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Abstract
This thesis begins by presenting the general features of technicolor models from a model
building perspective. Next, a bosonic technicolor model, based on the Next-to-Minimal
Walking Technicolor theory, is reviewed. In this type of model, fermion masses arise from
scalar exchange with the techniquark condensate. The model passes flavor changing neutral
current limits, direct search limits, and oblique constraints, in the parameter region where the
fundamental scalar is heavy compared to the composite one. However, its mass is unnaturally
small compared to the Planck scale.

Supersymmetry can be used to naturalize fundamental scalars. After discussing general
features of supersymmetric models, a supersymmetric bosonic technicolor model, based on
the Minimal Walking Technicolor model, is introduced. This model has a special property:
in the absence of coupling with the MSSM, the supersymmetric technicolor sector has an
approximate N = 4 supersymmetry. We find that this flavor extension drastically changes
the condensate and low-energy spectrum compared to the naive Minimal Walking Techni-
color effective theory. The model passes flavor changing neutral current limits, and oblique
constraints, but in most of the otherwise viable parameter points, the Higgs particle is heavy.

Finally, the N = 4 extended MSSM model is presented.
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Chapter 1

Introduction

The Higgs boson is the last unconfirmed elementary particle predicted by the Standard Model
(SM) of particle physics. If a scalar Higgs-type particle is discovered at the LHC, one must
still determine the nature of it. If the discovered Higgs particle is indeed fundamental, then
it is the first fundamental scalar particle found in nature. Alternatively, the Higgs boson
could be composite, in analogue to the bound states of QCD.

In an effective field theory formalism, all phenomena with momentum exchange k < Λ can
be described by an action SΛ in which all particles have masses m < Λ. From this viewpoint,
the SM at the electroweak (EW) scale is simply a low-energy effective theory SΛEW

that
should be derived from other theories describing higher energy physics. One could imagine
deriving the SM by beginning at the Planck scale where the theory of quantum gravity is
mapped into a quantum field theory. If the Higgs boson is fundamental, its mass at the Planck
scale is given by a dimensionless function of quantum gravity parameters multiplied by the
appropriate dimensional parameter Λ2

Planck. As the cutoff Λ of the action SΛ is decreased
from ΛPlanck, heavy particles are integrated out of the effective action. Because the Higgs
mass term is not protected by any symmetry, if the heavy particles couple even indirectly to
the Higgs field, they will contribute to its mass term as (k/16π2)nm2, where k is a function
of coupling constants, m is the heavy particle’s mass, and n is the loop order in which the
term appears. Since the Higgs mass should be O(ΛEW ), the contributions of the quantum
gravity theory and the heavy particles that were integrated out have to cancel in a surprising
and delicate way. If instead there are no new particles between the EW and Planck scales,
then the Higgs mass has to be unnaturally small at the Planck scale, m2

0/m
2
Planck ∼ 10−34.

The terms “natural”, “unnatural”, and “technically natural” can be used to explain the
degree of mismatch between the predicted and observed value of any given parameter. For
example, based on the above paragraph, the Higgs mass parameter is predicted to be O(1)
in units of the scale of new physics. Therefore, either the SM is not a complete description
of nature, and new physics enters at the electroweak scale, or the SM Higgs mass parameter
is unnaturally small. In contrast, the Yukawa couplings of the SM are multiplicatively renor-
malized, and can take any perturbative value. Since the theory does not favor any particular
value, the Yukawa couplings are technically natural, see Table 1.1.

1



CHAPTER 1. INTRODUCTION 2

Dimensionless Definition Example
parameter
Natural Known mechanism explains ΛQCD/ΛPlanck

the measured value
Unnatural Known mechanism contradicts mHiggs/ΛPlanck

with measured value
Technically Natural Free parameter yt, ye

Table 1.1: This table explains the usage of the terms natural, unnatural, and technically nat-
ural in this thesis. Natural parameters are those whose experimental value is understood and
explained via a theoretical framework. Unnatural parameters are those whose experimental
value is disfavored in the given theoretical framework. Technically natural parameters are
completely free parameters within the theoretical framework, and while they can be fitted to
experiments, there is no physical explanation for any particular value.

In technicolor (TC) [1, 2], the Higgs particle is naturalized by making it composite. The
high energy Lagrangian contains new strongly interacting fermions (techniquarks) which form
a low-energy condensate. The electroweak symmetry is broken by this condensate, and the
smallness of the Higgs mass is a result of the coupling constant running: ΛEW/ΛPlanck ∼
exp(k/αPlanck−k/αEW ). The would-be composite Goldstone bosons of the technicolor chiral
symmetry are absorbed to form the longtitudinal degrees of freedom of the electroweak gauge
bosons.

In the Standard Model, the other task of the Higgs field is to give mass to the SM fermions.
In generic technicolor models, one must add another sector, called the flavor extension in this
thesis, specifically for this task. This thesis focuses on the question: “How are fermion masses
explained in technicolor?” and approaches the question via bosonic technicolor models. In
these models, the fermion masses arise from scalar mediated interactions with the technicolor
condensate.

Chapter 2 reviews the features of technicolor and generic flavor extensions. Chapter
3 summarizes the results of Paper I on the bosonic Next-to-Minimal Walking Technicolor
model. Chapter 4 introduces Supersymmetry (SUSY) and the problems in the Minimal Su-
persymmetric Standard Model (MSSM) that supersymmetric technicolor can solve. Chapter
5 introduces the Minimal Supersymmetric Conformal Technicolor (MSCT) model and sum-
marizes the results of Paper III. Chapter 6 introduces the N = 4 Extended MSSM model
and summarizes the results of Paper IV. The main results of Paper II are fused into Chapters
4-6. Chapter 7 contains a summary and relevant conclusions. In this introductory part, we
will omit many technical details, which can be found in the papers included in the Appendix.



Chapter 2

Developing Technicolor

2.1 Effective Lagrangian for QCD

Quarks (3 families) SU(3)C , SU(2)L, U(1)Y

qL =

(
uL
dL

)
( 3, 2 , 1

6
)

uR ( 3, 1, 2
3
)

dR ( 3, 1, −1
3
)

Table 2.1: Representations of quarks in QCD

In technicolor, electroweak symmetry breaking (EWSB) is modeled on the precedent of QCD.
In isolation, QCD is an SU(3) gauge theory with Nf = 6 massive quarks in the fundamental
representation of the gauge group. The theory is coupled to other particles of the Standard
Model (SM) via the Yukawa operators and gauging the six quarks as three doublets of the
electroweak symmetry, SU(2)L × U(1)Y . In this section it is shown that, because of the
gauging, the spontaneous symmetry breaking of the flavor symmetry simultaneously breaks
the electroweak symmetry. The methods used in constructing the effective Lagrangians are
also introduced.

It seems that by chance, two of the quarks (up, down) are very light. Therefore the
Lagrangian1

L = −1

4
FµνF

µν + q̄LγµD
µqL + q̄RγµD

µqR + q̄LmqR + h.c. (2.1)

approximately satisfies a global chiral symmetry SU(2)L × SU(2)R, under which

qL/R → GL/RqL/R , GL/R ∈ SU(2)L/R. (2.2)

1If we have removed the Higgs field, the quarks ought to have no hard mass term. Because of the mass
term, the model does not fully conserve even the gauged symmetry SU(2)L × U(1)Y , and the Goldstone
bosons of the symmetry are therefore missing. However, the mass term serves a purpose to introduce the
spurion method and is therefore included.

3



CHAPTER 2. DEVELOPING TECHNICOLOR 4

Here qR = (uR, dR) and m = Diag(mu,md). This symmetry is dynamically broken at low
energies by the chiral condensate, which transforms as

〈q̄LqR + q̄RqL〉 →
〈
q̄LG

†
LGRqR + q̄RG

†
RGLqL

〉
. (2.3)

Only the diagonal SU(2)V subgroup, given by GL = GR, is conserved by this condensate.
Consider the modeling of the spontaneous symmetry breaking in the QCD sector with an

effective Lagrangian. To not break the Lorentz symmetry we want to study the composite
scalar sector. It is obvious that the only SU(3)C singlet scalar composite field of two quarks
we can write is given by M ∼ qLq̄R, from which we can read the transformation properties
of M under SU(2)L × SU(2)R:

M ′ = GLMG†R. (2.4)

The covariant derivative for a fully gauged SU(2)L × SU(2)R is automatically given by the
transformation properties. However, only a subgroup of the global chiral symmetry is equated
with the gauged electroweak symmetry: SU(2)L is identified with the gauge symmetry but
only the diagonal generator of SU(2)R is identified with hypercharge. We use the ansatz

DµM = ∂µM + igLWµM − igYMBµτ3, (2.5)

where we denote W ≡ W iτi and τi are the SU(2) generators, i.e. τi = σi/2 in terms of the
Pauli matrices σi. Requiring (DµM)′ = GL (DµM)G†R, one easily finds

W ′
µ = GLWµG

†
L −

1

igL
(∂µGL)G†L

B′µ = Bµ −
1

igY
(∂µGR)G†R. (2.6)

We want to construct the simplest possible model to study chiral symmetry breaking, so
we will use the minimal linear representation:

M =
1√
2

(s+ 2iπM) , (2.7)

where we denoted π ≡ πiτi and s is a scalar. The ansatz (2.7) is minimal since, as shown
below, it is closed in form under the symmetry group SU(2)L×SU(2)R, and also it includes
the Goldstone bosons of this symmetry. It also contains the least amount of dynamical fields
given these conditions. For example, under an infinitesimal transformation of SU(2)L, M
transforms to

GLM =
1√
2

(
1 + igLG

j
Lσj
) (
sI2×2 + iπiMσi

)
(2.8)

=
1√
2

(
s− gLGi

Lπ
i
M + iσk(gLsG

k
L + πkM − gLGi

Lπ
j
Mεijk)

)
, (2.9)

which is of the same form as (2.7).
The effective Lagrangian for this theory at low energies is given by the most general

one consistent with the global symmetries and given particle content. The symmetry of the
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Lagrangian (2.1) would be SU(2)L×SU(2)R, if m transforms as m→ GLmG
†
R. Therefore we

can formally construct the low-energy effective Lagrangian by assuming this transformation
property for m. Since m is small compared to the natural QCD mass scale of around 1 GeV,
we can later remove all but the lowest order terms in m. This method is called the spurion
method.

For simplicity, we require the dimension of the operators to be less than four and the
symmetry breaking part to be lowest order in the spurion field m:

L =
1

2
Tr
[
DµMDµM †]− V

V = −m
2
M

2
Tr
[
M †M

]
+

λ

24
Tr
[
M †M

]2
+ c1Tr [Mm] + h.c.+ . . . (2.10)

The negative mass ofM signifies spontaneous symmetry breaking. From experiment, we find
〈s〉 = fπ = 73 MeV.

Unknown coefficients appearing in an effective Lagrangian are determined from experi-
ments or by matching the effective low-energy theory with the underlying one. The order
of magnitude of otherwise unknown coefficients can also be estimated by Naive Dimensional
Analysis (NDA) [3, 4, 5]. According to NDA, the coefficients depend on Λ, the mass of some
low lying non-Goldstone state, and hN . 4π, which estimates the size of loop corrections in
the theory. The rules will be discussed in detail in Section 3.2. The result for the couplings
of (2.10) are: (m2

M)NDA = Λ2, (λ)NDA = h2
N , (c1)NDA = Λ2/hN . We also have an additional

condition fπ = 73 MeV, which can be used instead of one of these estimates; usually m2
M is

solved from the extremum condition of (2.10) instead of using the NDA estimate.
It is interesting to test the NDA estimates for the parameters against the values found

in actual phenomenological models of QCD; see e.g. [6]. In Table 2.2 some typical values
from a global fit are shown. In these models one fits all data and therefore it is important to
consistently include all fields lighter than the heaviest field included. Therefore the spectrum
is chosen to contain also the CP partners of the meson field M , vector mesons, and baryons.
Since the particle content is different, the parameters in Table 2.2 are not one-to-one to the
ones in the effective Lagrangian (2.10), e.g. there are two independent quartic couplings
while there is only one in (2.10). Still, the NDA rules give the correct order of magnitude for
all parameters. For the NDA estimate in Table 2.2 we set

m2
M =

λf 2
π

6
+

√
2c1(mu +md)

fπ
. (2.11)

mM/ (mM)NDA λ/ (λ)NDA c1/ (c1)NDA fπ

NDA 0.2 1 1 93 MeV
[6] 0.77 −0.14 and 3.2 0.14 93 MeV

Table 2.2: Comparison of values found from NDA and an actual fit to data.

To calculate the W and Z boson masses, we expand the Lagrangian around 〈s〉 = fπ.
From the kinetic term,

1

4
g2
Lf

2
πTr

[
W i
µτiW

µ
j τ

j
]

=
1

8
g2
Lf

2
πW

i
µW

µ
i , (2.12)
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we find
mW =

gLfπ
2
∼ 30 MeV. (2.13)

Importantly, we retain the phenomenologically successful relation

mW

mZ

=
gL

(g2
L + g2

Y )1/2
= cos θW , (2.14)

where θW is the usual weak mixing angle defined in terms of coupling constants. This result
is a direct consequence of the custodial SU(2)V symmetry that is satisfied by the model.

2.2 Fermion Masses and Flavor Changing Neutral Cur-
rents

The model of EWSB introduced in Section 2.1 is deficient because

1. The QCD pions are absent from the physical spectrum

2. The mass of the W boson becomes 30 MeV whereas it should be 80 GeV

3. There is no source of hard mass for quarks or leptons

Technicolor, at its simplest, assumes that the Higgs sector is replaced with a copy of QCD with
a rescaled pion decay constant fπ → v = 246 GeV, so that the mass of W is given correctly.
This immediately fixes the first two problems. However, one cannot write a renormalizable
operator to give mass to the SM fermions with just the TC spectrum. Therefore technicolor
models need new dynamics at some higher energy scale to complete the model. This situation
is common to all TC extensions of the SM: the SM fermion masses must be mediated by a
yet unspecified new sector, which we will generically call the flavor extension of TC.

Traditionally technicolor model builders strived to avoid fundamental scalars and there-
fore only the Extended Technicolor (ETC) models were considered [7, 8]. A large gauge
group GETC , defined at some high energy, is broken, possibly in many steps, to the low-
energy groups GTC × GSM by an unspecified mechanism. The group GSM contains at least
the electroweak group.

GETC
E∼ΛETC−→ GTC ×GSM . (2.15)

This elevates the masses of the coset gauge bosons of GETC/(GTC ×GSM) to gΛETC . These
massive gauge bosons are then integrated out, and they will generically lead to four fermion
interactions including the ones necessary to generate SM fermion masses.

Since there is no particularly successful model of ETC, that would explain in detail the
mechanism and specify why the gauge symmetries are broken, we must somehow parametrize
our ignorance on the specific ETC theory. This is done by assuming an effective Lagrangian
below the ETC scale with the following terms:

aab
Q̄LT

aQRQ̄RT
bQL

Λ2
ETC

+ bab
Q̄LT

aQRf̄RT
bfL

Λ2
ETC

+ cab
f̄LT

afRf̄RT
bfL

Λ2
ETC

. (2.16)
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Here and throughout this thesis Q refers to techniquarks and f to SM fermions. The
matrices T a denote the generators corresponding to the integrated gauge bosons. The cou-
plings a, b, and c should be calculated from the full ETC theory and hence they should be
proportional to g2

ETC , the square of the gauge group coupling from two ETC gauge boson
vertices. The first type of terms break the technicolor chiral symmetry and induce masses
to any otherwise massless Goldstone boson. The second type of term gives masses to SM
fermions. The c terms mediate Flavor Changing Neutral Currents (FCNC) between SM
fermions [9]. At tree level the SM has no FCNCs.

A useful summary of FCNC constraints is found in [10], in which the authors use various
data to limit coefficients of FCNC inducing four fermion operators. The summary table is
reproduced in Table 2.3. These limits can be used to limit the largest possible fermion mass
in generic ETC models. For example, looking at (b̄LγµdL)2, one has, assuming a typical
common value cab ∼ c,

c

Λ2
ETC

.
1

Λ2
exp

. (2.17)

This can be used to give an upper bound for the largest possible fermion mass, if one assumes
that the couplings b and c are equal:

mF ∼
b
〈
Q̄Q
〉

Λ2
ETC

.

〈
Q̄Q
〉

Λ2
exp

∼ 1 MeV, (2.18)

where we have used, in the last estimate,
〈
Q̄Q
〉

= 4πv3, v = 246 GeV, and Λexp ∼ 500
TeV. This result is a factor of 105 lower than the top mass, and thus unrealistic. However,
it is based on some crude approximations, e.g. assuming that the values of the bab and cab
are equal. Usually in fact the ETC gauge group is broken down in many steps, with only
the last step generating the top mass. In these models the couplings can be very different
as there are multiple ETC scales. Also the situation is improved in the so called walking
models, which will be discussed in Section 2.3. Still, it is clear that any ETC model will have
difficulties in explaining the suppression of FCNCs. There is much ongoing research in ETC
model building [11, 12, 13, 14, 15, 16, 17, 18].

This thesis focuses on an alternative to ETC, the so called Bosonic Technicolor (BTC).
Bosonic Technicolor models were pioneered in a series of papers by Simmons, Kagan and
Samuel, and Carone and Georgi [19, 20, 21, 22, 23, 24, 25, 26, 27]. In these models the SM
fermion masses are mediated by scalars, as explained below. The Lagrangian of the BTC
model is

LBTC = LSM
∣∣∣
Higgs=0

+ LTC + LHiggs + LY ukawa . (2.19)

The Yukawa sector contains Yukawa couplings for all fermions, that is, the usual ones plus a
coupling for the techniquarks. When the techniquarks condense, their Yukawa term yQQ̄HQ
becomes a linear term in the Higgs potential. Therefore the Higgs potential is of the form:

V = −m2
Ms

2 + λMs
4 + c1yQsh+m2

Hh
2 + λh4, (2.20)

where s is the techniquark composite scalar and h the fundamental one. The tree-level term
tilts the Higgs potential and induces, even for a positive Higgs mass, a vacuum expectation
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Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables
Re Im Re Im

(s̄Lγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; εK
(c̄Lγ

µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|, φD
(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|, φD

(b̄Lγ
µdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd

; SψKS

(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd
; SψKS

(b̄Lγ
µsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

Table 2.3: Bounds on representative dimension-six ∆F = 2 operators. Bounds on Λ are
quoted assuming an effective coupling 1/Λ2, or, alternatively, the bounds on the respective
cij’s assuming Λ = 1 TeV. Observables related to CP violation are separated from the CP
conserving ones with semicolons. Table is taken from [10].

value (vev) proportional to yQ 〈s〉 /m2
H , therefore giving mass to SM fermions via their Yukawa

terms. This is demonstrated in Fig. 2.1.

-2 -1 1 2
h

-0.4

-0.2

0.2

0.4

-

h2

2
+

h4

4

-1.0 -0.5 0.5 1.0 1.5 2.0
<h>

-1.5

-1.0

-0.5

0.5

1.0

1.5

-2h+

h2

2
+

h4

4

Figure 2.1: The left hand side panel shows the regular Mexican hat potential corresponding
to a negative mass term and a positive quadratic term. The right hand side panel shows a
potential with a linear term, a positive mass term, and a positive quadratic term.

The authors studied several possible scenarios, depending on the parameters of the Higgs
potential (2.20):

1. The fundamental Higgs field is very heavy. In this case the Higgs self coupling can be
ignored: λ = 0

2. The fundamental Higgs field is massless: m2
H = 0
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The previous authors have essentially constructed suitable effective Lagrangians, and then
applied experimental constraints from FCNCs, oblique parameters, and collider signals. A
BTC model we studied in Paper I will be discussed in Chapter 3. This type of model has
been investigated recently also in [28, 29, 30, 31].

One benefit of BTC models is the GIM mechanism, which works just like in the SM.
However, additional FCNC contributions arise from extra SU(2)L triplet scalar states. The
low-energy theory contains more than one triplet of SU(2)L, because the fundamental Higgs
multiplet includes one and there is at least one triplet also from the technicolor sector.
One triplet will be absorbed by the W and Z gauge bosons, but there are at least three
physical states left, that are exactly like QCD pions, except heavier. The relevant ∆s, b = 2
box diagrams [21] are shown in Fig. 2.2. Because of the physical pion propagator, the
contributions are essentially suppressed by the Higgs mass. For Higgs masses in the multi-
TeV range, the contributions are small.

d

q̄

q

d̄

πW

t

+
ππ

t

q̄ d̄

qd

t̄ t̄

Figure 2.2: Box diagrams contributing beyond the SM to ∆q = 2 FCNC interactions for
q = s , b. Of the possible quark flavors running in the loops the top quark provides the
dominant contribution due to its large Yukawa coupling to the scalar degrees of freedom.

BTC models also allow to analyze the backreaction of the flavor extension on the techni-
color theory. For example, it was noted in [23] that if the hard quark mass grows large, so
that the techniquarks become more like the c quark than the u and d quarks, the technicolor
theory begins to look less like QCD, and the spurion expansion used to construct the effective
Lagrangian breaks down. If the techniquarks become very heavy then they should decouple
from the infrared dynamics instead of condensing.

Just like in the SM, in BTC models the Higgs field suffers from the unnaturalness problem.
Therefore models without any further mechanisms to naturalize the theory are unnatural.
BTC could be naturalized by compositeness, i.e. by assuming the fundamental Higgs particle
is, in fact, a composite particle bound by another interaction. In this case it is natural that the
Higgs particle is much heavier than the electroweak scale. The other option is to naturalize
the Higgs field with supersymmetry (SUSY). SUSY theories can have natural light scalars,
and therefore provide a compelling ultraviolet completion of BTC models. A specific SUSY
BTC we studied in Paper III will be reviewed in Chapter 5.

Supersymmetry must be broken at low energies. In phenomenological models this is
achieved by so called soft SUSY breaking terms, which yet again mediate FCNC transitions
via off-diagonal terms in the scalar mass matrices. This will be discussed in Section 4.2.
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2.3 Walking Theories and the S Parameter
It is natural that the large amount of data collected on QCD guides our intuition of technicolor
dynamics. However, it is useful to cartograph the variety of different models available. We
therefore consider all parameters of QCD that can be altered for technicolor:

1. The gauge group may be SU(N) for general N . Also the symplectic or orthogonal
groups can be considered.

2. The representation of the quarks may be different from the fundamental one, e.g., the
adjoint. The number of quark flavors can change. There might even be quarks in many
different representations.

3. The chiral symmetry might be explicitly broken to a larger degree than in QCD. Com-
pare to QCD without the very light up and down quarks.

The first two points are conveniently discussed using the phase diagram of field theories in
the (N,Nf ) plane and as a function of different representations of the quarks Q. The quark
representation has an effect on the screening properties of matter, and indeed leads to a very
different phase diagram [32]. The prevalent feature of the phase diagram is the conformal
window. Theories lying inside the conformal window display long distance conformality.

• The upper boundary of the conformal window is the limit where asymptotic freedom is
lost. Below this limit the theory has a Banks-Zaks conformal fixed point [33] at values
of the coupling that can be reliably calculated in perturbation theory.

• The lower boundary of the conformal window corresponds to conformal theories with
large values of the conformal coupling. There are various approximate methods to
estimate the number of flavors at which the conformal window ends: the Scwhinger-
Dyson equation combined with the two loop beta function [34, 35], the all orders beta
function [36], fixed point annihilation [37], and first principle studies on the lattice (see
e.g. the recent papers [38, 39] and references therein). All results are compatible.

• Just below the lower boundary, the theory is nearly conformal, but still develops an
infrared scale. In this regime, unlike QCD, the coupling walks for a large energy range
before chiral condensation occurs [40, 9, 41].

In QCD, the scaling symmetry is broken spontaneously by the low-energy chiral conden-
sate. Since there is no corresponding observed Goldstone boson, this symmetry must also
be broken explicitly by the trace anomaly. Instead, walking theories nearly conserve confor-
mality, and therefore it has been argued that the dilaton2, i.e. s appearing in (2.7), should
be light [42, 43]. There are also arguments based on large-N scaling that lead to the same
conclusion. This is very interesting in light of the recent LHC data [44, 45], suggesting that
even if the Higgs particle is found to be light, it can still be composite.

Note that the vastly different models this phase diagram covers correspond to only a few
effective Lagrangians. This is because the global symmetry breaking patterns govern the
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Figure 2.3: Phase diagram or SU(N) gauge theories with fermions in the fundamental, two-
index antisymmetric, two-index symmetric, and adjoint representation, counting from top to
bottom. In between the upper and the lower solid curves, the theories are expected to develop
an infrared fixed point according to the all orders beta function [36]. The area between the
upper solid curve and the dashed curve corresponds to the conformal window obtained in the
ladder approximation. Taken from [36].

Quark Representation Global Symmetry Breaking Pattern
Complex SU(N)2 → SU(N)
Real SU(2N)→ SO(2N)

Pseudoreal SU(2N)→ SP (2N)

Table 2.4: Possible global symmetry breaking patterns, in the absence of a flavor extension,
depending on the nature of the quark representation [46].

low-energy theories of technicolor. Different possibilities are summarized in Table 2.4 and
depend only on the nature of the quark representation.

Let us now consider how a walking coupling affects the maximum fermion mass allowed
in the theory. Since this applies equally to BTC and ETC models, we calculate the effect
with a simplified calculation assuming a dimension one field X, that can thus be scalar or
gauge field, with mass mX :

V ∼ 1

2
m2
XX

2 − gXQ̄QXQ̄Q− gXF̄FXF̄F. (2.21)

Below the scale mX one can integrate the particle out by solving X from ∂V/∂X = 0.
Now we are interested in the SM fermion mass term, which is given by the term

V ∼ gXF̄FgXQ̄Q
Q̄QF̄F

m2
X

. (2.22)

2The Goldstone boson of the scaling symmetry is called the dilaton.
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Next we consider how this term changes under the renormalization group evolution towards
low energies where the mass is measured. The couplings gXF̄F and gXQ̄Q are assumed to be
constant. Therefore only the techniquark bilinear is renormalized.

The renormalization group equation for the techniquark bilinear gives

〈
Q̄Q
〉
mX

= exp

(ˆ mX

ΛTC

dµ

µ
γm(α(µ))

)〈
Q̄Q
〉

ΛTC
. (2.23)

In QCD, asymptotic freedom sets in quickly above ΛQCD and the coupling behaves as α ∝
1/ log µ; if this were true in technicolor, then the anomalous dimension would behave above
ΛTC approximately as γm = γ0

m/ log(µ/ΛTC), where γm(α(ΛTC)) ≡ γ0
m. Therefore one finds

the enhancement factor

exp

ˆ mX

ΛTC

dµ

µ

γ0
m

log µ
ΛTC

= exp γ0
m

ˆ log
mX
ΛTC

0

dx
x

=

(
log

mX

ΛTC

)γ0
m

. (2.24)

Instead, if α = α∗ is approximately constant between ΛTC and mX , then the corresponding
ratio gives (using γ∗m ≡ γm(α∗))

exp

ˆ mX

ΛTC

dµ

µ
γ∗m =

(
mX

ΛTC

)γ∗m
, (2.25)

a much larger enhancement. Therefore we arrive at the following estimate for fermion masses:

mF = gXF̄FgXQ̄Q
4πv3

m2
X

ω, (2.26)

where we set the condensate at the electroweak scale to
〈
Q̄Q
〉
TC

= 4πv3, and

ω =


(
mX

ΛTC

)γ∗m
, walking theory(

log mX

ΛTC

)γ0
m

, running theory
. (2.27)

The largest possible fermion mass for a given mX in a walking theory is

mF ∼
(gXF̄F

4π

)(gXQ̄Q
4π

)(3 TeV
mX

)2−γ∗m
× 3 TeV. (2.28)

This equation gives the promised improvement to the result we had in (2.18). To compare
with (2.18), we must estimate the couplings g. Taking gXF̄F = gXQ̄Q = gETC = 4π we find

mF .

(
3 TeV
4πΛexp

)2−γ∗m
× 3 TeV. (2.29)

To generate the strange quark mass from this formula, and using Λexp ∼ 500 TeV, requires
an anomalous dimension γ ∼ 0.65. To generate the top quark mass one would need a huge
anomalous dimension γ ∼ 1.6. Therefore in ETC phenomenology, a walking coupling and a
large anomalous dimension of the fermion bilinear are clearly desired.
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Next we discuss an experimental input that limits the technicolor sector in itself, inde-
pendent of the sector used to generate fermion masses. In [47] it was discovered that a large
class of beyond the SM models could be analyzed just by how they affect the electroweak
gauge boson self energies, and these effects could be codified in a few parameters: S, T , and
U . Later a few more have been introduced as well [48]. The parameters were chosen so that
they carry some intuitive significance: the S parameter counts the size of new electroweak
interacting sectors; the T parameter counts isospin breaking. These parameters have become
very important in BSM analysis. For technicolor, especially the S parameter is important.
It is defined via two point functions of gauge bosons as

αS = 4s2
wc

2
w

Πnew
ZZ (m2

Z)− Πnew
ZZ (0)

m2
Z

, (2.30)

where the label new means that only contributions that are not in the SM are taken into
account.

The expression (2.30) is impossible to calculate in a strongly interacting theory such as
technicolor. In the simplest estimate, one calculates it using the perturbative expressions in
terms of the techniquarks and assuming a large (compared to mZ) dynamically generated
mass for the techniquarks. This estimate gives

Snaive =
NFd(r)

6π
, (2.31)

where d(r) is the dimension of the representation of the techniquarks. Various approximations
[47, 49, 50, 51] also agree that this “naive” estimate (2.31) is relatively accurate. The full S
parameter has also been postulated [52, 53] to be larger than (2.31). This means that one
should choose the technicolor theory so that it minimizes (2.31).

Using the naive S parameter as a measure of minimality, there are several models on
the market. The two nearly conformal benchmark models studied in this thesis are Minimal
Walking Technicolor and Next-to-Minimal Walking Technicolor (MWT and NMWT, respec-
tively) [32]. The MWT model has two technifermions in the adjoint representation of SU(2),
resulting in Snaive = 1/6π. Interestingly, the technicolor theory suffers from the SU(2) Wit-
ten anomaly [54]. Therefore, to avoid the anomaly, one must add to the theory additional
weak doublets that are not charged under the TC gauge group. The NMWT model has
two technifermions in the sextet representation of SU(3), giving Snaive = 1/2π. NMWT is
introduced in detail in Section 3.1 and MWT in Section 5.1.

2.4 Summary
Summarizing, the full underlying Lagrangian of technicolor models is given by replacing
the Higgs sector with a strongly interacting sector and possibly some additional degrees of
freedom:

LHiggs → −
1

4
FµνF

µν + iQγµD
µQ+ . . . (2.32)

Here various representations can be chosen for the techniquarks Q and also the gauge group
and number of flavors can be chosen to satisfy various constraints such as those given by the
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S parameter. The dots represent any additional degrees of freedom, and must include the
flavor extension necessary to accommodate the SM masses. This extension can also backreact
on the TC dynamics, by e.g. modifying the chiral symmetry breaking pattern (see Chapter
5) or affecting the anomalous dimension of the fermion bilinear [55].

Extensions with spin-1 mediators are denoted ETC models. The masses of the ETC
gauge bosons have to be above the EW scale, since light ETC gauge bosons, associated with
gauged flavor symmetries, are experimentally excluded. Models with spin-0 mediators are
denoted BTC models. In BTC the scalar mediator can be light or heavy. Each case can be
described by writing the terms that generate fermion masses in the effective action at the
electroweak scale, as given in Table 2.5.

Spin Model Category mX . ΛEW mX > ΛEW

Spin-0 Bosonic Technicolor yQQ̄LHQR + yf f̄LHfR yQyf
Q̄LQRf̄RfL

m2
H

Spin-1 Extended Technicolor Q̄DµγµQ+ f̄Dµγµf g2
ETC

Q̄LQRf̄RfL
m2

ETC

Table 2.5: Possible mediators, name of model, and relevant terms for fermion masses in the
effective action at the electroweak scale. Here mX gives the mass of the mediator and ΛEW ∼
TeV.

Importantly, the additional sectors very often induce FCNCs, leading to additional phe-
nomenological constraints. The main sources of FCNCs depend on the precise nature of the
flavor extension and they can be:

a) Four SM fermion interactions from integrating out heavy ETC gauge bosons

b) Extra pseudo-Goldstone states with quantum numbers of W

c) Soft supersymmetry breaking scalar mass terms with off diagonal elements, discussed in
Chapter 4

Using these definitions, the FCNC sources relevant for each model stereotype, along with
other major issues, are listed in Table 2.6.

Flavor Extension mX . ΛEW mX > ΛEW General Problems
Unnatural BTC b) None Unnatural
SUSY BTC b)+c) c) SUSY breaking description

Composite BTC b) None Composite interaction description
ETC Excluded a) No singularly successful models

Table 2.6: This table lists the major issues in each model type. The first column gives the
type of the model, the next two columns the types of FCNC mediation, the third column
gives general problems.

Finally, in every technicolor model the vector mesons of the TC sector also induce FCNCs
[56]. This is because the vector mesons can mix with the electroweak gauge bosons, and hence
contribute via the diagrams already existing in the SM. These limits convert to limits on the
parameter space of the vector mesons, and they are not considered in this thesis.
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At the electroweak scale, the full Lagrangian (2.32) is mapped to a mesonic effective the-
ory, similar to (2.10), which can be used to calculate observables. Explicit symmetry breaking
is taken into account with the spurion method. Higher excitations can be included, such as
baryonic states or vector and axial vector particles, which are important for actual discovery
of generic technicolor models and for unitarizing WW scattering [57]. Some coefficients can
be estimated by Naive Dimensional Analysis, which will be discussed in Section 3.2, and in
the spin-1 sector also by the Weinberg sum rules [58]. In essence, the Lagrangian is

LSM |H=0 + LTC → LSM + ... (2.33)

where the EW scale effective theory contains, in addition to the operators already in the
Standard Model, some new higher dimensional operators and also some completely new
fields.



Chapter 3

Bosonic NMWT

Bosonic TC models are theoretically appealing because they are complete up to the scale
of quantum gravity. They also allow us to directly write the operators giving mass to SM
fermions and to study in detail the interplay of the technicolor sector and the extension. In
this chapter, we will show that current experimental limits allow a bosonic technicolor model
where the technicolor sector corresponds to NMWT. The fundamental Higgs field is kept
relatively light, and an important feature of this model is that it can be viable even with a
small anomalous dimension of the technicolor condensate.

3.1 Effective Lagrangian
In Paper I, we studied a bosonic technicolor model based on Next to Minimal Walking
Technicolor [32, 42, 59, 60]. The NMWT extension of the SM has the following gauge group:

SU(3)TC × SU(3)C × SU(2)L × U(1)Y (3.1)

while its particle spectrum features all the SM particles besides the Higgs scalar, plus an
EW techniquark doublet in the two-index symmetric representation of the technicolor gauge
group, SU(3). The two flavors are arranged into one doublet of SU(2)L, and taking the
technicolor degree of freedom into account implies that we are adding six doublets of SU(2)L
and there is no Witten anomaly. The techniquarks are denoted as

Qa
L =

(
Ua

Da

)
L

, Ua
R , Da

R , a = 1...6, (3.2)

with a being the color index of SU(3). The following hypercharge assignment is anomaly
free:

Y (UL) = Y (DL) = 0, Y (UR) =
1

2
, Y (DR) = −1

2
. (3.3)

The meson field, transforming under the technicolor global chiral symmetry SU(2)L ×
SU(2)R as M → LMR†, is written similarly to the field in Section 2.1:

M =
1√
2

(sI2×2 + 2iπM) ∝ QLQ̄R, 〈s〉 ≡ f. (3.4)

16
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The conserving potential of this sector alone is then

LTC =
1

2
Tr
[
DM †DM

]
+

1

2
m2
MTr

[
M †M

]
− λM

4!
Tr
[
M †M

]2
. (3.5)

The Higgs field is written in a form analogous to M :

H =
1√
2

(hI2x2 + 2iπH) , 〈h〉 ≡ v. (3.6)

The Higgs field transforms under the gauge group SU(2)L×U(1) as H → gLHg
†
Y , where the

U(1) is generated by τ3. The Higgs Lagrangian is:

LHiggs =
1

2
Tr
[
DH†DH

]
− VH , VH =

1

2
m2
HTr

[
H†H

]
+
λH
4!

Tr
[
H†H

]2
. (3.7)

We include the effects of the Yukawa interactions in the effective Lagrangian via the spurion
technique. The Yukawa terms are of the form

LYukawa = −
∑
i=q,l,Q

Ψ̄L,iHY
iΨR,i , Y i = yiISU(2) + δyiσ3, (3.8)

where the sum is over SM quarks, leptons, and also techniquarks. Of current interest is the
Yukawa term of the techniquarks:

−Q̄LHYQQR, (3.9)

To preserve the TC chiral symmetry, the spurion field HYQ should transform as HYQ →
GLHYQG

†
R under GL/R ∈ SU(2)L/R.

We include all possible terms up to and including dimension four operators consistent
with symmetries. We omit terms of order O(Y 2

Q) and higher, which are assumed to be small.
Because the Higgs field is not integrated out we have implicitly assumed it to be light or
that its running effects are not important. We arrive at the following effective low-energy
Lagrangian for the technicolor sector and its coupling with the fundamental Higgs field:

LTC − Q̄LHYQQR → 1

2
Tr
[
DM †DM

]
+ c3Tr

[
DM †DHYQ

]
− VM

VM =
1

2
m2
MTr

[
M †M

]
+
λM
4!

Tr
[
M †M

]2
−c1Tr

[
M †HYQ

]
− 1

6
c2Tr

[
M †M

]
Tr
[
M †HYQ

]
−1

6
c4Tr

[
H†H

]
Tr
[
M †HYQ

]
+ h.c. (3.10)

The dimensionless coefficients c1 ... c4 are taken to be real to preserve the CP symmetry.
The W mass is given by

m2
W =

g2

4

(
f 2 + v2 + 2c3yQfv

)
. (3.11)
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3.2 Naive Dimensional Analysis
We apply Naive Dimensional Analysis (NDA) [3] to estimate some of the coefficients of (3.10).
NDA estimates arise from the expectation that in a strongly coupled theory, each loop order
in the strong coupling should contribute equally [4], independent of what field variables one
uses to describe phenomena. NDA was further developed in [5]. According to the NDA rules,
the magnitudes of diagrams depend on Λ, the mass of some low lying non-Goldstone state,
and hN . 4π, which estimates the size of loop corrections in the theory:

1. For each perturbative coupling g in the underlying theory one defines a rescaled coupling
ĝ by requiring the overall magnitude of the interaction vertex to be hE−2

N ĝ, where E is
the number of legs on the vertex.

2. The magnitude of any diagram in the effective theory is estimated to be hE−2
N times any

hatted perturbative coefficients needed to draw the diagram in the underlying theory,
and the dimension is fixed by multiplying with appropriate powers of Λ.

We will now apply these rules to fix the coefficients of the Lagrangian (3.10). First look at
the interaction terms:

λH
4!

Tr
[
H†H

]2 − Q̄LHYQQR 3
λH
4!
h4 − ŪL

h√
2
yQUR. (3.12)

From the Feynman rules (I have omitted the usual imaginary unit and ignore factors of
√

2),
we define corresponding hatted couplings:

= λH
NDA∼ λ̂Hh

2
N , =

yQ√
2

NDA∼ ŷQhN ,

where the dotted line corresponds to h and the fermion line to U . Next, apply rule two to
the symmetry conserving Lagrangian (3.5)

1

2
m2
MTr

[
M †M

]
− λM

4!
Tr
[
M †M

]2 3 1

2
m2
Ms

2 − λM
4!
s4. (3.13)

These operators contain no perturbative coefficients, so their NDA value is directly given by
the number of external legs in the corresponding graph:

= m2
M

NDA∼ Λ2, = λM
NDA∼ h2

N ,
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Finally, we apply the rule 2 to the symmetry breaking part of the Lagrangian. First:

−c1Tr
[
M †HYQ

]
+ c3Tr

[
DM †DHYQ

]
3 −c1yQsh+ c3yQ∂s∂h, (3.14)

and then we compare the Feynman rules of the effective theory to the corresponding tree
level graphs in the underlying theory:

= c1yQ + k2c3yQ
NDA∼ Λ2ŷQ + k2ŷQ

= Λ2yQ/hN + k2yQ/hN .

The other terms (3.10) are given by

−1

6
c2Tr

[
M †M

]
Tr
[
M †HYQ

]
− 1

6
c4Tr

[
H†H

]
Tr
[
M †HYQ

]
3 −1

6
c2yQs

3h− 1

6
c4yQh

3s (3.15)

with corresponding graphs

= c2yQ
NDA∼ ŷQh

2
N = hNyQ,

and

= c4yQ
NDA∼ λ̂H ŷQh

2
N = λHyQ/hN .

Therefore one finds: (c1)NDA = Λ2/hN , (c2)NDA = hN , (c3)NDA = 1/hN , (c4)NDA ∼
λH/hN . In Paper I we used Georgi’s version of NDA [4], not the one we introduced in [5].
In this estimate (c4)NDA = 1/hN . The effect on final results of this difference is likely small,
since λH ∼ 1.

In walking theories the dilaton is expected to be light. This is not taken into account
correctly in the NDA rules, so instead of using the NDA estimates for the symmetry
conserving couplings, we simply scan over the whole parameter space of λM and m2

M .

3.3 Oblique Corrections
The oblique corrections S and T , previously discussed in Section 2.3, are given by

S = −16πΠ′3Y (0),

T =
4π

s2
wc

2
wM

2
Z

(Π11(0)− Π33(0)), (3.16)

In any BTC model, the theoretical determination of S and T contain large uncertainties
that stem from both the non-perturbative nature of the TC sector and the coupling of the
technicolor sector to the Higgs sector. Specifically, one must handle these contributions
correctly:
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• The naive estimate
Snaive =

NFd(r)

6π
(3.17)

calculated via the high energy spectrum only, should correspond to the full contribution
of the technicolor sector for a given reference Higgs mass.

• The full S and T to be compared to experiments should contain also the contribution
from the other scalar sector as well as the interplay among the two. This is possible
only when evaluating S and T via the low-energy spectrum.

• If M is the technicolor composite matrix which transforms transforms under SU(2)L×
SU(2)R as M → LMR†, and W µν and Bµν are the field strength tensors of SU(2)L
and U(1)Y , then at dimension six there would appear tree level contributions to S via
the operator

Tr
[
M †W µνMBµν

]
. (3.18)

In many of the original articles it was assumed that the contribution from (3.18) should
correspond to (3.17), and that in addition one should calculate the perturbative one-loop
contribution of the scalar sectors. However, this calculation likely gives an overestimate of
S, because in principle, S could be fully evaluated via the low-energy technihadron spectrum
only. The low-energy spectrum is, in turn, connected to the UV properties of the underlying
theory via dispersion relations. Of course, if we introduce explicitly only the scalar states in
the low-energy effective theory, it is impossible to estimate the effects of other resonances,
such as the vector mesons.

In Paper I, we considered two different limits when determining S and T . First, if all
technicolor composites other than the scalar mesons are decoupled, one can compute the full
contribution of the model within the effective theory, given in (3.7) and (3.10). This special
limit of the parameter space corresponds to the generic two Higgs doublet model and this is
the limit we use to compare to experiments. Second, if the vectors mesons do not decouple,
their effect is estimated by adding Snaive = 1/π on the top of the S computed within the
effective theory. In this case we are overestimating the contribution of the technicolor sector.

To calculate the contributions of the physical scalar triplet of SU(2)L, one has to evaluate
the diagrams in Fig. 3.1 for the vacuum polarization Π3Y contributing to the S parameter,
and the diagrams shown in Fig. 3.2 for the vacuum polarizations Π11 and Π33, affecting the
T parameter.

Finally, note that the origin of the (S, T )-plane corresponds to the SM with a given value
of the mass of the Higgs particle denoted bymref. This is taken into account in the theoretical
calculation of S by noting that

S = SSM(mref)− SH(mref) + Snew = Snew − SH(mref), (3.19)

where, by definition, SSM(mref) = 0, and Snew contains all possible contributions calculated
within the new model. Similar considerations apply also to T . Because the SM is only
logarithmically sensitive to the Higgs mass, the one-loop calculations of S and T make the
results practically independent of the reference Higgs mass mref. This is demonstrated in Fig.
3.3.
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W 3 B

π+

π−

s, h

π0

W 3 B

s, h

W 3 B

Z

Figure 3.1: The diagrams required for the perturbative evaluation of the vacuum polarization
Π3Y within the effective theory.

W i W iπ

π

+

π

s, h

W i W i

Figure 3.2: Diagrams required for the perturbative evaluation of the vacuum polarization
Π11 within the effective theory. The vacuum polarization Π33, also needed for T parameter,
is obtained from similar diagrams with replacement W 1 → W 3.

3.4 Random Parameter Scan
In order to be able to compare the bosonic NMWT model with experimental results we have
to

• diagonalize the kinetic terms and the potential

• solve the extremum equations of the potential

• go to the unitary gauge, in which the electroweak gauge bosons are massive and only
three physical pions remain in the spectrum

• generate randomly a dense set of values for the free couplings

• calculate masses and apply experimental constraints

The left panel of Fig. 3.4 is an S-T plot with the a reference Higgs mass mref = 117 GeV.
All points pass the FCNC requirements, but the light red diamonds correspond to parameter
values that are excluded on the basis of direct searches, soon to be discussed. The leftmost
points are the result of the calculation within the effective theory. To these we add Snaive,
representing the effects of vector mesons, to obtain the rightmost set of points, but we now
focus on the leftmost set of points. The right panel of Fig. 3.4 shows the projection of the
full data set presented in the left panel, with both red and black triangles, onto the (mh,ms)
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Figure 3.3: This figure shows the independence of S and T from the reference Higgs mass
mref. The figure shows the 3σ ellipse and some sample points from our calculation in Paper
I for different values of mref.

plane. In this figure the black triangles denote the points consistent with the 90% confidence
contour of the S-T plot. The blue circles correspond to the points within the larger ellipsis
of the S-T plot. Finally, the light red diamonds correspond to points still farther from the
experimentally allowed region.

Figure 3.4: In both plots all points pass the FCNC requirements. Left: The results of the
model and the 90% confidence limit contour allowed by all electroweak data for mref = 115
GeV. The light red diamonds are excluded by direct observations while the black triangles
are not. Right: Black triangles show the points consistent with the 90% S-T confidence limit.
Blue circles correspond to triangles in the left panel that are within the larger ellipse and the
red diamonds correspond to to triangles even farther out. Points shaded in a lighter color are
also farther from the experimentally allowed region. We have not required the LEP direct
search limit mH > 114 GeV in the right side panel.

Direct searches were taken into account with the newest Higgs mass limits during the
time of writing: the LEP direct search limit mH > 114 GeV [61]. The constraint coming
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from the lightest scalar decay into bb̄ was taken into account in the simple approximation in
which the coupling is the same as in the SM. This leads to an overestimate of the lightest
scalar decay width into fermions. This means that the allowed regions would extend to lower
values of the physical scalar masses, especially for the mostly composite scalar, s. It is also
possible that the lighter scalar could evade detection below the LEP direct search limit, if its
coupling to two Z-bosons is suppressed. However, we found that the points favored by the
electroweak precision data do not have a suppressed scalar-ZZ coupling.

Finally, imposing the FCNC constraints forbids the area of parameter space where the
value of the condensate v and the mass of the physical pion mπ are both small. This is
evident when looking at the left panel of Fig. 3.5. In the right panel of Fig. 3.5 we show
the allowed values of the condensates |f | and |v|. We see that the allowed region for these
parameters for each condensate changes roughly in the range of 50 to 400 GeV.

Figure 3.5: Left: The FCNC constraints on parameters mπ and |v| on points satisfying
direct search and S-T 90% confidence limit. Light red diamonds are disallowed, while black
triangles are allowed. Right: The allowed values of the condensates |f | and |v| after taking
all constraints into account.

More recently this model has also been studied in [31]. In that paper the authors have
included vector resonances in the model and calculated their contribution to the FCNCs.
The results were very similar where applicable.

The basic finding of this study, evident from Fig. 3.4, is that one of the scalars should
be light and the other heavy, if no other contributions exist. This seems to guarantee a
small contribution to the precision data. This parameter region is also relevant for SUSY
TC theories, which will be introduced in Section 4.4.



Chapter 4

Supersymmetry

Supersymmetry is extremely appealing theoretically, as it is the only possible extension of
space-time symmetries in field theories. Supersymmetry is also seen as a requirement for a
string theory ultraviolet completion, and it has led to a plethora of nontrivial results in field
theory. Under supersymmetry, bosons and fermions are paired. Importantly, because of non-
renormalization theorems, supersymmetry stabilizes scalar masses, hence allowing naturally
light scalars. Therefore, SUSY has been postulated to explain the lightness of the EW scale
compared with the Planck scale.

In most phenomenological models, one assumes soft SUSY breaking terms to describe
SUSY breaking. These terms emulate the true mechanism behind SUSY breaking. If soft
SUSY breaking terms are relevant for EWSB, then measurements from LEP and LHC should
find superpartners, the supersymmetric counterparts of the ordinary SM particles. The lack
of such a finding is called the “little hierarchy problem”, since it relates to why the weak scale
is so much smaller than the SUSY breaking scale (instead of the Planck scale for the “large
hierarchy problem”). Furthermore, unless the soft SUSY breaking terms are postulated to
satisfy flavor symmetries, they also contribute to FCNCs.

In SUSY TC models, one combines the paradigms of technicolor and SUSY [62, 25, 63,
64, 65, 66, 27, 24]. In these models, technicolor explains the little hierarchy. On the other
hand, SUSY naturalizes the masses of the scalars in the bosonic technicolor flavor extension.
The fundamental Higgs fields do not participate in electroweak symmetry breaking but they
simply act as messengers between the symmetry breaking sector and the quarks and leptons.
To illustrate, QCD operates within the MSSM much like TC does in these models.

4.1 Supersymmetry and How to Break it Softly
Supersymmetry is a space-time symmetry that relates bosons and fermions. The supersym-
metry generator Q should change fermionic states with bosonic states, as seen in Table 4.1.
Therefore particles and their superpartners form multiplets under supersymmetry. In the
minimal case, the multiplets consist of e.g. a fermion and a scalar, or a fermion and a vector
boson. If there are N SUSY generators Qi, where N is larger than one, then the supersym-
metry is called extended, and in this case the schematic action is displayed in Table 4.2. In
this case the multiplets under SUSY are larger. In the extreme case of N = 4, one multiplet

24
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State Spin
|s〉 s
Q |s〉 s− 1

2

Table 4.1: The action of the supersymmetry generator Q on a state of spin s decreases spin
by 1/2.

State Spin
|s〉 s

Q1 |s〉 s− 1
2

Q2 |s〉 s− 1
2

Q1Q2 |s〉 s− 1

Table 4.2: Assuming two supersymmetry generators Q1 and Q2, one can find three states
with different spins starting from one single particle state.

contains the full gauge theory with scalars, fermions and vector bosons. Traditionally N = 4
symmetry is thought to be irrelevant for phenomenology, since the SM is a chiral theory while
N = 4 symmetry allows only vector-like matter. This is circumvented in a model presented
in Chapter 5, which has an explicitly broken approximate N = 4 symmetry.

The supersymmetry algebra is an extension of space-time symmetries, as is evident from
the following algebra, given for one supersymmetry generator [67]:{

Qα, Q
†
α̇

}
= −2σµαα̇Pµ {Qα, Qβ} = 0 =

{
Q†α̇, Q

†
β̇

}
(4.1)

[Qα, P
µ] = 0 =

[
Q†α̇, P

µ
]
. (4.2)

Here we have used the notation of two component complex spinor indices, where α = 1, 2
and α̇ = 1, 2. One can intuitively think that dotted indices refer to right handed fields and
undotted to left handed ones. Since

(ψα)† = (ψ†)α̇, (4.3)

it is possible to describe all field theories with only left handed degrees of freedom, and using
their complex conjugates as the right handed ones. In the rest of this thesis we will not need
to write the spinor indices explicitly.

The Lagrangian of a supersymmetric theory depends on the particle content and the
superpotential. The Lagrangian in terms of component fields is given by

L = Lkin + Lg−Y uk + LD + LF + LP−Y uk + Lsoft, (4.4)

where the labels refer to the kinetic terms, the Yukawa terms given by gauge and superpoten-
tial interactions, the D and F scalar interaction terms, and the soft SUSY breaking terms.
All these terms can be expressed in function of the elementary fields of the theory with the
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help of the following equations:

Lkin = −1

4
F µνa
j F a

jµν − iλ̄aj σ̄µDµλ
a
j −Dµφa†i Dµφ

a
i − iχ̄ai σ̄µDµχ

a
i , (4.5)

Lg−Y uk =
∑
j

i
√

2gj

(
φ†iT

a
j χiλ

a
j − λ̄aj χ̄iT aj φi

)
, (4.6)

LD = −1

2

∑
j

g2
j

(
φ†iT

a
j φi

)2

, (4.7)

LF = −
∣∣∣∣ ∂P∂φai

∣∣∣∣2 , (4.8)

LP−Y uk = −1

2

[
∂2P

∂φai ∂φ
b
l

χaiχ
b
l + h.c.

]
, (4.9)

where i, l run over all the scalar field labels, while j runs over all the gauge group labels, and
a, b are the corresponding gauge group indices. The superpotential is a function of the chiral
superfields of the theory, but not of their conjugates:

P = P (Φ). (4.10)

We normalize the generators in the usual way, by taking the index T (F ) = 1
2
, where

TrT aRT
b
R = T (R)δab, (4.11)

with R here referring to the representation (F=fundamental).
The Lagrangian of an N = 4 supersymmetric gauge theory can be written in terms of

three N = 1 chiral superfields Φi, i = 1, 2, 3 and one N = 1 vector superfield V , all in the
adjoint representation of SU(N). The superpotential for this Lagrangian reads (see [68] and
references therein)

P = − g

3
√

2
εijkf

abcΦa
iΦ

b
jΦ

c
k, i, j, k = 1, 2, 3; a, b, c = 1, · · · , N2 − 1; (4.12)

where g is the gauge coupling constant, and fabc are the structure constants. The N = 4
symmetry requires that the coefficient of this term is equal to the gauge coupling. This
superpotential is invariant under SU(3) flavor transformations. In terms of the component
fields the full Lagrangian can be expressed as

L = −1

4
F µνaF a

µν − iλ̄aσ̄µDµλ
a −Dµφa†i Dµφ

a
i − iψ̄ai σ̄µDµψ

a
i

+
√

2gfabc
(
φa†i ψ

b
iλ

c + λ̄cψ̄biφ
a
i

)
+

g√
2
εijkf

abc
(
φaiψ

b
jψ

c
k + ψ̄ckψ̄

b
jφ

a†
i

)
−1

2
g2
(
fabdface + fabefacd

)
φb†i φ

c
iφ

d†
j φ

e
j , (4.13)

where

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , Dµξ

a = ∂ξa − gfabcAbµξc, ξ = λ, ψi, φi. (4.14)
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Here λ is the gaugino field and ψi and φi are respectively the fermionic and scalar component
of the superfield Φi. To make the SU(4) R-symmetry of the Lagrangian explicit, the following
change of variables provides useful:

ϕars = −ϕasr, ϕai4 =
1

2
φai , ϕ

a
ij =

1

2
εijkφ

a†
k , η

a
i = ψai , η

a
4 = λa; r, s = 1, · · · , 4. (4.15)

Now Eq.(4.13) becomes

L = −1

4
F µνaF a

µν − TrDµϕa†Dµϕ
a − iη̄ar σ̄µDµη

a
r

−
√

2gfabc
(
ϕa†rsη

b
rη
c
s + η̄crη̄

b
sϕ

a
rs

)
−1

2
g2
(
fabdface + fabefacd

)
Trϕb†ϕcTrϕd†ϕe. (4.16)

Under SU(4) ϕa transforms as a 6, ηa as a 4, and Aaµ as a 1, leaving the Lagrangian in
Eq.(4.16) unchanged.

The world is not supersymmetric at observable energy scales. In particular, the super-
partner of the electron, the selectron, should have the same mass as the electron since it
is in the same supermultiplet. The absence of this particle is only explained by breaking
supersymmetry. If supersymmetry would be broken, at the Lagrangian level, by dimension-
less couplings, then it would be broken explicitly at all energy scales, hence defeating the
purpose of SUSY in the first place. Instead, couplings with positive mass dimension cor-
respond to superrenormalizable operators whose effects only show at low energies, thereby
emulating spontaneous SUSY breaking. This mechanism is called soft SUSY breaking. The
most general form of SUSY breaking terms are given as follows:

Lsoft =−
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi, (4.17)

Lmaybe soft = −1

2
cjki φ

∗iφjφk + c.c. (4.18)

L = −Ma
Diracλ

aψa + c.c. (4.19)

Here λ are gauginos, φ spartners, and ψ chiral field fermions.

4.2 The MSSM and FCNCs
We now specify the particle content of the Minimal Supersymmetric Standard Model. There
is a superpartner for each particle of the SM. In addition, there are two Higgs multiplets.
The second Higgs field must be added e.g. because otherwise one cannot write mass terms
for all SM fermions. The particle content is given in Tables (4.3) and (4.4).

Both Higgs fields contribute to the Z-boson mass, which is given by

m2
Z =

g2
L + g2

Y

4

(
v2
u + v2

d

)
, (4.20)
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R ūR ( 3, 1, −2
3
)

d d̃∗R d̄R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R ēR ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 4.3: Chiral supermultiplets in the MSSM. The spin-0 fields are complex scalars, and
the spin-1/2 fields are left-handed two-component Weyl fermions. Taken from [69].

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 4.4: Gauge supermultiplets in the MSSM. Taken from [69].

where H0
u = (h0

u + iπ0
u)/
√

2 and 〈h0
u〉 = vu and similarly for Hd. This fixes v2

u + v2
d = v2 and

we define a related parameter
tan β = vu/vd. (4.21)

The MSSM superpotential is given by

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd .

≈ yt(ttH
0
u − tbH+

u )− yb(btH−d − bbH0
d)− yτ (τντH−d − ττH0

d) + µHuHd,

where we show only the largest terms. From these equations we find the relation mt/mb =
40.7 = yt/yb tan β. Since also the charm quark is heavier than the strange, it is natural to
expect a rather large value for tan β such as tan β ∼ 10. In this case the Yukawa coupling of
the bottom quark is almost as large as that of the top quark, in contrast to the SM where
yt/yb = 40.7.

The mass terms from the soft SUSY breaking sector are:

L = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−Q̃†m2

Q Q̃− L̃†m2
L L̃− ũm2

u ũ
† − d̃m2

d
d̃
†

−ẽm2
e ẽ
† − m2

Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + h.c.) . (4.22)

where m2
Q, m2

u, m2
d
, m2

L, and m2
e are Hermitian 3× 3 matrices in family space. Additionally

there are the trilinear soft SUSY breaking a-terms from (4.17) which we will not discuss
further. It is possible that the Higgs fields have positive masses at the high scale of SUSY
breaking and quantum running produces m2

Hu
� m2

Hd
at the EW scale: in these models,

electroweak symmetry breaking is actually driven by quantum corrections; this mechanism
is therefore known as radiative electroweak symmetry breaking.
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Off diagonal terms in the mass matrices of (4.22) induce FCNCs. For example, the gluino-
squark-quark vertices are fixed by supersymmetry to be of the QCD interaction strength. This
gives contributions to K0 ↔ K

0 mixing. Comparing to the limit on ∆mK ≡ mKL
−mKS

,
one finds various limits [70], e.g.:

|Re[(m2
s̃∗Rd̃R

)2]|1/2

m2
q̃

. 10−1
( mq̃

1 TeV

)
. (4.23)

Here m2
s̃∗Rd̃R

= (m2
d
)21 is treated as a perturbation. This limit says that if the left hand side

is O(1), the soft SUSY breaking scale should be O(10) TeV - O(100) TeV. This is a typical
result, and shows that if the squark mass matrices are flavor blind, then the soft SUSY
breaking scale must be much higher than the electroweak scale. An alternative explanation,
that allows the SUSY breaking scale to be low, is to assume that the squark and slepton
squared-mass matrices are flavor-blind and real, each proportional to the 3 × 3 identity
matrix in family space. In this case, squarks and sleptons with the same electroweak quantum
numbers have equal masses, and can be rotated into each other at will, thereby trivializing
squark and slepton mixing angles. This is the hypothesis of soft supersymmetry breaking
universality:

m2
Q = m2

Q1, m2
u = m2

u1, m2
d

= m2
d
1, m2

L = m2
L1, m2

e = m2
e1. (4.24)

These relations are postulated to be the result of the SUSY breaking mechanism at some
high energy scale, and the terms should first be renormalized to the electroweak scale before
comparing with experiments.

4.3 The Little Hierarchy Problem in MSSM
The Higgs potential in the MSSM is given by:

V =(|µ|2+m2
Hu

)|H0
u|2+(|µ|2+m2

Hd
)|H0

d |2−(bH0
uH

0
d+h.c.)+

1

8
(g2+g′2)(|H0

u|2−|H0
d |2)2. (4.25)

Note that µ is a SUSY conserving parameter and hence should naturally be O(1) in Planck
units. Such a large value would make the origin H0

u = H0
d = 0 stable. This so called µ-

problem can be solved by extending the MSSM to make µ absent unless SUSY is broken [71].
Then it is automatically given by the soft SUSY breaking scale.

There are two independent extremum conditions arising from the potential (4.25), of
which the second one can be written in terms of the Z-mass and expanded in powers of
1/ tan β as follows:

m2
Z = −2

(
m2
Hu

+ |µ|2
)
− 2

tan2 β

(
m2
Hu
−m2

Hd

)
+O

(
1/ tan4 β

)
. (4.26)

This relation shows that the natural scale for m2
Hu

and |µ|2 is given by m2
Z . Moreover,

since the µ parameter is tied to the Higgsino mass, typical viable solutions for the MSSM
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therefore have both −m2
Hu

and |µ|2 larger than m2
Z , resulting in a fine tuning parametrized

by m2
Z/m

2
Hu

. We can also calculate loop corrections to m2
Hu

: this parameter is protected from
large corrections only up to non-SUSY physics, and thus it can receive large contributions
from the mass difference between the top squark and the top quark. We find

∆m2
Hu

=
3

4π2
y2
tm

2
t log

(
m2
t̃

m2
t

)
, (4.27)

where we assumed m2
t̃

= m2
Q̃3

= m2
t̃R

and used mt = ytvu/
√

2. The experimental bounds for
m2
Q̃3

and m2
t̃R

are model dependent. For m2
t̃

= 500 GeV one finds

∆m2
Hu
∼ 0.7m2

Z . (4.28)

This also illustrates the little hierarchy problem: for the phenomenologically viable parame-
ters, it seems mysterious why the Z-boson should be so light.

To be more explicit, one should study a specific corner of the full parameter space of the
MSSM, such as the Constrained MSSM (CMSSM). This model is defined at the unification
scale by four parameters: m1/2, the gaugino mass, m0, the scalar mass, tan β, and the sign
of µ1. The fine tuning in this model, in light of the new LHC results, is illustrated in [72].
Within this model, taking into account running effects, the Z mass is predicted to be

m2
Z ≈ 4.7m2

1/2 + 0.2m2
0 − 2µ2, (4.29)

where the µ term is renormalized to the electroweak scale. The parameter tan β = 3 is
chosen so that the value of the top Yukawa coupling renormalized at the unification scale
is λt(MGUT) ≈ 0.5. We can fix the overall SUSY mass scale via (4.29), so that the model
has two free adimensional parameters: the ratios m1/2/µ and m0/µ. Such parameter space
is plotted in Fig. 4.1:

• In the left light-gray regions one would have m2
Z < 0 which means that the true min-

imum of the scalar potential is at v = 0; in the bottom-right region the potential is
unstable.

• The red region in the middle is experimentally excluded. The darker red shows the
region excluded only by the LHC.

• The green region is allowed.

The smallness of the allowed region is a manifestation of the “little hierarchy problem”: it is
close to the boundary where MZ = 0 and thereby has MZ � m0,M1/2, µ.

4.4 Supersymmetric Technicolor
To solve the little hierarchy problem, one needs a mechanism to generate the little hierarchy
mSUSY /mZ . A possible mechanism could be technicolor. The relevant scales of the problem

1Sometimes the trilinear coupling A0 is non-zero, in the current section it is chosen to vanish.
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Figure 4.1: A typical example of the parameter space of the CMSSM model. The green
region is allowed (see it in the enlarged box). Taken from [72].

are the supersymmetric breaking scale mSUSY and the EW scale which we identify with the
dynamically generated low-energy strongly coupled scale of the TC theory mTC ∼ 4πv ∼ 3
TeV. The one loop relation for these scales reads

β = −α
2

π
b1 → mTC = mSUSY exp

[
π

b1

(
1

αc
− 1

αSUSY

)]
. (4.30)

In this equation αSUSY is the TC coupling value at the scale of the soft SUSY terms, mSUSY .
The other parameters are mTC , which gives the electroweak scale, b1 > 0, the first coefficient
of the perturbative beta function, and αc, the critical coupling for condensate formation.
This relation can naturally explain a hierarchy mSUSY � mTC .

To estimate the maximal SUSY breaking scale, we use equation (2.3), which, for the top
quark, reads:

mt ∼
(yHQ̄Q

4π

)(yHt̄t
4π

)(3 TeV
mH

)2−γ∗m
× 3 TeV. (4.31)

Here mH is the Higgs mass, which we identify with the SUSY breaking scale to avoid fine
tuning. In Fig. 4.2 the value of γ∗m is plotted as a function of mH , assuming mt = 175 GeV.
This gives, for a given γ∗m and for given values of coupling constants, the highest possible
SUSY breaking scale that one can consider.

In the following we list pros and cons SUSY BTC models have, depending on the SUSY
breaking scale:

1. Heavy regime, mTC . mSUSY . 10 TeV. In this regime the model brilliantly solves
the little hierarchy problem. FCNCs related to additional scalar states are absent but
the soft SUSY breaking terms cannot be completely arbitrary without violating FCNC
limits. In Chapter 5 we review Paper III which discusses a specific SUSY TC model in
this region.
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Figure 4.2: Maximum allowed mediator mass within walking TC models, given an anomalous
dimension of the fermion bilinear at the approximate fixed point, the requirement to generate
the top mass, and the values of the Yukawa couplings yHt̄t and yHQ̄Q. For this illustration
the coupling values are set to, counting from the bottom to top, 4π, 2π, and π.

2. Super heavy regime, mSUSY & 10 TeV. In this regime the theory can also, with little
fine tuning, explain the absence of FCNCs induced by the soft SUSY breaking sector.
However, to generate the top quark mass, the technicolor theory should be conformal
and the techniquark bilinear anomalous dimension should be large.

3. Light regime mSUSY . mTC . The phenomenology in this regime is reminiscent of that
in Chapter 3. There are experimental constraints from FCNCs and oblique corrections
induced by extra scalar states. The soft SUSY breaking terms must conserve flavor
symmetries to avoid large FCNCs. There is a problem of scales: why would the techni-
color and SUSY breaking scales coincide? It is argued in [73] that this can be explained
if the SUSY TC sector is at a strong conformal fixed point above the soft SUSY break-
ing scale. In this case chiral symmetry breaking could be triggered immediately at the
soft SUSY breaking scale.

4. One can consider the tachyonic regime, i.e. the regime where the Higgs fields condense
because of negative mass terms, even in the absence of interactions with the TC sector.
However, this regime suffers from an elevated little hierarchy problem, since the soft
SUSY breaking scale is lower than in the MSSM.



Chapter 5

Minimal Supersymmetric Conformal
Technicolor

In this section we study a specific SUSY BTC model, the Minimal Supersymmetric Con-
formal Technicolor model (MSCT), which has the added interest that the SUSY TC sector
is approximately N = 4 supersymmetric. We then quantify how much the MSCT flavor
extension modifies the vacuum, spectrum and dynamics of the original TC model, MWT.
The modification of the TC dynamics and consequently of the phenomenology is substantial.
We consider the SUSY breaking scale mSUSY & 5 TeV. We also consider the phenomenology
of the scalar sector.

5.1 Minimal Walking Technicolor
We will supersymmetrize the Minimal Walking Technicolor model, which we now introduce
in detail. The MWT extension of the SM has the following gauge group:

SU(2)TC × SU(3)C × SU(2)L × U(1)Y , (5.1)

with the particle spectrum of the SM particles besides the Higgs scalar, plus an EW techni-
quark doublet in the adjoint representation of SU(2)TC as well as its right-handed compo-
nents:

Qa
L =

(
Ua

Da

)
L

, Ua
R , Da

R , a = 1, 2, 3 , (5.2)

with a being the adjoint color index of SU(2)TC . The left handed fields are arranged in three
doublets of the SU(2)L weak interactions in the standard fashion. A new weakly charged
fermionic doublet, which is a TC singlet [42], is added to cancel the Witten topological
anomaly:

LL =

(
N
E

)
L

, NR , ER . (5.3)

33
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The following hypercharge assignment is anomaly-free:

Y (QL) =
y

2
, Y (UR, DR) =

(
y + 1

2
,
y − 1

2

)
, (5.4)

Y (LL) =− 3
y

2
, Y (NR, ER) =

(−3y + 1

2
,
−3y − 1

2

)
. (5.5)

The parameter y should be real, and electric charge is given by Q = T3 + Y , where T3 is the
diagonal weak isospin generator.

The global symmetry of this theory is SU(4). The following vector transforms according
to the fundamental representation:

η =


UL
DL

−iσ2U∗R
−iσ2D∗R

 , (5.6)

where UL andDL are the left handed techniup and technidown fields, respectively, UR andDR

are the corresponding right handed fields, and σ2 is a Pauli matrix. Assuming the standard
breaking to the maximal diagonal subgroup, SU(4) spontaneously breaks to SO(4). Such a
breaking is driven by the following condensate:

〈ηαi ηβj εαβEij〉 = −2〈URUL +DRDL〉 , E =

(
0 1

1 0

)
. (5.7)

where the indices i, j = 1, . . . , 4 denote the components of the tetraplet of η, and the Greek
indices indicate the ordinary spin. Here εαβ = −iσ2

αβ and 〈Uα
LUR

∗βεαβ〉 = −〈URUL〉. This
symmetry breaking pattern leaves us with nine broken generators with associated Goldstone
bosons.

The most general SU(2)TC singlet fermion bilinear is M ∼ ηηT . Therefore M transforms
under the full SU(4) group according to

M ′ = UMUT , with U ∈ SU(4). (5.8)

The covariant derivative, which follows from the symmetry properties, is

DM = ∂M − i
[
GM +MGT

]
, (5.9)

with
G = gLW

aLa + gYBYM , (5.10)

and
La =

(
σa

2
0

0 0

)
, YM = diag

(
y

2
,
y

2
,−y + 1

2
,−y − 1

2

)
. (5.11)

The connection between the composite scalars and the underlying techniquarks can be
derived from the transformation properties under SU(4), by observing that the elements of
the matrix M transform like techniquark bilinears:

Mij ∼ ηαi η
β
j εαβ with i, j = 1 . . . 4. (5.12)
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Using this expression, the scalar fields can be related to the wave functions of the techniquark
bound states.

The minimal linear representation for M is:

M =

[
σ + iΘ

2
+
√

2(iΠa + Π̃a)Xa

]
E , 〈σ〉 = f. (5.13)

The nine generators of SU(4) that do not leave the vacuum invariant are denoted Xa and can
be found from [74]. Notice that it is necessary to introduce the “tilde” fields in the matrix M
because the form of the matrix M =

(
σ/2 + i

√
2ΠaXa

)
E is not consistent under a general

SU(4) transformation. This is in contrast to the case of an SU(2)L × SU(2)R chiral group
discussed in the introductory chapter (2.1), but is similar to the case of an SU(3)L× SU(3)R

chiral group.
The effective Lagrangian for M , up to SU(4) breaking terms, and prior to introducing a

flavor extension, reads:

LMWT =
1

2
Tr
[
DM †DM

]
− VM , (5.14)

where

VM = −m
2

2
Tr
[
M †M

]
+
λ

4
Tr
[
M †M

]2
+ λ

′
Tr
[
M †MM †M

]
− 2λ

′′ [
detM + detM †] . (5.15)

Notice that the determinant terms explicitly break the axial U(1) symmetry, and give mass
to Θ, which would otherwise be a massless Goldstone boson. SU(4) breaks spontaneously to
SO(4) for positive m2. Stability of the potential furthermore requires

λ > 0, λ′ > 0, λ+ λ′ > λ′′ > 0. (5.16)

The potential V(M) is SU(4) invariant. It produces a vev which parametrizes the tech-
niquark condensate. The mass of the W boson is given by

mW =
gLf

2
, (5.17)

from where it follows that f = v. In terms of the model parameters the vev is

v2 = 〈σ〉2 =
m2

λ+ λ′ − λ′′ , (5.18)

Spontaneous symmetry breaking generates masses for most of the scalars. In terms of the
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mass eigenstates M can be written

M =



iΠUU + Π̃UU
iΠUD + Π̃UD√

2

σ + iΘ + iΠ0 +A0

2

iΠ+ +A+

√
2

iΠUD + Π̃UD√
2

iΠDD + Π̃DD
iΠ− +A−√

2

σ + iΘ− iΠ0 −A0

√
2

σ + iΘ + iΠ0 +A0

2

iΠ− +A−√
2

iΠUU + Π̃UU

iΠUD + Π̃UD√
2

iΠ+ +A+

√
2

σ + iΘ− iΠ0 −A0

2

iΠUD + Π̃UD√
2

iΠDD + Π̃DD



.

(5.19)
The off-diagonal 2×2 matrices contain technimesons (Q̄Q-type states) and the diagonal 2×2
matrices contain baryons (QQ-type states). The linear combination λ+ λ′ − λ′′ corresponds
to the Higgs particle’s self-coupling, while its mass is

M2
σ = 2 m2. (5.20)

The three pseudoscalar mesons Π±, Π0 correspond to the three massless Goldstone bosons
which are absorbed into the longitudinal degrees of freedom of the W± and Z boson. The
remaining six uneaten Goldstone bosons are technibaryons, which are at this stage still
massless:

M2
ΠUU

= M2
ΠUD

= M2
ΠDD

= 0. (5.21)

The remaining scalar and pseudoscalar masses are

M2
Θ = 4v2λ′′

M2
A± = M2

A0 = 2v2 (λ′ + λ′′) (5.22)

for the technimesons, and

M2
Π̃UU

= M2
Π̃UD

= M2
Π̃DD

= 2v2 (λ′ + λ′′) (5.23)

for the technibaryons.
To give mass to the SM fermions, and to give mass to the yet massless Goldstone bosons,

we must introduce a flavor extension of TC. In terms of the low-energy theory, this extension
will explicitly break the SU(4) symmetry. In the most naive extension we choose to preserve
the full SU(2)L × SU(2)R × U(1)V subgroup of SU(4). Also assuming parity invariance, we
write:

LFE =
m2

FE

4
Tr
[
MBM †B +MM †]+ · · · (5.24)

where the ellipses represent possible higher dimensional operators, B ≡ 2
√

2S4 commutes
with the SU(2)L×SU(2)R×U(1)V generators, and FE stands for flavor extension. Here we
assume m2

FE & 0. With this flavor extension, the mass eigenstates are unchanged, and given
by (5.19). The baryons that corresponded to Goldstone boson states now have a mass:

M2
ΠUU

= M2
ΠUD

= M2
ΠDD

= m2
FE. (5.25)
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Also the masses of the other baryons have changed:

M2
Π̃UU

= M2
Π̃UD

= M2
Π̃DD

= m2
FE + 2v2 (λ′ + λ′′) . (5.26)

Details concerning the vector boson sector or the incorporation of fermion masses in this
naive extension are given in [74].

5.2 Microscopic Lagrangian
To build a supersymmetric technicolor theory we must supersymmetrize the additional tech-
nicolor sector, given by MWT, and also the SM. If we choose the hypercharge parameter (5.5)
to be y = 1, we can construct an approximately N = 4 supersymmetric technicolor sector,
which is explicitly broken down to N = 1 SUSY only by EW gauge and Yukawa interaction
terms.

We start by noting that the fermionic and gluonic spectrum of MWT fits perfectly in
an N = 4 supermultiplet, provided that we also include three scalar superpartners. In fact
the SU(4) global symmetry of MWT is equivalent to the well known SU(4)R R symmetry
of the N = 4 Super Yang-Mills (4SYM) theory. The following N = 1 supermultiplets have
fermionic components already included in MWT:(

ŨL, UL

)
∈ Φ1,

(
D̃L, DL

)
∈ Φ2,

(
˜̄UR, ŪR

)
∈ Φ3,

(
G, D̄R

)
∈ V. (5.27)

Here we use a tilde to label the scalar superpartner of each fermion. We indicate with
Φi, i = 1, 2, 3 the three chiral superfields of 4SYM and with V the vector superfield. The
superfields associated with the remaining MWT fermions N and E (the new leptons) are
given by:(

ÑL, NL

)
∈ Λ1,

(
ẼL, EL

)
∈ Λ2,

(
˜̄NR, N̄R

)
∈ N,

(
˜̄ER, ĒR

)
∈ E. (5.28)

The quantum numbers of the superfields appearing in Eqs.(5.27,5.28) and of those labeled
by Hu and Hd, which contain each a Higgs scalar weak doublet, are given in Table 5.1.

Superfield SU(2)TC SU(2)L U(1)Y

ΦL Adj F 1/2
Φ3 Adj 1 -1
V Adj 1 0
ΛL 1 F -3/2
N 1 1 1
E 1 1 2
Hu 1 F 1
Hd 1 F -1

Table 5.1: MSCT model in terms of N = 1 superfields. Here Adj and F denote the adjoint
and fundamental representations, respectively. All fields are uncharged under SU(3)c.
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The renormalizable lepton and baryon number conserving superpotential for the MSCT
is

P = PMSSM + PTC , (5.29)

where PMSSM is the MSSM superpotential, and

PTC = −gTC√
2
εabcΦa

L · Φb
LΦc

3 + yUΦa ·HuΦ
a
3 + yNΛ ·HuN + yEΛ ·HdE + yREΦa

3Φa
3. (5.30)

Contraction between the SU(2)L doublets by the antisymmetric two-index Levi-Civita tensor
ε is indicated by a dot symbol (·). Gauge invariance and N = 1 supersymmetry do not
ensure the Yukawa coupling in the first term to be equal to gTC , however, setting it to
this value amounts to the N = 4 limit. In general, the coupling should be written as a
general Yukawa coupling yTC , where yTC = gTC can be chosen at one scale only, and the
value of yTC at other scales should be solved from the renormalization group equations. We
have investigated the running of the coupling and shown that yTC tends towards gTC at
low energies, as also discussed in [75]. This result justifies our choice to set it equal to the
technicolor gauge coupling itself. Therefore the exact N = 4 supersymmetry is an automatic
infrared limit of the technicolor sector when its couplings with the MSSM are removed:
yU = yR = gY = gW = 0. As long as these couplings are small, it is reasonable to assume the
N = 4 supersymmetry is approximately valid.

To this Lagrangian we add the soft SUSY breaking terms:

Lsoft = −
[
aTCε

abcŨa
LD̃

b
L

˜̄U c
R + aU

(
H̃1D̃

a
L − H̃2Ũ

a
L

)
˜̄Ua
R + aN

(
H̃1ẼL − H̃2ÑL

)
˜̄NR

+ aE

(
H̃ ′1ẼL − H̃ ′2ÑL

)
˜̄ER + aR

˜̄Ua
R

˜̄Ua
R

˜̄ER +
1

2
MDD̄

a
RD̄

a
R + c.c.

]
−M2

Q
˜̄Qa
LQ̃

a
L

− M2
U

˜̄Ua
RŨ

a
R −M2

L
˜̄LLL̃L −M2

N
˜̄NRÑR −M2

E
˜̄ERẼR. (5.31)

This model constitutes our fundamental description in terms of the elementary degrees of
freedom and forces. The relevant scales of the problem are the supersymmetric breaking scale
mSUSY and the EW scale which we identify with the low-energy strongly coupled regime of
the TC theory ΛTC ∼ 4πvw, which for vw ' 246 GeV implies ΛTC ∼ 3 TeV. We will consider
here the following order

mSUSY > ΛTC . (5.32)

With this order the EW symmetry is broken dynamically. We arrange the spectrum in the
following way:

1. The soft scalar masses of the fundamental scalars are taken to be of the order of mSUSY.

2. The gaugino masses are also taken to be of the order of mSUSY with the exception of
the technigaugino mass MD taken to be lighter than mSUSY. If DR was taken to be
very heavy compared to ΛTC , it could not participate in EWSB.

3. In our model the µ parameter, which gives the mass of the Higgsinos, is much larger
than ΛTC. Therefore the Higgsinos are ignored in low energy phenomenology.

4. The composite states acquire a dynamical mass of the order of ΛTC .
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5.3 Effective Lagrangian
To determine the Lagrangian incorporating the effects of this flavor extension we need the
following microscopic MSCT Lagrangian terms:

−LY,MSCT = H̃u · Fu + H̃d · Fd + h.c.
Fu = qiLuY

i
u ū

i
R + yUQLŪR + yNLLN̄R

Fd = qiLdY
i
d d̄

i
R + liLY

i
l ē

i
R + yELLĒR . (5.33)

The fields H̃u and H̃d are the MSSM Higgs doublets. Here we will denote the scalar compo-
nents of a chiral supermultiplet with a tilde. The flavor index is denoted by i = 1...3 and it
is summed over. The matrices Yu, Yd, and Yl are diagonal, and the CKM matrix V is hidden
in the definitions of the vectors

qiLu = (uiL, V
ijdjL) , and qiLd = (V †ijujL, d

i
L) . (5.34)

Furthermore the Yukawa interaction between technisquarks and techniquarks, stemming from
superpotential and gauge interactions, is given as in the N = 4 supersymmetric case, (4.13).

The MSSM Higgs field potential is

VMSSM =
(
m2

SUSY + |µ|2
)
|H̃u|2 +

(
m2

SUSY + |µ|2
)
|H̃d|2 −

(
bH̃uH̃d + h.c.

)
+ ... (5.35)

The Higgs states are diagonalized via:(
H̃u

H̃c
d

)
=

1√
2

(
1 −1
1 1

)(
H̃1

H̃2

)
, (5.36)

where H̃c
d = εH̃∗d . Their tree-level physical masses m2

1 = µ2 + m2
SUSY − b and m2

2 = µ2 +
m2

SUSY + b are traded for two convenient parameters θ and ms as follows:

1

2

(
1

m2
1

+
1

m2
2

)
=

c2
θ

m2
s

,
1

2

(
1

m2
1

− 1

m2
2

)
=
cθsθ
m2
s

. (5.37)

In terms of the original potential parameters (5.35) we have

m2
s =

(
µ2 +m2

SUSY

) (µ2 +m2
SUSY)2 − b2

(µ2 +m2
SUSY)

2
+ b2

, tan(θ) =
b

µ2 +m2
SUSY

. (5.38)

Decoupling the heavy scalars leads to the following intermediate scale interaction Lagrangian
for the fermions:

L4fermi =
c2
θ

m2
s

(
F †uFu + F †dFd

)
− cθsθ

m2
s

(Fu · Fd + h.c.)

−1

2
MD (DRDR + h.c.) +

g2
TC

m2
SUSY

εabcεcdeη
αa
i η

b
jαη
∗d
iβ η
∗βe
j . (5.39)

We have retained the operators in mass dimension less or equal to six. The indices i and
j indicate SU(4) flavor; the first letters of the alphabet are reserved for the adjoint SU(2)
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technicolor indices, while the Greek indices are for SL(2, C) spinors. The color indices are
contracted and suppressed, while the TC indices, running from 1 to 3, are written explicitly
only in the last term.

Note that the terms in (5.39) do not contribute to e.g. K − K̄ mixing at tree level, as a
consequence of the unitarity of the CKM matrix. The other important outcome is that we
have a tunable parameter, tan θ, to control the mass difference of the up and down type SM
fermions.

The SM fermion masses as well as the fourth lepton family ones arise from the following
four-fermion operator

ηTZη , (5.40)

with

Zij =
yUcθω

m2
s

[
δikcθ

(
q∗kLuY

∗
u ū
∗
R + y∗NL

∗k
L N̄

∗
R

)
− εiksθ

(
qkLdYdd̄R + lkLYlēR + yEL

k
LĒR

)]
δ3,j,

(5.41)
upon condensation of the techniquarks1. The spurion Z transforms as Z → u∗Zu† under
SU(4)R.

Having derived the four-fermion theory just below the SUSY breaking scale we need
now to evolve the techniquark condensates down to the EW scale. This is achieved by
taking the techniquark Yukawa coupling yU renormalized at the SUSY breaking scale, and
by simultaneously having introduced the dimensionless techniquark renormalization factor

ω =
〈ULŪR〉mSUSY

〈ULŪR〉ΛTC

=

(
mSUSY

ΛTC

)γ
, (5.42)

written with the assumption of a constant anomalous dimension γ for the techniquark mass
operator.

The four-fermion term involving solely techniquarks is

y2
Uc

2
θ

m2
s

ω2(QLiŪR)(Q∗LiŪ
∗
R) = Wijklη

α
i ηjαη

∗
kβη
∗β
l , Wijkl =

y2
Uc

2
θ

m2
s

ω2 (δik1 + δik2) δjl3, (5.43)

where α and β are spin indices. For the term to be invariant, the spurion W must transform
as Wijkl → uimujnu

∗
kou
∗
lpWmnop under u ∈ SU(4). To estimate the effects of renormalization,

we simply assumed factorization, leading to a multiplicative factor of ω2.
The last term in Eq.(5.39) derives from decoupling the techniquarks. Decoupling these

three complex scalars yields a four techniquark operator respecting the full SU(4) symmetry,
since it arises from the N = 4 sector per se. This four-techniquark operator appears in the
Lagrangian as

g2
TC

m2
SUSY

ω2εabcεcdeη
αa
i η

b
jαη
∗d
iβ η
∗βe
j , (5.44)

where we have assumed the same renormalization enhancement factor ω2 as in (5.43). This
operator induces a shift in the coefficient m2 of the Tr

[
MM†

]
operator. The sign is such that

it contributes to chiral symmetry breaking. We will keep m2 as a free parameter.
1Notice that the indices i and j in Eq.(5.41) run from 1 to 4, while k = 1, 2 is the weak isospin.
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It is also useful to introduce the spurion ∆ related to the soft SUSY breaking mass
operator:

1

2
MDD̄RD̄R = ηT∆η, (5.45)

with
∆ = diag

(
0, 0, 0,

MD

2

)
(5.46)

transforming under SU(4) as ∆→ u∗∆u†.
Collecting the information above we write the following new operators emerging at the

effective Lagrangian level at the lowest order in the spurions:

LFE = −c1Λ2
TCTr [M∆] + c2Λ2

TCTr [MZ] + c3Λ4
TCWijklMijM

∗
kl + cc. (5.47)

The powers of ΛTC are inserted to make the coefficients dimensionless. The coefficients
c1, c2, c3 are estimated by NDA as c1 ∼ 1/hN , c2 ∼ 1/hN , c3 ∼ 1/h2

N .
The anomalous dimension of MWT has been under much research recently. These in-

vestigations are based on the approximation of the technicolor sector in isolation, without
taking into account the backreaction of the flavor extension. We can attempt to estimate γm
in this model by using the Schwinger-Dyson equation. Because of the mixing between the
up and down type Higgs particles, the techniquarks couple directly to both of the fields with
a coupling proportional to yU (5.30). We calculate the mass gap equation in the limit that
the down type Higgs field is decoupled, and in this case the Yukawa coupling y = yU .

We use the Schwinger–Dyson equation in the rainbow approximation similarly as in the
gauged Nambu Jona-Lasinio model [76, 77]. In this approximation the contributions are
given by three graphs, one with a gauge boson and two with scalars, either the techniscalar
or the Higgs particle, Figures 5.1 and 5.2. The coupling between two techniquarks and a
technisquark is found from the N = 4 symmetric Lagrangian given in (4.16).

Figure 5.1: Gauge boson contribu-
tion, proportional to g2

TC .
Figure 5.2: Technisquark contribu-
tion, also proportional to g2

TC from
two Yukawa interactions. The same
diagram also gives the Higgs particle
contribution, proportional to y2.

We find the following equation for the self energy of the U techniquark in the ladder
approximation:

Σ(p2) =

(
3g2

TC

m2
ϕπ

2
+

y2

16π2m2
h

) ˆ
dq2q2 Σ(q2)

q2 + Σ(q2)2
+

3g2
TC

8π2

ˆ
dq2 q2Σ(q2)

q2 + Σ(q2)2

1

Max(p2, q2)
.

(5.48)
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We then identify mϕ ∼ mh ∼ mSUSY and read off the result from standard literature [78].
We find that the values of the couplings required to achieve dynamical symmetry breaking
are given by

3g2
TC

π2
+

y2

16π2
=

1

4
(1 + Ω)2 , Ω =

√
1− 3g2

TC

2π2
, (5.49)

and the formula for the anomalous dimension is given by

γm = 1 + Ω (−1 + 2r) , r ≡ y2 + 48g2
TC

4π2 (1 + ω)2 . (5.50)

This formula is valid even away from the critical line, which is defined by r = 1. We therefore
find a very large anomalous dimension above the critical line, γm ≥ 1.75, as illustrated in
Fig. 5.3. In the case with only the gauge boson exchange diagram, Fig. 5.1, the equivalent
analysis gives γm = 1. Therefore, in this analysis, the Higgs Yukawa coupling has a smaller
effect than the technisquark one on the estimate of γm.

0.5
1

1.5

2

0.5 1.0 1.5
gTC

2
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10

12

y

Figure 5.3: The critical line y(gTC) for the U techniquark is plotted as a thick line. For a
given value of gTC , y(gTC) is interpreted as the minimum strength of the four fermion coupling
in order to achieve dynamical EWSB in the infrared. The dashed contours correspond to
constant values of the anomalous dimension γm.

5.4 Typical Spectrum
The components of the matrixM ∼ ηTη can be described either in terms of wave functions of
the underlying techniquarks, the transformation properties of the composites under SU(2)×
U(1), or in terms of the mass eigenstates. In terms of the transformation properties under
SU(2)× U(1), we have the states listed in Table (5.2).
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Field SU(2)L U(1)Y

∆ ∼ QLQL �� 1
σU ∼ QLŪR � −1

2

σD ∼ QLD̄R � 1
2

δ−− ∼ ŪRŪR 1 2
δ− ∼ ŪRD̄R 1 1
δ0 ∼ D̄RD̄R 1 0

Table 5.2: Transformation properties of the component fields of the matrixM under SU(2)×
U(1).

In this notation, we have

M =


√

2∆++ ∆+ σ0
U σ+

D

∆+
√

2∆0 σ−U σ0
D

σ0
U σ−U

√
2δ−− δ−

σ+
D σ0

D δ−
√

2δ0

 . (5.51)

To go to the mass basis, we must consider the modification of the low-energy effective poten-
tial induced by the flavor extension. Also the ground state of the theory must be consistently
redetermined. We start by searching for a new ground state parametrized according to the
following vacuum expectation value form of the matrix M:

〈M〉 =
1√
2


0 0 v1 0

0
√

2v2 0 v3

v1 0 0 0

0 v3 0
√

2v4

 . (5.52)

Minimizing the scalar potential given in (5.15) and (5.47) leads us to the following relations
for the parameters:

c1Λ2
TCMD = 2

(
v2

2 − v2
4

)(
2v4λ

′ − v2
1λ
′′

v2

)
, m2

FE = 2
(
v2

1 − 2v2
2

)(
λ′ − v4λ

′′

v2

)
,

v3 = 0, m2 = λ
(
v2

1 + v2
2 + v2

4

)
+ 4λ′v2

2 +
2v2

1v4λ
′′

v2

, (5.53)

where

m2
FE = c3y

2
Uc

2
θ

Λ4
TCω

2

m2
s

. (5.54)

This minimum is a global one.
The physical diagonalized masses at a generic point in the parameter space cannot be

presented in analytic form. Therefore we choose to study the special case

MD = v2 = v4 = 0 (5.55)



CHAPTER 5. MINIMAL SUPERSYMMETRIC CONFORMAL TECHNICOLOR 44

and it turns out that the qualitative features of the spectrum remain intact if a small MD is
added. At this special point in the parameter space, minimizing the scalar potential gives:

v2
1 =

m2 +m2
FE

λ+ 2λ′
, v3 = 0, (5.56)

with mFE defined in (5.54). The composite matrix M resumes a simple form in terms of
mass eigenstates:

M =


iΠUU + Π̃UU

iΠUD+Π̃UD√
2

σ+iΠ0
√

2
A+

iΠUD+Π̃UD√
2

iΠDD + Π̃DD iΠ− A0+iΘ√
2

σ+iΠ0
√

2
iΠ− iΠ∗UU + Π̃∗UU

iΠ∗UD+Π̃∗UD√
2

A+ A0+iΘ√
2

iΠ∗UD+Π̃∗UD√
2

iΠ∗DD + Π̃∗DD

 . (5.57)

The deviation of off-diagonal 2x2 matrix from the form (5.19) is due to the different flavor
extension sector. The mass of the Higgs boson σ is

M2
σ = 2m2 + 2m2

FE. (5.58)

The masses of the pseudo-Goldstone baryons are given by:

M2
ΠUU

= M2
ΠUD

= m2
FE

M2
ΠDD

= m2
FE − 2v2

1 (λ′ + λ′′) . (5.59)

The masses of the other scalar and pseudoscalar states are

M2
Θ = m2

FE − 2v2
1 (λ′ − λ′′)

M2
A± = m2

FE

M2
A0 = m2

FE − 2v2
1 (λ′ + λ′′) , (5.60)

for the technimesons, and

M2
Π̃UU

= m2
FE + 4λ′v2

1

M2
Π̃UD

= m2
FE

M2
Π̃DD

= m2
FE − 2v2

1 (λ′ − λ′′) , (5.61)

for the technibaryons. These expressions show that this flavor extension modifies the spec-
trum more subtly than the naive one introduced in Section 5.1.

The states given in (5.57) mix further when MD 6= 0, and their masses will get relevant
contributions as a result of this mixing. To demonstrate this effect, we present in Fig.5.4 two
example mass spectra for the non-SM particles, corresponding respectively to a heavy (1 TeV)
and light (150 GeV) lightest neutral Higgs scalar. These example mass spectra correspond
to points inside the parameter space we have studied:
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0.5 < c1,2hN < 5, 0.5 < c3h
2
N < 5, γ = 1.5, 246 > v1 GeV−1 > 246/

√
2,

(2π)2 > λ > 0.1, 2π > yt,N,E,U > 0.1, 4π > g > π, mt = 172 GeV,

120 GeV < 2

(
v4

v2

− v2

v4

)(
2v2v4λ

′ − v2
1λ
′′) < 10 TeV,

|v4| >
√
v2
w − v2

1

2
, mSUSY > 5 TeV. (5.62)

We furthermore require the potential to be stable and physical masses to be positive.
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Figure 5.4: These plots contain the full scalar and heavy lepton mass spectrum as a function
of the EM charge Q corresponding to a heavy (light) composite Higgs particle, with mh1 ' 1
TeV (left panel) and mh1 ' 150 GeV (right panel). The absolute value of the EM charge is
on the x axis. Scalars are denoted by hi where the sub index labels the mass eigenstates, and
the possible electric charge is given as a super index. Pseudoscalars are similarly denoted by
Ai.

Note that the masses of the upper component u and the lower component d of a generic
EW fermion doublet are given by

mu = c2Λ2
TC

c2
θyUyfω

m2
s

v1√
2
, md =

yd
yu
tθmu , (5.63)

with tθ = tan θ, which is a free parameter. We will always choose the values of ms and
Yukawa couplings to yield the correct SM mass spectrum.

5.5 Oblique Corrections
We now determine the EW precision parameters which receive contributions from the vacuum
structure (5.52), from the intrinsic TC dynamics, and from the new leptons N and E.
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For the vev defined by Eqs.(5.52,5.53) the W± and Z bosons squared masses are readily
computed:

m2
Z =

1

4

(
g2
L + g2

Y

) (
v2

1 + 4v2
2

)
, m2

W± =
1

4
g2
L

(
v2

1 + 2v2
2

)
. (5.64)

From these expressions one determines the value of the T parameter at tree level:

Ttree = −2v2
2

v2
w

, v2
w = (

√
2GF )−1 = v2

1 + 2v2
2 = (246 GeV)2 , (5.65)

where GF is the Fermi coupling constant. We note that extensions of the SM with a non-zero
tree-level T parameter can be phenomenologically viable [79]. The tree-level T parameter is
a result of custodial symmetry breaking induced by the technigaugino soft mass term. Also
the coupling with the fundamental Higgs scalar breaks custodial symmetry, but its effect on
the T parameter is only at loop level.

At one loop there are two distinct contributions to both S and T , one generated by the
heavy leptons N and E with non-degenerate masses [80], and the other one generated by
the techniquarks Ua and Da. The latter contribution is usually accounted for by the naive
values Snaive = (6π)−1, Tnaive = 0, associated to each EW doublet, that are obtained in the
limit of Ua and Da having a dynamically generated degenerate mass mdyn → ∞. We now
estimate S and T by taking into account the full expressions for the masses of the left-handed
Weyl spinors Ua

L, Ūa
R, Da

L, D̄a
R. In these expressions we include a finite dynamical Dirac mass

term, mdyn. We use the formulas and notation as given in [81], with the mass parameters
multiplying the operators ULŪR, DLD̄R, and DRDR in the Lagrangian given by

y2
Uω

2c2
θ

m2
s

〈ULŪR〉ΛTC
+mdyn , mdyn , MD, (5.66)

These masses are identified respectively with mζ , mD and mR of [81]. Similar estimates,
albeit without any knowledge of the FE dynamics, have been used in the literature [82]. We
assume, as a crude estimate for the dynamical mass,

mdyn '
hN vw

2
, 〈ULŪR〉ΛTC

' hNv
3
1. (5.67)

The experimental bounds on S and T depend on the reference mass of the SM Higgs
boson, mref. The only non-zero contributions of the scalars hi to S and T are associated with
the diagrams of the kind given in Fig.5.5. We will find that phenomenology dictates v2 to be
small, so we will work in the simplifying limit v2 = 0, so that σ0

U is a linear combination of
just two mass eigenstates,

σ0
U = c′jhj, i = 1, 2, (5.68)

with the sum of the squares of the coefficients c′j normalized to one. In the limit ofmhi � mZ ,
the resulting expressions for S and T in MSCT corresponding to the SM Higgs particle
contributions are

S ≈ 1

12π

∑
i

c′2i log
m2
hi

m2
ref

, T ≈ −3

16πc2
w

∑
i

c′2i log
m2
hi

m2
ref
, (5.69)

with cw the cosine of the Weinberg angle, and mref = 117 GeV.
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Figure 5.5: Higgs scalar hi contribution to vector boson V’s vacuum polarization amplitude.

To summarize, the full contribution to the EW parameters is given by

S = SU,D + SN,E , T = Ttree + TU,D + TN,E, (5.70)

where Ttree is the tree level contribution of Eq.(5.65), SU,D and TU,D are the one loop con-
tributions of the techniquarks calculated by using the formulae given in [81], and SN,E and
TN,E are the one loop contributions of the heavy leptons [80].

5.6 Higgs Particle Constraints From the LHC
The sector of the MSCT effective Lagrangian relevant for Higgs particle production and decay
at LHC is given by the coupling terms

Lint = −2m2
h±h

+h−
λi
vw
hi −mfψψ̄

cj
v1

hj + 2m2
WW

+
µ W

µ−
(
v1

v2
w

cjhj +
2v2

v2
w

djhj

)
+ m2

ZZµZ
µ

(
v1

v2
w + 2v2

2

cjhj +
4v2

v2
w + 2v2

2

djhj

)
, (5.71)

where we suppressed indices and sums over the MSCT fermions and charged composite
scalars, represented in the equation above by ψ and h±, and the sum over j = 1, 2, 3. The
physical Higgs particles are denoted hi and the coefficients cj, dj are found by the projections
on the these eigenstates:

σ0
U = cjhj, ∆0 = djhj. (5.72)

We calculated numerically cj, dj, and λj, for each viable point, by expressing the Lagrangian
in terms of the mass eigenstates, and reading off the relevant couplings.

The main production processes of a light neutral Higgs scalar (H) at LHC (see [83] by
Gunion et al., and [84] by Djouadi for comprehensive reviews on Higgs particle phenomenol-
ogy at LHC) are qq̄ −→ W/Z + H, qq −→ qq + H, gg −→ H, gg −→ qq̄ + H, with the
corresponding Feynman diagrams shown in Fig. 5.6.

The Higgs scalar will then decay to the whole spectrum of massive particles and, through
loop induced processes involving charged (colored) massive particles, to photons (gluons) as
well, as shown in Fig. 5.7, where ϕ represents any spin-0 particle.

From Figs. 5.6 and 5.7, and (5.71), and from the fact that the fermion couplings to gauge
bosons are fixed by their quantum numbers, it follows that the dominant production rates
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Figure 5.6: Dominant neutral Higgs scalar hi production processes at LHC.

as well as the decay rates to fermions, W/Z bosons (both on and off shell), and gluons, can
be expressed in function of the corresponding SM rates by

σqq̄→Whi

σqq̄→WhSM

=
σqq→q′q′hi
σqq→q′q′hSM

=
Γhi→WW

ΓhSM→WW

=

[
v1

vw
ci + 2

v2

vw
di

]2

≡ Γ̂Wi , (5.73)

σqq̄→Zhi
σqq̄→ZhSM

=
σqq→qqhi
σqq→qqhSM

=
Γhi→ZZ

ΓhSM→ZZ
=

[
v1ci

vw + 2v1/vw
+

4v2di
vw + 2v1/vw

]2

≡ Γ̂Zi , (5.74)

σgg→hi
σgg→hSM

=
σgg→qq̄hi
σgg→qq̄hSM

=
Γhi→gg

ΓhSM→gg
=

Γhi→ff̄
ΓhSM→ff̄

=
v2
w

v2
1

c2
i ≡ Γ̂fi , (5.75)

where q′ represents a quark with weak isospin different from that of the quark q.
Among the three neutral composite Higgs scalars available in MSCT, we pick the one with

the strongest coupling toW , which we denote H. In Fig. 5.8 we show the numerical values of
Γ̂WH (left panel) and Γ̂ZH (right panel), defined respectively in Eqs.(5.73,5.74) (where i for the
state H is the one having the largest value of Γ̂Wi ), for each of the 104 viable points defined
in the previous section. For the same sample of points we show in Fig. 5.9 the numerical
values of Γ̂fH (left panel) and the H decay rate to two photons (right panel) for both MSCT
(yellow dots) and SM (black line).

From Figs. 5.8 and 5.9 it is clear that the total decay rate Γtot of H for mH < 1 TeV
is of the same magnitude as that of the SM Higgs particle, which is equal to roughly 1
TeV for mhSM

= 1 TeV [84]. Since Γtot is of O(mH) when mH > 1 TeV, the narrow width
approximation cannot be used in this regime, and a full calculation of the cross section would
be necessary. For most points in the regionmH < 1 TeV,H corresponds to the lightest neutral
scalar h1, and therefore decays to other scalars and pseudoscalars, mostly off shell, have a
negligible branching ratio. The contribution of the charginos N and E to Γtot is expected
to be one order of magnitude smaller than ΓH→WW . From Figs. 5.8 and 5.9 (left panel) it
is evident that for mH . 500 GeV the H production rate, accounted for mostly by the two
processes in Fig. 5.6 with a gluon-gluon initial state, is almost identical in value to that of
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Figure 5.7: Decay channels for the neutral Higgs scalar hi.

the SM Higgs particle. Since for the same mass range the H decay rate to WW is roughly
the same as that of the SM Higgs particle, while the H decay rate to ZZ is in general greater
than the corresponding SM rate, we expect most of the MSCT parameter space featuring
144 GeV < mH < 460 GeV to be ruled out by the 1fb−1 to 2.3 fb−1 ATLAS or CMS results,
as it is the case for hSM [45, 44].

The upcoming LHC results for 5 fb−1 are expected to cover the range 0.5 . mhSM
/TeV .

1 as well, since in that mass range H features a decay rate to WW comparable to that of
the SM Higgs particle, and a generally larger one to ZZ (with a relative increase as large as
50%), therefore H can be either observed or ruled out for 0.5 . mH/TeV . 1 with the same
amount of data. In principle H could be distinguished from hSM by measuring the ratio of
couplings to Z and W .

From Fig. 5.9 (right panel) it is clear that the H decay to two photons cannot be used
to search for a light H, while Fig. 5.9 (left panel) shows that the H decay rates to bb̄, τ τ̄ ,
and gg, are almost identical in the low mass range to those of the SM Higgs particle. In
this section we considered the case of relatively heavy composite Higgs particles since the
phenomenological viable points featuring mh1 < 145 GeV is about 0.5 %.

5.7 Other Regimes of MSCT
In this section we have so far discussed the MSCT model in its most natural parameter
region. Now we consider other parameter regions that are, from the MWT perspective,
distinct extensions. These inequivalent extensions are differentiated, for example, by the
choice of the value of the coupling constant gTC of the supersymmetric technicolor sector
near the EW scale. Therefore there are two basic regimes: strong and weak coupling.

In the strong coupling regime, gTC is large around the weak scale. In this case it is
possible that the technicolor fermion bilinear condensate triggers EWSB. In this section
we have investigated the region mSUSY > 5 TeV, but have omitted the possibility that
the SUSY breaking scale could be as low as mSUSY ∼ mEW . It is argued in [73] that
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Figure 5.8: The MSCT neutral Higgs particle that has the largest coupling toWW is denoted
by H. On the left (right) panel, the ratio between the decay rates of H and of the SM Higgs
particle to WW (ZZ) is shown. The red bands show the range of mhSM

excluded either by
ATLAS or CMS [44, 45].

Figure 5.9: The MSCT neutral Higgs particle that has the largest coupling toWW is denoted
by H. Left panel: ratio between the production rate of H and of the SM Higgs particle, via
gluon fusion. Right panel: decay rate to γγ of H (yellow dots) and SM Higgs particle (black
line). The red bands show the range of mhSM

excluded either by ATLAS or CMS [45, 44].
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the latter regime is natural, if the technisquarks are decoupled at the electroweak scale,
and the value of the gauge coupling at that scale is above the critical value. In this case,
electroweak symmetry breaking is in fact triggered by soft supersymmetry breaking effects. It
is a phenomenologically interesting possibility that technicolor composites and SUSY partners
would have similar masses. The model still solves the little hierarchy problem because of the
strong coupling nature of the TC sector, but it requires soft SUSY breaking universality. We
have shortly investigated this regime in Paper II and Paper III. Finally, there is the case of
tachyonic mass terms at the electroweak scale. We have not studied this case since the little
hierachy problem is worse than in the MSSM.

As a toy model, it might be interesting to also study MSCT in the case that SUSY is not
broken and the supersymmetric theory is strongly coupled at the EW scale. Then we must use
non-perturbative methods to investigate the effects of the new sector on the MSSM dynamics
and vice versa. For example, we can no longer use the single particle state interpretation
in terms of the underlying degrees of freedom of the supersymmetric technicolor model but
rather we must use the unparticle language [85] given that the supersymmetric technicolor
model is exactly conformal, before coupling it to the MSSM. If no SUSY breaking terms
are added directly to the 4SYM sector, then conformality will be broken only via weak and
hypercharge interactions. An important further point is that one can use the machinery of the
AdS/CFT [86] correspondence to make reliable computations in the nonperturbative sector,
considering the effects of the EW interactions as small perturbations. The model resembles
the one proposed in [87] in which, besides a technicolor sector, one has also coupled to the
SM a natural unparticle composite sector.

In the weak coupling regime of MSCT, the gauge coupling gTC is small at the electroweak
scale. Such a theory has nothing to do with technicolor, as there can be no dynamical quark
condensate. It is still an interesting model, since it provides a direct connection between a
N = 4 theory and electroweak scale physics. It is also interesting since it is the weak coupling
limit of the unparticle model. We will investigate this model in the next chapter, Chapter 6.

In Paper II we investigated also different SUSY BTC models based on MWT for different
hypercharge values y. For values of y not equal to±1 it is not possible to have the approximate
N = 4 symmetry, but phenomenological viability might be easier to achieve.



Chapter 6

N=4 Extended MSSM

In this chapter we discuss a semi-realistic extension of the MSSM, investigated in Paper IV.
In this model the electroweak symmetry is partly broken by the vev of a fundamental scalar
of the N = 4 Super-Yang Mills sector (4SYM). The particle content and charge assignments
are the same as in the MSCT model, given in Table 5.1, and consist of the MSSM and a
SU(2) N = 4 sector. The couplings between the up-type Higgs field and the 4SYM fields,
and the EW gauging of the 4SYM sector, cause hard breaking of the N = 4 SUSY to N = 1.
In addition, SUSY is broken by soft SUSY breaking terms. Electroweak symmetry breaking
is triggered by fundamental condensates arising because of tachyonic soft SUSY breaking
mass terms. We assume flavor universality for the squark and slepton soft SUSY breaking
sector.

The complete scalar potential is given by

V = VN4 + VMSSM , VN4 = −LD − LF − Lsoft −
(

1

2
MDD̄

a
RD̄

a
R + c.c.

)
, (6.1)

where VMSSM is the MSSM Higgs potential and can be found in [69]. The SM squarks and
sleptons do not mix with the N = 4 scalars or heavy new scalar leptons at tree-level, and
therefore their mass spectrum assumes the same form as in the MSSM. The Higgs scalar
fields, H̃ and H̃ ′, on the other hand, mix with the N = 4 scalars.

The neutral scalar potential of this model, derived from (6.1), is:

Vns = M2
Q|D̃3

L|2 +
(
m2
u + |µ|2

)
|H̃0|2 +

(
m2
d + |µ|2

)
|H̃ ′0|2 −

(
bH̃0H̃

′
0 + c.c.

)
+

1

8

(
g2
L + g2

Y

) (
|D̃3

L|2 − |H̃ ′0|2 + |H̃0|2
)2

. (6.2)

To derive the spectrum of the theory, we first determine the ground state. We allow for
a nonzero vev for each of the electromagnetically neutral scalars, which are D̃L, H̃0 and H̃ ′0.
Without loss of generality, we choose the vacuum expectation value of the D̃L scalar to be
aligned in the third direction of the SU(2)N4 gauge space, and hence the vevs are written as〈

D̃3
L

〉
=
vN4√

2
,
〈
H̃0

〉
= sβ

vH√
2
,
〈
H̃ ′0

〉
= cβ

vH√
2
, (6.3)

where sβ = sin β, cβ = cos β, and all vevs are chosen to be real. We indicated the scalar
component of each Higgs weak doublet superfield with a tilde. We find that the gauge

52
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group breaking follows the pattern SU(2)N4 × SU(2)L × U(1)Y → U(1)N4 × U(1)EM . The
second U(1) on the right corresponds to the ordinary electromagnetic (EM) charge. The
phenomenological constraints on a new U(1) massless gauge boson were studied in [88], and
their analysis shows that the operators coupling such a gauge boson to the SM fields needs
to be suppressed by scales at least of the order of the EW scale. This would provide relevant
constraints on our model.

There are four massless scalar states at tree level in this theory. Of these, three are
absorbed by the electroweak gauge bosons and one, the A0, gains mass at the one loop
level. At an e+e− collider, the main production channel of the light scalar A0 would be
e+e− → Z → h0

0A0. For a hadron collider, one has also production via gluon-gluon fusion
and associated production with heavy quarks. Therefore one needs the following tree level
couplings:

gh0
0A0Z : −

√
g2
Y + g2

L

2

c2β

√
v2
N4 + v2

H√
v2
N4 + v2

Hc
2
2β

(6.4)

gA0b̄γ5b : − mb√
v2
N4 + v2

H

vN4

vH
(6.5)

gA0 t̄γ5t :
mt√

v2
N4 + v2

H

vN4

vH
, (6.6)

where mf is the fermion mass. The formulae are generic for the up and down type fermions.

Figure 6.1: The 95% C.L. MSSM exclusion contours obtained by a combination of the CDF
and DØ searches for H → t+t− in a maximum Higgs mass benchmark scenario, projected
onto the (mA0 , tanβ) plane. The regions above the solid black line are excluded, and the
shaded and hatched bands centered on the lighter line show the distributions of expected
exclusions in the absence of a signal. Also shown are the regions excluded by LEP searches
[18], assuming a top quark mass of 174.3 GeV. Taken from [89].
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Figure 6.2: Shaded area shows the experimentally excluded values of the Yukawa couplings
yt and yE.

We now compare the possibility of discovering the A0 of our model to discovering the
similar particle in the MSSM. For tan β ∼ 1 we find gh0

0A0Z ∼ 0 implying that there is a
depletion of the A0 production rate at e+e− colliders. As for the constraints from hadron
colliders, if in addition vN4/vH ' 1, the couplings to quarks are of the same order as the
MSSM couplings. Therefore the model parameter space has some valid region around tan β =
1, where the A0 would have escaped detection, see Fig. 6.1.

For the fermion sector, the lower bounds on the mass of the lightest neutralino and
chargino are [61]

mχ0
0
> 46 GeV , mχ±0

> 94 GeV. (6.7)

These limits refer to the MSSM, but they are rather general, since they are extracted mostly
from the Z decay to neutralino-antineutralino pair the former, and from photo-production
of a chargino-antichargino pair at LEPII the latter. We use the lower bound on the chargino
mass for the mass of both the singly charged particles and the doubly-charged new electron
E. From these constraints we produced the interesting relation for the Yukawa couplings of
the top and the doubly charged electron E:

yt >
173

213

√
1

1
2
− 942

y2
E2132

. (6.8)

This last bound is plotted in Figure 6.2, where the shaded area shows the values of yt and
yE excluded by the experiment: it is evident from the plot in Figure 6.2 that either yt or yE
is constrained to be larger than about 1.3.

These Yukawa couplings are required to be rather large, so we now analyze the evolution of
the gauge and Yukawa couplings using the two-loop renormalization group equations (RGE).
In Figure 6.3 we plot gN4, yN4, yU , yt, yN , yE as a function of the renormalization scale M .
The couplings are normalized atM = mZ to yN = 1.8, gN4 = yN4 = yU = yt = 2.3, yE = 2.4.
Summarizing, gN4 runs towards zero at high energies, while the Yukawa couplings yU , yN , yt,
responsible for the mass of the heavy upper components of weak doublets, increase and flow
close to an ultraviolet fixed point at around 2 TeV. For the above values of the Yukawa
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Figure 6.3: Values of gN4, yN4, yU , yt, yN , yE as a function of the renormalization scale M .
The couplings are normalized atM = mZ to yN = 1.8, gN4 = yN4 = yU = yt = 2.3, yE = 2.4.

couplings we end up with the following spectrum:

mχ0
0

= 47 GeV , mχ±0
= 96 GeV , mh0

0
= 95 GeV , mA0 = 32 GeV. (6.9)

Although the mass of A0 is low, it should be noted that this spectrum represents a sample
point. Also the mass of the A0 is low because we have not included the stop and top loops
when determining the one loop effective potential.



Chapter 7

Summary and Conclusions

In Chapter 1 it was argued that the SM Higgs mass is unnaturally small. In TC models, the
electroweak scale is explained naturally by logarithmic gauge coupling running.

Chapter 2 introduced technicolor. Technicolor models are not complete without an addi-
tional sector to generate the SM fermion masses. In ETC models one expects large FCNC
processes, but using near conformal dynamics alleviates the FCNC problem. In bosonic
technicolor models, fermion masses arise from scalar mediated interactions with the tech-
nicolor condensate. The absence of observed flavor changing neutral currents is explained
by the GIM mechanism. A walking coupling is needed only if the mediator mass scale is
high. One can make the coupling walk while also keeping the S parameter small by using
nonfundamental representations for techniquarks.

In Chapter 3 we introduced the bosonic NMWTmodel. We wrote the effective Lagrangian
and discussed how to estimate coefficients with NDA. We discussed the oblique corrections
in the model and finally presented results. The current experimental limits do not exclude
the model in the region where one of the scalars is light and SM-like. In this limit, the other
scalar (the mostly fundamental one) is heavy and almost decoupled.

Chapter 4 introduced SUSY. Supersymmetry provides an elegant solution to the stabi-
lization of the EW scale in the MSSM. This is achieved by supersymmetrizing the entire SM
spectrum. By relating bosons and fermions, the symmetries protecting the fermionic sector
from acquiring large quantum corrections now also apply to the scalars of the model, and
consequently the EW scale stabilizes. This explanation of the stability of the Higgs mass is
minimal since, in contrast to the technicolor case, one can use the same degrees of freedom
to give mass to the electroweak gauge sector and to the matter fields. However, one has not
seen a trace of light superpartners at the LHC experiments. Also, either the SUSY breaking
sector conserves flavor to a suprisingly high accuracy, or then the SUSY breaking scale is
much higher than the electroweak one. We discussed SUSY TC models in which these facts
are explained by increasing the SUSY breaking scale, and correspondingly the Higgs mass,
to 5-50 TeV. The electroweak scale is instead explained as in technicolor - it is analogous to
the QCD scale. The fundamental Higgs fields do not participate in electroweak symmetry
breaking but simply act as messengers between the symmetry breaking sector and the quarks
and leptons.

Chapter 5 began by reviewing MWT. In MWT the gauge group is SU(2)TC × SU(3)C ×
SU(2)L × U(1)Y and the field content of the technicolor sector is constituted by two flavors
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of technifermions and one technigluon all in the adjoint representation of SU(2)TC . The
technifermions and technigluons of the Minimal Walking Technicolor form an N = 4 super-
multiplet after adding only three scalar superpartners. In fact, the SU(4) global symmetry of
MWT is simply the well known SU(4)R R symmetry of the N = 4 Super Yang Mills theory.
Supersymmetrizing MWT in this way leads to an approximate N = 4 supersymmetry of
the technicolor sector that is broken to N = 1 only by EW gauge and Yukawa interactions.
This specific SUSY BTC model was then studied in more detail. We wrote the effective
Lagrangian, discussed the spectrum, and then proceeded to oblique corrections and Higgs
scalar searches at the LHC. The backreaction of this flavor extension of the TC theory itself is
significant in terms of the low-energy spectrum and anomalous dimension of the techniquark
bilinear.

Finally, in Chapter 6 we studied a model in which a weakly coupled N = 4 gauge theory
participates in electroweak symmetry breaking. The spectrum includes a light pseudoscalar
that evades detection, because by tuning parameters it does not couple to the Z boson. This
model is a simplified test laboratory for more realistic models of unparticle physics. In the
large coupling limit, this model contains unparticle matter above the electroweak scale. In
any case it is an interesting possibility that a N = 4 sector could be discovered at the EW
scale.

This thesis has investigated bosonic technicolor models. The main conclusion is that
bosonic technicolor models are viable, and that models combining supersymmetry and tech-
nicolor can be free of the problems associated with either paradigms in isolation. The second
main conclusion is that the flavor extension of the technicolor sector can affect the technicolor
theory itself nontrivially. Not only the anomalous dimension of the techniquark bilinear can
grow, but strong attractive Yukawa interactions can have a large effect on the low-energy
spectrum, and even contribute significantly to EWSB. In such technicolor theories, the pos-
sibility that the technicolor chiral symmetry is badly broken should be considered.
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