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COMBINED NITROGEN AND PHOSPHORUS
REMOVAL FROM WASTEWATERS

Matti Valve

VALVE, M. 1984. Combined nitrogen and phosphorus removal from waste-
waters. Publications of the Water Research Institute, National Board of
Waters, Finland, No 58.

Activated sludge pilot-plant experiments on nitrification, post and pre-
denitrification and intermittent aeration with and without ferrous sulphate
addition were conducted to find a reliable and simple method for the simul-
taneous removal of organic compounds, phosphorus and nitrogen from dom-
estic sewage. Nitrification was inhibited at dosages exceeding 30 g m—3 Fe (II).
The post-denitrification process did not give proper results. In the pre-denitri-
fication process the nitrification rate was over 80 %, total N reduction 70 %
and effluent P less than 1.5 mg | —!. The results were similar in the inter-
mittent aeration process. Ferrous sulphate had an inhibitory effect also on
denitrification.

Index words: Nitrogen removal, nitrification, denitrification, phosphorus re-

moval, activated sludge, sewage, ferrous sulphate.

1. INTRODUCTION

The primary concern of waste water treatment in
Finland was first the removal of organic com-
pounds in order to reduce the oxygen depletion in
the receiving watercourses. This was achieved in
most cases with activated sludge processes and in
some instances with trickling filters. The second
stage of treatment was the inclusion of phosphorus
removal to abate eutrophication, because the limit-
ing growth factor in Finnish watercourses is mainly
phosphorus. Today there are appr. 560 treatment
plants in Finland treating 95 % of the raw munici-
pal wastewater. The main process’is activated sludge
combined with simultaneous precipitation of phos-
phorus by adding ferrous sulphate to the aeration
basin (370 plants) giving, when properly operated,

a BOD,-removal of 80 % and effluent phosphorus
of less than 1.0 mg 1-1.

Nitrogen has not, until recently, been considered
of importance and the technical applications for
nitrogen control have been considered too difficult.
Today attention is paid to the adverse effects of
ammonia and demands for ammonia removal have
been made for five wastewater plants.

The technical problems of ammonia and total
nitrogen removal in Finland are the low tempera-
ture during wintertime and possible adverse effects
of ferrous sulphate on the biological nitrification
and denitrification processes.

The objective of this study was to find out if
simultaneous precipitation could be combined to
ammonia removal and denitrification in a simple
activated sludge process modification.




Experiments were made with four different pro-
cesses: normal nitrifying one-stage activated sludge,
nitrification-denitrification with one sludge and
separate reactors (here called the nd process), pre-
denitrification process (dn process) and inter-
mittent aeration in one reactor.

HAZARDS AND SOURCES OF
NITROGEN

2.

The hazards of nitrogenous compounds, e.g. am-
monia, nitrate and nitrite are well documented.
The primary concern has been eutrofication in
places where nitrogen is the limiting growth factor.
In Finland, however, this is the case in only some
limited locations along the coastline and in some
specific lakes. The most adverse effect of ammonia
is dissolved oxygen depletion caused by the oxi-
dation of ammonia to nitrate. One gram of am-
monia uses 4.6 g oxygen for nitrification.

Depending on the pH, ammonia can be toxic to
fish at concentrations above 0.2 mg 1~!. Salmon
and trout are very vulnerable.

In potable water systems ammonia causes an in-
creased chlorination demand with subsequent for-
mation of hazardous organohalogen compounds
and increased treatment costs. High concentrations
of ammonia have occurred in some heavily loaded
rivers during dry weather conditions. In the river
Vantaa, which used to serve as the raw water source
of the city of Helsinki, the highest concentrations
reported have been 3 mg 1=! of ammonia nitrogen.
The chlorination costs were 1.5 MFM a—! in 1976
in the city of Helsinki water works due to ammonia
(Vakkuri 1981).

Ammonia increases the corrosion rate of copper
and copper alloys by complexing the copper in
normally protective oxide or carbonate surface
films (Nalco 1979).

Nitrate and nitrite can also serve as nutrients for
eutrophication but the main concern is given to
the health hazards. Infant methemoglobinemia is a
well known disease caused by increased levels of ni-
trate in drinking water. A more recent observation
is the formation of nitrosoamines and amides which
are carcinogenic compounds (Mirvish 1977). In Fin-
land- the-limits-of nitrate and nitrite nitrogen in po-
table water-are set to 6.8 mg 1=! and 0:06 mg 1-*
(expressed as N).

The main load of nitrogen to recipients in Fin-
land is from diffused sources.
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Table 1. Main sources of nitrogen and phosphorus in Fin-
land (Vesihallitus 1979).

Source Phosphorus Nitrogen
10°kga—!  10°kga—!
Diffused sources
Erosion 3000 61 000
Rain 300 15 000
Agriculture 1700 24 000
Stock raising 600 18 000
Others 200 3 000
Point sources
Municipalities
(Untreated/treated) 4 200/800 19 600/13 600
Industry
Pulp and Paper 587 3900
Metal 10 1150
Chemical 64 1010
Food 39 350
Others 9 510
Fish Production 66 320

Point sources such as muncipalities and industry
represent only 13 % of the total load. If fixation is
taken into account, the point sources stand for an
even smaller part of the total nitrogen load (Table
).

The main part of the nitrogen received by the
watercourses is inorganic. Untreated wastewater
usually contains 30—40 mg 1= of total nitrogen of
which 50-70 % is ammonia and the rest urea and
organic compounds. After biological treatment
95 % of the nitrogen is either ammonia or nitrate.

Trade effluents contain ammonia and nitrate but
also organic compounds are found in effluents
from textile industry and laundries. Effluents from
food industry contain proteins and amino acids,
effluents from pulp and paper industry contain
ammonia and organic nitrogen and effluents from
metal industry mainly nitrates.

The nitrogen from diffused sources is mainly ni-
trate because of nitrification in the soil and a better
retention of ammonia to soil particles.

3. PROCESSES FOR NITROGEN

CONTROL

Nitrogen control comprises of ammonia removal
either by complete elimination or oxidation to ni-
trate, and nitrate removal.



Several physical-chemical processes for ammonia
and nitrate removal have been developed: stripping
or desorption into air, selective ion exchange,
break-point chlorination, electrolysis, precipitation
as ammonium magnesium phosphate and adsorption
to manganeseoxide. Nitrate removal is more diffi-
cult but processes for desalination like ion-ex-
change, electrodialysis, and reverse osmosis can be
used.

These processes, however, have not been con-
sidered to be suitable for municipal wastewater
treatment in Finland because of high costs and
technical complexity. For certain industrial waste-
waters they could be adopted.

In Finland biological nitrification and denitri-
fication processes are considered most feasible for
nitrogen control. Several process configurations
have been studied and full scale plants have been
built in the United States, South-Africa and
Europe. Rewiews of these have been given by EPA
(1975), Henze (1977) and Gromiec et al. (1982).

In principle, nitrification and denitrification can
be performed in activated sludge or fixed media re-
actors and the processes can be devided in one, two
or three sludge systems. In one-sludge systems the
removal of organic compounds, nitrification and
denitrification is performed with one sludge in one
or two reactors. In two-sludge systems denitri-
fication is separated and an external carbon source,
e.g. methanol, must be added. In three-sludge sys-
tems the removal of organic compounds and nitri-
fication are further separated from each other. It
can be expected that two and three sludge systems
give better and more consistent removal of nitrogen
than one-sludge systems, but to higher construction
and operating costs. It has, however, been shown
that one sludge systems like the Bardenpho process,
Carrousel plants, the Orbal process, the Bio-Denitro
process and others have given consistenty high re-
moval rates of nitrogen (Stensel et al. 1978, Barnard
1978, Drews and Greef 1975, Tholander 1977,
Matché 1980). - )

4. EXPERIMENTAL METHODS

The experiments were carried out at the research
station of the Technical Research Centre of Finland
next to the Espoo Municipal sewage treatment
plant.

4.1 Apparatus

The experiments were carried out with two parallel
pilot-plant units, which consisted of 1.3 and/or 3
m? cylindrical reactors and upflow clarifiers with a
surface area of 0.79 m? and volume of 0.6 m®. The
aerobic reactors were provided with fine bubble
tube diffusers, the anoxic reactors with variable
speed mixers. Pumps were variable speed positive
displacement screw pumps. Continuous measure-
ments of DO, pH, redox potential and temperature
were made and recorded. Flow proportional com-
posite samples were taken with automatic samplers.
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Fig. 1. Diagrams of experimental processes.




Ferrous sulphate was dosed as a 2 % solution of
commercial FeSO, - 7H,O by a plunger metering
pump into the influent feed line to faciliate com-
plete mixing.

The screened Espoo Municipal wastewater was
pumped to a head tank in the research station and
after sieving (5 mm sieve) pumped to the pilot-
plants. Diagrams of the processes are presented in
Fig. 1.

4.2 Sampling and analyses

Flow proportional 24 hour composite samples were
taken from the influent and effluent five days
weekly starting on Sunday at 8§ A.M. Grab samples
were taken on weekdays from the reactors and re-
turn sludge. The analytical program and measure-

ments are presented in Table 2.

The analytical methods conform to the methods
used by the National Board of Waters (1981) with
the following exceptions.

— COD was analysed as potassium permanganate
(Vesianalyysitoimikunnan mietint6 1968)

— Total nitrogen was analysed with Kjelldahl di-
gestion and DEVARDA and distillitation and
titration of ammonia (Vesianalyysitoimikunnan
mietinté 1968). A Tecator digestion and distil-
lation unit was used.

Table 2. Analytical program and measurements.

Influent Effluent n-unit d-unit recycle

Temperature
pH
Alcalinity
Conductivity c
Suspended solids
Volatile suspended
solids g g
BOD, c c
COD (KMnO,) c
Total phosphorus c c
Soluble phosphorus c
c
c

m m m
m,c m m

(2]
O 0 00

()

(2]

Total nitrogen ¢
Ammonia c
Nitrite

Nitrate c
Dissolved oxygen
Redox-potential

Settleability ' h

og
oQ

oe 3 3 oo

is continuous measurement
is composite sample
is grab sample

m
c
g .
() is occasionally
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— Nitrate was analyzed with an Orion research
ionic-specific nitrate electrode 93—07 and an
Orion 90—02 double junction reference elec-
trode. The ”known additon” method was used.

— Ammonia was analyzed with an Orion Research
ammonia electrode 95—10 and the “’known ad-
dition” method was used.

4.3 Working routine and time table

The different processes were studied as follows:

1. Nitrification 1.5.—30.12.1977
2. nd process 1.1.—30.04.1978
3. dn process 1.5.—30.12.1978
4, Intermittent aeration 1.1.1979—30.12.1980

The working routine for all the processes was the

same.

— The samples were collected every weekday at
7.30—8.00 and analyzed on the same day.

— Surplus sludge was removed directly from the
reactors after sampling on weekdays.

— The flows were controlled every day.

— The electrodes were cleaned and the intsruments
calibrated weekly and after disturbances.

— The DO in the aerobic reactor or phase was
manually set to 2—4 mg |~ daily.

— The recorders were read daily and a value rep-
resenting a mean value during the preceding day
was chosen.

A detailed programme for each process is described

later.

4.4 Data analysis

In principle, when working with biological pro-
cesses treating natural wastewaters, one cannot as-
sume that the system is in steady state conditions,
because the quality of the wastewater with respect
to concentrations and temperature varies both daily
and hourly. Toxic substances can cause disturb-
ances of different magnitude and duration in the
process. Solvents and soluble compounds can cause
acute toxicity, which can be strong but of short
duration. Mineral oils and fats, heavy metals and
other compounds which accumulate in the sludge
can cause disturbances of long duration.
Considering the hydraulics of the treatment
plants it can be assumed that theoretically steady
state in the water phase is achieved in 2—4 days
when the hydraulic detention time is 10—24 h. If a



change was made on Friday, the steady state was
achieved on Monday to Tuesday. Considering the
sludge phase, the time to achieve steady state could
take 40—120 d when the sludge age varies from 10
to 30 d, which is normal for nitrifying and denitri-
fying systems in low temperatures. The adaptation
of the sludge can be faster, but when considering
the inorganic fraction, and in this study the ferrous
fraction of the sludge, steady state is indeed
achieved after several weeks of operation.

Because of these facts, theoretical steady state
models for determining kinetic constanst for the
bacteria (heterotrophic bacteria and nitrifying bac-
teria separately) were not adopted.

Dynamic models could not be used, because this
would have demanded continuous measurements of
several compounds like ammonia, nitrate, nitrite,
organic carbon and bacteria and 2 vastly increased
analytical program, which would have exceeded the
laboratory capacity.

Regression analysis and t-tests were used when
comparing groups of data. Stepwise discriminant
analysis was used in process comparision. Ready-
made statistical program packages were used.

5. RESULTS
5.1 Wastewater composition

The influent consists of domestic sewage (90 %)
and industrial waste water (10 %). Rainstorms and
melting snow increased the flow by a factor of
three, with consequent dilution. An acetylene
plant, metal plating, pharmaceutical and techno-
chemical industries caused- occasional wide pH
fluctuations and shock loads of heavy metals, sol-

Table 3. Average influent composition in pilot-plants.

Mean =+ standard
error of mean

1st 3rd
quartile quartile

pH 724002 70 7.3
alkalinity mmol I-!  45+01 38 5.1
conductivity mS m—1 61 £ 11 55 68
suspended solids mgl—! 193%7 140 250
BOD, mgl—1  139%5 100 160
COD (KMnO,) mgl-1 230£9 163 267
total phosphorus mgl1—1 - 6:1£02 -~ 42 — 76
total nitrogen mgl—1 297+1.2 216 37.0
ammonia-nitrogen mg 11 233+ 0.1 154 302
temperature °C 13.2%05 10.6  16.5
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vents and other chemicals which had inhibitory ef-
fects on the biological performance of the pilot
plants (Table 3).

5.2 Effect of ferrous sulphate on
nitrification and phosphorus
removal

The effect of ferrous sulphate on nitrification was
studied with a single-stage activated sludge process
(n process). One unit was fed with ferrous sulphate
and the dosage was gradually increased from 4 to
60 g m— Fe?". The other unit was run as a control
without addition of chemicals. Both units were
otherwise run identically (Table 4).

The results grouped according to ferrous sul-
phate feed are presented in Appendix 1.

5.21 Nitrification

The nitrification rate was calculated from equation

M

NR = Ntot,i — NNH4,e (1)
Ntot,i

Where

NR s nitrification rate

N, is total influent nitrogen

Ny, is total ammonia nitrogen

Subscripts i and e refer to influent and effluent
respectively.
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Fig. 2. Nitrification at different ferrous sulphate dosages.
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Table 4. Process parameters of n-process during different periods in simultaneous precipitation unit (S) and control
unit (C). ‘ )

Process parameter Period

S C S C S C S C S C S C

Sludge load, kg kg—1d—! 010 0.15 008 0.1 014 015 011 011 014 014 011 017

Sludge age, d 12 12 12 12 12 12 13 13 15 15 12 12
Retention time, h 590 590 6.50 6.50 540 540 520 520 520 520 5.20 5.20
Recirculation, % 100 100 100 100 100 100 100 100 100 100 100 100
Ferrous feed, g m—3 (Fe2) 11.2 0 16.0 0 200 O 290 © 40.8 0 50,0 0
Hydraulic surface load,

m*m—2h 0.28 028 025 025 030 030 032 032 032 032 032 032
Sludge volume load,

m’ m—2h—! 022 017 021 '0.21. 0.18 019 010 0.10 0.08 0.09 0.08 0.6
Temperature, °C 182 181 18.0 1871 165 167 143 148 125 128 124 127
Time of run, d 19 19 12 12 82 82 10 10 12 12 12 12

Equation (1) does not take into account assimi-
lation of ammonia into the sludge and complete
ammonification is assumed.

From the results it can be clearly seen that when
the ferrous feed was increased, the nitrification rate
dropped from 90 to 20 % while nitrification in the
control unit was 80—90 % (Fig. 2). When compar-
ing the rates between both units after arc sin vx
transformations, the difference was significant at
95 to 99 % confidence level, when the ferrous sul-
phate feed was 20 g m™> Fe?" and very significant
at 99.9 % confidence level, when the ferrous feed
was more than 16 g/m® Fe?* (Table 5).

The nitrification rate k_, expressed as g of am-
monia-nitrogen removed divided by MLVSS and
time was 0.4—1.1 g kg=! d—! in the simultaneous
unit and 1.0—1.9 g kg™ d~! in the control unit

Table 5. Ammonia removals and t-test between units after
arc sin V_ x-transformation in nitrification process at dif-
ferent Fe-feeds (S is simultaneous precipitation, C is con-
trol).

(Table 6). k, was calculated from equation (2).

k = (Ntot,i - NNH4,e' Q) (2)
MLVSS -V

where Q is flow
V is reactor volume

5.22 Phosphorus removal

Total effluent phosphorus was 0.5—3 mg 1~! and
soluble phosphorus 0.2—2mg1=! in the simul-
taneous precipitation unit depending on the Fe:P
molar ratio in the feed and 4—6 mg [~! in the con-
trol unit. When the molar ratio exceeded 1.0 the
soluble phosphorus decreased below 1.0 mgl—!

Table 6. Nitrification rates (k,) with standard error of
mean in n-process during different periods and t-test
between units (S is simultaneous precipitation, C is con-
trol).

Fe2* feed Nitrification rate,
Fe2*feed Ammonia removal % t-test gkg—1h—!
gm—3 S C gm—3 S C t-test
11.2 86 20 11.2 0.8+0.05 1.02%0.13 6.86
16.0 83 89 16.0 074+ 0.12 1.03t£0.14 1.56
20.0 . 56 - 69 20.0 0.83£0.08 1.14=£0.10 - 2,33
29.2 64 95 29.2 1.07+0.12 1.72%0.10 4. 1440
40.8 52 94 40.8 0.97+0.10 1.74+0.11 5,47+t
50.0 30 85 50.0 0.41 £ 0.04 193 x0.16 9.05%%*

5 4084019758
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(Fig. 3). The total effluent phosphorus was mainly
bound to the suspended solids.

5.23 SVI and suspended solids

The SVI was 40—130 ml g~ in the simultaneous
precipitation unit and 80—140 ml g~ in the con-
trol unit. A significant difference between the units
was observed when the ferrous sulphate feed was

increased above 30 gm™> as Fe?*. The SVI re-
mained then well below 70 ml g~' in the simul-
taneous unit and was about 100 ml g~ in the con-
trol unit (Appendix 1).

The effluent suspended solids concentration was
10-80 mg 1=! in both units and no positive corre-
lation was observed with either the SVI value, Fe?*
feed or hydraulic loading of the units.

The effluent suspended solids concentration in-
creases occasionally when the pH dropped below
6.0 due to the total loss of alcalinity caused by ef-
fective nitrification. The SVI value did not, how-
ever, increase.

BOD and COD-removal was typical for acti-
vated sludge plants and no difference could be ob-
served between the units (Appendix 1).

5.3 nd process

The nd process (nitrification followed by denitri-
fication) was studied with two parallel units. One
unit was fed with ferrous sulphate and the other
was run as a control unit. The ferrous sulphate dose
was 5—15 g m~> Fe?*. Otherwise the units were
run identically.

The process was started by taking a seed from a
working activated sludge plant and aerating both
reactors for approximately two weeks. When the
nitrification rate was constantly high, the second
reactor was turned anoxic with only slow mixing of

Table 7. Process parameters of nd-process during different periods in simultaneous precipitation unit (S) and control

unit (C).

Process parameter

Period

1 2

3 4 5 6

S C S C

C S C S C S C

Sludge load, kg kg—'d—" 0.08 0.08 0.06 0.06
Sludge age, d 23 24 14 17
Retention time

n-reactor, h 75 7.5 8.7 8.7
Retention time

d-reactor, h " 8.4 8.4 7.7 7.7
Recirculation, % 200 200 200 200

Ferrous feed, g m—3 (Fe2h) 2 0 2 0
Hydraulic surface load,

m?* m—2h—! 0.29 029 020 0.20
Sludge volume load,

m?® m—2h—1 013 020 Ole 017
Temperature, °C 109 111 100 105

Time of run, d 14 14 17 17

0.09

008 007 005 005 005 005 004
27 (>30) (>30) (>30029 29 18

8.7 8.7 8.7 8.7 6.5 6.5 6.5 7.5

10.0 100 113 113 76 7.6 7.5 7.5

150 150 200 200 210 210 200 200

10 0 10 0 10 0 10 0

0.19 019 019 019 025 025 025 025
0.06 ©0.12 008 010 019 016 020 0137 "
1.2 115 116 11.8 99 10.1 104 104

21 21 21 21 15 15 15 15




the sludge. The controlled parameters were influent
flow, detention times, quantity of excess sludge
and Fe dosage (Table 7).

The results grouped into periods based on time
are presented in Appendix 2.

] e e e
c /11 7/ 5
-

Time

Fig. 4. Average influent total nitrogen (N,,), ammonia
(Nnps) and effluent ammonia (Nypy4,) and nitrate
(NNo3,) in nd process simultaneous precipitation unit
during different periods.
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Fig. 5. Average influent total nitrogen (N,,,), ammonia
(Nnn4) and effluent ammonia (Nyypyy,) and nitrate
(Nnos,e) in nd process control unit during different
periods.

35

5.31 Nitrogen removal

The nitrification rate was 20—70 % in the simul-
taneous precipitation unit and 50 to 80 % in the
contro] unit. Total nitrogen removal was sub-
sequently 20—50 % and 30—50 % (Fig. 4 and 5,
Table 8). The control unit was more effective in
respect to nitrification during periods 1 and 3 to 6
but there were no actual differences in total nitro-
gen removal except during period 1, when total
nitrogen removal was 50 % in the control unit
compared with 31 % in the simultaneous precipi-
tation unit. The nitrification rates k, were 0.5—1.3
g kg™ h™'and 0.8—1.4 g kg~! h—" and the denitri-
fication rates ky 0.3—0.8 g kg7 h—'and 0.3—0.7 ¢
kg=! h™! in the simultaneous precipitation and
control unit, respectively (Table 9).

5.32 Phosphorus removal

Effluent total phosphorus varied between 1.0 and
5.0 mg 1~! depending on the Fe:P molar ratio. Sol-
uble phosphorus was 0.3—4.5 mg 1!, The Fe:P-
molar ratio was 0—3 mol mol~! (Fig. 6).

5.33 SVI, suspended solids, BOD and COD

The SVI was rather high in both reactors of both
units. No consistent difference between the units
and reactors could be observed (Appendix 2).
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Fig. 6. Effluent phosphorus at different Fe to P molar
ratios in nd process.
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Table 8. Ammonia removal, nitrogen removal and t-test between units after arc sin Vx transformations in nd-process
during different periods (S is simultaneous precipitation, C is control).

. Nitrification rate, % Nitrogen removal, %

Period
S C t-test S C t-test

1 37 62 4.86%** 31 50 4,390
2 63 69 1.09 22 30 1.06
3 69 79 2.50% 44 46 0.29
4 55 69 2.39* 51 40 2.02°
5 44 72 4.05%%* 32 39 0.52
6 47 71 5.20%%* 36 45 1.72

Table 9. Nitrification rate (k,) and denitrification rate (kg) and their standard error of mean in nd-process during
different periods (S is simultaneous precipitation, C is control).

. Nitrification rate, g kg=1 h~1 Denitrification rate, g kg—! h—!
Period
S C S C

1 0.93 £ 0.15 1.36 £ 0.12 0.45 1 0.06 0.63 1 0.04
2 0.81 £ 0.07 0.90 £ 0.08 0.33 = 0.07 0.39 4= 0.06
3 1.32 £ 0.08 1.29 £ 0.07 0.70 £ 0.07 0.65 1 0.06
4 1.29 £ 0.15 1.23 £ 0.09 0.821+0.10 0.53 4 0.04
5 0.60 & 0.07 0.87 £ 0.09 0.38 £ 0.08 0.38 £ 0.07
6 0.74 = 0.07 1.17 £ 0.07 0.46 = 0.05 0.41 £ 0.03

Table 10. Process parameters of dn-process, simultaneous precipitation unit, during different periods.

Period
1 2 3 4 5 6 7 8

Sludge load kg kg—1 d~1 0.08 0.11 0.17 0.12 0.11 0.12 0.08 0.05
Sludge age d 32 39 38 22 19 22 41 53
Retention time,

n-reactor h 8.0 8.0 8.0 8.0 8.0 8.0 10.0 10.0
Retention time,

d-reactor h 5.2 5.2 5.2 5.2 6.5 6.5 6.5 6.5
Recirculation % 200 400 400 400 400 400 400 400
Ferrous feed ~ gm—3 (Fe?h 16 16 20... . 20 20 26 .. 26 26
Hydraulic surface load m* m—2 h—! 0.32 0.32 0.32 0.32 0.25 0.25 0.25 0.25
Sludge volume load m* m—2 h—1! 0.21 0.10 0.06 0.06 0.07 0.08 0.15 0.20
Temperature °C 16.6 16.5 18.1 18.0 15.8 14.5 14.1 12.2

Time of run d 19 25 12 15 46 12 22 43




Effluent suspended solids concentration was be-
low 15 mg 1=, BOD, below 25 mg 1~! and KMnO,
below 75 mg 1~! in both units. There were no dif-
ferences between the units (Appendix 2).

5.4 dn process

The dn process (denitrification followed by nitrifi-
cation and with increased recirculation rate) was
studied with two parallel units. The units were run
independently of each other one as a simultaneous
unit and the other as a biological unit. The con-
trolled parameters were influent flow, detention
times, quantity of excess sludge removed and Fe-
dosage (Tables 10 and 11). The results grouped into
periods based on time are presented in Appendix 3
and 4.

5.41 Nitrogen removal

In the simultaneous precipitation unit the nitri-
fication rate was more than 80 % during all periods
except periods 6 and 7 when it decreased to 45—
55 %. In the control unit the lowest rates were
70—80 % during periods 5 to 7, during periods 1
to 4 the rate was more than 90 %.

Total nitrogen removal varied between 35 and
70 % in the simultanous precipitation unit and
between 45 and 60 % in the control unit (Fig. 7
and 8).

The nitrification rates k, were 0.80—3.0 g kg™!
h—'and 0.5—2.6 g kg—! h—! and the denitrification
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Fig. 7. Average influent total nitrogen (Ny,. ;) ammonia
(Nnps,) and effluent ammonia (Nnpa,) and nitrate

(NNo3,e) in dn process simultaneous precipitation unit at
different periods.
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Table 11. Process parameters of dn-process, control unit, during different periods.

Period

1 2 3 4 5 6 7
Sludge load kg kg—1 d—1 0.11 0.12 0.16 0.21 0.13 0.08 0.04
Sludge age d 17 19 12 13 19 32 50
Retention time,
n-reactor h 8.0 8.0 8.0 8.0 8.0 8.0 10.0
Retention time,
d-reactor h 5.2 5.2 5.2, 6.5 6.5 6.5 6.5
Recirculation % 200 400 400 400 400 400 400
Ferrous feed gm=3(Fe?®) 0 ] 0 0 0 0 ]
Hydraulic surface load m* m—~2h—1 032 0.32 0.32 025 0.25 025 025
Sludge volume load m?* m—2 h—1! 0.11 0.09 0.07 0.05 0.09 0.18 0.24
Temperature °C 17.8 17.3 18.0 17.2 15.1 13.5 12.1
Time of run d 19 36 15 32 25 35 29




rates kg were 0.75—2.9 g kg~ h—!'and 0.5—2.3 ¢
kg™ h™! in the simultaneous precipitation and
control unit respectively (Tables 12 and 13).

Table 12. Nitrification rate (k,) and denitrification rate
(kg) and their standard error of mean in dn-process, sim-
ultaneous precipitation unit, during different periods.

Period Nitrification rate  Denitrification rate
g kg—1 h—1 g kg—1 h—1

1 1.53 £ 0.16 1.57 £0.26

2 1.89 £ 0.20 1.13 £ 0.23

3 3.09 & 0.39 2.891+0.75

4 1.61 £ 0.12 1.31 £ 0.18

5 1.54 £ 0.15 1.27 £ 0.16

6 1.14 £ 0.15 1.00 £ 0.18

7 0.821+0.12 0.80 %+ 0.10

8 0.80 = 0.03 0.79 £ 0.04

Table 13. Nitrification rate (k) and denitrification rate
(kg) and their standard error of mean in dn-process, con-
trol unit, during different periods.

Period Nitrification rate  Denitrification rate
g kg1 h! g kg~ h~

1 2,19+ 0.22 2,201 0.36
2 2.41 £ 0.31 2.211+0.49
3 1.77 £ 0.14 2301+ 097
4 2.54+0.19 2.04 1+ 0.21
5 2.23 1 0.43 1.86 + 0.47
6 1.16 £ 0.11 0.98 £ 1.26
7 0.51 = 0.03 0.52 £ 0.06
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Fig. 9. Effluent phosphorus at different Fe to P molar
ratios in dn process.
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5.42 Phosphorus removal

Phosphorus removal in the simultaneous precipi-
tation unit was typical for this precipitation pro-
cess.

Effluent total phosphorus was 1.0—2.3 mg 1~
and soluble phosphorus 0.4—1.1 mg 1~ depending
on the Fe-P molar ratio, which varied between 2.5
and 1.5 mol mol~! (Fig. 9). No significant differ-
ence in soluble phosphorus between the anoxic and
aerobic unit could be noticed (Appendix 3).

5.43 SVI, suspended solids, BOD and COD

The SVI-value of the simultaneous precipitation
unit was 60—135 ml g—! without any significant
difference between the reactors. The control unit
had somewhat higher values: 100—180 ml g—! (Ap-
pendix 4).

Effluent suspended solids were 10—50 mg 1!
and 15—30 mg 1~! in the simultaneous precipi-
tation unit and control units respectively.

The BOD reduction was 85—95 % and 71—
85 % and COD-reduction 70—80 % and 60—80 %
in the simultaneous precipitation units and control
unit respectively. Effluent BOD, was 10—20 mg I~
in the simultaneous precipitation unit and 15—35
mg 17! in the control unit. Corresponding values
of COD were 45—65 mg I~! (KMnO,) (Appendix
3).

5.5 Intermittent aeration

The intermittent aeration process was run with
two parallel units during approx two years. Dur-
ing the first year the reactor volume was 1.3 m® and
one unit was fed with ferrous sulphate and the other
was used as a control unit. During the second year
the reactor volume was 2.8 m?® and both units were
fed with ferrous sulphate. The controlled par-
ameters were detention time, sludge age, chemical
dosage and oxic/anoxic times (Tables 14 and 15).
The results grouped according to test periods are
presented in Appendix 5—7.

5.51 Nitrogen removal

The nitrification rate was usually better than 80 %
except for periods no 1, 7, 13 and 20 in unit 1 and
periods no 1, 6, 11, 14, 16 to 18 in unit 2. Total
nitrogen removal varied between 30 and 65 % and



Table 14. Process parameters of intermittent aeration, unit 1 during different periods.
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Period Sludge Sludge Reten-  Aerobic Anaer-  Recircu- Ferrous Hydraulic Sludge  Tempera- Time
load age tion time  obic lation feed surface  volume  ture of run
time time load load
kg gm—3 m m’
kg—1d-1 d h h h % Fe?* m—2h—1 m—2h-1 °C d
1 0.07 79 8.7 2.0 2.0 150 16 0.22 0.18 11.3 13
2 0.06 109 13.0 2.0 20 100 16 0.13 0.12 10.9 13
3 0.03 70 13.0 2.0 1.0 100 16 0.13 0.12 9.5 21
4 0.02 71 13.0 2.0 1.5 100 32 0.13 0.12 8.6 21
5 0.03 49 13.0 2.0 1.0 100 16 0.13 0.12 14.1 18
6 0.06 20 13.0 2.0 1.5 100 16 0.13 0.12 16.4 5
7 0.10 27 8.7 2.0 2.0 150 16 0.19 0.17 18.9 19
8 0.06 31 8.7 2.0 2.0 150 16 0.19 0.15 17.2 21
9 0.11 32 8.7 2.0 1.0 150 16 - 0.19 0.16 16.2 19
10 0.06 34 8.7 2.0 1.5 150 16 0.19 0.17 13.8 19
11 0.04 39 8.7 2.0 1.5 150 20 0.19 0.17 11.0 20
12 0.05 35 8.7 2.0 1.5 150 20 0.19 0.17 10.5 22
13 0.08 37 13.0 2.0 1.5 200 16 0.31 0.25 10.7 27
14 0.06 39 13.0 1.5 1.0 200 16 0.25 0.24 9.4 17
15 0.05 39 13.0 1.5 1.0 200 16 0.25 0.24 9.9 27
16 0.05 43 13.0 1.5 1.0 200 20 0.25 0.24 11.6 20
17 0.04 43 13.0 1.5 1.0 200 20 0.25 0.23 15.3 28
18 0.05 27 13.0 0.75 0.75 200 20 0.25 0.23 18.5 27
19 0.05 19 13.0 0.75 0.75 200 20 0.25 0.20 17.8 21
20 0.05 19 13.0 0.75 0.75 200 20 0.25 0.18 16.7 22
21 0.06 16 14.0 0.75 0.75 200 24 0.25 0.07 13.2 23
22 0.06 21 14.0 0.75 0.75 200 24 0.25 0.07- 10.2 19
23 0.05 21 14.0 1.0 1.0 200 24 0.25 0.07 9.3 18
Table 15. Process parameters of intermittent aeration process, unit 2 during different periods.
Period Sludge  Sludge Reten-  Aerobic Anaer- Recircu- Ferrous Hydraulic Sludge = Tempera- Time
load age tion time  obic lation feed surface  volume  ture of run
time time load load
kg gm—? m m?
kg—1d-1 d h h h % Fe2* m—2h—1 m—2h~1 °C d
1 0.09 30 6.5 2.0 2.0 200 0 0.24 0.22 12.2 13
2 0.08 34 13.0 2.0 2.0 100 o] 0.13 0.11 14.5 13
3 0.19 31 13.0 2.0 1.0 100 0 0.13 0.10 12.5 21
4 0.04 38 13.0 2.0 1.5 100 o] 0.13 0.12 10.3 26
5 0.02 39 13.0 2.0 1.0 100 o] 0.13 0.12 15.3 34
6 0.11 17 8.7 2.0 2.0 150 0 0.19 0.14 20.3 19
7 0.08 15 8.7 2.0 2.0 150 o] 0.19 0.09 17.7 21
8 0.13 16 8.7 2.0 1.0 150 o] 0.19 0.17 15.8 19
9 0.06 23 8.7 2.0 1.5 150 o] 0.19 0.16 12.9 39
10 0.06 20 8.7 2.0 1.5 150 o] 0.19 0.16 11.7 21
11 0.03 22 26 2.0 1.5 100 16 0.25 0.17 111 28
12 0.03 24 26 1.5 1.0 100 16 0.13 0.07 9.4 17
13 0.03 24 26 1.5 1.0 100 16 0.13 0.06 9.9 27
14 0.03 23 26 1.5 1.0 100 16 0.13 0.08 11.6 20
15 0.03 23 26 1.5 1.0 100 16 0.13 0.08 15.3 28
16 0.06 27 13 1.5 1.5 200 20 0.25 0.19 18.5 28
17 0.05 19 13 1.0 1.0 200 “20 TTTO25 0177 ° T 157 ¢ 44
18 0.04 16 13 1.0 1.5 200 20 0.25 0.18 13.0 1
19 0.04 24 13 1.0 1.5 200 20 0.25 0.23 10.6 19
20 0.05 23 13 1.0 1.5 200 20 0.25 0.24 10.2 18




the best reductions were approximately 70 % (Fig.
10 and 11).

The nitrification rates k, were 0.28—1.62 g kg ™!
h—! in unit 1 and 0.46—2.19 g kg™ h~! in unit
two. The denitrification rates ky were 0.27—1.46
and 0.33—1.61 g kg 7'h ! respectively (Tables 16
and 17).

k, and k, were calculated from equations 3 and
4:

k,= (Neor; — Nnmae) . L, 3)

ty MLVSS t, Tt
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5.52 Phosphorus removal

Total effluent phosphorus was 0.8—2 mg 1=! and
soluble phosphorus 0.1—1.0 mg 1~! depending on
the Fe:P molar ratio, which varied between 0.5 and
4.5 mol mol~! (Fig. 12, Appendix 5 and 6).

5.53 SVI, suspended solids, BOD and COD

The SVI was 60—135 ml g~ in unit 1 and 80—170
ml g~ in unit two, which can be considered nor-
mal for nitrifying sludge (Appendix 7).

k,= (Ntot,i - NNH4,e - NNOS,e) ta (4)
d MLVSS : n Effluent suspended solids were rather high in
td EI both units: 20—40 mg 1~'. Effluent BOD, was
h usually less than 25 mg I=! and COD (KMnO,)
¥ 'er}c; draulic d on time. h less than 70 mg 1~ which corresponded to removal
tq 15 mydrautic det}:’ntlon ume, rates of 80 % and 70 %. No differences could be
Lo 1S OXIC period, observed between the units (Appendix 5 and 6).
t, is anoxic period, h
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Table 16. Nitrification rates (k,) and denitrification rates
(ky) with standard error of mean in intermittent aeration
process, unit 1 during different periods.

Period Nitrification rate  Denitrification rate
g kg—1 h—1 g kg—1 h—1
1 0.53 = 0.11 0.48 £+ 0.08
2 0.59 £ 0.15 0.64 = 0.25
3 0.51 £ 0.06 0.61 = 0.13
4 0.28 = 0.04 0.27 £ 0.03
5 0.34 £ 0.04 0.51 = 0.06
6 0.91 £+ 0.09 0.68 £+ 0.08
7 0.89 & 0.08 0.67 £ 0.10
8 1.62+0.10 0.48 +0.21
9 1.27 £ 0.16 1.46 = 0.23
10 1.26 £ 0.11 1.15 £ 0.08
11 0.91 = 0.04 0.98 + 0.13
12 0.71 £ 0.12 0.71 £ 0.17
13 0.63 = 0.10 0.64 £ 0.12
14 0.67 = 0.04 0.70+ 0.04
15 0.63 = 0.07 0.60 £ 0.11
16 0.52 + 0.04 0.57 = 0.05
17 0.76 £ 0.11 0.68 £ 0.19
18 0.78 £ 0.07 0.65 = 0.07
19 1.01 £0.13 0.78 £+ 0.08
20 0.89 =0.12 0.62 £0.10
21 1.14 £ 0.09 0.86 + 0.10
22 0.91 = 0.11 0.74 £ 0.11
23 0.76 = 0.10 0.59 £ 0.09
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Table 17. Nitrification rates (k,) and denitrification rates
(ky) with standard error of mean in intermittent aeration
process, unit 2 during different periods.

Period Nitrification rate  Denitrification rate
g kg1 h~! g kg~ b
1 0.70 = 0.10 0.52 = 0.07
2 0.96 + 0.11 1.35+0.26
3 0.79 £ 0.13 1.14 1+ 0.20
4 0.69 % 0.09 0.68 = 0.09
5 0.71 £0.30 1.08 = 0.57
6 110+ 0.17 0.81 £0.13
7 219 +£0.28 0.38 £ 0.26
8 1.46 £ 0.13 1.61 £0.29
9 1.25 £ 0.09 1.26 £ 0.10
10 0.89 £ 0.14 0.96 1+ 0.23
1 0.59 £ 0.12 0.65 = 0.15
12 0.47 £ 0.03 0.28 + 0.05
13 0.46 + 0.04 0.35 1 0.05
14 0.56 £ 0.03 0.41 £ 0.04
15 0.51 = 0.08 0.40+ 0.03
16 0.53 £ 0.04 0.42 £ 0.05
17 0.98 = 0.11 0.79 £ 0.13
18 0.97 = 0.18 0.52+ 0.08
19 0.82 +0.11 0.51 = 0.08
20 0.70 £ 0.08 0.43 = 0.05

6. DISCUSSION
6.1 Nitrification and nitrogen removal

Nitrification was usually better than 80 % in the dn
process and intermittent aeration process in both the
control and simultaneous precipitation units, when
the ferrous sulphate dosage was less than 130 g m—>,
With higher ferrous dosages there was a definite
inhibition in the normal activated sludge process (n
process), compared with the control unit. The in-
hibitory effect was lower in the dn process and in-
termittent aeration process when the loading rate
was lower and the sludge age subsequently higher.
In the nd process the Fe feed was only 13 g m—3
and severe inhibition of nitrification occurred.
The nitrification rates k, varied between 0.28
and 3.09 g kg~ h~!, By using stepwise discriminant
analysis it was concluded that the k, values were
not dependent of either process, or unit and a re-
gression model could be developed using all data.
The independent variables tested were temperature,
sludge age, ferrous sulphate feed, aerobic and anoxic
times;- BOD:COD-ratie-and BOD:N,,, ratio. The -
BOD:COD ratio was chosen because it could indi-
cate toxicity of the wastewater. A change in the
BOD:N,,, ratio would cause a change in the sludge



composition giving a higher proportion of nitrifiers
in the sludge at lower BOD:N_, ratios. The effect
of DO was not tested, because it was always more
than 2 mg I~!. The pH value was also not taken
into consideration, because the processes were not
buffered which means that at high k rates and ef-
fective nitrate formation the pH would drop and
on the other hand denitrification increases the pH.
The regression equation was then

k, =0.93 +0.10 - T — 0.0068 - t, — 0.0023 - FE —
0.20 - BN (5)

where

T is temperature, °C

t, is sludge age, d

FE is ferrous sulphate feed, g m™
BN is BOD, to N, ratio in influent

3

The model had a significance of 99.9 %, squared
multiple correlation 0.58 and F-statistic 23.1. The
coefficients significance level was more than 99 %
except for the coefficient for G, which had a sifnifi-
cance level of 97.5 %. The residual mean square
was 0.143 and the residuals were normally distri-
buted. The model is physically logical, but it is valid
only when G is 10—50d, T is 10—18°C, and
ferrous sulphate feed 8—40 g m— of Fe?*. It is es-
pecially important to note that the reduction of
sludgeage to a value were wash-out of the nitrifying
organisms occur, totally inhibits nitrification. This
is usually the case, when sludge age is less than 10 d
at 10°C and 5 d at 20°C in normal activated sludge
processes (EPA 1975). It can be concluded that
temperature had the most strongest effect on the
k,-value. The effect of ferrous dosage in the model
was less pronounced compared with the obser-
vations on nitrification in the normal activated
sludge runs, but this could be explained by the fact
that high dosages were used only for a very brief
period (1.5 months) and in only unit compared to
the total research which lasted 42 months.

The unexplained variation in the model was
high, 42 % and no transformation or other inde-
pendent variables improved the model. This is due
to the heterogenous data, short test periods and
unsystematic variations in the influent with respect
to toxic substances.

The denitrification rates varied between 0.1 and
2.89 g kg~! h—!. From the results of discriminant
analyses it was concluded, that the k4 values dif-
fered between the. processes. so that the values in

_the dn process were higher than in the other pro-
cesses. No regression model could be developed for
k, and no systematic changes or correlations with
other variables were found.
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The denitrification rates were lower than stated
in literature. In the nd process the kg value were
0.33—0.82 g kg ' h~!in both units while work by
Wuhrman (1968), Johnson (1972) and Sutton et al.
(1979) arrived to 0.5—1.6 g kg7 h~! in the same
temperature range. In the nd process the denitri-
fication rate is limited by endogenours respiration
rate, because the organic compounds in the influent
are oxidized in the nitrification stage already and
only endogenous respiration and oxidation of ad-
sorbed and stored organic matter takes place in the
d unit. It can be postulated that when the organic
loading is high into the nunit, the k4 value is also
higher, because a grater part of the adsorbed organic
matter is available for denitrification.

The denitrification rates in the dn process were
0.79—2.30 mg g~ ™! in the simultaneous precipi-
tation unit and 0.52—2.89 mg g~' 17! in the con-
trol unit. The rates were appr. 50 % lower than
stated in literature (Balakrishnan 1969, Schuster
1970, Johnson 1972). During 5 periods out of 6 the
rates were higher in the control unit.

This could indicate that ferrous sulphate had an
inhibitory effect on denitrification either due to
the sulphate ion which competes with the nitrate
ion or due to diffusion limitation caused by the
ferrous hydroxide matrix surrounding the bacterial
cells. The former cause is less probable because the
increase of sulphate ions was only 50—70 % com-
pared to the control unit. The true mechanism of
inhibition was not ascertained. Compared with the
nd process the denitrification rate was higher be-
cause the influent organic carbon was immediately
available for denitrification and the reaction rate
was only partly limited by the endogenous respir-
ation rate.

In the intermittent aeration process the k-
values were 0.27—1.41 g kg—' h—! with ferrous sul-
phate and 0.52—1.61 g kg—' h™! without ferrous
sulphate. Also in this process the inhibition of
denitrification by ferrous sulphate was observed.
The rates were lower than in the dn process. This
is thought to be due to the lower organic load to
the reactor tank compared with the load to the
denitrification tank in the dn-process. The “best”
results according to total nitrogen removal of the
different processes is presented in table 18.

From the point of view of nitrification, equally
good results were gained with the dn process and
intermittent aeration the nd process giving unac-
ceptable ammonia removal. The “’best” total nitro-
gen removals were achieved with intermittent aer-
ation, but no real systematic difference could be
observed compared with the results of the dn pro-
cess. The total nitrogen removal of the nd process
was poor because of the low nitrification rate.
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Table 18. Summary of best nitrogen removals at two temperature levels (S is simultaneous precipitation, C is control).

nd-process dn-process Intermittent aeration
S-unit control unit  S-unit control-unit  S-unit control unit

Nitrification rate, % 55 71 95 95 96 91
Total N-removal, % 51 45 66 55 69 50

k., g kg—1 h~1 1.29 1.19 0.80 0.51 0.59 1.25

kg g kg—1 h—! 0.82 0.41 0.79 0.52 0.64 1.26

T, °C 11.6 10.4 12.2 12.1 10.8 12.8
Sludge load, kg kg—! d—!  0.065 0.042 0.048 0.041 0.06 0.06
SRT, d 18 18 53 50 70 23
Total detention time, h 10 15 16.5 16.5 13 8.7
Nitrification rate, % 95 98 99 89
Total N-removal, % 59 58 58 70

k., g kg—1 h—! 1.53 2.19 0.76 0.96

kd, g kg—1 h—t 1.57 2.20 0.69 1.35

T, °C 17.8 17.8 153 14.5
Sludge load, kg kg—! d~! 0.08 0.11 0.04 0.08
SRT,d 32 17 43 34
Total detention time, h 13.2 13.2 13 13

Altogether the reaction rates and total nitrogen
removals were considerably lower than stated in
other experiments and already existing full scale
applications. This was true both for the simul-
taneous precipitation units and control units. This
is thought to be due to the toxic compounds in the
influent.

6.2 Phosphorus removal

The effluent total phosphorus in the simultaneous
precipitation units varied between 0.45 and 3.0 mg
1= and soluble phosphorus between 0.04 and 2.6
mg 1~ Stepwise descriminant analysis did not indi-
cate that there was any difference between the pro-
cesses. Especially it was noticeable that during the
anoxic conditions no dissolving of precipitated
phosphorus occurred. It is assumed that as long as

there was nitrate present in the reactors, the redox.

potential was high enough to keep the precipitated

iron in an oxidated and thus insoluble state.
Regression equations were calculated for total

and soluble effluent solids using as independent

variables. Fe:P. molar ratio, temperature, effluent

pH and alcalinity, anoxic detention time, sludge
load and sludge volume load. Stepwise regression
gave the following equations:

P, =0.93 + 1.05/Mp,p
(Rz =0.96 F = 206:}:5:.‘)

(©)

The significance of the coefficients were better
than 99.9 % and the residuals were normally dis-
tributed.

P, = 0.11 + 1.130/ My
(R? = 0.97, F = 287+*%)

The significance of the intercept was 99 % and the
coefficient 99.99 %. (Fig. 13).
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Fig. 13. Effluent total phosphorus (P.,) and soluble
phosphorus (P,,) at different P to Fe molar ratios (Mpg,)
in all processes combined.



In seven full-scale activated sludge plants with
simultaneous precipitation, the mean effluent total
phosphorus was appr. 1 mg 1= and soluble phos-
phorus 0.5 mg 1=! at Fe:P molar ratio 1.5 mol
mol~!. The soluble phosphorus decreased to 0.2
mg 1" at Fe:P molar ratio 3 mol mol~" (Niemeld
1982). In this study the corresponding values were
1.6 mg I~ total P and 0.80 mg 1=" soluble P at 1.5
mol mol~' and 0.5 mg I~" soluble P at 3.0 mol
mol~! indicating somewhat poorer phosphorus
removals.

6.3 Suspended solids, BOD, and COD

The effluent suspended solids concentration was
rather high in all processes and units except for the
nd process. No systematic changes were found and
no correlations with the hydraulic characteristics as
surface load, or sludge volume surface load could
be found for either all units and processes separ-
ately or combined. The highest suspended solids
concentration in the effluent were in the inter-
mittent aeration process, both in the simultaneous
precipitation units and control unit (30—45 mg 1™
and the lowest in the dn-process, simultaneous pre-
cipitation unit (9 mg 1="). The high concentrations
could be caused by the rather long sludge age, which
causes deflocculation of the sludge and also by par-
tial denitrification in the settling tank. Slow mix-
ing prior to settling in the nd process did on the
other hand improve flocculation of the sludge thus
decreasing the effluent suspended solids. The high
suspended solids concentrations were also reflected
in the effluent BOD, and COD, which were higher
than normally is expected from well-operated ni-
trifying activated sludge plants. Occasional analysis
of soluble BOD, showed that the greater part of
the total BOD, was bound to the suspended solids.
Soluble BOD, was always less than 10 mg 17

6.4 pH and alcalinity

One problem which arises from nitrification is the
reduction of alcalinity with subsequent decrease in
pH which again causes deflocculation of the sludge
" and increased suspended solids in the effluent. The
reduction of alcalinity is 0.143 mol g~! of ammonia
nitrogen oxidized to nitrate. When denitrification
is adopted, part of the lost alcalinity is regained.
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The increase is 0.07 mol g~! of nitrate nitrogen re-
duced to nitrogen gas. The addition of chemicals,
eg. metal ions also reduces alcalinity. When adopt-
ing simultaneous precipitation with ferrous sul-
phate, the theoretical reactions are as follows:

Fe?t—»Fe’* + e~ (8)
Fe3* + HPO?—=FePO, + H* 9)
Fe3* + 3H,0 —=Fe(OH), + 3H* (10)

Equation (8) represents oxidation of Fe?* to Fe>*
in the aeration basin. Equation (9) represents the
precipitation of phosphorus with the liberation of
1 mol of HY for every mole of phosphorus precipi-
tated. Equation (10) represents the hydrolysis of
surplus Fe*?, which is not bound to phosphorus.
Another possible reaction is the formation of ferric
carbonate, but this is not taken into consideration.

Combining all these reactions a total change of
alcalinity, AALK can be calculated from equation

(1n

AALK =0.143 - (N5; — Nypige) — 0.07 - (Neoy
3. Fe _ 2- (Pmt,i - Paq,e) (11)
55 31

-NypseNrose +

A fairly good correlation was achieved between the
calculated and actual changes in alcalinity (Fig. 14).
The mean calculated alcalinity change of the whole
set of data was 2.85 mmol 17! and the mean ob-
served change was 2,87 mmol I~
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Fig. 14. Calculated and observed alcalinity changes in all
processes.



In general it can be stated that when nitrification
is adopted, also denitrification should be considered
from the point of view of process operation. The
addition of alcalinity in the form of lime is rather
expensive and clogging problems in the process
caused by calsium carbonates and sulphates can be
expected. '

7. SUMMARY AND CONCLUSIONS

Experiments on the possibilities to combine nitri-
fication and denitrification with simultaneous pre-
cipitation of phosphorus with ferrous sulphate were
carried out on pilot-plant scale. The processes
which were studied were one-sludge normal nitri-
fication with activated sludge (n process) nitri-
fication-denitrification (nd process) pre-denitri-
fication (dn process) and intermittent aeration.
The following conclusions were made:

1. Ferrous sulphate had an inhibitory effect on
nitrification in the n process when the dosage
exceeded 25 g m— Fe?" at loading rates of 0.1
kg kg=! d=! (BOD,/MLVSS), sludge age of 7—
10 d and temperature range 10—17°C,

. No effective nitrogen removal was achieved
with the nd process when the organic sludge
load was 0.04—0.08 kg kg—! d~! retention time
in the n reactor 6.5—8.7 h and 8.4—10.7 h in the
d reactor at 10—12°C. The system sludge age
was 14—30d.

The limiting reaction was nitrification in the
simultaneous precipitation unit (with a maxi-
mum ferrous sulphate feed of 13 g m—? Fe?t)
and denitrification in the control unit.

- In the dn process effective nitrification and up
to 60 % total nitrogen removal was achieved
when the organic load was 0.40—0.11 kg kg—!
d~, retention time in the d-reactor 6.0 h, n-re-
actor 10 h and temperature 10—17°C. The sys-
tem sludge age was 19—53 d. The ferrous sul-
phate feed could be increased to 26 g m— Fe?*
without inhibition of nitrification. The limiting
reaction was usually denitrification.

. In the intermittent process effective nitrification
and up to 70 % total nitrogen removal was
achieved. The organic sludge load was 0.05—
0.11 kg kg—' d=, detention time 9—26 h, sys-
tem sludge age 15—40 d, and temperatures 10—
17°C. The oxic and anoxic times were 0.5—2 h.
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The limiting reaction was usually denitrification ]

and ferrous sulphate had an inhibitory effect on
denitrification. The ferrous sulphate feed was
16—26 g m— Fe?'. Clogging of the diffusers

during simultaneous precipitation was experi-
enced.

Effluent total phosphorus could be reduced to
1.5 mg ™! and soluble phosphorus to 1.0 mg
=1 at an average ferrous to phosphorus molar
ratio 2.5 mol mol™". In this study effective
phosphorus removal and effective nitrogen re-
moval could not be combined with any of the
processes, because effective phosphorus removal
(effluent phosphorus approx. 0.5 mg I=') would
have needed approx. 4 mol mol— of ferrous sul-
phate, which again would have caused inhi-
bition of both nitrification and denitrification.
. Partial denitrification should be adopted in ni-
trifying activated sludge plants to counter bal-
ance the loss of alcalinity caused by nitrification.
When the wastewater to be treated contains
toxic substances or the concentrations of phos-
phorus, nitrogen or organic compounds mark-
edly differ from normal domestic sewage, pilot-
plant tests should always be made before di-
mensioning a combined nitrification-denitrifica-
tion-simultaneous precipitation process.
Further research is needed to evaluate the mech-
anism of inhibition of ferrous sulphate on both
nitrification and denitrification.
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LOPPUTIIVISTELMA

Rautasulfaatilla tapahtuvan jiteveden rinnakkais-
saostuksen ja biologisen typenpoiston yhteensovel-

tuvuutta tutkittiin neljilli eri prosessilla pienois-
mitassa VTT:n Suomenojan tutkimusasemalla.



Tutkittavat prosessit olivat nitrifikaatio (n-proses-
si), nitrifikaatio-denitrifikaatio-prosessi (nd-proses-
si), denitrifikaatio-nitrifikaatio-prosessi (dn-proses-
si) ja jaksottainen ilmastus. Tutkimuksista on
aiemmin julkaistu viliraportit (Valve ja Vuontela
1980, Valve 1981, 1982).

n-prosessissa havaittiin, etti rautasulfaatti inhi-
boi nitrifikaatiota, kun sy6ttd nousi yli 130 g m—*
ferrosulfaattia (26 g m > rautana) lieteiilli 7—10 d,
lietekuormalla 0,10—0,14 10—15°C:ssa.

nd-prosessilla ei saavutettu tehokasta typenpois-
toa. Rinnakkaissaostuslinjalla nitrifikaatio estyi jo
rauta-annostuksella 13 g m— (Fe*") ja denitrifikaa-
.tionopeus jii varsin pieneksi hyvin nitrifoivalla ver-
tailulinjalla. Lietekuorma oli 0,04—0,08 kg kg™!
d— lieteiki 14—30 d, n-yksikdn viipymi 6,5—8,7
h ja d-yksikdn viipymi 8,4—10,7 h 10—16°C:ssa.

dn-prosessin nitrifikaatio oli yleensi yli 80 % ja
typenpoisto parhaimmillaan n. 70 %, vaikka ferro-
sulfaattia annosteltiin 26 g m—* (Fe?*). Kuormitus-
aste oli alhaisempi kuin nd-prosessissa: lietekuorma
0,04—0,17 kg kg~ 'd~"" ja lieteiki 19—53d. Vii-
pymi d-yksikossi oli 5,2—6,5h ja n-yksikossd
8,7—10 h ja limpétila oli 10—17°C. Erityisesti de-
nitrifikaationopeus oli suurempi kuin nd-prosessis-
sa kummallakin linjalla.

Jaksottaisella ilmastuksella saavutettiin yleensi
yli 80 % nitrifikaatioaste ja parhaimmillaan n. 70 %
typenpoisto lietekuormalla 0,04—0,06 kg kg—! d—,
lieteidlli 23—70 d ja viipymailld 8,7—13 h. Jaksotus
oli 0,5—2,0 h ilmastus- ja taukoaikaa ja limpdtila
10—17°C. Nitrifikaationopeus oli samaa suuruus-
luokkaa kuin nd- ja dn-prosesseissa, mutta denitri-
fikaationopeus alhaisempi kuin dn-prosessissa.

Koko tutkimuksen aikana oli nitrifikaationopeus
0,3—3,0 g kg7 h~!. Voimakkaimmin vaikutti nit-
rifikaationopeuteen limpotila. Liszksi lieteiin pi-
-typpisuhteen suureneminen laskivat nitrifikaatio-
nopeutta.

Denitrifikaationopeudelle ei voitu laatia yhte-
niisti regressiomallia, mutta rautasulfaatei inhibot
denitrifikaatiota. Toisaalta mitd ”tuoreempana’ ji-
tevesi saatiin d-yksikkdon, sen suurempi oli denit-
rifikaationopeus. nd-prosessissa ja osin myds jak-
sottaisessa ilmastuksessa lietteen endogeenihengi-
tys muodostui denitrifikaationopeutta rajoittavaksi
tekijaksi.

Fosforin poistossa saavutettiin kokonaisjiinnds-
fosforipitoisuus 1,5 mg I~ ja liukoisen fosforin pi-
toisuus 1,0 mg 1= Fe-P moolisuhteella 2,5 mol
suomalaisten rinnakkaissaostuslaitosten tulosta.
dn-prosessin ja jaksottaisen ilmastuksen suurehko
kiintoainepitoisuus kisitellyssi jitevedessi piti ko-
konaisfosforipitoisuuden korkeana. Timi johtui

seki selkeyttim®ssi tapahtuneesta denitrifikaatios-
ta, jolloin vapautuvat typpikuplat nostivat lietettd
pinnalle, etti matalasta kuorimitusasteesta, joka
yleensi heikentii biologisen flokin muodostusta.
Loppuyhteenvetona voidaan todeta, etti saavu-
tettu typenpoisto oli heikompi kuin mihin muualla
on piisty. Syyni oli todennikdisesti rautasulfaatti
ja kisiteltivin jiteveden sisiltimit myrkylliset yh-
disteet. Tutkituista prosesseista ovat dn-prosessi ja
jaksottainen ilmastus kiyttokelpoisia, kun halutaan
tehokas nitrifikaatio ja kohtuullinen fosforin pois-
to, jolloin denitrifikaatiovaiheen tarkoituksena on
palauttaa osa nitrifikaation kuluttamasta alkalitee-
tista. Tilld tavoin sddstytdin kalkkiannostuksen ai-
heuttamilta kustannuksilta. Lisiksi saadaan osa ni-
traatteihin sidotusta hapesta uudelleen kiyttodn
prosessissa ja sidstetdin ilmastusenergiaa.

LIST OF SYMBOLS

ALK  alcalinity, mmol 1!
BN BOD, to N, ratio in influent, g g~}
DO dissolved oxygen

FE ferrous sulphate feed, expressed as Fe?*, g
m—?

kg denitrification rate, g kg=! h™!
(NnosMLVSS)

k, nitrification rate, g kg™' h—!
(N, /MLVSS)

Mpp  Fe to P molar ratio mol mol™!

Mpr. P to Fe molar ratio, mol mol™!

MLSS activated sludge suspended solids concen-

tration, kg m—>

MLVSS activated sludge volatile suspended solids
concentration, kg m—>

ammonia nitrogen, mg 1!

Nynos  nitrate nitrogen, mg ]~

total nitrogen, mg I~!

NR nitrification or ammonia removal, %
soluble phosphorus, mg 1!

total phosphorus, mg 1!

Q flow, m* h—!

SVI sludge volume index, m] g~

t, anoxic time, h

ty detention time, h

t, OXic or aeration time, h
t, sludge age, d

T~ - temperature, °C

\% reactor volume, m?

A ALK change of alcalinity from ingluent to efflu-
ent, mmol 1-!
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Appendix 7. Properties of activated sludge in intermittent aeration process dur-
ing different periods (mean % standard error of mean).

Unit Period DO MLSS MLVSS SVI P
mg -1 g 1! g -1 ml g—1 mg 1—1
1 1 2.4+ 0.6 8.19+ 0.36 5.60 % 0.31 118+ 8 0.34 = 0.09
2 3.4%0.2 10.80 £ 0.42 6.96 = 0.28 91t 6 0.20 £ 0.05
3 3.6+0.2 1070+ 0.71 6.62+047 101 9 0.23 = 0.04
4 3.0+03 12.00 £ 0.40 7.02 = 0.25 83t 4 0.45%0.19
5 3.0+ 0.6 15.80 = 0.60 9.85 % 0.61 60t 3 0.39 + 0.06

6 3.0£0.3 9.52+0.02 569+0.11 102%11 0.72 = 0.03
7 21£0.3 8.16 X 045 475%+033 122+11 0.68 = 0.12
8 3.3£05 6.85+0.11 4.24+0.19 42+ 4 0.68+0.08
9 1.8+0.3 8.81+ 0.44 5.39£0.34 91+ 6 0.67%0.06
0 29£05 9.09+£ 031 5.52%0.21 9%+ 7 074044

11 1.5%+0.1 9.63 £0.18 5.85+0.23 95+ 6 1.17%£0.15
12 1.9 % 0.1 9.72+£0.12 5.64 £ 0.06 91t 8 0.62+0.08
13 1.7 £ 0.4 673+ 0.25 4.18%+0.19 135+ 9  1.89+0.44
14 1.7 £ 0.7 6.12+£0.36 3.83+021 166=x 15 0.58 = 0.19
15 1.6 £ 0.4 7.98+0.11 494+006 118%11 0.56 £ 0.10
16 1.5+ 0.6 8.81 £ 028 521+028 108+ 11 0.84 = 0.46
17 1.4+ 0.8 894+ 0.73 559+ 046 100+ 12 1.08+ 0.13
18 1.8+ 0.6 10.10£0.23 6.31£0.14 89t 6 205%0.21
19 1.4+ 0.7 8.63 £0.27 5.42% Q.16 90+ 8 1.61%£0.22
20 1.6+ 0.7 7.691+0.21 4.85%+0.18 93+ 7 095%0.15
21 1.7+ 0.8 4.69+0.16 295+ 0.10 61+ 6 0.241+0.06
22 1.7 0.6 469+ 0.12 2.89+0.08 63 6 0.26:0.06
23 24*04 5.09+0.30 3.32%0.25 85+ 8 0.19£0.06

1 29+0.2 7.25+0.35 586027 126% 11 2.05+0.28
2 28+ 0.1 7.00+£0.52 569041 131%11 3.09 £ 0.33
3 3.7+ 01 485+ 0.50 3.72+£047 162110 1.97 £0.19
4 3204 6.091+ 027 444+£020 168119 1.62 £ 0.33
5 22+04 1330t 0.82 891 %£0.90 76 6 1.83 %040

6 2.6+ 0.4 712+ 055 5.09+043 102+ 9 211 =044
7 44+£0.8 488+ 027 3.53+£0.022 97 5 289%+0.41
8 33102 6391 0.17 441 +015 139%15 3.18 £ 0.20
9 23+£0.3 654+ 022 464+019 138%f 8 3.66+£0.36
0 1.6 0.3 596+ 0.14 436+029 144%f 6 259034

11 23x0.2 6.85+0.25 4.46+ 0.15 98t 7 239%0.12
12 26+0.3 516+ 0.14 3.39%+006 107 7 1.96£0.31
13 1.9% 0.1 5.04 +0.31 3.31 £0.08 93+10 0.77+0.24
14 1.9+ 0.3 5.25+0.44 339+ 006 119X 11 0.96 + 0.11
15 1.8+ 0.4 6.02+0.33 3.88x+011 115%12 1.23£0.13
16 1.6 £ 0.2 8.87 £ 0.68 5.23 = 0.05 83* 11 1.41 £ 0.28
17 24+0.2 7.06 £0.71 4.56 = 0.05 94+ 11 0.65 = 0.16
18 23+£03 721070 4.66+0.07 13410 0.34£0.06
19 20£03 6.47+0.51 416:0.06 141+t 8 0.60£0.13

20 2.0£0.2 6.08+0.56 4.65+0.05 116+ 6 0.86+0.34




