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Planar thermocapillary migration of two bubbles
in microgravity environment
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A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary
configuration in microgravity environment under the assumption that the surface tension is high
enough to keep the bubbles spherical. The two bubbles are driven by the surface tension gradient
due to temperature nonuniformity on the surfaces. The bubble interaction is considered for the limit
of small Marangoni and Reynolds numbers in the present paper. In order to solve the problem
analytically, the method of successive reflections is employed, and then accurate migration
velocities of two arbitrarily oriented bubbles in the planar thermocapillary motions are derived. The
results demonstrate that two equal-size bubbles exert no influence on the thermocapillary migration
of each other at any separation because of the thorough cancellation of the thermal and fluid
mechanical interaction effects, and the effect of the large bubble on the motion of the smaller one
becomes significant with the two bubbles approaching each other, while the effect of the smaller one
on the large remains weak. Moreover, three typical kinds of trajectories of the smaller bubble are
identified. © 2003 American Institute of Physics.@DOI: 10.1063/1.1607326#
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I. INTRODUCTION

In general, a bubble will move toward the hotter regi
of a surrounded quiescent liquid subjected to a thermal
dient in microgravity environment. This motion is induce
by the thermocapillary effect due to the variation of surfa
tension with temperature. The phenomenon is of pract
importance in materials processing in space applications
also involved in the heat and mass transfer mechanism
duced by the bubble migration in microgravity environme

The thermocapillary motion of gas bubbles was first
vestigated by Younget al.1 They derived a theoretical solu
tion for the migration velocity of an isolated bubble in a bu
liquid with an applied thermal gradient. In microgravity e
vironment, the bubble speed is

uYGB5
g8Ru¹T`u

2m
.

Here, R is the radius of the bubble,¹T` the temperature
gradient imposed in the fluid,m the dynamic viscosity of the
continuous phase, andg8 refers to the magnitude of variatio
of the surface tension with the local temperature. The rec
literature documents an increasing interest in the underst
ing of the bubble migration with the advent of space flig
programs. Comprehensive reviews have been given
Wozniaket al.2 and Subramanian.3
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In practical applications of thermocapillary migration,
group of bubbles is usually encountered, and the interac
between them should be more important. In the previo
works, Meyyappanet al.4 investigated the axisymmetri
thermocapillary migration of two bubbles in the quasista
state by using the bispherical coordinate system. It reve
numerically that two equal-sized bubbles move with t
same velocity as if they were isolated. This remarkable re
is due to the exact cancellation of the thermal and fluid m
chanical two-body interactions. And later, Feuillebois5 pre-
sented a theoretical confirmation of this numerical conc
sion. Although the use of bipolar coordinates is conveni
for the axisymmetric case, it has no particular advantage
arbitrary configurations. In subsequent research, Meyyap
and Subramanian6 calculated the thermocapillary migratio
of two bubbles at arbitrary angle to the applied temperat
gradient by using a zeroth-order reflection approximatio7

Shortly after, Anderson8 extended the reflection solution t
the first order, and derived the approximate velocities of t
arbitrarily oriented droplets valid up to terms ofO(r 12

26),
where r 12 is the center-to-center distance between the t
droplets. But, both of these approximate expressions m
tioned above become invalid with the bubbles approach
each other. Acrivoset al.9 predicted the average thermoca
illary migration velocity of a cloud of identical bubbles. Ke
and Chen10 and Wei and Subramanian11 employed the
boundary-collocation method to study the thermocapilla
motion of a small number of bubbles. In their research
Satrape12 and Wanget al.13 used twin multipole expansion
il:
5 © 2003 American Institute of Physics
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to study the thermocapillary migration of two bubbles o
ented arbitrarily with respect to the applied thermal gradie
In this method they first expressed solutions to the govern
equations in the form of infinite series with undetermin
coefficients, then truncated them to some terms ofO(r 12

2n),
and solved numerically all the coefficients simultaneou
This method, however, becomes extremely cumbersome
yond the first three terms and requires a lot of tedious alge
to generate the matching relations.12

Sun and Hu14 have theoretically investigated the intera
tion between two bubbles aligned parallel to the applied th
mal gradient by using the method of successive reflectio
The present work extends the previous theoretical researc
the case of thermocapillary migrations of two bubbles o
ented arbitrarily to a thermal gradient with the aid of t
successive reflection method. The crux of using the met
lies in understanding the transformations of harmonics
biharmonics between two coordinate systems. Resortin
the method, we obtain analytic solutions in closed form. U
ing this solution we can predict bubble trajectories so as
determine whether or not the two bubbles will finally collid

To make the analysis tractable, we also restrict our at
tion only to the limit of small Reynolds and Marangoni num
bers without considering the convective terms in the mom
tum equations and the energy equation. Generally speak
such a migration of the two bubbles is an unsteady one,
in many practical applications, such as the glass process
the Reynolds number based on the bubble radius and
typical velocity, u05g8Ru¹T`u/m, is usually low.12 In the
scaled momentum equation Re@]u/]t1u•¹u#52¹p
1¹2u, as indicated by Meyyappanet al.,4 if the Reynolds
number is low and the variation of the velocity with time d
to the bubble migration is not large, the Stokes equat
gives a reasonable approximation of the two-bubble mig
tion.

The investigation is organized as follows. First, we st
the problem and write the governing equations and bound
conditions. This is followed by an analysis of the thermoca
illary migration velocities of two bubbles at any angle to t
applied thermal gradient. Fundamental solutions of veloc
field and temperature distribution for a two-bubble syst
relative to various initial disturbances~see the Appendix! are
necessary to complete this analysis. And, explicit recurre
formulas of the two-bubble migration velocities are co
structed from the fundamental solutions using the superp
tion theorem for linear equations. These formulas are e
ployed in Sec. IV to determine interactions between the t
bubbles and describe their migration behaviors. The re
rence formulas seem less intuitive but suitable for numer
computation—this is an advantage of using them. Finally,
comment on this issue in Sec. V.

II. FORMULATION OF THE PROBLEM

Two bubbles of radiiR1 andR2 released in a quiescen
ambient fluid of densityr and viscositym will move under
the environment of an imposed thermal gradient¹T` . Our
attention is focused on the reduced gravity case. Accordin
the gravitational effects are neglected. We assume that
Downloaded 15 Jun 2004 to 159.226.230.72. Redistribution subject to AI
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bubbles remain spherical and are not deformed since ca
lary number Ca is negligibly small in many practical app
cations. Consequently, the normal stress balance on
bubble surfaces is ignored. Moreover, we also neglect
density, the viscosity, and the thermal conductivity of the g
phase inside the bubbles in comparison with those in the
fluid, and assume all liquid properties are independent
temperature with the exception of surface tension, which
creases linearly with temperature,g5g02g8(T2T0),
whereg0 is the surface tension at a reference constant t
peratureT0 .

Using the characteristic velocity,u05g8Ru¹T`u/m, the
Reynolds number would be extremely small, for examp
(Re,1022) in borax glass melt.15 And, Marangoni number
in the same velocity scale becomes

Ma5
u0R

a t
5

g8TgR2

ma t
,

wherea t is the thermal diffusivity andTg denotesu¹T`u.
For borax glass melt, its typical properties arer52.4 g/cm3,
g850.076 dyn/cm•K, m5100 dyn•s/cm2, and a t

51022 cm2/s. It is noted that forTg530 K/cm, a bubble of
radius 0.2 cm would correspond to Ma<0.1 ~see Ref. 12!.
More importantly, in the present analysis we pay attent
only to the case in which the Reynolds and Marangoni nu
bers are ignored; otherwise, the resultant nonlinearity
equations makes the solutions too difficult to analyze.

In microgravity environment, the bubble migration
due to the thermal and hydrodynamic interactions. Hen
the equations of momentum and energy must be solved
multaneously. For the quasisteady case considered here
governing equations are

¹•u50, ~1a!

¹p2m¹2u50, ~1b!

¹2T50, ~1c!

where p denotes the pressure andu the velocity in vector
form. Here, the temperature field,T5Tgz1T8, is the sum-
mation contributed by a constant temperature gradient
away from the bubbles and a disturbance temperature.

The boundary conditions to be satisfied on the surface
bubblei ( i 51,2) are

u"ni5ui "ni , ~2a!

ni3~s"ni1¹sg!50, ~2b!

ni•¹T50, ~2c!

and the infinite conditions are

u→0 and ¹T→Tgez as r→`, ~2d!

whereui is the migration velocity of bubblei, ni an outward
normal to the bubble, ands represents the stress in the liq
uid, ¹s the gradient along the surface of the bubble. Hereez

is the unit vector pointing to the hotter portion of the liqui
In addition, for thermocapillary migration, if there are n
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3017Phys. Fluids, Vol. 15, No. 10, October 2003 Planar thermocapillary migration of two bubbles
gravity or other nonhydrodynamic forces, the net hydrod
namic force on each bubble must be zero. This accordin
gives the following condition:

E
S t

s"ni ds50, ~2e!

whereS i denotes the surface of bubblei.

III. ANALYTICAL SOLUTION

To simplify analysis, two bubbles are considered to m
grate along they–z symmetry plane, as shown in Fig. 1. I
the reference frame (x,y,z), the smaller of the two bubble
with centero1 located at (0,y1 ,z1) moves with a migration
velocity u1 in they–z plane, whose components areu11 and
u12, while the larger one with centero2 situated at (0,y2 ,z2)
moves with a translational velocityu2 in the same plane
whose components areu21 andu22. The separation distanc
between the bubble centerso1o2 is denoted bys. In addition,
a uniform temperature gradient,u¹T`u5Tg , is imposed par-
allel to thez axis.

For a two-bubble system, two other coordinates are
troduced for convenience; one is a Cartesian coordin
(x,y8,z8) fixed at the center of bubble 1, the othe
(x,Y8,Z8), at the center of bubble 2. The instantaneous
rection of thez8 axis is chosen along the line joining th
centers making an anglea with respect to thez axis. ei8 ( i
51,2,3) is the unit vector along the positive direction of t
corresponding axis in the (x,y8,z8) coordinates in alphabeti
cal order. The translational transformation between (x,y8,z8)
and (x,Y8,Z8) is

y85Y8,
~3!

z85Z82s.

These two Cartesian coordinate systems can be turned
spherical ones by

FIG. 1. Sketch of the two bubbles and the corresponding coordi
systems.
Downloaded 15 Jun 2004 to 159.226.230.72. Redistribution subject to AI
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H x5r 1 sinu1 sinw,
y85r 1 sinu1 cosw,
z85r 1 cosu1 ,

and H x5r 2 sinu2 sinw,
Y85r 2 sinu2 cosw,
Z85r 2 cosu2 .

~4!

From the general solution given by Lamb,16 the velocity
field outside an isolated bubble of radiusR with migration
velocity u0 along the direction at an angleb with respect to
the z8 axis is written as

u52
R3

2 Fu01¹S y8

r 1
3D 1u02¹S z8

r 1
3D G1

1

2m S R22
r 1

2

3 D
3FB01¹S y8

r 1
3D 1B02¹S z8

r 1
3D G1

2@B01¹y81B02¹z8#

3mr 1
, ~5!

whereu015u0 sinb andu025u0 cosb. Here,B01 andB02 are
two constants to be determined by the boundary conditio

Similarly, neglecting the normal flux of energy, the tem
perature field outside the same bubble in the (x,y8,z8) coor-
dinates is

T5TgS 11
R3

2r 1
3D ~2y8 sina1z8 cosa!. ~6!

According to the superposition principle for linear equ
tions, we construct the velocity fieldu in surrounding fluid
from ~5! using the fundamental solutions of velocity field fo
a two-bubble system~see the Appendix!, that is,

u5 (
m50

1 S 2
u1,22m8 R1

3

2
1

B1,22mR1
2

2m Dhm8 2
B1,22mhm9

6m

1
2B1,22mhm-

3m
1S 2

u2,22m8 R2
3

2
1

B2,22mR2
2

2m DHm8

2
B2,22mHm9

6m
1

2B2,22mHm-

3m
.

In this expression,ui j8 ( i , j 51,2) denote the migration veloc
ity components of the two bubbles in the (x,y8,z8) coordi-
nates. And, the temperature distributionT constructed in the
same way from~6! is written as

T5Tgz1
Tg

2 (
m50

1

cos~a1mp/2!~R1
3tm8 1R2

3tm8 !.

Substitutingu andT aforementioned into~2b! and~2e! leads,
with manipulation, to eight algebraic equations ofui j8 and
Bi j ( i , j 51,2). In microgravity environment,g→0 inevita-
bly results in Bi j →0. Therefore, the total number of th
equations in the present case is reduced to four, which in
(x,y8,z8) coordinate system finally become

ui28

Ri
H 11

Ri
3

2 (
j 50

`

l i01
~2 j !J 1

u32 i ,28 R32 i
3

2Ri
(
j 50

`

l32 i ,01
~2 j 11!

2
g8Tg cosa

2m H11
Ri

3

2 (
j 50

`

f i01
~2 j !1

R32 i
3

2 (
j 50

`

f32 i ,01
~2 j 11!J 50

for i 51 and 2, ~7a!

te
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ui18

Ri
H 11

Ri
3

2 (
j 50

`

l i11
~2 j !J 1

u32 i ,18 R32 i
3

2Ri
(
j 50

`

l32 i ,11
~2 j 11!

1
g8Tg sina

2m H11
Ri

3

2 (
j 50

`

f i11
~2 j !1

R32 i
3

2 (
j 50

`

f32 i ,11
~2 j 11!J 50

for i 51 and 2. ~7b!

Here, ui j8 ( i , j 51,2) may be transformed intoui j ( i , j 51,2)
using

H ui18 5ui1 cosa2ui2 sina,

ui28 5ui1 sina1ui2 cosa,
i 51,2. ~8!

One can get well-known results,ui25g8TgRi /(2m) and
ui150 (i 51,2), by lettings→` in Eqs.~7a! and~7b! since
all interaction coefficients related tos approach zero.

On the surfaces of two bubbles, the heat energy is tra
formed into the kinetic one of the fluid around them. T
kinetic energyEk of the whole flow field is given below

Ek5
r

2 Ev f

u8"u8dv

5pr(
i 51

2

(
k51

2

Rk
3S uki8

2

3 F11
3Rk

3

2 (
j 50

`

lk,22 i ,1
~2 j ! G

1
uki8 u32k,i8 R32k

3

2 (
j 50

`

lk,22 i ,1
~2 j 11!D , ~9!

wherev f denotes the whole region occupied by the fluid.

IV. RESULTS

This investigation presents analytical expressions for
thermocapillary migration velocities of two bubbles. This
a main contribution of the present work. The algebraic eq
tions of the bubble migration velocity,~7a! and ~7b!, are
applied to determine the interaction between two bubb
and predict their migrations in a microgravity environme
To this end, the numerical calculation is the vital resort
determining both the migration velocities of two bubbles a
their trajectories. As each of themth terms in recurrence
formulas ~A7!, ~A13!, ~A19!, and ~A21! in the Appendix
behaves like 1/s3m, the truncated series in the above form
las atm550 would have errors smaller than the error tol
ance of six significant figures even for a near contact. T
series in Eqs.~7a! and ~7b! truncated atj 550 makes our
numerical results accurate up to the 300th inverse powers
in the present case. To assure convergence, our calcula
are carried out with an automatic increase inj until the sum-
mation of extra terms produces no significant change wit
the desired level of accuracy. Furthermore, in order to de
mine the trajectories of the two-bubble migration, integrat
of Eqs.~7a! and~7b! with respect to time is performed usin
the fourth-order Runge–Kutta–Fehlberg method.17 The com-
putation is started at the initial positionsy1(0)5y10, z1(0)
5z10, y2(0)5y20, andz2(0)5z20. The accuracy of the in-
tegration is checked by halving thekth time stepdtk (k
51,2...) and then comparing the value of the fourth-or
Runge–Kutta integration with the fifth one at that instant
Downloaded 15 Jun 2004 to 159.226.230.72. Redistribution subject to AI
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that thekth results converge within a preassigned limit (1
31026). This process is repeated until either two bubb
collide with each other or one bubble overtakes the oth
Thus, given the initial locations, we can determine whet
or not the two bubbles will eventually collide in their subs
quent motions.

A. Results of the interactions

To better represent thermal migration velocities of t
two bubbles, we have to define the interaction paramete
in Ref. 4 with a little alteration

H5
s2R12R2

R2
, ~10!

l i5
Ri

R2
, ~11!

V i j ~a,H,l i !5
ui j

u2YGB
, i , j 51,2, ~12!

whereu2YGB5g8TgR2 /(2m). Here,V i j is a measure of the
influence of the second bubble on the migration velocity
the first one.

In Fig. 2, some of our results for bubbles aligned p
pendicular to the imposed thermal gradient,a590°, are com-

FIG. 2. Interaction parameters for two bubbles aligned perpendicular to
applied thermal gradient. Curves are plotted for both the~a! smaller bubbler
and ~b! larger bubbles.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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pared to ones given by Satrape.12 For completeness, som
results for two bubbles aligned parallel to the applied therm
gradient,a50°, are also shown graphically in Fig. 3 in com
parison with those given by Meyyappanet al.4 As shown in
Fig. 2, agreement between two sets of results is quite go
and all corresponding curves almost coincide with ea
other. Numerical computation shows that our results are
quantitative agreement with those of Satrape and W
et al.13 up to four significant figures for both the whole ran
of separation distance and various size ratios. Note from
3 that for the corresponding size ratios,l150.05, 0.3333,
and 0.5, our results for the case of the smaller bubble a
well with ones presented in Ref. 4, but for the case of
larger bubble, there is the largest difference less than 1%
the two bubbles are coming into contact. The reason ma
that these two solutions are expressed in terms of two k
of functions, respectively, hyperbolic functions and pow
ones, and thus there are different accumulative errors in e
individual calculation, especially for rather small separat
distances. But, this slight difference is unrelated to the
scription of the physical process.

After comparison, let us next consider the planar th
mocapillary migration of two identical bubbles. In the lig
of Eqs. ~7a!, ~7b!, and ~8!, we find that the two equal-size
bubbles move along the temperature gradient¹T` at the

FIG. 3. Interaction parameters for two bubbles aligned parallel to the
plied thermal gradient. Curves are plotted for both the~a! smaller bubbler
and ~b! larger bubbles.
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velocity that they would have as if they were in isolatio
independent of the dimensionless gapH and orientation
anglea. This is an extension of the conclusion presented
Meyyappanet al.4 and Feuillebois5 to the case of arbitrary
configuration. The following is a proof of it: asR15R2

5R, Eqs.~7a! and ~7b! are rewritten as

ui28 H 11
R3

2 (
j 50

`

l i01
~2 j !J 1

u32 i ,28 R3

2 (
j 50

`

l32 i ,01
~2 j 11!

2
g8TgR cosa

2m H 11
R3

2 (
j 50

`

f i01
~2 j !1

R3

2 (
j 50

`

f32 i ,01
~2 j 11!J 50

for i 51 and 2, ~13a!

and

ui18 H 11
R3

2 (
j 50

`

l i11
~2 j !J 1

u32 i ,18 R3

2 (
j 50

`

l32 i ,11
~2 j 11!

1
g8TgR sina

2m H 11
R3

2 (
j 50

`

f i11
~2 j !1

R3

2 (
j 50

`

f32 i ,11
~2 j 11!J 50

for i 51 and 2. ~13b!

Based on iterative formulas~A7!, ~A13!, ~A19!, and~A21! in
the Appendix, it is easy to find that

(
j 50

`

l imk
~2 j !5(

j 50

`

f imk
~2 j !

and

(
j 50

`

l imk
~2 j 11!5(

j 50

`

f imk
~2 j 11! ,

i 51,2; m50,1; k51,2,3... .

Thus, we obtain ui18 52g8TgR sina/(2m) and ui28
5g8TgR cosa/(2m) (i51,2) by solving ~13a! and ~13b!.
Substituting these expressions into~8!, one can derive imme-
diately ui25g8TgR/(2m) andui150 in any array. This im-
plies that the thermal and fluid mechanical interaction effe
are counterbalanced thoroughly in the two-identical-bub
case.

From Eqs.~7a! and ~7b!, we can combine the perpen
dicular cases with the parallel ones to obtain correspond
cases for bubbles at arbitrary orientations. Figures 4 an
illustrate sample results for two bubbles with designated
entations ofa545° anda5135°, respectively. It is observe
from these figures that the interaction between two bubb
has rather significant influence on the planar migration of
smaller bubble but a comparatively weak effect on the lar
one. The larger the size ratio of the larger bubble to
smaller one is, the greater the variation in the velocity of
smaller one. Furthermore, it is seen from Figs. 4 and 5 t
the migration velocities of the two bubbles have oppos
signs in they direction. This means that the two bubbles t
to push each other away, with the larger bubble pursuing
smaller one, and pull each other back after the larger bub
overtakes the smaller one. It is also seen from the figures

p-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Interaction parameters for two bubbles with various bubble size ratios ata545°.
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the migration velocities of each bubble in the two designa
configurations have the same magnitude but opposite c
ponents in they direction. These can be intuitively inte
preted as a consequence of the reversibility of the Sto
flow. On the other hand, the velocity component of the lar
bubble in the direction parallel to the imposed thermal g
dient does not always diminish monotonically with the d
crease in the separation distance, but increases in some
vals for such cases asl150.1 andl150.3. Typical plots are
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depicted in Figs. 4~d! and 5~d!. A conclusion can be drawn
from Figs. 4 and 5 that in the presence of other bubble
larger bubble would even migrate beyond its typical speed
the isolated situation.

When a bubble approaches another very small one
ing migration, the velocity of the smaller bubble will chang
greatly. The question arises as to what would happen w
the two bubbles touch each other without coalescence. H
is the answer that can be inferred from Eqs.~7a! and~7b!: as
FIG. 5. Interaction parameters for two bubbles with various bubble size ratios ata5135°.
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R1→0 ands→R11R2→R2 , ~7a! and~7b! can be simplified
as

u128 2u228 1O~R1!50, ~14a!

u228 2u2YGB cosa1o~R1!50, ~14b!

u118 1
u218

2
1O~R1!50, ~14c!

and

u218 1u2YGB sina1o~R1!50. ~14d!

That is, u128 'u228 'u2YGB cosa and u218 '22u118
'2u2YGB sina. Therefore, u128 reaches a maximum o
u2YGB asa50° andu118 equalsu2YGB/2 asa590°, and there
is a relationship betweenu118 andu128 , u128

214u118
25u2YGB

2 . In
the present situation, the (x,Y8,Z8) coordinates with the ori-
gin at o2 are approximately an inertial frame of referenc
Relative to this moving reference frame, the velocity comp
nents of the tiny bubble areU128 5u128 2u228 50 and U118
5u118 2u218 53u2YGB sina/2, and hence the tiny bubble wi
travel on the larger bubble surface along they8 direction.
Having recourse to the stability analysis, one can obtain
only the equilibrium points but also some information on t
behavior of the tiny bubble on the surface of the larger o
There are two stationary solutions of the two different
equations mentioned above, one ata50° which is unstable
and the other ata5180° which is stable. An intuitive inter
pretation is that when a migrating tiny bubble gets in tou
with another larger bubble without coalescence, it will mo
on the surface of the larger one until reaching the positio
a5180°.

On the other hand, in the same situation, heuristic
proximations

u128

u1YGB
5H 11S R2

s D 3S R2

R1
21D J cosa, ~15a!

and

u118

u1YGB
52H 120.5S R2

s D 3S R2

R1
21D J sina, ~15b!

can be derived directly from~7a! and~7b!. They give a cor-
responding expression to that of Meyyappanet al.4 asa50°.

And even more important, it is observed from the abo
figures that as the dimensionless gapH is less than 2.0, the
migration velocity of the smaller bubble varies greatly due
interaction. The physical intuition suggests that there is
‘‘interaction region’’ around a bubble, which is defined
one diameter apart from the bubble. If a second sma
bubble rushes into the interaction region of the first one,
first bubble would significantly affect the subsequent mig
tion of the smaller one.

B. Bubble trajectories

Trajectories of two nearby bubbles can be obtained
numerically integrating in time Eqs.~7a! and ~7b!. One is
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thereby able to predict both a potential collision of the tw
bubbles during the thermocapillary migration and descr
their dynamic behaviors.

For the study of bubble interaction, it is important
foretell whether or not a migrating bubble can impact w
another one, so a useful application of trajectory calculati
for two bubbles is the determination of collision efficienc
«c . Following Satrape’s definition, we define collisio
efficiency as the ratio of the minimal cross-sectional a
of the body of revolution formed by the limiting trajector
to p(R11R2)2. On can deduce easily from Eqs.~7a!, ~7b!,
and ~8! that for any two correlative orientation cases,a
and 180°2a, ui2(180°2a)5ui2(a) and ui1(180°2a)
52ui1(a), i.e., trajectories of the two bubbles are all sym
metric with respect toa590°. By making use of the conse
quence, we obtain the limiting trajectories in the same m
ner as Ref. 12: two bubbles are released initia
perpendicular to the thermal gradient and just in contact,
then their motion is integrated until each bubble once ag
gains a velocity when isolated. The collision efficien
against the size ratiol1 are plotted in Fig. 6 and compare
with those given by Satrape. Note from Fig. 6 that the d
ference between the two sorts of results is not large. O
results are slightly larger than those presented by Satrap

Figures 7, 8, and 9 give examples to better understa
ing of how a larger bubble pursues a smaller one. In th
sample cases,R150.05 cm, R250.5 cm, g850.076 dyn/
cm•K, Tg530 K/cm, andm5100 dyn•s/cm2, corresponding
to a situation of two bubbles in a borax glass melt. A
displacements here are nondimensionalized with respec
R2 . One will find interesting results from these figures: the
are three typical dynamical behaviors in two-bubble pla
migration, which correspond to three initially released po
tions of bubble 1, that is (y10/R2 ,z10/R2)5(0.58,4.1),
~1.505,4.1!, and ~6.533,18!, respectively, while bubble 2 is
always set free at origin. It is observed that the trajectory
the smaller bubble appears to be a folium pattern in shap
Fig. 7~a!, a cissoid pattern in Fig. 8~a!, and a witch pattern in
Fig. 9~a!. This implies that the initial array of two bubble
greatly affects the subsequent migration of the sma
bubble. Obviously, the state parameter in these cases is

FIG. 6. Collision efficiency«c against bubble size ratiol1 .
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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initial transverse positiony10 of the smaller bubble relative
to the larger one. As seen from Figs. 7~a!, 8~a!, and 9~a!, as
the value of the parameter is less than a critical threshold
trajectory of the smaller bubble demonstrates a foliu
pattern motion. It shows a cissoidal behavior at the criti
point, and then further becomes a witch pattern in shape w
the initial transverse position being beyond the limit. The
phenomena may be explained as follows: as the la
bubble pursues the smaller one in front of it, its flow fie
pushes the smaller bubble ahead. As the larger bubble le
the smaller one behind, its wake draws the smaller bub
toward itself. But, the flow field of the larger bubble carri
the smaller one backwards when the two bubbles mig
side by side. Thus, when a tiny bubble near a large
migrates in the neighborhood ofa590°, it is possible that
the speed of fluid around the tiny bubble is greater than
relative speed of the tiny bubble to the fluid so that the fl
compels the tiny bubble to move in the direction opposite
its migration@see Fig. 2~a!#. This suggests that in this situa
tion, the larger bubble at first approaches the smaller one
drives it aside, and at some time when the two bubbles
grate in the proximity ofa590°, the smaller bubble gradu
ally decreases its speed to zero and even moves backw
Finally, the larger bubble overtakes the smaller one and t
the reverse process occurs—we shall see the first mo
pattern accordingly. If one adjusts the initial transverse po

FIG. 7. Motions of two bubbles withR150.05 cm,R250.5 cm,g850.076
dyn/cm•K, Tg530 K/cm, andm5100 dyn•s/cm2 for the initially released
positionsy10 /R250.58 andz10 /R254.1.
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tion y10 to such a configuration that the velocity of th
smaller bubble is just zero asa590°, he will acquire the
second moving pattern. Further increasingy10 would lead to
the occurrence of the last pattern. In computation, we n
that not all the smaller bubble with various size ratios m
display a folium-pattern behavior. Generally, enlarging t
size ratiol1 would lead ‘‘the strophoid’’ to shrink and move
itself to the side of the large bubble. It is intuitively clear th
there is a critical size ratiol1cr for the moving pattern. Us-
ing the trial-and-error method, we obtain the critical value
l1cr50.220 56. A smaller bubble with such a size rat
when set in contact with another larger one and aligned w
it perpendicular to the imposed thermal gradient, is just a
standstill at that instant. As a result, a small bubble with
size ratiol1.l1cr would not demonstrate a folium-patter
motion at all. On the other hand, contrasting 7~a! with 7~b!,
8~a! with 8~b!, and 9~a! with 9~b!, respectively, shows tha
protrusions of the three pairs of curves point towards op
site directions. A phenomenological explanation is that t
bubbles in planar migration push each other as the la
bubble approaches the smaller one and then pull each o
after the larger bubble overtakes the smaller one until t
are once again far apart. Each of the two bubbles in
whole migration will be virtually in the same place as th
were isolated, except for the region where the interact
cannot be ignored. Furthermore, the kinetic energyEk of the

FIG. 8. Motions of two bubbles withR150.05 cm,R250.5 cm,g850.076
dyn/cm•K, Tg530 K/cm, andm5100 dyn•s/cm2 for the initially released
positionsy10 /R251.505 andz10 /R254.1.
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3023Phys. Fluids, Vol. 15, No. 10, October 2003 Planar thermocapillary migration of two bubbles
flow around the two bubbles would change because the
teraction between them alters the transformation of the h
energy into the kinetic one on the two bubble surfaces. T
kinetic energy of the fluid can be easily obtained from E
~7a!, ~7b!, and ~9!, and the results are plotted in Fig. 10
dimensionless form. Here,Eko denotes the total kinetic en
ergy of the fluid in the isolated cases. It is seen from F
10~a! that in the axisymmetric situation, the kinetic energy
the fluid lessens with the decrease in the separation dist
or increase in the size ratiol1 of the two bubbles, and i
reaches its minimum of about 71% ofEko as the two touch-
ing bubbles have the same size, although the interaction
tween the two bubbles becomes zero in this case. But, in
perpendicular situation shown in Fig. 10~b!, the kinetic en-
ergy of the fluid increases asH decrease orl1 increases.
And, for the case of two identical bubbles, it has a maxim
of 23% more thanEko with the two identical bubbles touch
ing each other.

V. CONCLUSIONS

This paper presents an explicit expression for the pla
thermocapillary migration velocities of two bubbles in m
crogravity environment and investigates the interaction
tween them without considering, for convenience, bubble

FIG. 9. Motions of two bubbles withR150.05 cm,R250.5 cm,g850.076
dyn/cm•K, Tg530 K/cm, andm5100 dyn•s/cm2 for the initially released
positionsy10 /R256.533 andz10 /R2518.
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formation and van der Waals forces, although they ha
influence on the bubble interaction at a close range.

The results indicate that the interaction between t
bubbles has significant influence on the migration of
smaller bubble. This effect mainly is concentrated in an
teraction region, which is about one diameter apart from
larger bubble. If a smaller bubble intrudes into the zone,
velocity changes greatly due to the interaction. There is s
a corresponding conclusion for the planar migration of t
identical bubbles, that is, each of two equal-sized bubb
moves at the velocity that it would have as if it were isolate
independent of the dimensionless gapH and orientation
anglea. When a larger bubble migrates in the proximity
other smaller bubbles, a larger bubble would move even
yond its typical speed in the isolated case. In addition, in
course of thermocapillary migration, when a tiny bubble g
to touch another larger bubble without coalescence, it w
slide on the surface of the larger one down until reaching
stable position ata5180°.

Moreover, there are three typical dynamical behavi
for a smaller bubble migration near a larger one, a foliu
pattern, a cissoid pattern, and a witch pattern. They are
termined by both an initial array of two bubbles and the s
ratio. As the size ratiol1 is greater than the critical valu
l1cr , the smaller bubble demonstrates only a witch-patt
behavior. These results indicate the initial configuration

FIG. 10. Kinetic energy of the fluid transformed from heat energy versus
dimensionless gapH. ~a! shows the case ofa50°, and~b! gives the situation
with a590°.
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two bubbles has a decisive influence on the subsequent
gration of the smaller bubble.

The transformation of the thermal energy into the kine
one on the surfaces of two bubbles varies with the varia
of the interaction between the two bubbles, so such ene
transformation differs in diverse configurations. In the a
symmetric case, the energy transformation diminishes w
the decrease in the separation distance or increase in the
ratio l1 of the two bubbles, whereas it intensifies as t
separation distance decreases or the size ratiol1 increases in
the perpendicular case, and it gets the two extremes al1

51 andH→0.
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APPENDIX: DERIVATION OF VELOCITY FIELDS AND
TEMPERATURE DISTRIBUTIONS FOR A
TWO-BUBBLE SYSTEM IN RELATION TO VARIOUS
INITIAL DISTURBANCES

In this appendix, a successive reflection procedure
responding to that given by Sun and Chwang18,19 is used to
deal with the Stokes equation and energy equation, and
fundament solutions will be discussed separately accord
to their mathematical structure.

1. Transformations of harmonics and biharmonics
between two coordinate systems

In order to adopt the method of successive reflection
the following discussion on the interaction between t
bubbles, we have to look for the transformations of harm
ics and biharmonics between two coordinate systems. A
of transformations of harmonics between (r 1 ,u1 ,w) and
(r 2 ,u2 ,w) ~see Fig. 1! was given by Hobson20 as below

Pn
m cosmw

r 1
n11

5~21!n2m(
k5m

`

Cmnkr 2
kPk

m cosmw, ~A1a!

and

Pn
m cosmw

r 2
n11

5 (
k5m

`

~21!k2mCmnkr 1
kPk

m cosmw, ~A1b!

whereCmnk5(n2m
n1k )/sn1k11 (n>m). Here, Pn

m and Pn
m de-

note Pn
m(cosu1) and Pn

m(cosu2), respectively. And, after
some manipulation, biharmonic,r 1

2¹(Pn
m cosmw/r1

n11), may
be expanded in the (r 2 ,u2 ,w) coordinates as
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r 1
2¹S Pn

m cosmw

r 1
n11 D

5~21!n2m(
k5m

`

CmnkH r 2
2¹~r 2

kPk
m cosmw!

2
2~n1k11!

2k13
¹~r 2

k12Pk
m cosmw!

1s2S 12
2~k22m2!

~2k21!~n1k! D
3¹~r 2

kPk
m cosmw!12se38r 2

kPk
m cosmwJ , ~A2a!

with the radius of convergence beingr 2,s by the ratio test.
Similarly

r 2
2¹S Pn

m cosmw

r 2
n11 D

5 (
k5m

`

~21!k2mCmnkH r 1
2¹~r 1

kPk
m cosmw!

2
2~n1k11!

2k13
¹~r 1

k12Pk
m cosmw!

1s2S 12
2~k22m2!

~2k21!~n1k! D
3¹~r 1

kPk
m cosmw!22se38r 1

kPk
m cosmwJ . ~A2b!

The radius of convergence for the summation in Eq.~A2b! is
r 1,s.

2. Derivation of velocity fields and temperature
distributions for a two-bubble system in relation to
various initial disturbances

Suppose that the initial disturbance velocity created
bubble 1 takes the form of Eq.~5!. It consists of harmonics
and biharmonics. For convenience, let us consider an in
disturbance given byhm08 is a harmonic in form and which
in the (r 1 ,u1 ,w) coordinates, may be written as

hm08@1#5¹S P1
m cosmw

r 1
2 D , m50 or 1.

Here, superscripts@1# and @2# mean that physical variable
are expressed in the (r 1 ,u1 ,w) and (r 2 ,u2 ,w), respectively.

When a second bubble is released motionless in the fl
at o2 , around bubble 2,hm08 can be expressed by using th
transformation in~A1a! as

hm08@2#5~21!12m(
k5m

`

Cm1k¹~r 2
kPk

m cosmw!

5 (
k5m

`

l1mk
~1! ¹~r 2

kPk
m cosmw!, ~A3!
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wherel1mk
(1) 5(21)12mCm1k . From the impenetrable bound

ary condition on the surface of bubble 2, we should pu
corresponding correctionhm18

hm18@2#5 (
k5m

`
k

k11
l1mk

~1! R2
2k11¹S Pk

m cosmw

r 2
k11 D , ~A4!

into the flow field. Based on transformation~A1b!, hm18 in the
(r 1 ,u1 ,w) coordinates takes the form

hm18@1#5 (
k5m

`

l1mk
~2! ¹~r 1

kPk
m cosmw!, ~A5!

where l1mk
(2) 5(21)k2m( l 5m

` lR2
2l 11l1ml

(1) Cmlk /( l 11). But,
the added correction makes an extra contribution to the fl
field and breaks the impenetrable condition on bubble 1,
we should then introduce another compensating correctio
counteract the violation. Continuing the same procedure
succession leads to an infinite sequence of reflection cor
tions. And, after some algebraic treatment, the velocity fi
outside the two bubbles in relation to the disturbancehm08
finally becomes

hm8 5¹S P1
m cosmw

r 1
2 D

1 (
k5m

` kR2
2k11

k11
¹S Pk

m cosmw

r 2
k11 D (

i 50

`

l1mk
~2i 11!

1 (
k5m

` kR1
2k11

k11
¹S Pk

m cosmw

r 1
k11 D (

i 50

`

l1mk
~2i ! , m50 or 1,

~A6!

where iterative expressions ofl1mk
( i ) are

l1mk
~0! 50, l1mk

~1! 5~21!12mCm1k ,

l1mk
~2i ! 5~21!k2m(

l 5m

` lR2
2l 11l1ml

~2i 21!Cmlk

l 11
, ~A7!

l1mk
~2i 11!5 (

l 5m

`
~21! l 2mlR1

2l 11l1ml
~2i !Cmlk

l 11
.

Similarly, let us next consider another initial disturbanc
hm09 , which appears in biharmonic form

hm09@1#5r 1
2¹S P1

m cosmw

r 1
2 D , m50 or 1.

To satisfy the impenetrable conditions on two bubble s
faces, we choose harmonics as subsequent reflection co
tions for simplicity since a harmonic is a kind of biharmoni
in nature. From transformations~A2a!, ~A1a!, and~A1b!, the
velocity field outside the two-bubble system in relation to t
disturbancehm09 is
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hm9 5r 1
2¹S P1

m cosmw

r 1
2 D

1 (
k5m

` kR2
2k11

k11
¹S Pk

m cosmw

r 2
k11 D (

i 50

`

m1mk
~2i 11!

1e38 (
k5m

` R2
2k11Pk

m cosmw

r 2
k11 (

i 50

`

n1mk
~2i 11!

1 (
k5m

` kR1
2k11

k11
¹S Pk

m cosmw

r 1
k11 D (

i 50

`

m1mk
~2i !

1e38 (
k5m

` R1
2k11Pk

m cosmw

r 1
k11 (

i 50

`

n1mk
~2i ! , m50 or 1,

~A8!

with a set of iterative formulas

m1mk
~0! 5n1mk

~0! 50,

m1mk
~1! 5~21!12mCm1kH s2S 12

2~k22m2!

~2k21!~k11! D
2

~5k18!R2
2

k~2k13! J ,

n1mk
~1! 5~21!m2sCm1k ,

m1mk
~2i ! 5~21!k2m(

l 5m

` lR2
2l 11m1ml

~2i 21!Cmlk

l 11
, ~A9!

n1mk
~2i ! 5~21!k2m11(

l 5m

`

R2
2l 11n1ml

~2i 21!Cmlk ,

m1mk
~2i 11!5 (

l 5m

`
~21! l 2mlR1

2l 11m1ml
~2i !Cmlk

l 11
,

n1mk
~2i 11!5 (

l 5m

`

~21! l 2m11R1
2l 11n1ml

~2i !Cmlk .

And, as the third initial disturbance,hm0- is a harmonic below

hm0-@1#5
e32m8

r 1
, m50 or 1.

Based on transformations~A1a! and~A1b!, the velocity field
outside the two bubbles in relation tohm0- is as follows:

hm-5e32m8 H 1

r 1
1 (

k50

` R2
2k11Pk

r 2
k11 (

i 50

`

g1k
~2i 11!

1 (
k50

` R1
2k11Pk

r 1
k11 (

i 50

`

g1k
~2i !J , m50 or 1, ~A10!

where
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g1k
~0!50, g1k

~1!52C00k ,

g1k
~2i !5~21!k11(

l 50

`

R2
2l 11g1l

~2i 21!C0lk , ~A11!

g1k
~2i 11!5(

l 50

`

~21! l 11R1
2l 11g1l

~2i !C0lk .

Consider next the contribution to the velocity field ju
from the initial disturbances generated by bubble 2 wh
bubble 1 is inserted at a standstill nearby. In the same w
the velocity field exterior to the whole system in relation
the initial disturbanceHm08 , which in the (r 2 ,u2 ,w) coordi-
nates is written as

Hm08@2#5¹S P1
m cosmw

r 2
2 D , m50 or 1,

is expressed as

Hm8 5¹S P1
m cosmw

r 2
2 D

1 (
k5m

` kR1
2k11

k11
¹S Pk

m cosmw

r 1
k11 D (

i 50

`

l2mk
~2i 11!

1 (
k5m

` kR2
2k11

k11
¹S Pk

m cosmw

r 2
k11 D (

i 50

`

l2mk
~2i ! , m50 or 1,

~A12!

where

l2mk
~0! 50, l2mk

~1! 5~21!k2mCm1k ,

l2mk
~2i ! 5 (

l 5m

`
~21! l 2mlR1

2l 11l2ml
~2i 21!Cmlk

l 11
, ~A13!

l2mk
~2i 11!5~21!k2m(

l 5m

` lR2
2l 11l2ml

~2i !Cmlk

l 11
.

The exterior velocity field in relation to

Hm09@2#5r 2
2¹S P1

m cosmw

r 2
2 D , m50 or 1,

becomes

Hm9 5r 2
2¹S P1

m cosmw

r 2
2 D

1 (
k5m

` kR1
2k11

k11
¹S Pk

m cosmw

r 1
k11 D (

i 50

`

m2mk
~2i 11!

1e38 (
k5m

` R1
2k11Pk

m cosmw

r 1
k11 (

i 50

`

n2mk
~2i 11!

1 (
k5m

` kR2
2k11

k11
¹S Pk

m cosmw

r 2
k11 D (

i 50

`

m2mk
~2i !

1e38 (
k5m

` R2
2k11Pk

m cosmw

r 2
k11 (

i 50

`

n2mk
~2i ! , m50 or 1,

~A14!
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where

m2mk
~0! 5n2mk

~0! 50,

m2mk
~1! 5~21!k2mCm1kH s2S 12

2~k22m2!

~2k21!~k11! D
2

~5k18!R1
2

k~2k13! J ,

n2mk
~1! 5~21!k2m2sCm1k ,

m2mk
~2i ! 5 (

l 5m

`
~21! l 2mlR1

2l 11m2ml
~2i 21!Cmlk

l 11
, ~A15!

n2mk
~2i ! 5 (

l 5m

`

~21! l 2m11R1
2l 11n2ml

~2i 21!Cmlk ,

m2mk
~2i 11!5~21!k2m(

l 5m

` lR2
2l 11m2ml

~2i !Cmlk

l 11
,

n2mk
~2i 11!5~21!k2m11(

l 5m

`

R2
2l 11n2ml

~2i !Cmlk .

And, such outside velocity field in relation to

Hm0-@2#5
e32m8

r 2
, m50 or 1,

is

Hm-5e32m8 H 1

r 2
1 (

k50

` R1
2k11Pk

r 1
k11 (

i 50

`

g2k
~2i 11!

1 (
k50

` R2
2k11Pk

r 2
k11 (

i 50

`

g2k
~2i !J , m50 or 1, ~A16!

where

g2k
~0!50, g2k

~1!5~21!k11C00k ,

g2k
~2i !5(

l 50

`

~21! l 11R1
2l 11g2l

~2i 21!C0lk , ~A17!

g2k
~2i 11!5~21!k11(

l 50

`

R2
2l 11g2l

~2i !C0lk .

Moreover, for an initial disturbance in temperatu
caused by bubble 1

tm08@1#5
P1

m cosmw

r 1
2

, m50 or 1,

the temperature distribution exterior to the two bubbles
comes
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1 (
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where
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l 11
,

whereas for the other initial disturbance in temperat
aroused by bubble 2

tm08@2#5
P1

m cosmw

r 2
2

, m50 or 1,

the temperature distribution outside the whole system is
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where
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l 11
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Every recurrence formula above holds for all positive in
gersk and i.
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