
Date of Acceptance Grade

Instructors

Purely Functional Compressed Bit Vectors
with Applications and Implementations

Joel E. Kaasinen

Helsinki 10.7.2011

Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14925086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Matemaattis-luonnontieteellinen Tietojenkäsittelytiede

Joel E. Kaasinen

Purely Functional Compressed Bit Vectors with Applications and Implementations

Tietojenkäsittelytiede

Pro-Gradu -tutkielma 10.07.2011 71

compressed data structures, functional programming, entropy, wavelet tree

The study of compressed data structures strives to represent information on a computer concisely –
using as little space as possible. Compressed bit vectors are the simplest compressed data structure.
They are used as a basis for more complex data structures with applications in, for example,
computational biology.

Functional programming is a programming paradigm that represents computation using functions
without side-effects (such as mutation). Data structures that are representable in and suitable for
functional programming are termed functional data structures. Functional data structures are also
persistent: operations on them do not destroy previous versions.

This thesis provides implementations of functional compressed bit vectors in the purely functional
programming language Haskell. The implemented structures are analyzed and benchmarked against
established imperative (C++) implementations.

Applications of compressed bit vectors are also surveyed. This includes compressed wavelet trees,
an implementation of which is also presented.

ACM Computing Classification System (CCS):

D.1.1 PROGRAMMING TECHNIQUES: Applicative (Functional) Programming

E.1 DATA STRUCTURES: Arrays, Trees

E.4 DATA CODING AND INFORMATION THEORY: Data compaction and compression

F.2.2 ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY: Nonnumerical Algo-
rithms and Problems: Sorting and searching, Pattern matching

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Compression 2
2.1 Entropy . 2
2.2 Gap Encoding . 4
2.3 The Burrows-Wheeler Transform 5

3 Compressed Bit Vectors 8
3.1 Prior Work . 9

4 Applications of Compressed Bit Vectors 10
4.1 Sets . 10
4.2 Trees . 10
4.3 Wavelet Trees . 11
4.4 Indexes . 14

5 Functional Programming 17
5.1 Laziness . 17
5.2 Functional Data Structures . 18

6 Haskell 19
6.1 Expressions . 20
6.2 Definitions . 21
6.3 Types . 23
6.4 Higher-Order Functions . 25
6.5 Algebraic Data Types and Pattern Matching 26
6.6 Strictness Annotations . 28
6.7 Type System Features . 29
6.8 Lists . 32

7 Monoidal Annotations and Annotated Trees 33
7.1 Rank and Select via Monoids . 36
7.2 Data Structures . 37

8 Implementations 38
8.1 Overview . 38
8.2 Bit Vectors and Gaps . 39
8.3 The SizeRank Monoid . 42
8.4 Codes and Blocks . 44
8.5 Encoded Blocks . 45
8.6 Small Encoded Blocks . 47
8.7 Dynamic Bit Vector . 47
8.8 Static Compressed Bit Vector . 50
8.9 Finger Tree -based Dynamic Bit Vector 53
8.10 A Simple Wavelet Tree . 55

8.11 Remarks . 58

9 Benchmarks 58
9.1 Static Operations . 58
9.2 Dynamic Operations . 59
9.3 Memory Use . 61
9.4 Space-Time Tradeoffs . 64

10 Conclusions 66

A Notations 70

B Haskell Syntax 70

1 Introduction

Resource constraints have always shaped the development of computer science.
One of the most basic constraints is that of storage space: while the amount
of available space has grown almost exponentially, the amount of data that we
want to store has never lagged far behind. Thus compressed representations
of data have for long been of interest. While the focus has traditionally been
on compressing raw data (images, text, sound), in the past ten years there has
been a growing interest in compressing data structures. While (traditional)
compressed data can be time-consuming to operate on, compressed data struc-
tures try to support efficient access and modification despite their small memory
footprint.

In addition to machines, humans have their limits. When software grows too
complex, finding bugs and analyzing performance becomes impossible. Func-
tional programming is one possible solution to this problem. By avoiding
(global) state and mutation and instead relying on the composition of side-
effectless components, many of the problem sources of ordinary imperative pro-
gramming are eliminated. The programmer is forced to express himself on a
higher level, boosting readability of the code and leaving more room for the
compiler to optimize.

With the rise of modern functional programming languages such as Haskell,
O’Caml and Clojure, the need for efficient functional data structures has grown.
Data structures for functional programming need to be designed from a new per-
spective: the structures need to be immutable but efficient. Immutability means
that the data structure operations may not change the structure: thus for exam-
ple insertions are treated by having the insert operation return a new version of
the structure while leaving the original version untouched. Although this sounds
horribly inefficient, structures like this can be designed to be efficient.

Already in the 80’s there was research into persistent data structures by big
names such as Tarjan and Sleator. Persistent data structures are structures that
keep track of their change history. They are closely related to immutable data
structures since they both retain previous data when an update occurs. More-
over methods of designing persistent and functional data structures overlap (e.g.
path copying [DSST89]). Modern research into functional data structures (e.g.
Okasaki’s book [Oka99] and Finger Trees [HP06]) can be seen as a continuation
of research into persistent data structures.

There is an interest in compressed data structures and a need for functional
data structures. Also, there are no functional implementations of compressed
data structures. This is the gap this thesis aims to fill. The main contribution
of this thesis is the functional implementation of static and dynamic bit vectors
that are both compressed and persistent. The implementations are presented
using the general framework of monoidal annotations.

This thesis starts with a short description of compression and its analysis in sec-

tion 2. This is followed by sections on compressed data structures and their ap-
plications (sections 3 and 4). Sections 5 and 6 introduce functional programming
and the Haskell language and end the introductory part of this thesis. Sections
7 and 8 describe the Author’s functional implementations of compressed data
structures. Section 9 describes how the implemented structures were compared
against existing implementations.

2 Compression

Compression is the art of representing information concisely. The study of
encoding and compression dates back to early communications and signal pro-
cessing research in the 1940’s and 50’s by, for example, Shannon, Nyquist and
Hartley. In computer science, compression has been studied since the 70’s, and
numerous methods for compressing strings have been developed.

2.1 Entropy

The key tools for quantifying the performance of compression come from prob-
ability theory and statistics. The main factor here is the unpredictability of the
string to be encoded: the more unpredictable the characters of the string are,
the harder it is to compress. However, obtaining suitable measures of unpre-
dictability has been a long process, and the rigorous analysis of some important
compression methods have been completed only recently (see e.g. Gagie [Gag07]
and Manzini et al [Man01]).

The concept of information-theoretic entropy1 due to Shannon [Sha48] was used
in the earliest efforts to analyze rates of information transfer. Shannon’s theorem
[Sha48, Theorem 9, The Fundamental Theorem for a Noiseless Channel] states
that a data stream with an entropy H per symbol cannot be transmitted by
using on average under H bits per symbol.

The entropy of a discrete random variable X with possible values in U is

H(X) =
∑
x∈U

−p(X = x) log(p(X = x)).

The convention is that 0 log 0 is taken to be 0 when calculating the entropy. By
the convexity of x 7→ −x log x it follows that the entropy of a random variable
is maximized when all outcomes are as likely. Correspondingly, the entropy is
minimized (in fact it is 0) when p(X = x) = 1 for some x. Thus entropy gives
as a way of quantifying the inherent uncertainty of a random variable.

The problem with entropy as a complexity metric is that it is requires a (prob-
abilistic) model that produces the strings we are interested in. Because of this,

1loosely related to the concept of entropy in thermodynamics [Jay57]

several adapted complexity metrics based on entropy that do not need such a
model have been proposed [Gag07]. Perhaps the most recent is Kosaraju’s and
Manzini’s empirical entropy [Man01].

The 0th-order empirical entropy of a string s is

H0(s) = −
∑
c∈Σ

nc

n
log
(nc

n

)
,

where Σ is the alphabet, n is the length of the string s and nc is the number of
occurrences of character c in s. Thus the 0th-order entropy depends only on the
frequencies of symbols in s. Note that H0(s) = H(Xs) where Xs is the random
variable corresponding to choosing a symbol from s at random.

The kth-order empirical entropy can be defined as

Hk(s) =
∑

x∈Σk

nx

n
H0(Cs(x)),

where nx is the number of occurrences of string x as a substring of s and Cs(x)
is the string consisting of the characters in s that follow an occurrence of x.
Here the string is considered cyclically: that is, ab is a substring of the string
baaa and also Cbaaa(aa) = ab.

The kth-order entropy of a string corresponds roughly to the entropy of the
kth order Markov chain approximation for it [Man01]. This can be understood
as the average uncertainty of the next symbol in the string when we know the
preceding k symbols.

Note that the empirical entropy does not actually depend on the alphabet. It
is sufficient to sum over only the k-substrings that occur in s.

As an example, for the string aababcabcd we have

naa = 1 Cs(aa) = b H0(b) = 0
nab = 3 Cs(ab) = acc H0(acc) = 0.92
nba = 1 Cs(ba) = b H0(b) = 0
nbc = 2 Cs(ba) = ad H0(ad) = 1.00
nca = 1 Cs(ca) = b H0(b) = 0
ncd = 1 Cs(cd) = ba H0(ba) = 0
nda = 1 Cs(da) = a H0(a) = 0

and thus

H2(aababcabcd) = 3
100.92 + 2

101.00 ≈ 0.48.

See Figure 1 for additional examples of the empirical entropies of strings.

String H0 H1 H2 H3
aaaaaa 0 0 0 0
aaaaab 0.65 0.60 0.54 0.45
ababab 1 0 0 0
aababcabcd 1.85 0.80 0.48 0.20
abracadabra 2.04 0.55 0 0

Figure 1: Empirical entropies of some strings

2.2 Gap Encoding

In this section we will look at gap encoding, one of the simplest compression
methods. It is capable of compressing a binary string (roughly) up to its zeroth-
order entropy. However, when we combine gap encoding with the Burrows-
Wheeler transform (see Section 2.3) and wavelet trees (see Section 4.3) we will be
able to compress strings over arbitrary alphabets up to their kth-order empirical
entropy. See Section 4.4 for details.

A binary string with a low zeroth-order entropy H0 will have an uneven distri-
bution of ones and zeros. This also means that it will have a large number of
long runs, substrings that contain occurrences only one symbol.

Gap encoding represents the binary string 0x010x11 . . . 10xk with k − 1 ones as
δ(x0)δ(x1) . . . δ(xk) where δ is some suitable encoding of integers into binary
strings. To make decoding possible, δ has to define a prefix code, that is, δ(x)
should be recoverable from δ(x)s for any integer x and binary string s.

One such encoding is Elias’s δ-code [WZ99]. Let #x denote the number of bits
necessary to represent integer x, that is, #x = dlog(x+ 1)e. Now δ(x) encodes
x in three parts:

1. ##x zeros followed by a 1: 0##x1

2. all but the most significant bit of #x

3. all but the most significant bit of x

The first bits of #x and x are omitted because they are necessarily 1. The space
the encoding requires is |δ(x)| = log x+2 log log x+O(1) = log x+o(log x).

To recover x from s = δ(x)s′ we first count the number of zeros that s starts
with. This gives us ##x. Now we can read the ##x bits that encode #x.
After this we can read the #x− 1 bits that encode x.

We can now compute the space needed by gap encoding with δ-codes. Let
s = 0x010x11 . . . 10xk be a binary string and G(s) = δ(x0)δ(x1) . . . δ(xk) its
gap-encoded form. Let n = |s|. We now have

H0(s) = −k
n

log k
n
− n− k

n
log n− k

n
= k

n
log n

k
+ n− k

n
log n

n− k

and thus

|G(s)| =
k∑

i=0
|δ(xi)| =

k∑
i=0

log xi + 2 log log x+O(1)

≤ (k + 1) log n− k
k + 1 + (k + 1) log log n− k

k + 1 +O(k)

≤ k log n
k

+ log n
k

+ (k + 1) log log n
k

+O(k)

≤ nH0(s) + (k + 1) log log n
k

+ log n
k

+O(k)

= nH0(s)(1 + o(1)) +O(k + logn)

by
∑n

i=0 xi = n − k and the convexity of log. Thus when k is small compared
to |s| the size of G(s) is close to |s|H0(s).

A more straightforward encoding for integers is the nibble encoding2. The nibble
encoding stores an integer i by using four bits (a “nibble”) to encode every three
bits of the binary representation of i. The highest bit of a nibble signals whether
the encoding continues to the next nibble. Thus 25 = 110012 would be encoded
as 1011 0001. The nibble encoding is straightforward to implement efficiently
on a word-based computer. The space requirement is 4dlog x/3e. Performing
a similar analysis as in the δ case gives the space needed by the nibble gap
encoding Gn:

|Gn(s)| =
k∑

i=0
4
⌈

log x
3

⌉
≤ 4k +

k∑
i=0

4 log x
3

≤ 4(k + 1)
3 log n− k

k + 1 + 4k

≤ 4k
3 log n

k
+ 4 log n

k
+ 4k

≤ 4
3nH0(s) + 4 log n

k
+ 4k

= nH0(s)(1 + ε) +O(k + logn).

2.3 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [BW94] is a reversible string transform
that results in a string that compresses better than the original string. It is an
important building block in various compressed data structures.

The BWT operates by lexicographically sorting the cyclic shifts of a string s.3
To compute the bwt(s), the BWT of a string s:

2A variation of the Vbyte encoding [WZ99]
3The usual definition of BWT uses left-to-right ordering and forms the BWT into the last

column of the matrix. This nonstandard definition is due to Manzini et al. [Man01]
Using this definition allows us to consider preceding contexts in the analysis, which corre-

abracadabra$
bracadabra$a
racadabra$ab
acadabra$abr
cadabra$abra
adabra$abrac
dabra$abraca
abra$abracad
bra$abracada
ra$abracadab
a$abracadabr
$abracadabra

=⇒
sort

↓
abracadabra$
bracadabra$a
dabra$abraca
bra$abracada
cadabra$abra
$abracadabra
racadabra$ab
ra$abracadab
adabra$abrac
abra$abracad
acadabra$abr
a$abracadabr

=⇒
extract

abdbc$rraaaa

Figure 2: An example of the BWT

1. Append the special symbol $, smaller than any other symbol, to s.

2. Form a matrix with the cyclic shifts of s as rows.

3. Sort the rows in right-to-left lexicographic order.

4. The first column is the string bwt(s).

See Figure 2 for an illustration.

Somewhat surprisingly, the BWT is reversible. Consider the sorted matrix M
in step 3 above. We know the first column of M , m1 = bwt(s). Sorting the
characters of m1 will give us the last column, mn. We now know all length 2
substrings of s since the characters of mn precede the characters of m1 in s. We
can now sort all these 2-substrings (lexicographically) and obtain columns mn

and mn−1. By iteratively applying this procedure we obtain the whole matrix
M , from which s is easily extracted.

Both the BWT and its inverse can be computed significantly more efficiently
than the algorithms described above do [BW94, section 4]. However the simple
algorithms presented above best highlight the nature of the Burrows-Wheeler
Transform.

The following lemma relates the BWT to empirical entropy. Note that the
lemma holds simultaneously for all k.
Lemma 1. Let s be a string and k ≤ |s| an integer. Now bwt(s) is a catenation
of permutations of all the strings Cs(w) such that w is a k-substring of s.

Proof. Consider the matrix used in BWT after the left-to-right sorting has taken
place. The k last columns the matrix contain all the k-substrings of s in lexico-

sponds to our earlier definition of empirical entropy in Section 2.1. Also, with this definition
the search algorithm in Section 4.4 can proceed through the pattern in normal order instead
of reverse order (cf. [FM05]).

a︸︷︷︸
Cs($)

bdbc$︸ ︷︷ ︸
Cs(a)

rr︸︷︷︸
Cs(b)

a︸︷︷︸
Cs(c)

a︸︷︷︸
Cs(d)

aa︸︷︷︸
Cs(r)

a︸︷︷︸
Cs(a$)

b︸︷︷︸
Cs($a)

d︸︷︷︸
Cs(ca)

b︸︷︷︸
Cs(da)

c$︸︷︷︸
Cs(ra)

rr︸︷︷︸
Cs(ab)

a︸︷︷︸
Cs(ac)

a︸︷︷︸
Cs(ad)

aa︸︷︷︸
Cs(br)

Figure 3: Splitting bwt(s) into permutations of strings Cs(w) for s =
abracadabra

String H0 H1 H2
abracadabra$ 2.28 0.80 0.17
abdbc$rraaaa 2.28 0.60 0.00

Figure 4: A comparison of the empirical entropies of a string and its BWT

graphical order. Also, all the cyclic shifts that end in a given k-substring w are
on consecutive rows.

Now if the k-substring w occurs in the end of rows i through j, the first char-
acters of rows i through j give Cs(w). Since we can partition the matrix into
ranges of rows that end in the same k-substring, the whole string bwt(s) is given
by the strings Cs(w).

For illustration, compare Figure 2 and Figure 3.

Essentially, the BWT can be seen as a preprocessing step that groups together
characters with similar contexts. Thus it is quite natural that the transform
enhances compressibility. However, a formal analysis of BWT combined with
simple compression was only recently achieved by Manzini and others [Man01]
[GM10] [KLV07]. The following short example is due to Manzini.

The compression advantage that the BWT offers can be seen as follows. Suppose
we have a compression algorithm A such that for any partition s1s2 . . . sk of s
we have

|A(s)| ≤
k∑

i=1
|si|H0(si).

Now for an arbitrary k, let bwt(s) = s1s2 · · · st such that each si is a permutation
of some Cs(x). Such a split is guaranteed to exist by the previous lemma. We

then have

nHk(s) =
∑

x∈Σk

nxH0(Cs(x))

=
∑

x∈Σk

|Cs(x)|H0(Cs(x))

=
∑

i

|si|H0(si)

≥ |A(bwt(s))|

since bwt(s) consists of permutations of strings Cs(x) for substrings x of s and
H0 does not change if a string is permuted.

Note that this calculation is only a sketch: the algorithm A is impossibly good.
In practice we cannot obtain a bound of nHk(s) since H|s|(s) = 0 for any
s.

Analyses [Man01] [KLV07] of compressing the BWT of a string with a zeroth-
order compressor have produced bounds of the form

α|s|Hk(s) + β|s|+O(f(σ, k)),

where α and β are constants, σ is the size of the alphabet and f is a function,
for example f(σ, k) = σk. Some analyses also produce bounds using modified
empirical entropy [Man01] [GM10]. For details refer to the cited articles.

3 Compressed Bit Vectors

Compressed bit vectors form the basis of many compressed data structures, espe-
cially of those relating to strings [MN08] [Cla96]. Bit vectors are a very versatile
structure, allowing efficient embedding of many sorts of structures. Even though
domain-specific compressed structures may be more efficient, compressed bit
vectors form a valuable baseline for comparison in many cases.

The Dynamic Sequence with Indels problem [MN08] consists of storing a
sequence of n symbols S = s0s1 · · · sn−1, si ∈ Σ and supporting the following
operations:

• read(S, i) returns si;

• ranks(S, i) returns the number of occurrences of symbol s ∈ Σ in a0 · · · ai;

• selects(S, i) returns the index of the ith occurrence of symbol s;

• insert(S, i, s) inserts symbol s ∈ Σ between si and si+1;

• delete(S, i) deletes symbol si.

The Dynamic Bit Vector with Indels is a special case of the previous
problem, with the two-symbol alphabet Σ = {0, 1}. The Static Bit Vector
problem is a restriction of Dynamic Bit Vector with Indels, where insert
and delete are not supported.

The operations rank and select are related by the equation

ranks(S, selects(S, i)) = i.

This allows one to implement selects as a binary search over indices using ranks.
Also, the following equations hold for the binary alphabet Σ = {0, 1}

rank0(S, i) = i− rank1(S, i)
read(S, i) = rank1(S, i)− rank1(S, i− 1)

Using rank and select we can also implement the operations nexts(S, i) and
prevs(S, i) that return, respectively, the index of the next and previous occur-
rence of s in S after location i. The implementations are simply:

nexts(S, i) = selects(S, ranks(S, i) + 1)
prevs(S, i) = selects(S, ranks(S, i)− 1)

Parenthetically, one can see the Dynamic Bit Vector with Indels also as
a specialization of the Searchable Partial Sums with Indels [RRR01]
problem. The Searchable Partial Sums with Indels problem consists of
offering a data structure that stores a sequence S = (s1, s2, . . . , sn) of n non-
negative integers and supports the following operations.

• sum(S, k) returns the sum of the first k numbers:
∑k

i=1 sk

• select(S, x) searches for a prefix with the given sum. It returns an index
k such that

∑k
i=1 sk ≥ x.

When we restrict the stored numbers to be 0 or 1, this is actually the Dynamic
Bit Vector with Indels problem: sum corresponds to rank and select cor-
responds to select.

3.1 Prior Work

Raman et al [RRR02] give a solution to Static Bit Vector by dividing the
vector into superblocks and the superblocks into blocks. The blocks are then
encoded up to their 0th order entropy, and various indices are stored per-block
and per-superblock. This allows for constant-time operations (under the cell
probe model [PD06]) in nH0 +O(n log logn/ logn) space.

Solutions to the Dynamic Bit Vector with Indels problem tend to utilise
some sort of tree to store blocks of bits. Gerlach [Ger07] implements an uncom-
pressed solution in O(n) space by storing blocks of bits in a (red-black search)

tree. Blandford and Blelloch [BB04] store gap-encoded blocks in a “dictio-
nary” (implementable as, say, an ordered search tree) for a dynamic structure
in O(nH0) space. Mäkinen and Navarro [MN08] improve this by eliminating
wasted space from the blocks and achieve nH0 + o(n) space.

4 Applications of Compressed Bit Vectors

4.1 Sets

The classical application for bit vectors is the representations of sets over a
finite domain X. Elements of the domain are numbered, and the state of bit i
in the vector corresponds to the absence or presence of element number i in the
represented set.

In this case the 0th-order entropy of the bit vector sV that encodes the set
V ⊂ X is

H0(sV) = −ε log (ε)− (1− ε) log (1− ε) ,

where ε = |V |/|X| is the proportion of ones in the vector. This quantity is
clearly symmetric on the interval ε ∈ [0, 1], positive, and 0 when ε = 0. Thus the
entropy of the bit vector reaches its maximum (H0(sV) = 1) when V contains
half of the elements of the domain (ε = 1

2).

4.2 Trees

Clark [Cla96] gives an account of representing different trees space-efficiently
using bit vectors and the rank and select operations. The simplest of these
representations is Zaks’ sequence. It encodes a binary tree into a bit sequence
in the following way

1. Label all nodes with 1

2. Insert children labeled 0 for all nodes missing children

3. List out the labels in level-wise order

An example is given in Figure 5. If the nodes contain additional data, it can
be encoded into an array with index i containing the data for the node that
occupies index i in the Zaks’ sequence.

The operations rank and select can be used to implement child and parent lookup
for the sequence4:

• leftchild(i) = 2rank1(i)

• rightchild(i) = 2rank1(i) + 1
4note the similarity to representing a binary heap using an array

a

x

c g

j

e

t

y z

Zaks’ sequence 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0
Node data a x e c g t j y z

Figure 5: A tree and its Zaks’ sequence. Dashed lines indicate missing children

• parent(i) = select1(bx/2c)

A binary tree with n inner nodes has n + 1 leaves, and thus length of Zaks’
sequence for a tree with n nodes is 2n+1 bits. With an efficient implementation
of Static Bit Vector this representation of a tree is quite competitive with
the classical pointer-based representation!

4.3 Wavelet Trees

Bit vectors can be used to encode strings over other finite alphabets by using
a wavelet tree [FGM09]. The wavelet tree is a (balanced) binary tree with
symbols of the alphabet in the leaves. The inner nodes encode paths to the
leaves such that the ith path leads to the symbol at the ith place in the string
(see Figure 6).

The encoding of paths is as follows. Each node contains a bit vector. The ith
bit of the vector indicates whether the ith path that reaches this node continues
to the left or to the right. Thus descending in the tree works as follows

• When looking for path number i in node with vector w, look at bit
read(w, i).

• If it is 0: continue with path number rank0(w, i)− 1 in the left child

• If it is 1: continue with path number rank1(w, i)− 1 in the right child

We need to subtract 1 because rank returns a count (minimum value 1) we need
an index (minimum value 0).

We can also implement rank and select on the encoded string in the following
way. To compute selectx(s, i):

1. Start at leaf x of the wavelet tree.

00001110

01100

a b

011

c d

Figure 6: Wavelet tree for the string abbacdda and the path corresponding to
the occurrence of c in the fifth place

2. Move to the parent. Let b be the bit vector in the parent.

3. Set i := selecta(b, i) where a is 0 if we came from the left child and 1 if we
came from the right child.

4. If at the root, i contains the answer. Otherwise go back to step 2.

To compute rankx(s, i):

1. Start at the root.

2. Set i := ranka(b, i)− 1 where b is the bit vector in the current node and a
is 0 if x is in the left subtree and 1 if x is in the right subtree.

3. Descend one level towards x.

4. If at x, i contains the answer. Otherwise go back to step 2.

If we use an implementation of Static Bit Vector with constant-time rank
and select queries, we achieve O(log σ) time complexity for read, rank and select
on the wavelet tree.

With an uncompressed bit vector implementation with space complexity of n(1+
o(1)) the wavelet tree takes n log σ(1 + o(1)) space.

The following lemma tells us that the wavelet tree is also space efficient if com-
pressed bit vectors are used in the nodes.
Lemma 2. For a string s, we call |s|H0(s) the 0th-order information content
of s.

For a wavelet tree of a string s, the information content of s is equal to the sum
of the information contents of the bit vectors in the nodes of the tree.

Proof. First note that a subtree of a wavelet tree is also a wavelet tree. We will
thus use induction on the wavelet tree height.

Base case: The wavelet tree of height 1 has one node and two leaves. The bit
vector in the root node is isomorphic up to choice of symbols to the original

string.

Induction step: Let s be the string represented by the wavelet tree, b be the bit
vector in the root of the tree, sl the string represented by its left subtree and sr

the string represented by its right subtree. Let L be the symbols in the leaves of
the left subtree and R respectively the symbols in the right subtree. We know
that sl ∈ L∗ and sr ∈ R∗.

We know by the induction hypothesis that the sum of the information contents
of the nodes of the tree is

I = |b|H0(b) + |sl|H0(sl) + |sr|H0(sr).

Now note that the following holds for the information content of any string:

|s|H0(s) = |s|
∑
x∈Σ
−nx(s)
|s|

log nx(s)
|s|

=
∑
x∈Σ
|nx| log |s|

nx(s) ,

where nx(s) is the number of occurrences of x in s.

We also know by the definition of the wavelet trees that the number of zeros
in b is |sl| and the number of ones is |sr|. We also know that for x ∈ L,
nx(s) = nx(sl), and respectively for x ∈ R, nx(s) = nx(sr).

We thus have

I =|sl| log |b|
|sl|

+ |sr| log |b|
|sr|

+
∑
x∈L

nx(sl) log |sl|
nx(sl)

+
∑
x∈R

nx(sr) log |sr|
nx(sr)

=
(∑

x∈L

nx(sl)
)

log |b|
|sl|

+
(∑

x∈R

nx(sr)
)

log |b|
|sr|

+
∑
x∈L

nx(sl) log |sl|
nx(sl)

+
∑
x∈R

nx(sr) log |sr|
nx(sr)

=
∑
x∈L

nx(sl)
(

log |sl|
nx(sl)

+ log |b|
|sl|

)
+
∑
x∈R

nx(sr)
(

log |sr|
nx(sr) + log |b|

|sr|

)
=
∑
x∈L

nx(sl) log |b|
nx(sl)

+
∑
x∈R

nx(sr) log |b|
nx(sr)

=
∑
x∈L

nx(s) log |s|
nx(s) +

∑
x∈R

nx(s) log |s|
nx(s)

=
∑
x∈Σ

nx(s) log |s|
nx(s)

=|s|H0(s),

which completes the proof.

An immediate corollary of this is the following. If one uses a compressed bit
vector implementation with space complexity nH0(1 + o(1)) in the nodes of the
wavelet tree, the bit vectors of s require space∑

b∈B

|b|H0(b)(1 + o(1)) =
∑
b∈B

|b|H0(b) +
∑
b∈B

o(|b|H0(b))

= |s|H0(s) + o(|s|H0(s)) = |s|H0(s)(1 + o(1)),

where B is the set of bit vectors stored in the tree. In addition to this the tree
itself needs O(σ) space bringing the total to

|s|H0(s)(1 + o(1)) +O(σ).

4.4 Indexes

An index over a text is a structure that facilitates searches on that text. Indexes
have been studied since the early days of computer science. The operations
usually required of an index are counting and locating occurrences of a given
substring in the indexed text. An index is called a self-index if the original
text is recoverable from the index (and thus doesn’t need to be stored alongside
it).

Ferragina and Manzini [FM05] use the BWT of a text as an index. As the
BWT can be efficiently compressed (see Section 2.3) this allows for a highly
compressed self-index.

Occurrences of a pattern are related to the BWT in the following way: consider
the (implicit) sorted matrix in the definition of the BWT. We can identify
occurrences of a pattern in the string with ranges of rows in the matrix: the
pattern p maps to all rows ending with p. These rows are contiguous in the
matrix by construction.

Here is Ferragina’s and Manzini’s algorithm for counting occurrences of a pat-
tern p = p1p2 . . . pk in s. In addition to bwt(s), it needs access to a table C: C(i)
contains the number of combined number occurrences of symbols {$, 0, . . . , i−1}
in s.

1. Initialize a = 1, b = |bwt(s)|

2. For i = 1 . . . k:

(a) a = C(pi) + rankpi(bwt(s), a− 1) + 1

(b) b = C(pi) + rankpi(bwt(s), b)

(c) If b < a, the number of occurrences is 0.

3. The number of occurrences is b− a+ 1.

See Figure 7 for an illustration.

The table C: $ a b c d e
0 1 5 8 11 13

The BWT matrix and the markers a and b:

aabcabcdabcde$
abcabcdabcde$a
bcabcdabcde$aa
bcdabcde$aabca
bcde$aabcabcda a3,b3
cabcdabcde$aab
cdabcde$aabcab
cde$aabcabcdab a4,b4
abcdabcde$aabc a1
dabcde$aabcabc
de$aabcabcdabc b1
abcde$aabcabcd a2
e$aabcabcdabcd b2
$aabcabcdabcde

Figure 7: An illustration of counting the occurrences of cdab in aabcabcdabcde
via the BWT. The BWT is higlighted in blue. The partial matches found by
the search are highlighted in green. ai and bi mean the a and b pointers when
i characters of the pattern have been processed.

Lemma 3. The previous algorithm returns the number of occurrences of p in
s.

Proof. We prove by induction that the following invariant is maintained: after
i iterations, exactly the rows a through b (inclusive) in the sorted BWT matrix
for s end in p1p2 . . . pi. The matrix is indexed from 1.

Clearly the invariant holds when 0 iterations have been made: every row ends
in the empty string, and all the rows are in the range a = 1 and b = |bwt(s)|.

Let us next assume that the invariant holds after i−1 rounds. From the invariant
it follows that the characters at indexes a through b in bwt(s) are the characters
that have p′ = p1p2 . . . pi−1 as a prefix in s. (Remember that the first column
of the matrix is bwt(s)!)

Consider all the occurrences of pi in bwt(s). The ones that are before index a in
bwt(s) have prefixes in s that are lexicographically smaller than p′. There are
rankpi

(bwt(s), a− 1) of these. The ones that are in the range a . . . b have p′ as a
prefix. There are rankpi

(bwt(s), b) − rankpi
(bwt(s), a − 1) of these. Finally the

ones that have an index greater than b have a prefix greater than p′.

Now consider all the occurrences of pi in the last column of the matrix. They
appear consecutively and in the order of their prefixes (and thus in the same
order as listed in the previous paragraph). Thus if c is the index of the first row
that ends in pi, the rows that end in the string p′pi have indexes

c+ rankpi
(bwt(s), a− 1) + 1 . . . c+ rankpi

(bwt(s), b).

Noting that c = C(pi) completes the proof.

Fetching the locations of the matches is a bit more complicated. Ferragina and
Manzini use a method where the positions of some rows of the BWT matrix are
remembered, and the positions of matches are found by iterating backwards in
the string until a remembered position is found. Refer to the original article for
details.

If we store the BWT in an uncompressed wavelet tree, we achieve O(|p| log σ)
time for occurrence counting in |s| log σ(1 + o(1)) space. This includes the
additional O(σ log |s|) space required for storing the array C.

As we saw in Section 4.3, a wavelet tree using compressed bit vectors acts as a
zeroth-order compressor. Thus we reach kth order compression when we store
the BWT of a string in a compressed wavelet tree (recall the end of Section 2.3).
Manzini et al [FGM09] have a detailed analysis of storing the BWT of a text in
a wavelet tree.

5 Functional Programming

In general, functional programming refers to programming that makes heavy use
of functions, especially higher-order functions (functions that take functions as
arguments or return them). Beyond this, there are many shades and different
definitions for functional programming.

Firstly, there is the distinction between functional programming as a program-
ming paradigm and functional programming languages. (see e.g. [Hud89]) Sec-
ondly, some people want their functional programming language to have addi-
tional semantic guarantees. These languages are usually termed purely func-
tional.

An important aspect of functional programming is that it eschews state and
side effects, preferring to explicitly pass information to functions in arguments
instead of via the program’s global state. Notable examples of state and state-
modifying side effects are variables and assignments. Statelessness and lack of
side effects are in a sense conditions that guarantee that a function really is a
(mathematical) function.

Adhering to the principles of statelessness and lack of side effects guarantees
referential transparency, which in turn facilitates equational reasoning. [Hud89]
Referential transparency means that a term can be always replaced by its def-
inition without affecting semantics. For example, in a functional program the
expression

let x = f a
in x + x

is equivalent to the expression
f a + f a

This would not hold if f were allowed to access some global state, for example
increment and return the value of a counter. This type of reasoning can be
used to formally prove properties about the code, but also helps programmers
in their day-to-day reasoning. [Hud89]

The purely functional programming languages are programming languages that
force the programmer to express himself functionally. Modern purely functional
languages include Haskell and Agda. Scheme is one notable example of a lan-
guage that is not purely functional but encourages functional style.

5.1 Laziness

The evaluation order of ordinary imperative programming languages is designed
in order to make the order of side effects predictable. Statements are executed
in order, function arguments are evaluated before the function call etc.

In a purely functional language, the situation is radically different: the semantics
of the program are oblivious to the order of evaluation. For this reason some
purely functional languages choose a radically different evaluation method: lazy
evaluation.

In lazy evaluation, a value can either be a concrete, evaluated value (like a
floating-point number), or a thunk, a computation waiting to happen. When
the language runtime tries to access a value that turns out to be a thunk, it runs
the thunk and replaces it with its result (a value). Lazy evaluation is on-demand
evaluation.

The reasons for choosing lazy evaluation stem from theoretical considerations.
Lazy evaluation is a way of implementing normal order evaluation, an evaluation
strategy that halts with the largest set of inputs. This can be seen in the
following example. Let f be a non-halting function of type Int->Int, and

g :: Int -> Int -> Int
g 0 x = x
g y _ = y

That is, g returns its second argument only if the first argument is zero. Oth-
erwise it returns its first argument. Now the term g 1 (f 0) has a value under
lazy evaluation, since f 0 never gets evaluated. Under strict (i.e. non-lazy)
evaluation, f 0 would need to be evaluated before the call of g could be evalu-
ated.

In addition to the appealing theoretical properties of lazy evaluation, many claim
that it makes code clearer and enhances programmer productivity [Hug89].

5.2 Functional Data Structures

Most classical data structures rely on mutation for performance reasons, i.e.
their implementations violate referential transparency. (E.g. tree rotations that
reuse nodes) Functional data structures are data structures that can be im-
plemented in a purely functional language. Functional data structures are by
necessity both immutable and persistent. [Oka99, chapter 1]

Immutable data structures cannot be modified in-place and are thus referen-
tially transparent. This means that once one has obtained a reference (pointer)
to a structure, the exact same data will always be reachable through that refer-
ence. The benefits of referential transparency in functional programming were
already stipulated previously, but immutable data structures also have uses in
e.g. concurrent programming in imperative languages [Lea99].

A persistent data structure is one in which older versions of the structure are
still accessible after an update. One example of such a structure is a prepend-
only linked list. Persistent data structures were researched originally without
connection to functional programming. Driscoll et al [DSST89] give a somewhat

a

7

3

1

0 2

6

11

9 13

b

7

11

13

17

Figure 8: Sharing when adding a new element to an immutable ordered search
tree: b = insert(a,17).

outdated but useful summary of the field and discuss a few general methods for
obtaining persistence.

There are two distinct flavours of persistence in data structures: explicit and
implicit. By explicit persistence we refer to structures that use explicit version
numbers or in which older versions are reachable by applying some operations to
the current version. In contrast functional datastructures are implicitly persis-
tent: each instance of the structure is a self-contained version with no relation
to other versions. Older versions can be kept available simply by holding on to
a reference to them: immutability guarantees this.

The way a functional data structure can be efficient is by sharing: the un-
changed parts of a linked structure can be shared between different versions
of a structure. For example imagine implementing insertions for an immutable
tree structure. In order to insert a new leaf, the nodes on the path from the
root to the leaf need to be copied. However, the rest of the tree can be reused.
See Figure 8.

6 Haskell

Haskell is a pure functional programming language with lazy evaluation. Haskell
has an expressive type system to which implementations offer powerful exten-
sions.

This section introduces the reader to the structure of functional programs and
Haskell. The purpose of this is purely illustrative: we can only provide a quick
overview of the language. Appendix B contains a short summary of the syn-
tax presented here. For additional information on the syntax and features of

Haskell please see The Haskell Report [Mar] or introductory texts (e.g. [Lip11]
[OGS08]).

6.1 Expressions

We will start by describing the expression-level syntax of Haskell. All of the
examples use functions from the Haskell Prelude, so the reader can try them out
using an interactive Haskell interpreter, such as ghci [GHC, chapter 2].

Function application is denoted by juxtaposition: for example the following call
to the modulus function evaluates to 1.

mod 5 2

Function application associates to the left. The previous expression could be
written as

(mod 5) 2

What this means is that all Haskell functions take only one argument. Multi-
argument functions can be viewed as functions that return a function. The
following sections will clarify this point.

Haskell also has infix operators, for example the usual arithmetic ones: evalu-
ating

1 + (5 * 2)

yields 11. A nice feature of Haskell is that infix operators can be used as prefix
functions by enclosing them in parentheses. The previous example could have
been written as

(+) 1 ((*) 5 2)

Symmetrically, prefix functions can be used as infix operators by enclosing them
in backticks (the ”‘” character):

5 ‘mod‘ 2

Operators may also be partially applied using a syntactic device known as a
section. For example, the following expressions evaluate to 2:

4/2
(/2) 4
(4/) 2

One can also use sections with backticked functions. As a summary the following
expressions are equivalent (and evaluate to 1):

mod 5 2
(mod 5) 2
5 ‘mod‘ 2
(‘mod‘ 2) 5
(5 ‘mod‘) 2

The usefulness of sections will become apparent in Section 6.4 when we introduce
higher-order functions.

Haskell operators have a precedence order (for operators of the standard li-
brary it is documented in the Haskell Report [Mar, Section 4.4.2]). Function
application has higher precedence than any infix operations. Thus the following
evaluates to 3 and not to 1:

mod 5 3 + 1

Finally, we can define local variables using the let...in... construct. The
following expression evaluates to 30:

let x = 5 in x + (x * x)

One can also define multiple variables, separating the definitions either with ;
or suitable whitespace. The following to expressions both evaluate to 3:

let x = 1; y = 2 in x + y

let x = 1
y = 2

in x + y

The final5 piece of expression syntax is the if then else expression. Since
Haskell does not have assignment or side-effects, the usual if-statement is next
to useless. However, programs need to make choices and thus there is a need
for a language construct that chooses. Haskell’s if is an expression that chooses
between two values.

if True then 1 else 2
let x = 5

in if mod x 2 == 0 then 2 else 1

Both of the above expressions evaluate to 1

6.2 Definitions

A functional program consists of definitions. In Haskell, a definition has two
parts: an (optional) type signature, and a number of equations. Let us begin

5actually, we introduce the case expression a couple of subsections later

with a series of simple examples of calculating the circumference and area of a
circle. We will return to type signatures in the next section.

First off, we need π. We define pi as a floating point number. We give one
equation that tells us how pi can be evaluated:

pi = 3.1415926

We know that the circumference of a circle with radius r is 2πr. Let’s write a
function circumference that maps the radius into the circumference:

circumference r = 2 * pi * r

Function definitions look just like variable definitions, except multiple argu-
ment names (or patterns, which we will return to) follow the name to be de-
fined.

For calculating the area of a circle, we define an auxiliary function that squares
a floating point number. The characters -- indicate a comment that continues
to the end of the line.

-- raise a number to the second power
square x = x * x

-- compute area of circle, given radius
areaOfCircle r = pi * square r

Definitions need not be global. We can make local definitions using the familiar
let...in... construct. As an example, the function areaOfCircle could’ve been
written like this

areaOfCircle r =
let pi = 3.1415926

square x = x * x
in pi * square r

Haskell allows defining new operators with a syntax similar to defining functions.
The following example defines an infix operator +/ that computes the average
of two numbers

a +/ b = (a + b) / 2

Now the expression 4 +/ 2 evaluates to 3. The set of characters that may be
used in infix operators is limited and defined in the Haskell Report [Mar, Section
2.4].

There are two more declaration-level syntactic elements to introduce. Guards
are a shorthand for dividing function definitions into cases. As an example
consider the following recursive definition of factorial:

factorial n
| n == 0 = 1
| otherwise = n * factorial (n-1)

A guard starts with the | character, followed by a guard expression (of type
Bool), the = character and a result expression. The keyword otherwise stands
for True. Cases are considered in order, and the result expression corresponding
to the first expression evaluating to True is chosen as the return value of the
function call.

A construct especially useful with guards is where. A where-clause introduces lo-
cal definitions like let ... in, but the scope of the definitions range over all the
guards. The following contrived definition of the predicate even demonstrates
this:

even n
| k == 0 = True
| k == 1 = False

where k = mod n 2

We can also rewrite areaOfCircle once more as:
areaOfCircle r = pi * square r

where pi = 3.1415926
square x = x * x

Finally we note that Haskell is sensitive to whitespace. Indentation is required
to correspond to the structure of statements in a regular manner. The rules
that govern whitespace are called layout rules and are documented in the Haskell
Report [Mar, Section 2.7]. For the purpose of this text it is enough to remember
that expressions and definitions that are on the same level syntactically should
start from the same column (c.f. pi and square, let and in in the areaOfCircle
example).

6.3 Types

Haskell is a statically typed language. We did not need to specify any types in
the previous examples. This is because Haskell includes a powerful type inference
algorithm that allows the implementation to ascertain the types of variables
in the absence of type signatures. Although the type inference mechanism is
powerful, it is customary to give type signatures to top-level definitions. They
act as both documentation and help type inference in pinpointing the locations
of type errors.

A type signature in Haskell uses is of the form <name> :: <type>. For example
we could have defined pi in the previous section as:

pi :: Float
pi = 3.1415926

The type Float is the type of single-precision floating point numbers. The other
basic arithmetic types of Haskell are

• Int for signed integers with a finite precision of at least 30 bits

• Integer for signed integers with infinite precision

• Double for double-precision floating-point numbers

The type of functions is denoted <argument type> -> <result type>. The fol-
lowing example adds type signatures to our areaOfCircle example:

-- raise a number to the second power
square :: Float -> Float
square x = x * x

-- compute area of circle, given radius
areaOfCircle :: Float -> Float
areaOfCircle r = pi * square r

As hinted earlier, functions with multiple arguments are equivalent to func-
tions that return functions. Consider the following function on three argu-
ments:

f a b c = if b then a else a + c

We can give f the type Int -> (Bool -> (Int -> Int)), as can be seen by the
following chain of typings. When f is applied to three arguments of suitable
types, the result is a number:

f 1 True 2 :: Int

The last of the arguments given to f is a number. Thus f applied to two
arguments must be a function from numbers to numbers.

f 1 True :: Int -> Int

By similar reasoning, f applied to one argument must be a function that returns
a function from numbers to numbers

f 1 :: Bool -> (Int -> Int)

Luckily, the arrow -> associates to the right so we can give f and its type
signature as

f :: Int -> Bool -> Int -> Int
f a b c = if b then a else a + c

6.4 Higher-Order Functions

We have seen functions that return functions in the previous section. As a
functional programming language Haskell also permits passing functions as ar-
guments to functions.

The simplest higher-order function is perhaps one that applies a given function
to an argument, for example

applyTo1 f :: (Int -> Int) -> Int
applyTo1 f = f 1

Now for example applyTo1 (*2) evaluates to 2.

As a more involved example let us consider the function bothArgs:
bothArgs :: (Float->Float->Float) -> Float -> Float
bothArgs f x = f x x

The bothArgs function is given a two-parameter function f and a value x. It
returns the value of f applied to the two arguments x and x.

We can use bothArgs to for example square a number:
bothArgs (*) 3

evaluates to 9. Used like this bothArgs seems a bit useless, but when partially
applied, bothArgs is especially useful. We will demonstrate this with some ad-
ditional code:

-- an approximation of the derivative of f at x
diff :: (Float->Float) -> Float -> Float -> Float
diff f h x = (f (x+h) - f x) / h

Now diff (bothArgs (*)) 0.001 x gives an approximation of the derivative of
the function t 7→ t2 at x. We obtain an approximation of the second derivative
of t 7→ t2 by using

diff (diff (bothArgs (*)) 0.001) 0.001 x

since we have
diff (bothArgs (*)) 0.001 :: Float -> Float

Additional examples of higher-order functions will appear in the following sec-
tions.

6.5 Algebraic Data Types and Pattern Matching

Algebraic Data Types (ADTs) and Pattern Matching are devices used in some
functional languages. They allow functions to be defined in a very declarative
way.

An Algebraic Data Type is a type, consisting of a number of constructors, each
with some number of (typed) fields. The syntax for ADTs used here resembles
Haskell. ADT declarations are of the form

data <typename> =
<constructorname> <fieldtype> <fieldtype> ...

| <constructorname> <fieldtype> <fieldtype> ...
| ...

An ADT with a number of zero-field constructors corresponds to an enumera-
tion, e.g:

data Bool = True | False -- actual Prelude definition of Bool
data TrafficLight = Red | Yellow | Green

An ADT with only one constructor with a number of fields corresponds to a
C-like struct:

-- a report has an id, an author and contents
data Report = Report Int String String

The corresponding C-code is:
struct Report {

int id;
char *author;
char *contents;

}

The fields of an ADT are not named by default, but we can give the relevant
accessor functions names using record syntax. Here is the definition of Report
using record syntax:

data Report =
Report { getId :: Int,

getAuthor :: String,
getContents :: String }

This exposes the following functions that return the values of the corresponding
fields.

getId :: Reoprt -> Int
getAuthor :: Report -> String
getContents :: Report -> String

ADTs can also be recursive, as this example of a binary tree with integer data
in the nodes shows:

data Tree = Leaf | Node Int Tree Tree

An example value of type Tree is
Node 3 (Node 1 Leaf (Node 2 Leaf Leaf)) Leaf

a tree of height 3 with 3 inner nodes and 4 leaves.

Pattern matching is a way of defining functions case-by-case with the cases
corresponding to constructors of the argument type. We’ll start with some
examples:

canMove :: TrafficLight -> Bool
canMove Green = True
canMove Yellow = False
canMove Red = False

treeHeight :: Tree -> Int
treeHeight Leaf = 0
treeHeight (Node value left right) =

1 + max (treeHeight left) (treeHeight right)

Thus a pattern both constitutes a check that the value in question was con-
structed with the given constructor, and binds the possible arguments to that
constructor to names (c.f. value, left and right above). The special pattern
“_” stands for no pattern: nothing is required of the argument and no bindings
are made. That is, “_” marks an unused argument. For example

-- takes a TrafficLight and a speed, returns a speed
drive :: TrafficLight -> Float -> Float
drive Green speed = speed -- keep on driving
drive Yellow _ = 0 -- stop
drive Red _ = 0 -- stop

The case...of... structure allows for pattern matching in expressions. It takes
a sequence of cases in the form <pattern> -> <expression>. One could rewrite
the definition of treeHeight using case as:

treeHeight t =
case t of

Leaf -> 0
Node _ left right -> 1 + max (treeHeight left) (treeHeight right)

Section 8 provides additional examples of algebraic types and pattern matching,
especially the Wavelet tree implementation in Section 8.10.

Note that when using pattern matching, each case is an equation of its own. In
contrast, cases defined by guards are all contained in the same equation. Indeed,

when guards and pattern matching are used together, pattern matching takes
effect first. Again, see the code in Section 8.10 for examples.

Functional languages tend to support pattern matching against literals. We can
replace guards with pattern matching in our previous factorial example:

factorial :: Integer -> Integer
factorial 0 = 1
factorial n = n * factorial (n-1)

6.6 Strictness Annotations

Haskell is a lazy language. However it does offer primitives for strict (a.k.a. ea-
ger) evaluation. The most important of these is the ! annotation when defining
a data type. When the field type is prefixed with ! this means that the value of
the field is calculated immediately when the constructor is evaluated. Consider
the two pair types defined below:

data Pair a = Pair a a
data SPair a = SPair !a !a

The following expression with the ordinary pair leaves the call to fib unevalu-
ated:

let fstPlusOne :: Pair Int -> Int
fstPlusOne (Pair a b) = a + 1

in fstPlusOne (Pair 0 (fib 1111111))

whereas if we substitute SPair for Pair, the call to fib will get evaluated right
away when fstPlusOne pattern matches on its argument.

Strictness annotations are especially useful with data structures. Consider the
strict version of the Tree type defined earlier:

data Tree = Leaf | Node Int !Tree !Tree

When the root of this tree is accessed, the whole structure of the tree gets eval-
uated (due to the strictness of the left and right child fields). This makes the
performance of the tree datatype much more predictable, but also circumvents
a nasty leak. The leak works like this. Consider a program that builds a set of
integers over its course and in the end queries it. With a lazy tree implemen-
tation this would actually delay the building of the tree until it gets queried:
the first query would trigger computing all the insertions and deletions that the
program had performed. Additionally, the unevaluated operations would take
up much more space than the tree-based set: linear in the amount of operations
instead of the number of elements. For this reason both the Haskell standard
library’s Data.Map tree implementation and the Tree described in Section 8.7
later use strictness annotations.

For additional information on strictness, see Chapter 25 of Real World Haskell
[OGS08].

6.7 Type System Features

In this section we introduce language devices which are used in Section 8:
parametrized types and type classes. The code snippets in Section 8 also double
as additional examples of the features discussed here.

The Haskell type system is based on the Hindley-Milner type system [Mar, Sec-
tion 4.1]. Without going into further details the most important features of the
Hindley-Milner system are parametrized types and (parametric) polymorphism
(for more information on type systems, see e.g. Pierce [Pie02]). Hindley-Milner
is popular among functional languages of the ML family since it offers relatively
high expressiveness combined with efficient type inference.

Parametrized types are a common feature of ML-style functional programming
languages. [CW85, Section 4.2] They allow one to define algebraic data types
that are parametrized over some other type. As a simple example we offer Maybe
from the Haskell Prelude:

data Maybe a = Just a | Nothing

Here a is a type parameter, that can be instantiated by applying the type con-
structor Maybe to some type. Thus for example the datatype Maybe Int behaves
like the datatype

data IMaybe = IJust Int | INothing

In other words, Maybe Int has as values Ints tagged with the constructor Just,
and also the special value Nothing. The Maybe type can be seen as a functional
analog of indicating invalid return values with null as is usually done in C and
Java.

One may draw a parallel between the usual use cases of C++ templates [Str00]
and parametrized types. Both of these can be used to abstract data types over
types they contain. For example the type of lists of integers might be denoted
List Int in haskell and List<Int> in C++.

Polymorphism means that a function can accept values of different types as
its argument. A classic example is subclass polymorphism in object-oriented
languages: if C is a subclass of D, one can use an object of class C when-
ever an object of class D is required (this is the Liskov Substitution Princi-
ple [Lis87] rephrased). Parametric polymorphism [CW85] is polymorphism over
type ranges with similar structure. For example the Haskell Prelude function
length has a type of [a]->Int. In this type a is a type variable, which can be
instantiated to any type. Thus length gives the length of any list, regardless of
the element type. A type variable can be repeated, which simply means that the

type it is instantiated with occurs multiple times in the resulting type. Some
examples of polymorphic types follow:

-- we can look at the constructor without
-- caring about the arguments
isJust :: Maybe a -> Bool
isNothing :: Maybe a -> Bool
-- pairs and their accessors
data Pair a b = Pair a b
fst :: Pair a b -> a
snd :: Pair a b -> b
-- function composition
(.) :: (a->b) -> (c->a) -> (c->b)

We also could have defined the function bothArgs from Section 6.4 as
bothArgs :: (a->a->b) -> a -> b
bothArgs f x = f x x

making it polymorphic.

We can again compare these to C++ templates. For example the C++ equiv-
alent of the isJust function might be declared

template <class A>
bool isJust(Maybe<A> x) ...

A useful feature of Haskell’s type system is the newtype declaration. It introduces
a wrapper type which is only present at compile-time: unwrapping and wrapping
it generates no code at all. The syntax is like for data, but only one constructor
with one field is allowed:

newtype Foo a = Foo (Bar Int a)

One of the most notable extensions Haskell makes to the standard Hindley-
Milner system is type classes. Type classes are a feature unique to Haskell that
allows ad-hoc overloading of functions or a simple form of dispatch by type.
A type class is simply a collection of types that have an implementation for
a certain set of operations. Type classes do not despite their name have any
connection with the classes of object oriented programming languages.

As an example we provide the (somewhat contrived) type class Empty that pro-
vides a common abstraction for containers that can be empty. We define in-
stances of Empty for lists and the data type Maybe introduced above.

class Empty a where -- for every type a in the empty class
empty :: a -- there is an empty element (of type a)
isempty :: a -> Bool -- and also an isempty predicate

-- regardless of a we can tell whether Maybe a is empty
instance Empty (Maybe a) where

empty = Nothing
isempty (Just x) = False
isempty Nothing = True

instance Empty [a] where
empty = []
isempty [] = True
isempty (x:xs) = False

A type class is somewhat like an interfrace in object-oriented languages. It
defines a set of operations, whose implementations are then defined per type
that implements the interface.

Wrapper types defined with newtype are especially useful in conjunction with
type classes. They allow defining multiple instances over the same type as the
following contrived example shows

newtype IMaybe = IMaybe (Maybe Int)
instance Empty IMaybe where
empty = IMaybe (Just 0)
isempty (IMaybe Nothing) = True
isempty (IMaybe (Just 0) = True
isempty _ = False

This instance does not overlap with the previous Empty (Maybe a) instance.
Additionally we can switch between instances simply by wrapping or unwrap-
ping.

Type classes are used to structure our implementation in Section 8.

When using functions from a type class, a type class constraint (also known as
a context) must be added to the type of the function. A constrained type is of
the form

(<classname> <type>, ...) => <type>

As an example here is the function makeEmpty:
makeEmpty :: (Empty a) => a -> a
makeEmpty x
| isempty x = x
| otherwise = empty

The type
(Empty a) => a -> a

can be read as “for all instances a of the type class Empty, this is a function from
a to a”. That is, the constraint (Empty a) => constrains the concrete types with
which the type variable a can be instantiated to.

Algebraic datatypes can also be constrained by type classes, but the semantics
are slightly complicated. Refer to the Haskell Report [Mar, Section 4.2.1] for
information.

Related to constraining is superclassing, which is not to be confused with object-
oriented inheritance. The definition of a type class can have a type class con-
straint, contents of which are called superclasses. If a type is to be declared an
instance of a type class it must also be an instance of the class’s superclasses.
One example is the Measured class presented later. A more contrived example
can be obtained by extending the type class Empty:

class Empty a => Countable a where
count :: a -> Int

Here the intention is of course that
count empty == 0

In simple use cases superclassing behaves much like inheritance between inter-
faces in object oriented languages.

Functions in type classes may also have default implementations (usually in
terms of other functions in the class). For example we could have defined the
Countable class in the following way:

class Empty a => Countable a where
count :: a -> Int
count x = if isempty x then 0 else 1

An oft-implemented extension to Haskell’s basic type class mechanism is multi-
parameter type classes [GHC, Section 7.6.1.1], in which a type class can have
multiple parameters, and thus describe a connection between the classes.

class Bijection a b where
in :: a -> b
out :: b -> a

6.8 Lists

Lists are important in functional programming. They are easy to handle recur-
sively and additionally have nice operational properties under lazy evaluation:
the list’s contents can get computed as we iterate through it.

A polymorphic linked list can be implemented as a recursive algebraic datatype:
data List a = Cons a (List a) | Empty

That is, a list is either empty or a cons cell6, containing a value – called the
head – and a pointer to the tail – the rest of the list.

6a term originating from LISP

In Haskell lists have special syntax, but are operationally equivalent with the
above ADT. The type List a is denoted [a], the empty list constructor is []
and the infix operator : is the equivalent of Cons. The following code snip-
pet gives implementations of some of the core list operations from the Haskell
Prelude.

-- the accessors head and tail
head :: [a] -> a
head (x:xs) = x
tail :: [a] -> [a]
tail (x:xs) = xs

-- testing whether a list is empty
null :: [a] -> Bool
null [] = True
null (x:xs) = False

-- apply a function to each element of the list
map :: (a->b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

-- return those elements for which a predicate is true
filter :: (a->Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
| p x = x : filter p xs
| otherwise = filter p xs

7 Monoidal Annotations and Annotated Trees

Suppose you need to design a generic module that combines a sequence of el-
ements using a given combining function. This module could then be used for
example to compute the sum of a sequence of numbers or the intersection of sets
of words. The module needs to be efficient: you want to parallelize as much of
the computation as possible, maybe even distributing large combination tasks
over the network.

However, there is a problem: the result of the combination might depend on the
ordering of the combination operations. You can guard against this by requiring
that the supplied operation doesn’t care about the order the operations are
carried out in. The name of this property is associativity. For example almost
all of the common arithmetic operations are associative7. Once one assumes
that the combining operation is associative, one has free hands to organize

7exponentiation being the most notable exception: abc 6= (ab)c

(1, 2, 3, 4, 5, 6)

(1, 2, 3)

(1) (2, 3)

(4, 5, 6)

(4) (5, 6)

(1, 2, 3, 4, 5, 6)

(1, 2, 3, 4)

(1) (2, 3, 4)

(2, 3) (4)

(5, 6)

(1, 2, 3, 4, 5, 6)

(1) (2, 3, 4, 5, 6)

(2, 3) (4, 5, 6)

(4) (5, 6)

Figure 9: The associativity of catenation: different ways of computing (1) ⊕
(2, 3)⊕ (4)⊕ (5, 6)

the computation of the combining in any way you see fit. See for example
Figure 9.

Usually of course the sequence of values one wishes to combine is calculated
from another sequence: we sum the lengths of the contents of a sequence of files
or compute the maximum of the priorities of elements of a queue. Thus we have
a general recipe for computing properties over a sequence of things:

1. Assign a value to each thing

2. Combine the values using an associative operation

This idea is called monoidal annotations.8

It is interesting to note that for example the basic operation of Google’s pro-
cessing framework MapReduce [DG08] resembles the recipe above. The map
operation transforms a value into a pair (id, annotation), after which the differ-
ent annotations related to the same id are combined using the reduce operation.
The reduce operation is required to be associative, for example a sum of integers
(e.g. counting occurrences) or a union of sorted lists (e.g. aggregating words
that occur in a given context).

Let us go through monoidal annotations once more, this time formally. A
monoid is the mathematical term for an associative binary operation with a
neutral element. For example, addition and maximum are monoids over the
non-negative integers with 0 as the neutral element.9 Stated more formally,
(X, ◦) is a monoid if

8Monoidal annotations as a term is quite well-known in functional programming folklore
but does not have much exposure in the academic setting. However Steele’s talk [Ste09] on
the subject is excellent.

9Hinze and Paterson [HP06] offer multiple additional examples of useful monoidal annota-
tions in their paper.

1. ◦ : X ×X → X is a binary function on X

2. x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ X.

3. There exists an e ∈ X such that x ◦ e = e ◦ x = x for all x ∈ X.

A monoidal annotation a is a function that maps a set of elements into a monoid.
These annotations can be extended to sequences of elements in a natural way:
the annotation for the sequence (x0, x1, . . . , xn) is

a((x0, x1, . . . , xn)) = a(x0) ◦ a(x1) ◦ · · · ◦ a(xn).

We can omit parentheses on the right side of this equation because of the asso-
ciativity of ◦.

As an example, consider a set of processes with priorities. We can consider
the priorities as annotations from the (N,max) monoid. The annotation for a
sequence of processes is simply the maximum priority over that sequence.

The generic operation find is helpful in implementing queries over annotated
sequences:

finda(S, p) Given an annotation a and a predicate p over the annotation type
X find a split S = bxr where x is a single element such that ¬p(a(b)) and
p(a(bx)).

Consider the previous example of a sequence S of processes annotated with
their priorities. Let pk(n) be the predicate n ≥ k. Now if prio is the priority
annotation, findprio(S, p) returns a split bxr such that maxx∈B prio(x) < k and
prio(x) ≥ k.

A predicate p over a monoid (X, ◦) is called monotonic if p(x) implies p(x ◦ y)
for all y ∈ X. For a monotonic predicate p, there exists at most one split
for find(S, p) to uncover. Limiting ourselves to monotonic predicates allows
for a clean and efficient implementation for find. For example the predicate
x 7→ x ≥ k is monotonic over the monoids (N,+), (N,max) and (Q+, ·). Also,
the predicate pk from the previous example is monotonic. As a final example,
the predicate “the element x occurs in the given list” over the monoid of lists
with catenation as the operation is monotonic.

The benefit of monotonic predicates is that one can easily perform find(S, p) by
a binary search over prefixes of S when p is monotonic.

Often one is interested in multiple annotations on the same data, such as the
size and ones annotations in the next section. The mathematical abstraction
corresponding to this is the product monoid. The product of the monoids (A,+)
and (B, ◦) is the monoid (X,⊕) with the following properties:

1. The set of elements X = A×B is the set of tuples (a, b) such that a ∈ A
and b ∈ B.

2. The operation ⊕ is defined by

(a, b)⊕ (a′, b′) = (a+ a′, b ◦ b′)

Similarly, the we can define the product of the annotations a : Y → A and
b : Y → B as the annotation

x : Y → X, x(y) = (a(y), b(y)).

Thus the product annotation into the product monoid just keeps track of both
annotations side-by-side.

For example by combining the (N,+)-annotation size(x) = 1 and a (N,max)-
annotation priority we get a priority search queue: we can index the queue
and retrieve the element with the maximum priority. We can even obtain the
maximum priority over the first k elements: first we get the k-length prefix of
the string using find over the size annotation and then we measure the result
with the priority annotation.

7.1 Rank and Select via Monoids

We can reformulate the operations on bit vectors from Section 3 using annota-
tions. Let us consider two monoidal annotations for binary elements {0, 1}.

1. The size annotation: each element has measure 1 and measurements are
combined with simple addition. Thus the measure of a binary sequence is
its length.

size : {0, 1} → N, size(x) = 1

2. The rank annotation for binary sequences: the measure is 0 for bits with
value 0 and 1 for bits with value 1. Measures are again combined with
addition. The measure of a sequence becomes the number of 1-bits it
holds.

rank : {0, 1} → N, rank(1) = 1, rank(0) = 0

We define the predicate si over the size annotation and ri over the rank anno-
tation. Both si(k) and ri(k) are true when k > i. That is, si is the predicate
“there are at least i bits” and ri is the predicate “there are at least i ones”.

We can implement query, rank and select using find and the predicates si and
ri.

• To compute query(S, i), perform findsize(S, si) to find the element x with
index i in S.

• To compute rank(S, i), perform findsize(S, si) to find a split S = bxa. Now
x is the element in S at index i, so rank(bx) is the answer.

s 7 4

s 3 r 2

0 s 2 r 2

1 1

s 4 r 1

s 2 r 1

1 0

s 2 r 0

0 0

Figure 10: The annotated tree of the sequence 0111000 under the sizerank
annotation.

• To compute select(S, i), perform findrank(S, ri) to find a split S = bxa.
Now x is the ith one in S, so size(bx) is the answer.

Thus to support all of these operations we will use the product annotation
sizerank:

sizerank : {0, 1} → N, sizerank(x) = (size(x), rank(x))

7.2 Data Structures

We mentioned that find for monotonic predicates is merely a binary search over
prefixes. A natural data structure that uses this idea is the annotated tree.
It is a (binary) tree in which the data (elements of the sequence) are stored
with their annotations in the leaves. Each inner node stores the monoid sum
of the annotations of its children. This means that each inner node stores
the annotation of the subsequence rooted at that node. See Figure 10 for an
example.

Now the binary search over prefixes turns into a standard tree search. The
algorithm for find is as follows. Let (⊕, e) be the annotation monoid.

1. Start at the root node. Assign a := e.

2. If at a leaf node with annotation l and element x: if p(a⊕ l) then x is the
element at which to split the sequence.

3. Otherwise, let l be the annotation of the left child and r the annotation
for the right child.

• If p(a⊕ l), then continue search at the left child.

• If p(a ⊕ l ⊕ r), then set a := a ⊕ l and continue search at the right
child.

• Otherwise fail

Another way to implement annotated sequences is the finger tree. Finger trees
are a functional data structure invented by Hinze and Paterson [HP06]. They
resemble annotated 2-3-trees but in addition support efficient access to both
ends of the sequence and efficient catenation of sequences.

We will use both annotated trees and finger trees to implement dynamic bit
vectors in Section 8.

8 Implementations

In this section we aim to give a somewhat detailed overview of the Haskell
library implemented as part of this thesis. Functions from the Haskell standard
library The Prelude are explained as needed.

This section omits most details of constructing the implemented structures.
Naive construction algorithms were of course implemented but they are rel-
atively straightforward and would only clutter the presentation of the main
matter. Efficient construction of compressed bit vector structures is a research
topic of its own.

The implementation is available in full at

http://github.com/opqdonut/bitvectors 10

The version of GHC used was 6.12.

8.1 Overview

We aim to implement static and dynamic bit vectors as outlined in Section 3.
These will serve as a basis for implementing some of the applications described
in Section 4.

Our static bit vector implementation is based loosely on ideas by Raman et
al [RRR02] and the implementation in the RLCSA library [MNSV10]. Another
good source is Mäkinen et al [MN07]. The basic idea is to store the compressed
bit vector along with a number of array-based indices that make fast queries
possible.

Implementations for dynamic bit vector use ideas from Blandford and Blel-
loch [BB04] (another source is Gerlach [Ger07]). They store a compressed bit
vector as a sequence of gap-encoded blocks contained in a tree structure. We
implemented two versions of this idea. The first one uses a custom balanced
annotated tree implementation. The second one uses a finger tree (see sec-
tion 7), as implementated by Hinze and Paterson and described in their pa-
per [HP06].

10revision 449c6a6dc5456e7b2b2c

The implementation is split into modules as outlined below. The structure of
this chapter also follows the module structure.

module BitVector defines the BitVector and DynamicBitVector type classes
that describe operations on bit vectors. It also implements the Gap type
for representing gap-encoded bit vectors.

module Measure implements the SizeRankmonoid (see Section 7.1) for monoidal
rank and select.

module Encoding2 implements integer codes (see Section 2.2) and the following
bit containers

type Block a packed bit array

type UBlock an uncompressed bit vector (simple wrapper around Block)

type EBlock a gap-encoded bit vector using δ-encoding

type NBlock a gap-encoded bit vector using nibble encoding

module Static2 implements SuccinctArray and using it a static compressed
bit vector Static

module SmallBlock implements efficient constant-size bit vectors:

type SmallBlock is uncompressed

type SmallElias is δ-encoded

module Tree implements a balanced binary tree with monoidal annotations
(see Section 7) (type Tree), and a dynamic bit vector, Dynamic on top of
this.

module FingerTreeDynamic implements a dynamic bit vector FDynamic using
Finger Trees (see Section 7).

module Wavelet implements a wavelet tree (type Wavelet) that can use any
BitVector instance.

8.2 Bit Vectors and Gaps

The interfaces to static and dynamic bit vectors are captured by the type classes
BitVector and DynamicBitVector, as shown below. The default implementation
of queryrank0 is given by an equation in Section 3. The default implementation
of deconstruct uses the [a..b] syntax to produce a list of all integers from a to
b.

class BitVector a where
query :: a -> Int -> Bool
queryrank :: a -> Int -> Int
select :: a -> Int -> Maybe Int

queryrank0 :: a -> Int -> Int
queryrank0 a i = i - queryrank a i + 1

querysize :: a -> Int

deconstruct :: a -> [Bool]
deconstruct b = map (query b) [0 .. querysize b - 1]

class DynamicBitVector a where
-- returns version of structure with element added:
insert :: a -> Int -> Bool -> a
-- returns version of structure with element deleted:
delete :: a -> Int -> a

The return type of select is Maybe Int: asking for the index of the ith 1 when
the vector only has k < i 1’s is undefined. In this case select returns Nothing. It
is also of course possible that a query or queryrank is given an invalid index but
it is more reasonable to expect the user of these functions to know the length
of the vector than the number of ones in it.

The type class Construct is for constructing bit vectors. Note that the operations
construct (which takes a length argument) and construct’ (which doesn’t) have
default implementations in terms of each other. The type class BlockSize is for
bit vector implementations that are paremeterized by a block size.

class Construct a where
construct :: Int -> [Bool] -> a
construct _ xs = construct’ xs

construct’ :: [Bool] -> a
construct’ xs = construct (length xs) xs

class BlockSize a where
queryBlockSize :: a -> Int
constructWithBlockSize :: Int -> [Bool] -> a

We wish to support efficient operations of gap-encoded bit vectors. This is why
we implement a simple gap-based representation for bit strings.

A single gap is represented by a value of type Gap. The type Gap is just a
wrapper around Int. The value Gap n represents the bit sequence 0n1. A bit
vector

0x010x11 . . . 10xk

can be represented as the list [Gap x0,Gap x1,...,Gap xk]. Note how the final
gap consists of only zeros without the terminating 1.

The function gapify translates between a bit vector (represented as [Bool]) and
its gap representation ([Gap]).

newtype Gap = Gap {unGap :: Int}

gapify :: [Bool] -> [Gap]
gapify xs = loop xs 0

where loop [] acc = [Gap acc]
loop (True:xs) acc = Gap acc : loop xs 0
loop (False:xs) acc = loop xs (acc+1)

The BitVector operations are simple loops. The loops are written out as recur-
sive helper functions named loop. Recall that the function null :: [a] -> Bool
tests whether a list is empty. The impure error function terminates the program
with the given message.

instance BitVector [Gap] where

querysize gs = sum (map ((+1).unGap) gs) - 1

query gaps index = loop index gaps
where loop left (Gap gap:gaps)

| gap<left = loop (left-gap-1) gaps
| gap==left && not (null gaps) = True
| gap>left = False
| otherwise = error "Query␣past␣end"

queryrank gaps index = loop index 0 gaps
where loop left ones (Gap gap:gaps)

| gap<left = loop (left-gap-1) (ones+1) gaps
| gap==left && not (null gaps) = ones+1
| gap>left = ones
| otherwise = error "Rank␣past␣end"

select gaps index = loop 0 index gaps
where loop _ _ [] = Nothing

loop bits ones (Gap gap:gaps)
| ones>0 = loop (bits+gap+1) (ones-1) gaps
| ones==0 && not (null gaps) = Just (bits+gap)
| otherwise = Nothing

deconstruct gs = unGapify gs

The DynamicBitVector instance functions are of the same form. Note that
we handle the quite different cases of inserting a 1 and inserting a 0 sepa-
rately.

instance DynamicBitVector [Gap] where
insert gaps index False = loop gaps index

where loop (Gap gap:gaps) index
| gap < index = Gap gap : loop gaps (index-gap-1)
| gap >= index = Gap (gap+1) : gaps

loop [] _ = error "Insert␣past␣end!"

insert gaps index True = loop gaps index
where loop (Gap gap:gaps) index

| gap < index = Gap gap : loop gaps (index-gap-1)
| gap >= index = Gap index : Gap (gap-index) : gaps

loop [] _ = error "Insert␣past␣end!"

delete gaps index = loop gaps index
where loop (Gap gap:gaps) index

| gap < index = Gap gap : loop gaps (index-gap-1)
| gap == index =

case gaps of
[] -> error "Delete␣past␣end!"
(Gap gap’ : gaps’) -> Gap (gap+gap’) : gaps’

| gap > index = Gap (gap-1) : gaps
loop [] _ = error "Delete␣past␣end!"

8.3 The SizeRank Monoid

The Monoid type class is used to represent monoids in Haskell. The Measured
type class describes a monoidal annotation (see Section 7).

class Monoid a where
-- the identity element for mappend
mempty :: a
-- an associative operation
mappend :: a -> a -> a
-- sum over list, default implementation with mappend
mconcat :: [a] -> a

class (Monoid v) => Measured v a where
measure :: a -> v

As discussed in Section 7.1, we use the combined SizeRank annotation to support
rank and select queries. Here is the type and the relevant instances.

-- this is essentially "data SizeRank = SizeRank Int Int"
data SizeRank = SizeRank {getSize :: !Int,

getRank :: !Int}

instance Monoid SizeRank where
mappend (SizeRank a a’) (SizeRank b b’) =

SizeRank (a+b) (a’+b’)
mempty = SizeRank 0 0

instance Measured SizeRank Bool where
measure True = SizeRank 1 1
measure False = SizeRank 1 0

instance Measured SizeRank [Bool] where

measure xs = mconcat (map measure xs)

We measure a bit string represented as a list of booleans (type [Bool]) simply
by measuring each bit and combining the results using mconcat.

We also have instances for gap representations. Lists of gaps are measured by
measuring each gap and summing the results using mconcat, after which the
absence of the final 1 must be accounted by subtracting 1 from both size and
rank.

instance Measured SizeRank Gap where
measure (Gap gap) = SizeRank (gap+1) 1

instance Measured SizeRank [Gap] where
-- the last gap has no final 1
measure gs = let SizeRank s r = mconcat (map measure gs)

in SizeRank (s-1) (r-1)

The predicates we use for searching SizeRank-annotated sequences are the ones
mentioned in Section 7. These definitions use the function composition operator
(.) and a section on the operator > (see Section 7).

index :: Int->SizeRank->Bool
index i = (>i) . getSize
rank :: Int->SizeRank->Bool
rank i = (>i) . getRank

A less idiomatic (but equivalent) way of writing these functions would have
been

index i sr = getSize sr > i
rank i sr = getRank sr > i

Partially applying these functions yields the needed predicates. For exam-
ple,

rank 10 :: SizeRank -> Bool

is the predicate that finds locates the 10th 1 in the bit vector.

In some cases we want to cache measurements, and thus we implement the type
Cached. It is simply bundles together a reference to the value and its measure-
ment. The function cached builds a Cached and the accessor function unCached
retrieves the wrapped object. The measurement can be retrieved simply with a
call to measure since we implement the natural instance of Measured.

data Cached a v = Cached {cmeasure :: !a, unCached :: !v}
instance Monoid a => Measured a (Cached a v) where
measure = cmeasure

cached :: Measured a v => v -> Cached a v
cached x = Cached (measure x) x

8.4 Codes and Blocks

This section summarises the types defined for bit-level manipulations in the
module Encoding2.

Codes are short bit strings that are used as the basis of the various imple-
mented encodings. Codes can be catenated (+++) and sliced (takeCode and
dropCode).

The following definition of Code and related functions uses the following func-
tions:

shiftL :: Bits a => a -> Int -> a -- left shift by given amount
shiftR :: Bits a => a -> Int -> a -- right shift
(.|.) :: Bits a => a -> a -> a -- bitwise or
ones :: Bits a => Int -> a -- a value with the n lowest bits set

-- A Code is a smallish chunk of bits
data Code = Code {codelength :: !Word8, code :: !Word64}

(+++) :: Code -> Code -> Code
a +++ b
| codelength a + codelength b > 64 = error "out␣of␣space"
| otherwise = Code

(codelength a + codelength b)
(shiftL (getCode b) (fromIntegral $ codelength a)
.|. getCode a)

takeCode :: Int -> Code -> Code
takeCode a (Code l c) = Code (fromIntegral a ‘min‘ l) (c .&. ones a)

dropCode a (Code l c)
| a > fromIntegral l = Code 0 0
| otherwise = Code (l-(fromIntegral a)) (c ‘shiftR‘ a)

Blocks represent bit strings of arbitrary length. They can be built from codes.
A UArray Int Word8 means an unboxed array of bytes, i.e. a contigous segment
of memory.

newtype Block = Block (UArray Int Word8)

-- catenate codes into a block
makeBlock :: [Code] -> Block
-- implementation omitted

-- read code of given length from given index
readCode :: Block -> Int -> Int -> Code
-- implementation omitted

For performance reasons we also implemented so called small blocks of a constant
bit length. A SmallBlock consists of one 64 bit code, and can thus be efficiently

manipulated as a whole on modern computers. SmallBlock acts as a counterpart
to the decision in some implementations to fix logn as a compile-time constant
(e.g. Gerlach’s [Ger07]).

newtype SmallBlock = SmallBlock Code
deriving Show

instance BitVector SmallBlock where
-- omitted, low-level code

8.5 Encoded Blocks

For compressing bit vectors we implemented gap encoding coupled with Elias
δ-encoding and with the nibble encoding (see Section 2.2). These encodings are
implemented as the following functions

elias_encode :: Gap -> Code
nibble_encode :: Gap -> Code

We use a set of simple wrappers around Block to represent simple compressed
sequences of bits. For benchmarking purposes we also offer an unencoded bit
vector. The types and their various instances are summarized below. The type
UBlock needs an additional bitlength field since Blocks consist of whole bytes.
We implemented terminators for the encodings, the unencoded bit needs an
explicit length.

-- gap + elias
newtype EBlock = EBlock {unEBlock :: Block}
-- gap + nibble
newtype NBlock = NBlock {unNBlock :: Block}
-- unencoded
data UBlock = UBlock {umeasure :: !SizeRank, unUBlock :: !Block}

Naturally we know how to create and open encoded blocks. The class Encoded
embodies provides methods for this. The methods encodedSize, combine, cleave
are used when balancing the dynamic structure described in Section 8.9. The
function encodeMany takes a length and encodes a sequence of gaps into blocks
of the given length. It is used for constructing bit vectors.

class Encoded a where
decode :: a -> [Gap]
encode :: [Gap] -> a
encodedSize :: a -> Int

encodeMany :: Int -> [Gap] -> [a]

combine :: a -> a -> a
cleave :: a -> (a,a)

with relevant instances for EBlock, NBlock and UBlock.

Using the functions that read the two encodings,
readEliass :: Block -> [Gap]
readNibbles :: Block -> [Gap]

the following instances for EBlock and NBlock are easy to define. These code
snippets make extensive use of the function composition operator

(.) :: (b -> c) -> (a -> b) -> a -> c

The unaccustomed reader may want to expand definitions of the form
f = a . b . c

to the equivalent form
f x = a (b (c x))

in his or her head.

The instances simply delegate to the [Gap] instances.
instance Measured SizeRank EBlock where
measure = measure . readEliass . unEBlock

instance Measured SizeRank NBlock where
measure = measure . readNibbles . unNBlock

instance Measured SizeRank UBlock where
measure = umeasure

instance BitVector EBlock where
query (EBlock b) i = query (readEliass b) i
queryrank (EBlock b) i = queryrank (readEliass b) i
select (EBlock b) i = select (readEliass b) i
querysize = querysize . readEliass . unEBlock

instance DynamicBitVector EBlock where
insert (EBlock b) i val = encode newGaps

where newGaps = insert (readEliass b) i val
delete (EBlock b) i = encode newGaps

where newGaps = delete (readEliass b) i

instance BitVector NBlock where
-- just uses readNibbles instead of readEliass

instance DynamicBitVector NBlock where
-- just uses readNibbles instead of readEliass

instance BitVector UBlock where

-- omitted

instance DynamicBitVector UBlock where
-- omitted

The query operations for EBlock and NBlock directly use the gap lengths instead
of fully decoding the vector. This means that the operations only have to iterate
through the O(nH0) gaps instead of the n bits.

The space requirement for EBlock is nH0 + O(1) and for NBlock 4
3nH0 + O(1),

as the analysis of the encodings in Section 2.2 shows.

8.6 Small Encoded Blocks

We also implemented gap-encoded variants of SmallBlock.
newtype SmallBlock = SmallBlock Word64

Constructing small encoded blocks is done in a different fashion from the encode
function from the Encoded type class:

-- encodes a list of Gaps into Codes that are as fully populated as
-- possible
packElias :: [Gap] -> [Code]

The BitVector instance again simply delegates to the instance for [Gap]

smallEliasToGaps :: SmallElias -> [Gap]
-- implementation omitted

instance Measured SizeRank SmallElias where
measure = measure . smallEliasToGaps

instance BitVector SmallElias where
deconstruct = unGapify . smallEliasToGaps

query s i = query (smallEliasToGaps s) i
queryrank s i = queryrank (smallEliasToGaps s) i
select s i = select (smallEliasToGaps s) i
querysize s = querysize (smallEliasToGaps s)

8.7 Dynamic Bit Vector

The Tree type is an annotated binary tree (see Section 7). Here are the data
definition and the straightforward Measured instance:

data Tree a v = Empty
| Leaf {measureLeaf :: !a, val :: v}
| Node {left :: !(Tree a v),

right :: !(Tree a v),
measureNode :: !a}

deriving Show

instance Measured a v => Measured a (Tree a v) where
measure Empty = mempty
measure (Leaf a _) = a
measure (Node _ _ a) = a

The functions leaf and node are “smart constructors” for Leaf and Node: they
calculate the stored annotation using measure.

leaf :: Measured ann val => val -> Tree ann val
leaf v = Leaf (measure v) v

node :: Measured ann val =>
Tree ann val -> Tree ann val -> Tree ann val

node Empty r = r
node l Empty = l
node l r = Node l r (measure l +++ measure r)

The function find performs annotation-based lookups and is used to implement
the bit vector operations. For our purposes it is enough to return the found
element v and the annotation of the sequence of elements preceding v. As find
is a straightforward tree search, it takes O(h) time where h is the height of the
tree.

find :: Measured a v => (a -> Bool) -> Tree a v -> Maybe (a,v)
find p t = go mempty t

where
go acc (Leaf ann v)

| p (acc +++ ann) = Just (acc,v)
| otherwise = Nothing

go acc (Node l r ann)
| p (acc +++ measure l) = go acc l
| p (acc +++ ann) = go (acc +++ measure l) r
| otherwise = Nothing

A BitVector instance for Tree is straightforward to define. We simply use find
and delegate to the BitVector instance of the element type. The implementation
of select does slightly more checking. The operations query, rank and select
achieve a time performance of O(log(n/b)+log b) where b is the block size.

instance (Measured SizeRank a, BitVector a) =>
BitVector (Tree SizeRank a) where

query t i = query block (i-s)

where Just ((SizeRank s r),block) = find (index i) t

queryrank t i = r + queryrank block (i-s)
where Just ((SizeRank s r),block) = find (index i) t

select t i
| i >= getRank (measure t) = Nothing
| otherwise =

case find (rank i) t
of Just (SizeRank s r, block) -> fmap (+s) $ select block (i-r)

Nothing -> Nothing

querysize = getSize . measure

To implement insertions and deletions we need the operation modify that searches
for a leaf using annotations like find but also rebuilds the tree on the way. The
parameter f is a function that transforms the found leaf. Using modify we
can implement simple non-balancing insertions and deletions for Tree-based bit
vectors: we find the leaf containing the index to be inserted/deleted, do the
insertion and rebuild the tree to update annotations. Both insert and delete are
take time O(log(n/b) + log b), just like the previous operations.

modify :: Measured a v =>
(a -> Bool) -> ((a,v) -> v) -> Tree a v -> (Tree a v)

modify p f t = go mempty t
where

go acc (Leaf ann v)
| p (acc +++ ann) = leaf $ f (acc,v)
| otherwise = error "modify␣failed!"

go acc (Node l r ann)
| p (acc +++ measure l) = node (go acc l) r
| p (acc +++ ann) = node l (go (acc +++ measure l) r)
| otherwise = error "modify␣failed!"

instance (Measured SizeRank a, DynamicBitVector a) =>
DynamicBitVector (Tree SizeRank a) where

insert t i v = modify (index i) insertIntoLeaf t
where insertIntoLeaf (SizeRank s r,block) = insert block (i-s) v

delete t i = modify (index i) deleteFromLeaf t
where deleteFromLeaf (SizeRank s r,block) = delete block (i-s)

We introduce the type alias
type Dynamic a = Tree SizeRank a

Now the types Dynamic UBlock and Dynamic SmallBlock represent uncompressed
bit vectors and Dynamic EBlock, Dynamic NBlock and Dynamic SmallElias repre-

sent compressed bit vectors.

The space required by the tree is O(m) where m is the amount of leaves. Thus
the total space requirement of Dynamic EBlock is

2nH0 +O(n/ logn)

since the leaves can be half-full in the worst case.

8.8 Static Compressed Bit Vector

Our static bit vector, Static, stores a Block along with indices that facilitate fast
queries. The idea of the indices is to store the results of rank and select queries
every logn bit positions, so that the queries can be completed by iterating over
only logn bits.

The problem one encounters is that the space needed by the indices becomes
O(n/ logn)O(logn) = O(n) if implemented naively – ruining the compressed
aspect of the vector.

For this reason we implement a difference-encoded succinct array, SuccinctArray.
A SuccinctArray stores a sequence of integers by storing a number of base values
from the sequence, and representing the other integers as differences from a base
value.11

In practical terms we choose a stride. Every stride’th value in the sequence is
stored in full, and the values in between are stored as differences to the previous
full value.

This is the implementation of SuccinctArray. The Prelude type UArray i a is
an unboxed array of values of type a, indexed by a range of values of type i. The
operator ! is the indexing operator for UArrays. The Prelude function divMod
returns the result of integer division and the modulus. The Prelude function
fromIntegral performs conversions between instances of the Integral class, Int
and Int16 in this case.

-- we store data in unboxed arrays
type V = UArray Int

-- Big is used to store the full values
type Big = Int
-- Small is used to store the differences
type Small = Int16

data SuccinctArray =
SuccinctArray
{stride :: !Int,

11This is closely related to the block-superblock idea used in other implementations (e.g.
[RRR02] [MN07])

big :: !(V Big),
small :: !(V Small)}

deriving Show

mkSuccinctArray ::
Int -> [Big] -> SuccinctArray

mkSuccinctArray stride vals = -- omitted

(!-) :: SuccinctArray -> Int -> Big
(SuccinctArray stride big small) !- i =
base + fromIntegral offset
where (bigI,smallI) = i ‘divMod‘ stride

base = big ! bigI
offset = small ! (bigI*stride + smallI)

We can now implement the static bit vector. We store a encoded Block along
with three indices:

locations maps positions in the original bit vector to the beginnings of code-
words in the compressed bit vector;

offsets tells how many bits to skip after decoding the codeword indicated by
locations in order to get to the indexed bit;

ranks tells the rank of the indexed bit.

All of these indices are stored every blockSize (10 logn) bit locations. In ad-
dition they are represented using a SuccinctArray with a stride of logn. Thus
full rank, location and offset values are stored every 10(logn)2 locations, and
difference values are stored every 10 logn locations. This brings the total space
usage to

nH0 +O

(
b

n

(logn)2 + s
n

logn

)
where b is bitsize of Big and s the bitsize of Small. This gives nH0 + o(n) when
b and s are chosen suitably. In the code however they are constants: b = 32 and
s = 16.

The datatype Static and the implementations of query and queryrank are given
below. The operations merely read the relevant indices, use the function

readEliass’ :: Block -> Int -> [Gap]

to read the gaps from a block starting at the given index, and then delegate
to the BitVector instance of [Gap]. The Prelude function div is for truncated
integer division.

data Static =
Static {
sbitlength :: !Int,
compressed :: !Block,

blockSize :: !Int,
ranks :: !SuccinctArray, -- i -> rank(B,i*blockSize)
locations :: !SuccinctArray, --\ mapping from unencoded locations
offsets :: !SuccinctArray --/ to encoded locations

}
deriving Show

instance BitVector Static where
query = _query
queryrank = _queryrank
select = _select
querysize = sbitlength

The query and rank operations for Static are straightforward lookups. We find
the block that contains the sought index and then delegate to the BitVector [Gap]
instance.

_query :: Static -> Int -> Bool
_query static i =

let arrayIndex = i ‘div‘ blockSize static
-- i’ is the index for which we can get location and offset
i’ = arrayIndex * blockSize static
-- we start decoding here
location = locations static !- arrayIndex
-- total number of bits to skip from decoded stream
offset = (offsets static !- arrayIndex) + (i-i’)
gaps = readEliass’ (compressed static) location

in
query gaps offset

_queryrank :: Static -> Int -> Int
_queryrank static i =

let arrayIndex = i ‘div‘ blockSize static
i’ = arrayIndex * blockSize static
location = locations static !- arrayIndex
offset = (offsets static !- arrayIndex) + (i-i’)
baseRank = ranks static !- arrayIndex
gaps = readEliass’ (compressed static) location

in
baseRank + queryrank gaps offset

The time complexity of the query and rank operations is O(b) where b is the
block size. They do a constant amount of work and then iterate through at
most a blockful of gaps.

The select operation is implemented as a binary search over the ranks index.
This is slightly more efficient than a straightforward binary search over rank
queries.

binarySearch :: (Int -> Bool) -> Int -> Int -> Int

binarySearch tooBig min max
| max==min = min
| max-min==1 = min
| tooBig mid = binarySearch tooBig min mid
| otherwise = binarySearch tooBig mid max

where mid = (min + max) ‘div‘ 2

_select :: Static -> Int -> Maybe Int
_select static i =

let tooBig ind = ranks static !- ind >= i
arrayIndex = binarySearch tooBig 0 (saLength $ ranks static)
baseRank = ranks static !- arrayIndex
baseIndex = blockSize static * arrayIndex
location = locations static !- arrayIndex
offset = offsets static !- arrayIndex
gaps = readEliass’ (compressed static) location

in
--- this actually works because the offset bits that should be
--- discarded are always zeros
do blockInd <- select gaps (i - baseRank)

return $ baseIndex + blockInd - offset

The time complexity of select is O(log(n/ logn)) since the indexes are stored
every O(logn) locations.

8.9 Finger Tree -based Dynamic Bit Vector

As outlined previously, in this second Dynamic Bit Vector we store blocks mea-
sured by SizeRank annotations in a finger tree.

We use a length of 8 logn for the blocks. This means that the finger tree has
n/(8 logn) elements. We achieve O(logn) time for query, rank and select since
finding the wanted Block takes O(log(n/ logn)) = O(logn) time and decoding
and iterating through the block requires linear time wrt. the block length. The
same applies for insert and delete.

The space complexity of the finger tree is not analyzed in the original paper,
but it seems to be O(m) where m is the number of elements in the sequence.
This brings the total space required by FDynamic EBlock to

2nH0 +O(n/ logn)

since the blocksize is O(logn) and again the leaves can be half-full.

The data type FDynamic simply encapsulates the suitable FingerTree. The type
variable a is intended to range over the different blocks, allowing us to choose
the underlying bit storage according to usage.

data FDynamic a =

(Measured SizeRank a, BitVector a) =>
FDynamic {blocksize :: Int,

unwrap :: FingerTree SizeRank (Cached SizeRank a)}

The definitions for the basic operations become pleasantly succinct, as the fol-
lowing snippet shows. The viewl function observes the leftmost element of the
sequence, returning either a pair head :< rest or EmptyL if the sequence was
empty.

-- a wrapper around the split method for finger trees.
-- returns singled-out element plus SizeRank sum of
-- all preceding elements.
find :: FDynamic a -> (SizeRank->Bool) -> Maybe (SizeRank,a)
find (FDynamic _ f) p =

let (before,after) = split p f
m = measure before

in case viewl after of
elem :< _ -> Just (m, unCached elem)
EmptyL -> Nothing

_query :: BitVector a => FDynamic a -> Int -> Bool
_query f i = query block i’

where Just (SizeRank s r, block) = find f (index i)
i’ = i-s

_queryrank :: BitVector a => FDynamic a -> Int -> Int
_queryrank f i = r + queryrank block i’

where Just (SizeRank s r, block) = find f (index i)
i’ = i-s

Insertions and deletions are implemented like in the Tree case. We define the
function modify that seeks out a location in the finger tree and performs the
given update operation. The difference is that now we balance the blocks after
modification using the function balanceAt. The operator >< is the catenation of
finger trees.

modify :: (DynamicBitVector a, Measured SizeRank a, Encoded a) =>
(SizeRank -> Bool) ->
((SizeRank,a) -> a) ->
FDynamic a -> FDynamic a

modify pred f (FDynamic size t) =
FDynamic size (before >< balanced)

where (before’, after’) = split pred t

(before, block, after) =
case viewl after’ of
b :< bs -> (before’, unCached b, bs)
EmptyL ->

case viewr before’ of
bs :> b -> (bs, unCached b, empty)

EmptyR -> error "modify:␣This␣shouldn’t␣happen!"

sr = measure before
newblock = f (sr,block)

balanced = balanceAt size newblock after

_insert f i val = modify (index i) insertIntoLeaf f
where insertIntoLeaf (SizeRank s r, a) = insert a (i-s) val

_delete f i = modify (index i) deleteFromLeaf f
where deleteFromLeaf (SizeRank s r, a) = delete a (i-s)

Balancing is performed by splitting blocks that are over twice the blocksize
and combining blocks that are under half the block size with their siblings.
Combining can produce blocks that are too large and need to be split. The
function balanceAt handles this logic. It is given the block size, the block to
insert, and the sequence of blocks following the insertion location.

In addition to the functions of the Encoded type class (combine, cleave and
encodedSize), this code uses the finger tree operations viewL, <| (add an element
to the left end of the sequence) and singleton (produce a sequence containing
only the given element).

balanceAt :: (Measured SizeRank a, Encoded a) =>
Int -> a ->
FingerTree SizeRank (Cached SizeRank a) ->
FingerTree SizeRank (Cached SizeRank a)

balanceAt lim elem after
| encodedSize elem > 2*lim

= let (a,b) = cleave elem in cached a <| cached b <| after
| encodedSize elem < lim‘div‘2

= case (viewl after)
of EmptyL -> singleton (cached elem)

((Cached _ a) :< after’) ->
balanceAt lim (combine elem a) after’

| otherwise = cached elem <| after

8.10 A Simple Wavelet Tree

We implemented the WaveletTree a type that denotes a wavelet tree using a bit
vector of type a to implement the bit data in the inner nodes.

-- A type synonym
type Symbol = Char

data WaveletTree a
= Leaf Symbol

| Node [Symbol] a (WaveletTree a) (WaveletTree a)
deriving Show

Constructing the wavelet tree is done with a simple recursion. The function
alphabetSplit performs the core operation of the recursion: it splits the string
into two parts with disjoint alphabets. Since we split the alphabet in half (the
function halve), this produces a balanced wavelet tree.

It uses two core list processing functions from the Prelude introduced in Sec-
tion 6.8: map :: (a->b) -> [a] -> [b] applies a function to each element of a
list and filter :: (a->Bool) -> [a] -> [a] returns those elements of a list for
which the given predicate is true. The Prelude function elem :: a->[a]->Bool
returns whether a list contains a given element.

alphabetSplit :: [Symbol] -> -- left alphas
[Symbol] -> -- right alphas
[Symbol] -> -- data
([Bool], -- guide
[Symbol], -- left data
[Symbol]) -- right data

alphabetSplit left right xs = (guide,l,r)
where guide = map (‘elem‘ right) xs

l = filter (‘elem‘ left) xs
r = filter (‘elem‘ right) xs

halve :: [a] -> ([a],[a])
halve xs = splitAt (length xs ‘div‘ 2) xs

data WaveletTree a
= Leaf Symbol
| Node [Symbol] a (WaveletTree a) (WaveletTree a)
deriving Show

symbols :: WaveletTree a -> [Symbol]
symbols (Leaf s) = [s]
symbols (Node ss _ _ _) = ss

mkWavelet :: Construct a =>
[Symbol] -> -- alphabet
[Symbol] -> -- data
WaveletTree a

-- base case: alphabet of size one gives a leaf
mkWavelet [x] xs =

if all (==x) xs
then Leaf x
else error ("Bad␣leaf!␣" ++ show x ++ "␣" ++ show xs)

-- otherwise split the alphabet and recurse
mkWavelet symbs xs = Node symbs vec left right

where (lsymbs,rsymbs) = halve symbs
(guide,lxs,rxs) = alphabetSplit lsymbs rsymbs xs

vec = construct’ guide
left = mkWavelet lsymbs lxs
right = mkWavelet rsymbs rxs

The function mkWavelet’ is a wrapper around mkWavelet that produces a left-
heavy wavelet tree: the symbols in the left subtree of a node have more oc-
currences than the symbols in the right subtree. This is achieved by ordering
the alphabet based on the frequencies of the symbols and the fact that halve
maintains the ordering. The purpose of left-heavy wavelet trees is to make the
bit vectors in the nodes have more zeros than ones, thus making them suitable
for gap encoding (cf. [FGM09, Section 3.2]).

Data.Map.Map is the standard library ordered search tree type. Here it used by
an alias M.Map.

histogram :: [Symbol] -> M.Map Symbol Int
histogram = -- omitted

mkWavelet’ :: Construct a => [Symbol] -> WaveletTree a
mkWavelet’ xs = -- omitted

The implementations of the operations wread and wrank are faithful encodings of
the algorithms in Section 4.3, except that wrank is written in top-down instead
of bottom-up form. Additionally, we return an answer of 0 from wrank as early
as possible (see the first equation for wrank). The alternative would have been
to define queryrank guide (-1) = 0.

wread :: BitVector a => WaveletTree a -> Int -> Symbol
wread (Leaf symbol) i = symbol
wread (Node _ b left right) i
| val == False = wread left (queryrank0 b i - 1)
| val == True = wread right (queryrank b i - 1)

where val = query b i

-- a utility function
symbols :: WaveletTree a -> [Symbol]
symbols (Leaf s) = [s]
symbols (Node ss _ _ _) = ss

wrank :: BitVector a => WaveletTree a -> Symbol -> Int -> Int
-- we fell of the tree while hunting for occurrences:
wrank _ _ (-1) = 0
wrank (Leaf symbol) symbol’ i =

if symbol==symbol’
then i+1
else error "This␣shouldn’t␣happen!"

wrank (Node _ guide left right) symbol i
| symbol ‘elem‘ symbols left

= wrank left symbol (queryrank0 guide i - 1)
| symbol ‘elem‘ symbols right

= wrank right symbol (queryrank guide i - 1)

Now for example WaveletTree NBlock gives us a compressed wavelet tree with
roughly linear-time operations whereas WaveletTree Static gives a compressed
wavelet tree with logarithmic time queries.

8.11 Remarks

The resulting Haskell codebase is pleasantly small: 2500 lines of code contain
multiple compressed bit vectors, their tests and a number of utilities for bench-
marking. Structuring the implementation into modules with clean interfaces
also helps the readability of the code. Even the longest module (Encoding2) is
under 500 lines. All in all the implementation feels clean and concise, very much
thanks to the choice of Haskell as the implementation language.

The QuickCheck [CH00] test framework was used as an implementation aid and
also to verify the correctness of the operations. Surprisingly large test inputs
were needed to dig out some of the bugs in the implementation.

The biggest bottleneck in the implementation at the moment are the low-level
bit operations (e.g. readCode). Fully optimising them is out of the scope of this
work but is an interesting topic of its own. However the profiling utilities that
GHC provides have proven invaluable in nailing down the performance issues
and fixing those that were fixable.

9 Benchmarks

We benchmarked the implemented structures against some existing imperative
implementations. The static structure used as a benchmark is the the one in-
cluded in the RLCSA library [MNSV10]. It is a compressed static bit vector
that implements rank and select using indices on top of a δ-encoded bit vec-
tor. The dynamic implementation used as a benchmark is Wolfgang Gerlach’s
dynfmi library [Ger07] (already mentioned previously) which is an uncompressed
dynamic bit vector based on a red-black tree.

9.1 Static Operations

Each structure was benchmarked by constructing the structure with a bit se-
quence loaded from a file and then performing a number of query and rank12

operations for pseudo-random indices. To eliminate one-off costs and construc-
tion time we ran the benchmark first with 100 queries and then with 100 000

12select was not benchmarked since it is either as fast as rank or significantly slower, de-
pending on the structure

100 101 102
0

0.2

0.4

0.6

0.8

1

0.93

0.14

n/kbit

t/
s

Static queries

Static rlcsa

Figure 11: Performance of implemented static bit vector versus two C++ im-
plementations. The y-axis shows time consumed by 100 000 queries.

queries and subtracted the running times. The tests were done with pseudo-
random data with a H0 of 0.2.

The static structure behaved reasonably well compared to C++ implementa-
tions. See Figure 11. The dynamic structures showed a logarithmic running
time as expected. See Figure 12 and Figure 13. The tree-based structures
proved faster than the finger tree based ones. This is in line with Hinze and Pa-
terson’s observation of Finger Trees being 3-5 time slower than search trees for
indexing [HP06]. Also the constant-size SmallBlocks proved faster than variable-
length Blocks by a factor of 2 in finger trees and 4 in trees.

When compared to dynfmi, Tree SmallBlock is slower only by a factor of 5.
The comparison is apt since both structures store constant-sized uncompressed
blocks of bits in a tree structure. Encouragingly adding compression (SmallElias)
only costs an additional 20%.

9.2 Dynamic Operations

Dynamic implementations were benchmarked by loading data (pseudo-random,
H0 = 0.2) from a file and then performing a number of the following opera-
tions:

100 101 102 103
0

0.5

1

1.5

2

2.5 2.58

1.33

0.50
0.61

0.11

n/kbit

t/
s

Tree queries

EBlock NBlock SmallBlock SmallElias dynfmi

Figure 12: Performance of the tree-based dynamic bit vectors against dynfmi
under queries.

100 101 102 103
0

1

2

3

4

5 5.23

3.74
3.65
3.46

0.11

n/kbit

t/
s

Finger Tree queries

EBlock NBlock SmallBlock SmallElias dynfmi

Figure 13: Performance of the Finger Tree -based dynamic bit vectors against
dynfmi under queries.

100 101 102 103
0

0.5

1

1.5

2

2.5 2.61

1.62
1.46

0.80

0.02

n/kbit

t/
s

Tree and Finger Tree modifications

FDynamic EBlock FDynamic NBlock Dynamic EBlock
Dynamic NBlock dynfmi

Figure 14: Performance of the dynamic implementations under insertions and
deletions.

1. Insert a random bit at a random index

2. Delete a random index

3. Query a random index

Again, to discount one-off costs the benchmark was run first for 100 and then
10 000 iterations. See Figure 14 for results. Once more, Tree proved faster
than finger trees and NBlock faster than EBlock. However, the factor between
Dynamic NBlock and dynfmi grows from about 10 to about 40 compared to
queries. This is due to the inefficiency of the Block operations.

9.3 Memory Use

In addition to running time, the memory use of the structures was also bench-
marked. The memory usage numbers for the implemented structures are based
on the total number of allocated bytes as reported by the GHC profiling tools.
The memory usage of dynfmi was benchmarked using the valgrind massif tool
[NS07].

Memory usage for all the structures exhibited a sub-linear trend. See Fig-
ure 15.

101.8 102 102.2 102.4 102.6 102.8
0

2

4

6

8

0.70

3.88
3.43

7.79

3.29
2.79

4.77

n/kbit

ra
tio

Compressed structures

Static FDynamic EBlock FDynamic NBlock
FDynamic SmallElias Dynamic EBlock Dynamic NBlock
Dynamic SmallElias

101.8 102 102.2 102.4 102.6 102.8

12

14

16

18

20

15.11

20.05

14.46

12.13

n/kbit

ra
tio

Uncompressed structures

Dynamic SmallBlock FDynamic SmallBlock FDynamic UBlock
dynfmi

Figure 15: Memory use of the implemented structures. The y-axis plots the
ratio of the memory used to the size of the uncompressed data. The data was
pseudo-random with H0 = 0.2.

0 5 10 15 20 25 30 35 40
0

1

2

3

·105

3.1 · 105

2.4 · 105

1.5 · 105

insertions

by
te
s

WaveletTree memory use

wavelet wavelet 1/10 mäkinen

Figure 16: Memory use of persistent wavelet tree under random insertions with
n0 = 16384, σ = 26, H0 = 4.07. For “wavelet 1/10” only every tenth modified
version is retained.

Finally, we benchmarked the memory use of the implemented wavelet tree under
modifications. In the benchmark a wavelet tree was constructed from data,
after which a number of insertions were made into it sequentially, retaining
the intermediate versions. The comparison was to a static persistent structure
by Mäkinen et al [MNSV10, Theorem 25 and section 7], which can be used to
support the same set of queries. However, unlike the dynamic wavelet tree, once
their structure has been built it needs to be compressed, after which no more
insertions can be done. Before compression the structure uses roughly 10 times
more space.

See Figure 16 for the measurements of the wavelet tree benchmark. The memory
use of the wavelet tree can be seen to rise only mildly: 40 related versions
occupy less than double the space of one version. Additionally, if access to some
intermediate versions is not needed they can be garbage collected. This is also
demonstrated in Figure 16. All in all, Mäkinen’s structure wins asymptotically
but offers less features.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·106

0

2

4

6

DSE DSDN

DE
S

dynfmi

FE

FN

FU
FS

FSE

bytes

se
co
nd

s
Time-space tradeoffs

Figure 17: A time-space plot of the implemented and existing bit vectors. Values
are for queries with n = 512·1024, H0 = 0.2. The first letters of the abbreviations
are D for Dynamic, F for FDynamic and S for Static. The rest denotes the block
implementation: E for EBlock, N for NBlock, U for UBlock, S for SmallBlock
and SE for SmallElias

9.4 Space-Time Tradeoffs

Some benchmarks were made in order to explore the various time-space trade-
offs available. Figure 17 shows an overview of the different implementations.
Dynamic NBlock is by far the most competitive dynamic structure, and almost
the best overall if it were not for the better memory usage of Static. The
uncompressed Dynamic SmallBlock is also the best of its pack, but loses to
dynfmi.

Figure 18 shows the effect of changing the block size for FDynamic EBlock. Block-
size choices of 360 (i.e. 19 logn) and 184 (i.e. 9.5 logn) seem to give a good
choice of time vs. space. Recall that the implementation actually uses 8 logn,
leaning slightly more towards speed.

0 0.5 1 1.5 2 2.5 3 3.5
·105

0

5

10

15

20

25

6488128184256360

512

1024

bytes

se
co
nd

s

Effect of block size

Figure 18: The time-space tradeoff for FingerTree+EBlock under different block
sizes. n = 256 · 1024, H0 = 0.2.

10 Conclusions

This thesis has presented the first functional implementations of compressed bit
vectors. The implementations are unfortunately significantly slower than the
imperative implementations they were benchmarked against. However, their
performance is understandable given the unique combination of features: com-
pression and persistence. The implementation is also self-contained and rela-
tively small, leaving the door open for future development.

Simplicity is also the key virtue of the presented wavelet tree implementation.
It fared quite well against a specialized static structure while supporting more
operations. The wavelet tree implementation could easily be extended into a
full-fledged indexing library with the addition of an efficient implementation of
BWT and some utilities.

Many practical issues relating to the data structures were not discussed in this
thesis. These include serialization (for storing the structures outside working
memory) and efficient construction. Also, alternative compression schemes such
as run length encoding were not implemented. On the other hand this has kept
the codebase smaller. Also, new encodings are relatively easy to implement
using the infrastructure already in place.

The idea of monoidal annotations proved a useful abstraction, and the idea
clearly needs more attention. The author was unable to find any article that
concentrated on monoidal annotations and their various applications, though
many do hint at the framework’s generality. Relatedly, this thesis proves once
again the versatility of the finger tree (and the robustness of its Haskell imple-
mentation).

References

[BB04] Daniel K. Blandford and Guy E. Blelloch. Compact representa-
tions of ordered sets. In SODA ’04: Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 11–
19, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[BW94] M. Burrows and D.J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Cor-
poration, 1994.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of Haskell programs. SIGPLAN Not., 35:268–279,
September 2000.

[Cla96] David Clark. Compact Pat Trees. PhD thesis, University of Water-
loo, 1996.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction, and polymorphism. ACM Comput. Surv., 17:471–523,
December 1985.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51:107–113, January
2008.

[DSST89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E.
Tarjan. Making data structures persistent. J. Comput. Syst. Sci.,
38(1):86–124, 1989.

[FGM09] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The
myriad virtues of wavelet trees. Inf. Comput., 207(8):849–866, 2009.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text.
J. ACM, 52:552–581, July 2005.

[Gag07] Travis Gagie. Empirical entropy in context. CoRR, abs/0708.2084,
2007.

[Ger07] Wolfgang Gerlach. Dynamic FM-Index for a Collection of Texts with
Application to Space-efficient Construction of the Compressed Suffix
Array. Diplomarbeit, Faculty of Technology, Bielefeld University,
2007.

[GHC] The GHC Team. The Glorious Glasgow Haskell Compilation Sys-
tem User’s Guide, Version 6.12.2. http://www.haskell.org/ghc/
docs/6.12.2/html/users_guide/index.html.

[GM10] Travis Gagie and Giovanni Manzini. Move-to-front, distance coding,
and inversion frequencies revisited. Theor. Comput. Sci., 411(31-
33):2925–2944, 2010.

[HP06] Ralf Hinze and Ross Paterson. Finger trees: a simple general-
purpose data structure. J. Funct. Program., 16(2):197–217, 2006.

[Hud89] Paul Hudak. Conception, evolution, and application of functional
programming languages. ACM Comput. Surv., 21(3):359–411, 1989.

[Hug89] J. Hughes. Why functional programming matters. Computer Jour-
nal, 32(2):98–107, 1989.

[Jay57] E. T. Jaynes. Information theory and statistical mechanics. Phys.
Rev., 106(4):620–630, May 1957.

[KLV07] Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysis of
Burrows-Wheeler-based compression. Theor. Comput. Sci., 387:220–
235, November 2007.

[Lea99] Doug Lea. Concurrent Programming in Java. Second Edition: De-
sign Principles and Patterns. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[Lip11] Miram Lipovača. Learn You a Haskell for Great Good! No Starch
Press, Inc., San Francisco, CA, USA, 2011. Available on-line at
http://learnyouahaskell.com/.

[Lis87] Barbara Liskov. Keynote address - data abstraction and hierarchy.
SIGPLAN Not., 23:17–34, January 1987.

[Man01] Giovanni Manzini. An analysis of the Burrows–Wheeler transform.
J. ACM, 48(3):407–430, 2001.

[Mar] Simon Marlow, editor. Haskell 2010 Language Report. http://www.
haskell.org/onlinereport/haskell2010/.

[MN07] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and
extended. Theor. Comput. Sci., 387(3):332–347, 2007.

[MN08] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed
sequences and full-text indexes. ACM Trans. Algorithms, 4(3):1–38,
2008.

[MNSV10] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and
retrieval of highly repetitive sequence collections. Journal of Com-
putational Biology, 17(3):281–308, 2010.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’07, pages 89–100, New York, NY, USA,
2007. ACM.

[OGS08] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World
Haskell. O’Reilly Media, Inc., 1st edition, 2008.

[Oka99] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[PD06] Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in
the cell-probe model. SIAM J. Comput., 35:932–963, April 2006.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[RRR01] Rajeev Raman, Venkatesh Raman, and S. Rao. Succinct dynamic
data structures. In Frank Dehne, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Algorithms and Data Structures, volume 2125 of
Lecture Notes in Computer Science, pages 426–437. Springer Berlin
/ Heidelberg, 2001.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
indexable dictionaries with applications to encoding k-ary trees and
multisets. In SODA ’02: Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 233–242, Philadel-
phia, PA, USA, 2002. Society for Industrial and Applied Mathemat-
ics.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. The
Bell System Technical Journal, 27:379–423, 623–656, July, October
1948.

[Ste09] Guy L. Steele, Jr. Organizing functional code for parallel execution
or, foldl and foldr considered slightly harmful. SIGPLAN Not., 44:1–
2, August 2009.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edi-
tion, 2000.

[WZ99] Hugh E. Williams and Justin Zobel. Compressing integers for fast
file access. The Computer Journal, 42(3):193–201, 1999.

A Notations

log the base-2 logarithm
s1s2 the catenation of strings s1 and s2
sk the string consisting of k copies of s
|s| the length of the string s
Hk(s) the kth-order empirical entropy of string s
Σ the alphabet
Σk the strings of length k over alphabet Σ
σ the size of the alphabet, |Σ|
Cs(x) a string containing the characters immediately following

an occurrence of substring x in string s

B Haskell Syntax

• Comments
a = 1 -- two dashes start a comment that continues to the end of the line

• Expression syntax
<function> <argument> <argument>...
<argument> <operator> <argument>
let <pattern> = <expression> in <expression>
if <expression> then <expression> else <expression>

case <expr>
of <pattern> -> <expression>

<pattern> -> <expression>
...

• Tuples (can be pattern matched)
(<value>,<value>)

• Lists (can be pattern matched)
[<value>,...]
[]
<value>:<list>

• Function definition
<name> :: <type>
<name> <pattern>... = <expression>

<name> <pattern>... = <expression>
where <pattern> = <expression>

<name> <pattern>...
| <expression> = <expression>
| <expression> = <expression>
...
| otherwise = <expression>

• Data type definitions
data <typename> <typevariable>... =

<constructorname> <fieldtype>...
| <constructorname> <fieldtype>...
| ...

newtype <typename> <typevariable>... =
<constructorname> <fieldtype>...

• Type aliases
type <typename> <typevariable>... = <type>

• Type classes and instances
class <classname> <typevariable>... where

<functionname> :: <functiontype>
<functionname> :: <functiontype>
...

instance <classname> <type>... where
<function definitions>

