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A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary
configuration in microgravity environment under the assumption that the surface tension is high
enough to keep the bubbles spherical. The two bubbles are driven by the surface tension gradient
due to temperature nonuniformity on the surfaces. The bubble interaction is considered for the limit
of small Marangoni and Reynolds numbers in the present paper. In order to solve the problem
analytically, the method of successive reflections is employed, and then accurate migration
velocities of two arbitrarily oriented bubbles in the planar thermocapillary motions are derived. The
results demonstrate that two equal-size bubbles exert no influence on the thermocapillary migration
of each other at any separation because of the thorough cancellation of the thermal and fluid
mechanical interaction effects, and the effect of the large bubble on the motion of the smaller one
becomes significant with the two bubbles approaching each other, while the effect of the smaller one
on the large remains weak. Moreover, three typical kinds of trajectories of the smaller bubble are
identified. © 2003 American Institute of Physic§DOI: 10.1063/1.1607326

I. INTRODUCTION In practical applications of thermocapillary migration, a
) _group of bubbles is usually encountered, and the interaction
In general, a bubble will move toward the hotter regiony o yeen them should be more important. In the previous
of a surrounded quiescent liquid subjected to a thermal 9 qorks, Meyyappanet al* investigated the axisymmetric

dient in mlcrogra\_/lty environment. This mo_tloin is induced thermocapillary migration of two bubbles in the quasistatic
by the thermocapillary effect due to the variation of surface

. . ) .~ “state by using the bispherical coordinate system. It reveals
tension with temperature. The phenomenon is of practlca\i

. A . terial L. licati merically that two equal-sized bubbles move with the
'mportance In materials processing in space applications ang, velocity as if they were isolated. This remarkable result
also involved in the heat and mass transfer mechanism in-

S ; . Is due to the exact cancellation of the thermal and fluid me-
duced by the bubble migration in microgravity environment. . . : . .
: : = “chanical two-body interactions. And later, FeuilleBoise-
The thermocapillary motion of gas bubbles was first in-

. 1 : . sented a theoretical confirmation of this numerical conclu-
vestigated by Youn@t al.” They derived a theoretical solu- . . ; . :
. L . . . sion. Although the use of bipolar coordinates is convenient
tion for the migration velocity of an isolated bubble in a bulk

liquid with an applied thermal gradient. In microgravity en- for _the aX|syrr_1metr|_c case, it has no particular advantage for
vironment, the bubble speed is arbitrary configurations. In subsequent research, Meyyappan

and Subramanidncalculated the thermocapillary migration
Y R|VT.| of two bubbles at arbitrary angle to the applied temperature
Y5, - gradient by using a zeroth-order reflection approximation.
Shortly after, Andersdhextended the reflection solution to
Here, R is the radius of the bubbléy T, the temperature the first order, and derived the approximate velocities of two
gradient imposed in the fluigk the dynamic viscosity of the arbitrarily oriented droplets valid up to terms 6f(r;,),
continuous phase, and refers to the magnitude of variation wherer ,, is the center-to-center distance between the two
of the surface tension with the local temperature. The recerdroplets. But, both of these approximate expressions men-
literature documents an increasing interest in the understandened above become invalid with the bubbles approaching
ing of the bubble migration with the advent of space flighteach other. Acrivo®t al® predicted the average thermocap-
programs. Comprehensive reviews have been given biflary migration velocity of a cloud of identical bubbles. Keh
Wozniaket al? and Subramaniah. and Chef’ and Wei and Subramanidnemployed the
boundary-collocation method to study the thermocapillary
dAuthor to whom correspondence should be addressed. Electronic malimOtion of a small number of bubbles. In their researches,
drrsun@situ.edu.cn Satrap& and Wanget al*® used twin multipole expansions
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to study the thermocapillary migration of two bubbles ori- bubbles remain spherical and are not deformed since capil-
ented arbitrarily with respect to the applied thermal gradientlary number Ca is negligibly small in many practical appli-
In this method they first expressed solutions to the governingations. Consequently, the normal stress balance on the
equations in the form of infinite series with undeterminedbubble surfaces is ignored. Moreover, we also neglect the
coefficients, then truncated them to some term©0f "), density, the viscosity, and the thermal conductivity of the gas
and solved numerically all the coefficients simultaneouslyphase inside the bubbles in comparison with those in the host
This method, however, becomes extremely cumbersome bduid, and assume all liquid properties are independent of
yond the first three terms and requires a lot of tedious algebreemperature with the exception of surface tension, which de-
to generate the matching relatiolfs. creases linearly with temperaturey= yo—y'(T—Ty),

Sun and Hif* have theoretically investigated the interac- where vy, is the surface tension at a reference constant tem-
tion between two bubbles aligned parallel to the applied therperatureT.
mal gradient by using the method of successive reflections. Using the characteristic velocity,=y'R|VT.|/u, the
The present work extends the previous theoretical research ®eynolds number would be extremely small, for example,
the case of thermocapillary migrations of two bubbles ori-(Re<10 2) in borax glass meft® And, Marangoni number
ented arbitrarily to a thermal gradient with the aid of thein the same velocity scale becomes
successive reflection method. The crux of using the method , 5
lies in understanding the transformations of harmonics and ;- _ ﬂ: v'TgR
biharmonics between two coordinate systems. Resorting to ay pro
the method, we obtain analytic solutions in closed form. Us- . e
ing this solution we can predict bubble trajectories so as t herea, is the thermgl d'ﬁL.JS'V'ty andl'g denotes|VT.|.
determine whether or not the two bubbles will finally collide, °" Porax glass melt, its typical Dropertlesn%@FGZA glent,

To make the analysis tractable, we also restrict our atten? —0-0/6 ~dyn/cmK, ~ x=100 —dyns/cnt, and o
tion only to the limit of small Reynolds and Marangoni num- — <0 cn/s. Itis noted that foffg=30 K/cm, a bubble of
bers without considering the convective terms in the momen[ad'us, 0.2 cm wou_ld correspond to Ma'.l (see Ref. 1p .
tum equations and the energy equation. Generally speakin ,ore |mportantly, n t_he present analysis we pay attfanuon
such a migration of the two bubbles is an unsteady one, b nly to the_ case in which the Reynolds and Maran_gonl num-
in many practical applications, such as the glass processin ers are ignored; otherW|_se, the rggultant nonlinearity in
the Reynolds number based on the bubble radius and th quaﬂon; make; the sqlutlons too difficult to anglyzg. )
typical velocity, ug='R|VT..|/x, is usually low!? In the In microgravity environment, the. bgbble m|grat|on is
scaled momentum equation [Re/dt+u-Vu]=—Vp due to th_e thermal and hydrodynamic interactions. Hence_,
+V2u, as indicated by Meyyappaet al,* if the Reynolds the equations of momentum and energy mus_t be solved si-
number is low and the variation of the velocity with time due multaneously. For the quasisteady case considered here, the

to the bubble migration is not large, the Stokes equatiorgovemmg equations are

gives a reasonable approximation of the two-bubble migra- V.u=0, (1a)
tion.

The investigation is organized as follows. First, we state  Vp— xV2u=0, (1b)
the problem and write the governing equations and boundary
conditions. This is followed by an analysis of the thermocap-  V?T=0, (10

illary migration velocities of two bubbles at any angle to the h q h dth locity |
applied thermal gradient. Fundamental solutions of velocit))N erep denotes the pressure amdthe velocity in vector

field and temperature distribution for a two-bubble system©'™- Here, t%e te(;nEerature fieldl=Tyz+T', is the Sd‘j'm' .
relative to various initial disturbancésee the Appendixare mation contributed by a constant temperature gradient far

necessary to complete this analysis. And, explicit recurrenc@wa}lfr:crotr)n th(ej bubblez_a_md a d|t')sturba_mf<_: € dtempr(]e ratur;e. f
formulas of the two-bubble migration velocities are con- e boundary conditions to be satisfied on the surface o

structed from the fundamental solutions using the superpospubbleI (1=12) are

tion theorem for linear equations. These formulas are em- U-n;=upen; , (2a)
ployed in Sec. IV to determine interactions between the two

bubbles and describe their migration behaviors. The recur- n,x (¢-n;+ V,y)=0, (2b)
rence formulas seem less intuitive but suitable for numerical

computation—this is an advantage of using them. Finally, we  n;- VT=0, (20

comment on this issue in Sec. V. o »
and the infinite conditions are

Il. FORMULATION OF THE PROBLEM u—0 andVT—Tse, asr—c, (2d)

Two bubbles of radiR; andR, released in a quiescent wherey; is the migration velocity of bubblg n; an outward
ambient fluid of density and viscosityu will move under  normal to the bubble, and represents the stress in the lig-
the environment of an imposed thermal gradi®it,,. Our  uid, V; the gradient along the surface of the bubble. Heye,
attention is focused on the reduced gravity case. Accordinglyis the unit vector pointing to the hotter portion of the liquid.
the gravitational effects are neglected. We assume that the addition, for thermocapillary migration, if there are no

Downloaded 15 Jun 2004 to 159.226.230.72. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 10, October 2003 Planar thermocapillary migration of two bubbles 3017

X=rqsinf; sing, X=r,Ssinf,sing,
y'=rysinf;cose, and{ Y =r,sinf,cose, (4)
z'=r,cosb,, Z'=r,C0s0,.

From the general solution given by Lartbthe velocity
field outside an isolated bubble of radiRswith migration
velocity ug along the direction at an angfewith respect to
thez’' axis is written as

R3 y/ 7/ ri
= + ||+ |R-=%
u -7 umv( 1) uozv(ri 7 R 3
! z' 2 BoVYy' +BgVZ'
| Bov| L y BV | & [BoiVy 02 ], ®)
1 r1 3ury
>
y whereug,= Ug Sin B andug,= Uy cosB. Here,By; andBg, are

two constants to be determined by the boundary condition.
Similarly, neglecting the normal flux of energy, the tem-
FIG. 1. Sketch of the two bubbles and the corresponding coordinatgyerature field outside the same bubble in thg/(,z') coor-

X

systems. dinates is
R3
gravity or other nonhydrodynamic forces, the net hydrody- 1- T (l+ o3 (—y’sina+z’ cosa). ®)
namic force on each bubble must be zero. This accordingly !
gives the following condition: According to the superposition principle for linear equa-
tions, we construct the velocity field in surrounding fluid
f o-n; ds=0, (2¢ from (5) using the fundamental solutions of velocity field for
ot a two-bubble systerntsee the Appendjx that is,
where,; denotes the surface of bubble
EI _ é (_ Ui,z—mRi Bl,zmei r Bl,27mh;;1
u—m=0 2 2u m 6u
IIl. ANALYTICAL SOLUTION , 5 5
2By 5-mhpy Uzo-mR2  Bao-mR2
To simplify analysis, two bubbles are considered to mi- 3 +( -5 T 24 m
grate along they—z symmetry plane, as shown in Fig. 1. In
the reference framex(y,z), the smaller of the two bubbles BoomHm  2Boo mHm
with centero, located at (04;,z;) moves with a migration B 6 + 3u :
velocity u, in they—z plane, whose components arg and
Uy, while the larger one with centex, situated at (§j,,z,)  In this expressiony; (i,j=1,2) denote the migration veloc-

moves with a translational velocity, in the same plane, ity components of the two bubbles in thg,Y’,z") coordi-
whose components atg; andu,,. The separation distance nhates. And, the temperature distributidrconstructed in the
between the bubble centarso, is denoted bys. In addition, ~Same way from(6) is written as
a uniform temperature gradien¥ T..|=T, is imposed par- o1
allel to thez axis. _ o T=Tgz+ 5 3 cosat mal2)(Rity+ Ren).

For a two-bubble system, two other coordinates are in- m=0

troduced for convenience; one is a Cartesian coordinate
(xy'.z) fixed at the center of bubble 1, the other, §ubst|tut|ngj andT aforementioned inté2b) and(2e) leads,

(x,Y’,Z"), at the center of bubble 2. The instantaneous le'th manipulation, to eight algebraic equations u{}‘ and
rection of thez' axis is chosen along the line joining the B;; (1.1=12). In microgravity environmeng—0 inevita-

centers making an angle with respect to the axis. € (i bly re'sults. inBj;—0. Therefore, the total number .of t'he
—1,2,3) is the unit vector along the positive direction of theequatlons in the present case is reduced to four, which in the

corresponding axis in thex(y',z") coordinates in alphabeti- (x.y’.z") coordinate system finally become

cal order. The translational transformation betweely(,z") , 3 = 1 p3 =
and &,Y’,Z') is Yiz), N R LS @D u3—"—2R3—'2 \@i+D)
’ ! Ri 2] i0l 2R| = 3-i,01
y!:Y!,
3 y' Ty CoSa (2 RS-i < (2j+1)
[ ! +
7'=27'-s. —T 24’.011) > Z‘ ol =
These two Cartesian coordinate systems can be turned into
spherical ones by fori=1 and 2, (7a
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' 0.6
Uiz u3 |1R3 i [
R [ 2 )\I(ﬂ.] 2 )\(ZH—l) [ A, =0.5 ‘W—O—
! = 0.4 3
’ . 3 o0 L
y'Tgsina 20) R3_ 241 X
YTesnely 05 witte 5, e - af e
: Q, [
fori=1 and 2. (7b) 0.0k
Here, uj; (i,j=1,2) may be transformed into;; (i,j=1,2) o0°
. i o=
usin
g 02 B Present study
ui’1: Uj; COSa—Uj; sina, . - + +®  Satrape's result
o . |=1,2. (8) 04 el 1) it T
Uiz—UilS|na+UichSa’, 0.01 0.1 1 10
One can get well-known resultsyj,=y'T4R;/(2u) and (a) H
uj;=0 (i=1,2), by lettings—« in Eqgs.(7a and(7b) since
all interaction coefficients related ®approach zero. 1.014

On the surfaces of two bubbles, the heat energy is trans-
formed into the kinetic one of the fluid around them. The

= 0
kinetic energyE, of the whole flow field is given below 1.010 =90
[ —— Present study
p sz L - -& - Satrape's result
E,=— T L
k=5 Ufu u'dv 1.006 |
2 2 U/ [
_ 3 kl k (2 L
= 2 2 Ri 20 N 1} 1.002 |
= = J -
3 % i
Ugilz 1 iR3 -« - r
) )\(211—.1) ’ 9 0.998 el M ST | M
2 JZO ki2-il ©) 0.01 0.1 1 10
(b) H

wherev; denotes the whole region occupied by the fluid.
FIG. 2. Interaction parameters for two bubbles aligned perpendicular to the
applied thermal gradient. Curves are plotted for both(#emaller bubbler
IV. RESULTS and (b) larger bubbles.
This investigation presents analytical expressions for the
thermocapillary migration velocities of two bubbles. This is
a main contribution of the present work. The algebraic equathat thekth results converge within a preassigned limit (1.0
tions of the bubble migration velocity7a) and (7b), are X107 °). This process is repeated until either two bubbles
applied to determine the interaction between two bubble§ollide with each other or one bubble overtakes the other.
and predict their migrations in a microgravity environment. Thus, given the initial locations, we can determine whether
To this end, the numerical calculation is the vital resort ofor not the two bubbles will eventually collide in their subse-
determining both the migration velocities of two bubbles andjuent motions.
their trajectories. As each of theth terms in recurrence
formulas (A7), (A13), (A19), and (A21) in the Appendix A. Results of the interactions
behaves like &', the truncated series in the above formu- T petter represent thermal migration velocities of the
las atm=50 would have errors smaller than the error toler-yyo bypbles, we have to define the interaction parameter as
ance of six significant figures even for a near contact. Thg, ref. 4 with a little alteration
series in Egs(7a and (7b) truncated atj=50 makes our

numerical results accurate up to the 300th inverse powsr of H= s—Ri—R; (10)
in the present case. To assure convergence, our calculations R, '

are carried out with an automatic increasg umtil the sum- R

mation of extra terms produces no significant change within . —_* (1)
the desired level of accuracy. Furthermore, in order to deter- Ro

mine the trajectories of the two-bubble migration, integration Us:

of Egs.(7a) and(7b) with respect to time is performed using  Q;(a,H,\)=——, i,j=1,2, (12)
the fourth-order Runge—Kutta—Fehlberg metfi6d@he com- Uzvee

putation is started at the initial positioyg(0)=Y10, z;(0)  whereu,ygg=7y'TgR,/(21). Here,();; is a measure of the
=210, Y2(0)=VY2q, andz,(0)=z,y. The accuracy of the in- influence of the second bubble on the migration velocity of
tegration is checked by halving thigh time step dt, (k the first one.

=1,2...) and then comparing the value of the fourth-order In Fig. 2, some of our results for bubbles aligned per-
Runge—Kutta integration with the fifth one at that instant sopendicular to the imposed thermal gradient;90°, are com-
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08 v velocity that they would have as if they were in isolation,
: * independent of the dimensionless géfp and orientation
[, - . . Meyyappan et al's result anglea. This is a:ln extensiqn of fche conclusion prese_nted by
06 : Meyyappanet al* and Feuilleboi$ to the case of arbitrary
r configuration. The following is a proof of it: aR;=R,
Q. t
ol =R, Egs.(7a and(7b) are rewritten as
B R3 © 3_ 2R3 ©
| ol 15 3, 0|+ S g
02 =0
[ y' T4Rcosa RS 20) 241
L 9 — + — i+l
o.of L 21 { Z¢|01 E¢3|01
0.1 1 10
(@) H fori=1 and 2, (133
1.005 and
. uz 1R o
2j) - 2j
2 M+ 3 A
=0 ]=0
0.995 T RS R3 "
Y TgRsina
o, P R R z PP =
0.985 . =0t fori=1 and 2. (13b
. Presentstudy Based on iterative formulg#\7), (A13), (A19), and(A21) in
[ . "%+ Meyyappan et al's result the Appendix, it is easy to find that
0.97501 — ; ® ®
- 10 . _
(2)) — (2))
(b) H jZO Nimk jzo Dimk

FIG. 3. Interaction parameters for two bubbles aligned parallel to the apgnd
plied thermal gradient. Curves are plotted for both tiesmaller bubbler
and (b) larger bubbles. © ©

2, Nl V=2 i,

=0 =0

pared to ones given by SatralfeFor completeness, some
results for two bubbles aligned parallel to the applied thermal
gradient,a=0°, are also shown graphically in Fig. 3 in com- Thus, we obtain u/;=—7y'TyRsina/(2u) and uj,
parison with those given by Meyyappatal* As shown in = y' TgRcosal(2u) (i=1,2) by solving (139 and (13b).
Fig. 2, agreement between two sets of results is quite goo&ubstituting these expressions &), one can derive imme-
and all corresponding curves almost coincide with eactdiately uj,=y'T4R/(21) andu;;=0 in any array. This im-
other. Numerical computation shows that our results are iplies that the thermal and fluid mechanical interaction effects
guantitative agreement with those of Satrape and Wangre counterbalanced thoroughly in the two-identical-bubble
et al*® up to four significant figures for both the whole range case.
of separation distance and various size ratios. Note from Fig. From Eqgs.(7a and (7b), we can combine the perpen-
3 that for the corresponding size ratios,=0.05, 0.3333, dicular cases with the parallel ones to obtain corresponding
and 0.5, our results for the case of the smaller bubble agresases for bubbles at arbitrary orientations. Figures 4 and 5
well with ones presented in Ref. 4, but for the case of thdllustrate sample results for two bubbles with designated ori-
larger bubble, there is the largest difference less than 1% amntations ofa=45° anda=135°, respectively. It is observed
the two bubbles are coming into contact. The reason may bgom these figures that the interaction between two bubbles
that these two solutions are expressed in terms of two kindbkas rather significant influence on the planar migration of the
of functions, respectively, hyperbolic functions and powersmaller bubble but a comparatively weak effect on the larger
ones, and thus there are different accumulative errors in eadne. The larger the size ratio of the larger bubble to the
individual calculation, especially for rather small separationsmaller one is, the greater the variation in the velocity of the
distances. But, this slight difference is unrelated to the desmaller one. Furthermore, it is seen from Figs. 4 and 5 that
scription of the physical process. the migration velocities of the two bubbles have opposite
After comparison, let us next consider the planar thersigns in they direction. This means that the two bubbles try
mocapillary migration of two identical bubbles. In the light to push each other away, with the larger bubble pursuing the
of Egs.(7a), (7b), and(8), we find that the two equal-sized smaller one, and pull each other back after the larger bubble
bubbles move along the temperature gradi€it, at the overtakes the smaller one. It is also seen from the figures that

i=1,2; m=0,1; k=1,2,3....
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FIG. 4. Interaction parameters for two bubbles with various bubble size raties 45°.

the migration velocities of each bubble in the two designatediepicted in Figs. @) and 8d). A conclusion can be drawn
configurations have the same magnitude but opposite confrom Figs. 4 and 5 that in the presence of other bubbles, a
ponents in they direction. These can be intuitively inter- larger bubble would even migrate beyond its typical speed in
preted as a consequence of the reversibility of the Stokethe isolated situation.

flow. On the other hand, the velocity component of the larger  When a bubble approaches another very small one dur-
bubble in the direction parallel to the imposed thermal graing migration, the velocity of the smaller bubble will change
dient does not always diminish monotonically with the de-greatly. The question arises as to what would happen when
crease in the separation distance, but increases in some inténe two bubbles touch each other without coalescence. Here
vals for such cases as=0.1 and\,=0.3. Typical plots are is the answer that can be inferred from E¢&) and(7b): as

0.015

0.010

Qll
0.005

0.000

0.6

1.0000

Q. 0.3

02

0.1
i a=135°

- 0.01
o.o I bbbl I ek n 0'9982 i b b L A4l i Lt 02 iaa)
0.01 0.1 1 10 0.01

®) H @ S

FIG. 5. Interaction parameters for two bubbles with various bubble size ratios A85°.
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R;—0 ands—R;+R,—R,, (7a) and(7b) can be simplified 1.0
as L
P _ 0.8}
U3~ U+ O(Ry) =0, (149 -
Uéz_ Uovee CoSa + O( Rl)ZO, (14b) 0.6 E
2 8" [
, Ux -
U+ 7+O(R1):0, (149 04r
[ Present study
and 02k - «e - Satrape's result
ué1+u2YGBSina+O(Rl):0' (14d) 0.0-' PRI SRS WU TSR UN NS U S S S S S
0.0 0.2 0.4 0.6 0.8 1.0

That is, Uj,~Uj~UyygaCOSe and uj~—2uj,
~—UyygeSina. Therefore, u;, reaches a maximum of M
Uovee @sa=0° anduy; equalsu,ygg/2 asa=90°, and there
is a relationship betweewn;; andu;,, uj3+4u;f=u3,gg. In
the present situation, the(Y',Z") coordinates with the ori-
gin at o, are approximately an inertial frame of reference.thereby able to predict both a potential collision of the two
Relative to this moving reference frame, the velocity compo-bubbles during the thermocapillary migration and describe
nents of the tiny bubble ar&j,=uj,—uj;,=0 and U;; their dynamic behaviors.

=Uy;—U5=3UyvgeSina/2, and hence the tiny bubble will For the study of bubble interaction, it is important to
travel on the larger bubble surface along tfedirection. ~ foretell whether or not a migrating bubble can impact with
Having recourse to the stability analysis, one can obtain noanother one, so a useful application of trajectory calculations
only the equilibrium points but also some information on thefor two bubbles is the determination of collision efficiency
behavior of the tiny bubble on the surface of the larger onee.. Following Satrape’s definition, we define collision
There are two stationary solutions of the two differential efficiency as the ratio of the minimal cross-sectional area
equations mentioned above, oneaat0° which is unstable of the body of revolution formed by the limiting trajectory
and the other at=180° which is stable. An intuitive inter- t0 m(R;+R;)?. On can deduce easily from Eq3a), (7b),
pretation is that when a migrating tiny bubble gets in touchand (8) that for any two correlative orientation cases,
with another larger bubble without coalescence, it will moveand 180%-a, U;3(180°—a)=u;(a) and u;;(180°— «)

on the surface of the larger one until reaching the position at —Uj1(«), i.e., trajectories of the two bubbles are all sym-

FIG. 6. Collision efficiencye. against bubble size ratio, .

a=180°. metric with respect tax=90°. By making use of the conse-
On the other hand, in the same situation, heuristic apguence, we obtain the limiting trajectories in the same man-
proximations ner as Ref. 12: two bubbles are released initially
perpendicular to the thermal gradient and just in contact, and
Usp Ry\%(R, then their motion is integrated until each bubble once again
Urves I+l R, 1]cosa, (153 gains a velocity when isolated. The collision efficiency
against the size ratia, are plotted in Fig. 6 and compared
and with those given by Satrape. Note from Fig. 6 that the dif-
, 3 ference between the two sorts of results is not large. Our
Ugq _ _[1_0.%&) (&_ 1)}Sina (15h) results are slightly larger than those presented by Satrape.
Uivce Ry ' Figures 7, 8, and 9 give examples to better understand-

ing of how a larger bubble pursues a smaller one. In these
sample casesR;=0.05cm, R,=0.5cm, y/=0.076 dyn/
cm-K, Tg=30K/cm, andu=100 dyns/cn?, corresponding

%o a situation of two bubbles in a borax glass melt. All
displacements here are nondimensionalized with respect to
R,. One will find interesting results from these figures: there

can be derived directly froriva) and(7h). They give a cor-
responding expression to that of Meyyaparal* asa=0°.
And even more important, it is observed from the abov
figures that as the dimensionless daps less than 2.0, the
migration velocity of the smaller bubble varies greatly due to

ir_1teracti(_)n. The_ physical intuition suggesf[s that thgre Is afre three typical dynamical behaviors in two-bubble planar
interaction region” around a bubble, which is defined as migration, which correspond to three initially released posi-
one diameter apart from the bubble. If a second smalle{ions of bubble 1, that is Yo/Ry,z10/R,) = (0.58,4.1)

bubble rushes into the interaction region of the first one, th?1 505,4.1, and (6.533,18, respectively, while bubble 2 is
first bubble would significantly affect the subsequent migra'always, se{ free at orig,in. ,It is observed that the trajectory of

tion of the smaller one. the smaller bubble appears to be a folium pattern in shape in

Fig. 7(a), a cissoid pattern in Fig.(8), and a witch pattern in

Fig. 9a). This implies that the initial array of two bubbles
Trajectories of two nearby bubbles can be obtained byreatly affects the subsequent migration of the smaller

numerically integrating in time Eqg7a) and (7b). One is  bubble. Obviously, the state parameter in these cases is the

B. Bubble trajectories
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FIG. 7. Motions of two bubbles witiR;=0.05cm,R,=0.5cm, y'=0.076
dyn/cmK, T,=30 K/cm, andu=100 dyns/cnt for the initially released
positionsy,o/R,=0.58 andz,q/R,=4.1.

FIG. 8. Motions of two bubbles witRR;=0.05cm,R,=0.5cm, y'=0.076
dyn/cmK, T,=30K/cm, andu=100 dyns/cnt for the initially released
positionsy,o/R,=1.505 andz,(/R,=4.1.

initial transverse positiory o of the smaller bubble relative tion y;, to such a configuration that the velocity of the
to the larger one. As seen from Fig<a){ 8(a), and 9a), as  smaller bubble is just zero a8=90°, he will acquire the
the value of the parameter is less than a critical threshold, theecond moving pattern. Further increasing would lead to
trajectory of the smaller bubble demonstrates a folium-the occurrence of the last pattern. In computation, we note
pattern motion. It shows a cissoidal behavior at the criticathat not all the smaller bubble with various size ratios may
point, and then further becomes a witch pattern in shape witdisplay a folium-pattern behavior. Generally, enlarging the
the initial transverse position being beyond the limit. Thesesize ratio\ ; would lead “the strophoid” to shrink and move
phenomena may be explained as follows: as the largetself to the side of the large bubble. It is intuitively clear that
bubble pursues the smaller one in front of it, its flow field there is a critical size ratia ., for the moving pattern. Us-
pushes the smaller bubble ahead. As the larger bubble leavesy the trial-and-error method, we obtain the critical value of
the smaller one behind, its wake draws the smaller bubbla ., =0.22056. A smaller bubble with such a size ratio,
toward itself. But, the flow field of the larger bubble carries when set in contact with another larger one and aligned with
the smaller one backwards when the two bubbles migraté perpendicular to the imposed thermal gradient, is just at a
side by side. Thus, when a tiny bubble near a large onstandstill at that instant. As a result, a small bubble with a
migrates in the neighborhood @f=90°, it is possible that size ratioh ;>\, would not demonstrate a folium-pattern
the speed of fluid around the tiny bubble is greater than thenotion at all. On the other hand, contrastin@#vith 7(b),
relative speed of the tiny bubble to the fluid so that the flow8(a) with 8(b), and 9a) with 9(b), respectively, shows that
compels the tiny bubble to move in the direction opposite tgprotrusions of the three pairs of curves point towards oppo-
its migration[see Fig. 2a)]. This suggests that in this situa- site directions. A phenomenological explanation is that two
tion, the larger bubble at first approaches the smaller one arfalibbles in planar migration push each other as the larger
drives it aside, and at some time when the two bubbles mibubble approaches the smaller one and then pull each other
grate in the proximity ofe=90°, the smaller bubble gradu- after the larger bubble overtakes the smaller one until they
ally decreases its speed to zero and even moves backwardse once again far apart. Each of the two bubbles in the
Finally, the larger bubble overtakes the smaller one and thewhole migration will be virtually in the same place as they
the reverse process occurs—we shall see the first movingere isolated, except for the region where the interaction
pattern accordingly. If one adjusts the initial transverse posieannot be ignored. Furthermore, the kinetic endggyf the
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FIG. 10. Kinetic energy of the fluid transformed from heat energy versus the
dimensionless gaH. (a) shows the case @i=0°, and(b) gives the situation

FIG. 9. Motions of two bubbles witfiR;=0.05 cm,R,=0.5cm, y'=0.076 with a=90°.

dyn/cmK, T,=30K/cm, andu=100 dyns/cnt for the initially released
positionsy,q/R,=6.533 andz,,/R,=18.

. formation and van der Waals forces, although they have

flow around the two bubbles would change because the in- . .
influence on the bubble interaction at a close range.

teraction between them alters the transformation of the heat The results indicate that the interaction between two

energy into the kinetic one on the two bubble surfaces, Th%ubbles has significant influence on the migration of the

kinetic energy of the fluid can be easily obtained from Egs. : L . .
(7, (7b), and (9), and the results are plotted in Fig. 10 in smaller bubble. This effect mainly is concentrated in an in

dimensionless form. Herd, . denotes the total kinetic en- teraction region, which is about one diameter apart from the
o T ko . ._larger bubble. If a smaller bubble intrudes into the zone, its
ergy of the fluid in the isolated cases. It is seen from Fig

) ) o T 'velocity changes greatly due to the interaction. There is still
102 that in the axisymmetric situation, the klnetlc_energy Ofa corresponding conclusion for the planar migration of two
the fluid lessens with the decrease in the separation distan

c . . .
or increase in the size ratio; of the two bubbles, and it iFentical bubbles, that is, each of two equal-sized bubbles

. . mov he velocity that it would hav if it were isol
reaches its minimum of about 71% Bf, as the two touch- oves at the velocity that it would have as if it were isolated,

independent of the dimensionless gk and orientation

ing bubbles have the same size, although the interaction b%'nglea. When a larger bubble migrates in the proximity of

tween the two bubbles becomes zero in this case. But, in the
. o - S other smaller bubbles, a larger bubble would move even be-
perpendicular situation shown in Fig. (b0, the kinetic en-

erav of the fluid increases a4 decrease oh. increases yond its typical speed in the isolated case. In addition, in the
gy L " course of thermocapillary migration, when a tiny bubble gets

Mo touch another larger bubble without coalescence, it will
slide on the surface of the larger one down until reaching the
stable position atv=180°.

Moreover, there are three typical dynamical behaviors
for a smaller bubble migration near a larger one, a folium
pattern, a cissoid pattern, and a witch pattern. They are de-

This paper presents an explicit expression for the planatermined by both an initial array of two bubbles and the size
thermocapillary migration velocities of two bubbles in mi- ratio. As the size ratio\; is greater than the critical value
crogravity environment and investigates the interaction bex.,, the smaller bubble demonstrates only a witch-pattern
tween them without considering, for convenience, bubble debehavior. These results indicate the initial configuration of

of 23% more thark,, with the two identical bubbles touch-
ing each other.

V. CONCLUSIONS
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two bubbles has a decisive influence on the subsequent m| P™ cosme
gration of the smaller bubble. 2 —
The transformation of the thermal energy into the kinetic r

one on the surfaces of two bubbles varies with the variation %

of the interaction between the two bubbles, so such energy —(_1)n- mE Cmnk[rzv(r M cosme)
transformation differs in diverse configurations. In the axi-

symmetric case, the energy transformation diminishes with

. " . . . . 2(n+k+1

the decrease in the separation distance or increase in the size gv(rgﬁpg‘ cosme)
ratio A, of the two bubbles, whereas it intensifies as the 2k+3
separation distance decreases or the size xatiacreases in 2(k2—m?)
the perpendicular case, and it gets the two extremes,; as +821-

(2k—=1)(n+k)
=1 andH—0.

X V(r&PM cosme) + 2sejr sP cosmzp], (A2a)
with the radius of convergence being<s by the ratio test.
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APPENDIX: DERIVATION OF VELOCITY FIELDS AND 2(n+k+1)

TEMPERATURE DISTRIBUTIONS FOR A T okr3

TWO-BUBBLE SYSTEM IN RELATION TO VARIOUS

INITIAL DISTURBANCES 2(k2—m?)
(2k—1)(n+k)

V(r& 2P cosme)

+5% 1-

In this appendix, a successive reflection procedure cor-

responding to that given by Sun and Chw&hgis used to - e

deal with the Stokes equation and energy equation, and the XV (I'1Pi cOSM¢) —2se;r Py cosme . (A2b)
fundament solutions will be discussed separately according

to their mathematical structure. The radius of convergence for the summation in &gb) is

r{<s.
1. Transformations of harmonics and biharmonics
between two coordinate systems 2. Derivation of velocity fields and temperature
distributions for a two-bubble system in relation to

In order to adopt the method of successive reflections in Narious initial disturbances

the following discussion on the interaction between two

bubbles, we have to look for the transformations of harmon-  Suppose that the initial disturbance velocity created by
ics and biharmonics between two coordinate systems. A paffubble 1 takes the form of E¢5). It consists of harmonics

of transformations of harmonics between, (6;,¢) and and biharmonics. For convenience, let us consider an initial

(r,,6,,¢) (see Fig. 1was given by Hobsdf{ as below disturbance given by, is a harmonic in form and which,
in the (r1,6:,¢) coordinates, may be written as

Py cosme - PT cosme
————=(—1)"""> CpuwsPcosme,  (Ala) h/lH=v 1—2 , m=0 or 1.

rl k=m rl

Here, superscriptfl] and[2] mean that physical variables
and are expressed in the {,6;,¢) and (,,6,,¢), respectively.
When a second bubble is released motionless in the flow

P'cosme - . at 0,, arour_ld b_ubble 2h; o can be expressed by using the
r”—*l:kZm (=1 "CriPecosme,  (Alb)  transformation infAla) as

n =

(2] _ 1-m
where Cpyni= (M7 K) /s K1 (n=m). Here, P™ and P de- mg"=(—1) E Crus¥ (1P cOSMe)

note P]'(cos#;,) and P}'(cosé,), respectlvely And, after "

m n+1
some manipulation, blharmon|c1V(P cosmglry ), may ZE (1)kV(rkP“cosmgo) (A3)
be expanded in ther§,6,,¢) coordinates as K=m
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Where)\(l) (= 1)}~"MC,.,. From the impenetrable bound- PM cosme
ary condmon on the surface of bubble 2, we should put eh’ =r3V >
corresponding correctioh/,; i

- Z kRZ* [PMcosme | & .
k Py cosme + 2 k S @i
12 2k L Mimk
hm[]_]_ 2 k+1)\gLJT-T?IkR2 +1V(rk—+l y (A4) k=m k+1 r;+l =0 m
2
, , . . “ RPN cosme O i)
into the flow field. Based on transformati@alb), h/,; in the 2 T 2 V1mk

(rq1,01,9) coordinates takes the form

- “ kR [Pl cosme i 2
_|_
hiil= 2 ANZWV(riPF cosme), (A5) Ehn kt1 pkrl )i Tk
k=m
Z R IpMeosme O

where A2, =(—1)* ™37 IR Cro/(1+1). But, +ey Y — > 2, m=0or1,
the added correction makes an extra contribution to the flow k=m 'y =0
field and breaks the impenetrable condition on bubble 1, and (A8)

we should then introduce another compensating correction to

counteract the violation. Continuing the same procedure imwith a set of iterative formulas
succession leads to an infinite sequence of reflection correc-

tions. And, after some algebraic treatment, the velocity field Mg.?r)]k: Vimk™

outside the two bubbles in relation to the disturbahgg

finally becomes @) _(—1)i-mg 21 2(k?—m?)
n 1mik mik (2k—1)(k+1)
PT cosm
h = (1—2¢) (5k+8)R2
E " k(2k+3)
“ kR [(PlMcosme| &
(2i+1) (D (Z1)™28C
+k§m k+1 k1 ;O M imk Vimk= (—1)"28 Gy

R2k+1 2|+l 12I|l)c K
“ ok Prcosme |« . (2i) _ k—m ml__~m
Ly KR V( k *”)zww e (-ppmy, R m e

k=m k+1 rlfrl i=0
(A6)
| 2.)_( 1)k~ m+1z R2|+1V(12n|1| Ve s
where iterative expressions af)  are
* -1 |—m|R2|+l (2i)C
)\(l?T)]kIO, (l) =(— 1)1 MC ik s lﬂil E ) Hl_l Himl mlk,
o IRZ'“)\(Z' UG,
M= (=1 mE |ini| -, (A7) P21 I-m+1R2l+1(20)
E (=)' ™R AT Crni
o I—mio2l+1y (20)
NGRS z — D IRY T M Crni And, as the third initial disturbancé;., is @ harmonic below
Mink = 2 I+1 '
o . o . m[1] _ %7”1 _
Similarly, let us next consider another initial disturbance, ~ Mmo o m=0 or 1.

hH

mo» Which appears in biharmonic form

Based on transformatioriéla) and(Alb), the velocity field
outside the two bubbles in relation kf,, is as follows:

1 o R2k+1P o
e [

PT cosme

2
'

hrl)= ( ) m=0 or 1.

E (2|+1)

To satisfy the impenetrable conditions on two bubble sur- M1 k=o r2 =0

faces, we choose harmonics as subsequent reflection correc- - Rz"“P "

Flons for simplicity since a hgrmomc is a kind of biharmonics 2 E (2| . m=0 or 1, (A10)
in nature. From transformatiorié2a), (Ala), and(Alb), the K= k+l =

velocity field outside the two-bubble system in relation to the

disturbanceh;, is where
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0
7(1k) =0

2i 241 (2i-1
7’(1k|):(_1)k+1I:EO RS PCo,

y<2|+1>_2 (-1 |+1R2|+17(2|)C0|k_

1
) ’yg.k) == CO(k )

Consider next the contribution to the velocity field just
from the initial disturbances generated by bubble 2 when

(A11)

R. Sun and W. R. Hu
where

(0) _ _(0) _
Momk™ V(anlk_ 0,

2(k?—m?)
(1) —(_ -m _ A,
2mk_( 1)k lek[ 52(1 (Zk—l)(k+ 1)
(5k+8)R3
~ k(2k+3) |’

bubble 1 is inserted at a standstill nearby. In the same way,

the velocity field exterior to the whole system in relation to
the initial disturbanced,,, which in the ¢,,6,,¢) coordi-

nates is written as

P! cosme
Hﬁn[oz]:V(l—

2

), m=0 or 1,
rs

is expressed as
PJ'cosm
H =V( 1 QD)

m
2

o kR§k+l

+
m k+1

( Py cosm<p)

0

kR2k+l
+> =2
=m k+1

where

MmO M= (=1 "Com,

(2|) E 2ml

= [+1 '

(A13)

© 21+1y (2i)
(2|+1) ( 1)k mz lR )\Zmlcmlk
i I+1

The exterior velocity field in relation to
P! cosme

2 2 1
H;%[o]:rzv(—z

), m=0 or 1,
rs

becomes

P! cosme
H” _FZV( ! 2 )
rs

>

kR2k+1 P cosme | <
k=m k+1

I’lf’l
“ RPN cosme &

' 2i+1

33,2 k+1 2 V(erllk :
K= ri =0

® kR2|(+l

P

, i R 1P cosme
= K+ 1

r, =0

Vo= (— 1) M25Cpryy,

w —mp2l+1 (2i-
i) 2 (=D MRE S Cri
2mk

= I+1 '

(A15)

[

2i - 2041 (2i—-1
V(znlw)kzlzzm(_l)l m+1R1+ (' )leka

© |R2I+l/.L(2|)C
(2i+1) _ ank—m 2mi~mlk
/J’ka ( 1) |§m [+1 ’

o0

2i+1 - 2041 (2i
V(znli ):(_1)k m+1I§m RzJr V(anq)lcmlk-

And, such outside velocity field in relation to

H%Z]=e3r_m, m=0 or 1,
2
is
n U 1 - R§k+lp -
Hm:e’d—m{aﬂ—kz() 2 (2|+1
% R%kJrlP ©
(2|) _
2 T 2 . m=0 or 1, (A16)
where

7h=0, ¥ =(= 1) Cou,

8

vh'= 2 (

1) RIS ey, (A17)

’)’(2|+1) ( 1 k+12 R2|+1,y(2|)CO|k_

Moreover,
caused by bubble 1

P cosme
tr,n[()l] lr—z, m=0 or 1,
1

the temperature distribution exterior to the two bubbles be-

comes
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=P’1“cosm<p kRg"*lecosm@% i
ra K=m  (k+1)rktt =0
“ kR*PMcosme O
20 m=0 or 1,
Kem  (k+1)rk*™t .:Eo $imi
(A18)
where
=0, die= (=1 "Cry,
® p2l+l (2i-1)
i _ ®1mi ~ Cmix
Gri=(— Dk g , (A19)
l=m |+1

¢(2i+1) 2( 1)I_m|R2|+1¢1I)Cm|k
1mk =m I+1 '

whereas for the other initial
aroused by bubble 2

disturbance

21 Py cosme
m0 rg ’
the temperature distribution outside the whole system is

m=0 or 1,

* 2k+1pm %

7_,:F’mcosm s kRT“" Py cosmgo2 21
"o Emo (k+rftt =

“ kRZ" P cosme & .

E . £ ¢, m=0 or 1,

k=m ) i=0

(A20)
where

Si=0, ¢(2}T)1k:(_1)k7mcmlka
@) — 2 =)' MR B P Crii (A21)

= I+1 '

. 1)k_m§ IRS 1 pSNC ik
=m I+1

(2i+1)_
2mk

Planar thermocapillary migration of two bubbles 3027

Every recurrence formula above holds for all positive inte-
gersk andi.
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