evolutionary history of viruses can be constructed and possible genetic 

markers of pathogenicity found by studying the viral genomes and the molecular 

epidemiology. Our molecular epidemiological study on full-length coding 

sequences increased the SINV sequence data substantially, established 

hypotheses regarding the endemic circulation of SINV in Northern Europe and 
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further detected distinct amino acid signatures in Northern European strains that 

could be associated with vector or host species adaptation. The sensitive and 

specific real-time quantitative PCR assay developed in this study serves as an 

important molecular tool in further studies where sensitive detection of SINV is 

needed. Since our results indicated that the viraemia in serum is low and of short 

duration, the virus may be more easily detected in a whole-blood sample. It would 

be helpful to study the viraemia and the tissue distribution of SINV in animal 

models to better understand the life cycle of the virus in the acute phase of the 

infection.  

The mechanisms of musculoskeletal disease caused by arthritogenic 

alphaviruses have been inadequately understood and histopathological studies in 

humans are a rarity. Our findings on the muscle biopsy and the in vitro 

susceptibility of human muscle cells for SINV infection provided new insights 

concerning pathological processes leading to myalgia in SINV infection. To further 

study the pathobiology of SINV-induced myalgia, more human biopsy samples are 

needed but in addition, animal models of chronic infection would be desired. 

These studies could also facilitate the development of novel antiviral and/or anti-

inflammatory treatment modalities.  

The data on MHC genes and autoantibodies showed that SINV-induced 

arthritis shares similar features and/or predisposing genetic determinants with 

autoimmune diseases. The role of host genes in SINV infection, and in alphavirus 

infections in general, has been relatively unknown. We demonstrated that 

symptomatic SINV infection shows strong association with the markers of the HLA 

system and showed that autoantibody titres, RF in particular, are elevated in 

serum of patients 3 years p.i. Due to high linkage disequilibrium between MHC 

genes, further typing should be performed to address the influence of other MHC 

genes in the locus. As the number of clinical SINV infections in Finland greatly 

exceeds the incidence rates from other countries where SINV evidently circulates, 

host genetics may also partly explain this discrepancy in incidence. The 

mechanisms of autoimmunity are yet unknown but e.g. molecular mimicry may be 

involved, and it would therefore be important to determine the specific SINV T-and 

B-cell epitopes.  
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Since the crucial role of macrophage-induced cytokines/chemokines has been 

highlighted in the immunopathogenesis of RA and in alphavirus-induced arthritis, 

studies on the cytokine/chemokine profiles both in sera of SINV-infected patients 

and in macrophages originating from these patients are indeed needed. The 

potential causality between SINV infection and autoimmune diseases definitely 

warrants further investigations, and the possibilities of employing therapeutic 

strategies used for autoimmune diseases in the treatment of SINV-induced 

arthritis could be considered.   
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