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Abstract

In this article, we submit the description of synthesis and identification of manganese(II) complexes with
pyrogenic nanosilica-immobilized (dav = 10 nm; Ssp = 290 m2/g) hydroxyaldimine ligands Mn Lð Þ2=�Si

� �
:

salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-
methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-
methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry.
Nanocomposites consisting of complexes Mn Lð Þ2=�Si showed a high catalytic activity in low-temperature ozone
decomposition in the range of concentrations between 2.1 × 10−6 and 8.4 × 10−6 mol/l. The number of catalytic
cycles increased for isostructural pseudotetrahedral complexes Mn Lð Þ2=�Si (L1–L5) in the following order:
Mn(L3)2 >> Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the
change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the
reaction.
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Background
Dissolved complexes of 3d metals with Schiff bases,
especially Mn(II, III) and Co(II) complexes, are used
successfully as catalysts of many oxidation reactions
of organic compounds [1]. Manganese-Schiff base
complexes like square planar Mn(salen) (where salen
is N,N′-bis(salicilald)ethylenediiminato(2-)anion) have
shown considerable promise in superoxide dismutase
(SOD) and catalase-like activity which could be a per-
spective for the creation of new medicines with wide
applications [2]. However, difficulties of complex
dimerization and extraction of the product and
catalyst from solution, as well as the endeavor of

modeling natural enzymatic systems, stimulated the
research of synthesis of immobilized homogeneous
catalysts of oxidation including complexes with Schiff
bases [3]. At the beginning, synthetic polymeric mate-
rials based on styrene were widely used as carriers of
the complexes [4–8]. There are efforts to use, instead
of synthetic polymers, natural polymers as carriers for
Schiff base complexes with, for example, chitosan that
is easily degraded and well combined with human
blood, which makes them promising in biomedical
practice [9, 10]. Although anchored complexes dem-
onstrated positive properties compared with homoge-
neous analogs (the raise in catalytic activity and the
number of catalytic cycles, selectivity) [6, 7], however,
they had lower stability after increasing the
temperature of the reaction. Due to this, other avail-
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able carriers characterized by chemical, thermal, and
mechanical stability can be widely applied. As such
carriers, different forms of activated carbon [11–14],
dispersed silica of various origins [15–18], zeolites
[19–23], and ordered mesoporous molecular sieves,
for example, МСМ-41 and МСМ-48 [24], can be
used.
These carriers are characterized by a high internal

surface; therefore, immobilization of complexes takes
place on both the outer and inner surfaces. In the latter
case, an access of reagents to the immobilized com-
plexes and, consequently, the kinetics of the reaction
are determined by internal diffusion factors. Intradiffu-
sious inhibition of the reaction with metal-Schiff base
complexes can be avoided if non-porous pyrogenic
nanosilica (aerosil) with developed outer surface is used
as a carrier [25]. It should be noted that manganese(II)
becomes manganese(III, IV) in the course of the syn-
thesis of immobilized complexes with Schiff bases on
the noted carriers, except nanosilica [25] and aminated
silica [17].
Analysis of data obtained as a result of the study

of catalytic properties of 3d metal complexes with
Schiff bases in the oxidation of organic compounds
[15, 17, 18, 20–22, 24, 26–28] and decomposition of
ozone [29, 30] leads to the conclusion that the cata-
lytic activity of the immobilized metal complexes in
redox reactions can be controlled by the following:
(i) optimization of the structural characteristics of
the carrier and the method of synthesis for obtaining
the homogeneous structure and composition of

immobilized complexes, (ii) changes in the geometric
configuration of an immobilized complex, and (iii)
redistribution of the electron density at the central
atom and the ligand leading to a significant change
in redox potential of Mn+1/Mn+ pair and, hence, to
the reactivity and catalytic activity of the complexes.
All the abovementioned aspects of the synthesis and

catalytic activity of nanosilica-immobilized mangane-
se(II)-Schiff base complexes in the reaction of ozone
decomposition have not been studied.
The aim of this work is to study the influence of

the nature of pyrogenic nanosilica-immobilized Schiff
bases on the structure and catalytic activity of man-
ganese(II) complexes in the reaction of ozone
decomposition.

Methods
Pyrogenic nanosilica (model А-300, dav = 10 nm, Ssp =
290 m2/g) was purchased from VAT Oriana (Kalush,
Ukraine) and was used for synthesis of γ-aminopro
pylsilica (APS) (the concentration of aminopropyl
groups, [H2NC3H6−], is 0.7 mmol/g SiO2) by routine
procedure [31, 32] used for the synthesis of ligands.
Immobilized Schiff bases (L1–L6) salicilaldiminopro-
pyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydrox
ynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxyben-
zaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetoph
enoniminopropyl (L5); and 4-hydroxy-3-methoxyben-
zaldiminopropyl (L6) were obtained from APS by
known methods by the following scheme [31].
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Complexes Mn Lð Þ2=�Si (L = L1–L6) were obtained by
sorption on modified nanosilica from the absolute alco-
hol solution of dehydrated MnCl2; the concentration be-
fore sorption was 10−2 mol/l, and Мn2+(solution):
L(surface) ratio was 1:2. Concentrations of the immobi-
lized ligands and chemical compositions of the obtained
complexes are shown in Table 1.
IR spectra were recorded by a Fourier transform Perkin

Elmer Spectrum BX FT-IR instrument (400–4000 cm−1)
from transparent tablets obtained by the pressing of bare
samples and the addition of KBr as well.
Diffuse reflectance spectra were recorded at room

temperature in the wave number range of 30,000–
11,000 cm−1 by a Specord M-40 in stainless steel cells
where the samples were pressed in.
The catalyst samples (m = 0.2 g) were tested using a gas

flow setup with a fixed-bed reactor at 20 °C, relative hu-
midity of 65 %, and ozone-air mixture (OAM) linear vel-
ocity of 6.2 cm/s. Ozone decomposition was monitored by

measuring the final ozone concentration Сf
O3

� �
. The ini-

tial ozone concentrations Сin
O3

� �
and Сf

O3
were measured

either by a Tsyclon-Reverse optical gas analyzer (detection
limit of 1 mg/m3).
The reaction rate (W) was calculated based on the

data of ozone concentration change after passing the
OAM through the static bed of the catalyst using the
following equation:

W ¼
ω Сin

О3
−Сf

O3

� �

mcat
;mol= g:sð Þ; ð1Þ

where ω = 1.67 × 10−2 is the OAM volume flow rate, l/s;

Сin
O3

and Сf
O3

are the initial and final ozone concentra-
tions, respectively, in the OAM, mol/l; and mcat is the
weight of a catalyst sample, g.
The initial reaction rate, Win, was defined as W after

1 min of experiment.
The kinetic constants (k1) at the beginning of the

experiment (after 5–10 min) and at 50 % conversion

of ozone (k1/2) were found from the first-order rate
equations:

k1 ¼ 1
τ
ln
Сin

О3

Сf
О3

; s−1; ð2Þ

k1=2 ¼ 0:69
τ1=2

; s−1: ð3Þ

where τ1/2 is the ozone half-conversion time.
The amount of ozone that entered the reaction over

the course of the experiment (Qexp, moles of О3) was
calculated as the area under the corresponding ozono-
gram plotted as a ΔСO3 vs. τ function. This magnitude
was used for the calculation of the following stoichio-
metric coefficients: nL =Qexp/QL characterizing the num-
ber of moles of ozone per mole of an immobilized ligand
(QL); nMn =Qexp/QМn giving the number of moles of
ozone per mole of manganese(II) in the complex; and
nСН =Qexp/QСН showing the extent of mineralization of
the hydrocarbon part of a ligand (QСН is the number of
moles of ozone required for complete oxidation of the
hydrocarbon part of a molecule calculated relying on the
stoichiometry of reactions (4)–(8)).

L1=�Si 3С7Н6 þ 17О3 ¼ 21СО2 þ 9Н2О ð4Þ
L2=�Si 6С7Н5 þ 33О3 ¼ 42СО2 þ 15Н2О ð5Þ
L3=�Si 3С11Н8 þ 26О3 ¼ 33СО2 þ 12Н2О ð6Þ
L4=�Si and L6=�Si 3С8Н8 þ 20О3 ¼ 24СО2 þ 12Н2О

ð7Þ
L5=�Si 3С8Н6 þ 19О3 ¼ 24СО2 þ 9Н2О: ð8Þ

Results
Composition and Structure of Mn(II) Complexes
The spectral characteristics of Schiff bases immobilized
on nanosilica, L=�Si (L = L1–L6), and their complexes
with manganese(II), Mn Lð Þ2=�Si , are summarized in
Table 2. In the IR spectra of all complexes except Mn
L5ð Þ2=�Si was observed a low-frequency shift of a peak
(5–15 cm−1) characterizing stretching vibrations of the
imino group (С=N) compared with free ligands that in-
dicates an electron density transfer in Mn–N=C bond.
Furthermore, in the Mn L4ð Þ2=�Si complex, alongside
with a low-frequency shift of a νС=N band at 1650 cm−1,
a peak with lower energy appears at 1620 cm−1 which
can indicate the finding of ligand L4 in two different
configurations. In the case of ligand L6 characterized
by two absorption peaks at 1650 and 1600 cm−1, a
complex formation results in the high-frequency shift
of the first of them whereas the second one remains
without alteration.

Table 1 Complexes of Mn(II) with Schiff bases immobilized on
nanosilica

Sample CL × 104,
mol/g

Concentration of Mn(II)

CMn2+ × 104, mol/g CMn2+, wt%

Mn(L1)2 7.0 0.60 0.30

Mn(L2)2 7.0 0.80 0.44

Mn(L3)2 7.0 0.17 0.09

Mn(L4)2 7.0 0.80 0.46

Mn(L5)2 5.0 1.60 0.66

Mn(L6)2 7.0 0.70 0.38
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In UV-VIS spectra after complexation, the high-
frequency shift occurs for the peaks characterizing the
electron density transfer in ligand νπ − π*, compared
with a free immobilized Schiff base. Furthermore, in
some cases, additional bands appear. Similar changes
were observed in the spectra of complexes Со Lð Þ2=�Si
and Сu Lð Þ2=�Si (L = L1–L6) [29, 30].
Sometimes, oxidation of manganese(II) to mangane-

se(III) was observed, which was evidenced by the
appearance of an asymmetrical low-intensity shoulder
in the visible part of spectrum at 18,500 cm−1

(510 nm) that can be relied to a d-d electron transfer
in complexes of the square-pyramidal geometry
[33–35].
The results of our research have shown that in the vis-

ible part of spectrum for all synthesized Mn(II) com-
plexes, a d-d electron transfer is not detected which can
be one of the proofs of a stable oxidation state of the
complexing ion. A similar example is the synthesis of
Mn(II)(salen) complexes on porous amino silica gel (Si-
NH2) [17]. A comparison of the spectral data for similar
Cu(II) and Co(II) [29, 30] complexes and Mn Lð Þ2=�Si
complexes permits to conclude that, for manganese(II),
polyhedron N2O2 also realizes in the ligand field of
L1–L5 (Scheme 1).
Compared with a square planar structure for indi-

vidual crystalline Schiff base complexes, complexes
immobilized on a silica surface suffer a tetrahedral
distortion due to the anchoring of a ligand foot
to the nanoparticle surface, and that can be one of
the causes of a raise in their reaction activity. The
tetrahedral distortion of immobilized bis-ligand

complexes (except the pseudo octahedral complex
with L6) is confirmed by modeling the surface clus-
ters by molecular-mechanical methods (MM2) and
by semi-empirical quantum chemistry methods
(PM3) as well.
L6, unlike the isomeric L4, cannot form chelate cy-

cles, and coordination with the Mn(II) ion is carried
out only by an azomethine group (Scheme 2), which
leads to the high-frequency shift of the peak assigned
to C=N group vibrations and the ligand charge trans-
fer (π − π*).
Thus, all synthesized Mn Lð Þ2=�Si complexes differ by

both the nature of the Schiff base immobilized on nano-
silica and the structure of a coordination polyhedron. It
is of interest to test the influence of the distinctive fac-
tors on the activity of manganese(II) complexes in the
reaction of ozone decomposition.

Scheme 1 Structure of the manganese(II) complexes with
ligands L1-L5

Scheme 2 Structure of the manganese(II) complex with ligands L6

Table 2 Spectral characteristics of nanosilica-immobilized Schiff
bases and Mn Lð Þ2=�Si complexes

Ligand
complex

Wave numbers of peak maximums, cm−1

νC=N νπ − π*

L1 1635 24,600

Mn L1ð Þ2=�Si 1630 24,900

L2 1642 29,700; 23,900; 19,400

Mn L2ð Þ2=�Si 1630 29,800; 24,000; 19,600

L3 1640 23,600; 25,400

Mn L3ð Þ2=�Si 1630 23,600; 25,400

L4 1650 23,600

Mn L4ð Þ2=�Si 1645; 1620 24,800; 25,000

L5 1650 23,960

Mn L5ð Þ2=�Si 1630 24,300

L6 1650; 1600 25,000

Mn L6ð Þ2=�Si 1665; 1600 27,200; 25,600
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Testing L=�Si Nanocompositions in the Reaction of Ozone
Decomposition
Ozone can interact practically with all organic compounds
at low temperature. Hence, at the beginning, the kinetics
of ozone decomposition by nanosilica-immobilized Schiff
bases, L=�Si (L = L1–L6), would be studied. Time (τ) de-
pendences of the reaction rate (W) for ozone decompos-
ition by the nanocompositions under study (Fig. 1) show
that, regardless of the ligand nature, the type of kinetic
curves is the same, i.e., the reaction rate decreases in time.
In the case of L5 (curve 4), the reaction rate for the first
20 min decreases more drastically. The results of the kin-
etic and stoichiometric analysis of the obtained data will
be discussed hereafter.

Testing Mn L2ð Þ2=�Si Nanocompositions in the Reaction of
Ozone Decomposition
Time dependences of the reaction rate in the case of ozone
decomposition by Mn L2ð Þ2=�Si complexes (L = L1–L6) are
presented in Fig. 2. It can be seen that the duration of runs
varies from 50 min for the L1 ligand up to 1000 min for
the L4 ligand (that run was interrupted before the final re-
action rate drop). A portion of the kinetic curves for the
first 100 min (Fig. 2b) allows to make the differences be-
tween the activities of the manganese(II) complexes more
clear. The data of Fig. 2b show that the Mn L2ð Þ2=�Si com-
plex demonstrates the lowest activity in the reaction: the re-

action rate decreases to 0 Cf
О3
¼Cin

О3

� �
in 50 min. A high

activity is demonstrated by the Mn L3ð Þ2=�Si complex: the
reaction rate decreases from 3.6 × 10−7 to 2.5 × 10−7 mol/
(g·s) in 100 min; in other words, the ozone concentration at
the reactor outlet decreases only by 50 mg/m3.
Manganese(II) complexes with L1, L4, L5, and L6 ligands

occupy an intermediate position. A trend of ozone decom-
position by manganese(II) complexes to occur in a steady-
state mode can be seen in Fig. 2a. It is especially apparent
for complexes containing L4 and L6 ligands. The duration
of the stationary portion for Mn L4ð Þ2=�Si exceeds 600 min.
During the reaction with ozone, the Mn(II) complexes, ex-
cept for inactive Mn L2ð Þ2=�Si , became brown or brownish
black (Table 1). Such a color change indicates that Mn(II)
turns into Mn(IV) in its oxide form which is a secondary
catalyst of ozone decomposition less active than Mn(II)
complexes: the reaction rate of ozone decomposition in the
steady-state mode is low.
As an example, Fig. 3 demonstrates how the reaction rate

for ozone decomposition by Mn L1ð Þ2=�Si changes with in-
creasing the initial ozone concentration in OAM from
2.1 × 10−6 to 8.4 × 10−6 mol/l (100–400 mg/m3). It is obvi-
ous that the initial reaction rate (Win) measured after

Fig. 2 The time dependences of W for ozone decomposition by Mn Lð Þ2=�Si complexes (L = L1–L6): Mn(L1)2 (1); Mn(L2)2 (2); Mn(L3)2 (3); Mn(L4)2

(4); Mn(L5)2 (5); Mn(L6)2 (6) a for 1000 min and b for first 100 min C in
О3

¼ 4:2� 10−6mol=l
� �

Fig. 1 The time dependence of W for ozone decomposition by L=�Si

ligands: L1 (1); L3 (2); L4 (3); L5 (4); L6 (5) C in
О3

¼ 4:2� 10−6mol=l
� �
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1 min of OAM passing increases in proportion to Cin
O3
. It is

evidence of the first-order reaction with respect to ozone.

Kinetic and Stoichiometric Parameters of the Reaction of
Ozone Decomposition by L=�Si and Mn Lð Þ2=�Si
Nanocompositions
To analyze the data obtained, kinetic (W, k1, τ1/2, k1/2) and
stoichiometric (Qexp, QСН, nL, nСН, nMn) parameters of
the reaction were considered. Their values in the case of
Cin

O3
varying in the presence of Mn L1ð Þ2=�Si are summa-

rized in Table 3. As can be seen, all stoichiometric param-
eters in the series increase with the rise in Cin

O3
. The first-

order reaction rate constant, k1, is invariant only at the be-
ginning of the reaction. Then, it decreases, varies within
the series, and is not equal to the reaction rate constant,
k1/2, corresponding to the time of half-conversion of
ozone, τ1/2. The half-conversion time is shortened with
Cin

O3
increasing. These results allow the assumption that

the reaction of ozone decomposition proceeds by the
radical chain mechanism. Similar regularities were ob-
tained for other Mn Lð Þ2=�Si complexes (L = L2–L6).
Table 4 summarizes the results of the kinetic study of

ozone decomposition by immobilization on nanosilica

Schiff bases (Fig. 1) and their Mn(II) complexes (Fig. 2) at
Cin

О3
¼ 4:2� 10−6mol=l . It can be seen that the immobi-

lized Schiff bases can independently decompose ozone.
The values of their kinetic constant k1 calculated for the
first 10–20 min of the runs depend on the ligand nature
and change in the order L5 < L2 < L3 < L1 < L6 < L4. To
the moment of ozone half-conversion, k1 ≠ k1/2. The stoi-
chiometric coefficient, nL, is less than 1 for L1–L3 ligands
and exceeds 1 for L4–L6 ligands. Coefficient nСН charac-
terizing completeness of oxidation of the hydrocarbon
part of the ligands does not exceed 30 %, i.e., the complete
decomposition of the ligands does not occur in one cycle.
The values of k1 are similar for the free ligands and for

their complexes with manganese(II). It can be caused by
the fact that, at the beginning of the reaction, an ozone
molecule interacts with the same reaction site, i.e., a
C=N group. k1/2 values do not coincide with k1 ones in-
dicating a change in the reaction order with respect to
ozone due to occurring side chain-radical reactions.
Stoichiometric coefficients nL increase for the manga-

nese(II) complexes as compared with the corresponding
ligands; the fact that nMn >> 1 (the maximum value is
observed for Mn L3ð Þ2=�Si) suggests a multiple participa-
tion of Mn(II) in the reaction of ozone decomposition
and a catalytic behavior of the complexes.
A catalytic effect of manganese appears also in the in-

crease of nCH coefficient. The values of nCH exceeding
100 % can be due to additional ozone decomposition by
manganese in its oxide form.
Judging from the results of kinetic investigations of ozone

decomposition by Mn Lð Þ2=�Si complexes, the nature of the
ligands considerably affects the kinetic and stoichiometric
parameters of the reaction. Since the nanocompositions ob-
tained as a result of the synthesis differ in their mangane-
se(II) content, it can be concluded that the immobilized
Schiff bases differ in their affinity to metal ions. To com-
pare the activity of complexes, the value of k1 was calcu-
lated for 1 mol of the manganese ion. The catalytic activity
of isostructural pseudotetrahedral bis-ligand complexes, M
n Lð Þ2=�Si (L = L1–L5), determined in such a way, increases
in the order Mn(L3)2 >>Mn(L4)2 >Mn(L1)2 >Mn(L2)2 >
Mn(L5)2. The substitution of L4 for L6 changes the geom-
etry of the Mn(II) coordination polyhedron from pseudote-
trahedral (Scheme 1) to pseudooctahedral (Scheme 2). This
change in the complex structure results in the more

Table 3 Effect of C in
О3

on kinetic and stoichiometric parameters of the reaction of ozone decomposition by Mn L1ð Þ2=�Si (CMn(II) = 0.6 × 10−4;
CL = 7.0 × 10−4 mol/g)

C in
O3

� 106;mol=l Win × 107, mol/(g·s) k1 × 103, s−1 τ1/2, s k1/2 × 104, s−1 Qexp × 105, О3 moles QСН × 105, О3 moles nL nСН, % nMn

2.1 1.7 3.6 6600 1.0 30.2 74.7 2.2 40.0 25.2

4.2 3.5 3.8 4800 1.4 42.1 74.7 3.0 56.0 38.3

8.4 7.0 3.8 3900 1.8 49.7 74.7 3.6 66.5 41.4

Fig. 3 The time dependences of W for ozone decomposition by
Mn L1ð Þ2=�Si at С in

O3
× 106, mol/l: 2.1 (1); 4.2 (2); 8.4

(3) (CMn(II) = 6.0 × 10−5 mol/g)
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smooth decrease in the reaction rate at the beginning of the
reaction for Mn L6ð Þ2=�Si than for Mn L4ð Þ2=�Si (Fig. 2a, b);
the τ1/2 parameter for the first complex is eight times as
much as that for the second complex (Table 3), and there-
fore, the steady-state mode of ozone decomposition is
attained sooner for Mn L4ð Þ2=�Si (Fig. 2). The mentioned
data allow us to conclude that the structure factor has some
influence on the kinetics of ozone decomposition and re-
activity of the complexes, but its effect is not governing.
More likely, a determining factor is the effect of the redox
potential of the Mn3+/Mn2+ pair on the reaction rate con-
stant of ozone decomposition by the Mn Lð Þ2=�Si complexes.
Judging from the data obtained for crystalline complexes of
manganese(II), this redox potential depends on the nature of
ligands and substituents in both the aldehyde [26, 28, 36–39]
and imine [40] components of the complexes. Because of
some difficulties in the process of measuring redox potentials
of nanosilica-immobilized manganese complexes, the influ-
ence of electronic effects of substituents on the reaction rate
constant at the beginning of the reaction was analyzed using
the classic Hammett equation. The catalytic activity of Mn
Lð Þ2=�Si complexes decreases in the order of ligands L4 >
L1 > L2 > L5, and that agrees with the increase in electron-
acceptor properties of substituents in their benzene rings. In
conformity with the Hammett equation, a linear dependence
with the negative ρ value (−0.61) has been obtained. Such a
dependence demonstrates the increase in the electron dens-
ity on the central atom and the decrease in the reactivity of
the complexes towards a strong oxidizer, namely, ozone.

Conclusions
The investigations have shown that the oxidation state
of manganese(II) does not change upon the synthesis of

its complexes with nanosilica-immobilized Schiff bases.
L1–L5 ligands form the complexes with the same pseu-
dotetrahedral coordination polyhedron, N2O2. The L6
ligand, because of its steric factors, forms the pseudooc-
tahedral polyhedron, N2Y4 (Y—other ligands, namely,
H2O, Cl−), and its bond with the central atom is realized
only through nitrogen of imine group.
Nanocomposites represented by the immobilized Schiff

bases, L=�Si , and manganese(II) complexes, Mn Lð Þ2=�Si ,
demonstrated their activity in the reaction of low-
temperature ozone decomposition. The reactivity of the
nanosilica-immobilized Schiff bases increases in the order
L5 < L2 < L3 < L1 < L6 < L4. Manganese(II), as a part of the
complexes, shows its catalytic properties in the reaction of
ozone decomposition. In the case of the isostructural Mn
Lð Þ2=�Si complexes (L = L1–L5), the number of catalytic cy-
cles (nMn) increases in the order Mn(L3)2 >>Mn(L4)2 >
Mn(L1)2 >Mn(L2)2 >Mn(L5)2. The change in the geometry
of a coordination polyhedron in the case of L4 and L6 does
not considerably affect the kinetic and stoichiometric pa-
rameters of the reaction. The effect of a substituent in the
initial aldehyde component of Schiff bases on the reaction
rate constant in the case of ozone interaction with the com-
plexes consisting of manganese(II) and L1, L2, L4, and L5
ligands can be described by the Hammett equation with
ρ = −0.61.
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L4 6.2 3300 2.2 26.0 86.4 1.8 30.0 –

Mn(L4) 6.0 1680 4.1 101.0 86.4 7.0 117.0 63.1

L5 1.3 240 28.8 13.2 45.0 1.8 29.0 –

Mn(L5) 1.6 1080 6.4 35.3 45.0 4.7 78.0 15.0

L6 5.6 2820 2.4 19.6 84.0 1.4 23.0 –

Mn(L6) 5.1 10,200 0.7 93.7 84.0 6.7 111.0 66.8
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the analysis of reaction kinetic and stoichiometric parameters and generalized
the obtained results. All authors read and approved the final manuscript.

Authors’ information
TR worked as a Head of the Department of Inorganic Chemistry and Chemical
Ecology of the Odesa I.I. Mechnikov National University. Her research interests are
nanochemistry, nanotechnology, coordination chemistry, and catalysis of redox
reactions. AT worked as a docent of the Department of Inorganic Chemistry and
Chemical Ecology of the Odesa I.I. Mechnikov National University. Her research
interests are nanochemistry, coordination chemistry, and catalysis of the ozone
decomposition reaction. ER worked as an engineer of the Department of
Inorganic Chemistry of the Taras Shevchenko National University of Kyiv. His
research interests are nanomaterials and coordination compounds. OG works as
a professor at the Department of Inorganic Chemistry of the Taras Shevchenko
National University of Kyiv and as the Dean of the Faculty of Natural Sciences of
the National University of Kyiv-Mohyla Academy. His research interests are
nanochemistry, nanobiotechnology, and coordination chemistry.

Acknowledgements
The study was carried out with the support of the Ministry of Education and
Science of Ukraine.

Author details
1Odesa I.I. Mechnikov National University, 2 Dvoryanska str., Odesa 65082,
Ukraine. 2Taras Shevchenko National University of Kyiv, 64 Volodymyrska str.,
Kyiv 01601, Ukraine. 3National University of Kyiv-Mohyla Academy, 2
Skovorody str., Kyiv 04655, Ukraine.

Received: 26 October 2015 Accepted: 26 November 2015

References
1. McGarrigle EM, Gilheany DG (2005) Chromium- and manganese-salen

promoted epoxidation of alkenes. Chem Rev 105(5):1563–1602
2. Weiss R, Riley D (1999) Therapeutic aspects of manganese(II)-based

superoxide dismutase mimics; in uses of inorganic chemistry in medicine.
In: Furrell N (ed). The Royal Society of Chemistry, Cambridge, pp 77–99

3. Vos DE, Sels BF, Jacobs PA (2001) Immobilization of homogeneous
oxidation catalysts. Adv Catal 46:1–87

4. Padmanabhan M, Varghese A (1999) Structural modification of copper(II)
complexes with the use of polymer supports. Oriental J of Chemistry 15(1):
79–84

5. Suja NR, Yusuff KKM (2004) Cobalt(II), nickel(II), and copper(II) complexes of
polystyrene-supported Schiff bases. J Appl Polymer Sci 91(6):3710–3719

6. Gupta KC, Abdulkadir HK, Chand S (2004) Synthesis, characterization and
catalytic activity of N, N’-bis(3-allyl salicylidene)ethylenediamine cobalt(II)
Schiff base complex anchored on a new polymer support. Chinese J Polymer
Sci 22(1):31–42

7. Gupta KC, Abdulkadir HK, Chand S (2003) Polymer-immobilized N,N
′-bis(acetylacetone)-ethylendiamine cobalt(II) Schiff base complex and its
catalytic activity in comparison with that of its homogenized analogue.
J Appl Polymer Sci 90(5):1398–1411

8. Santwana G, Beena S (2003) Synthesis of a polystyrene anchored Schiff base
and its complexes with some 3d-transition metals. J Ind Chem Soc 80(9):
841–842

9. Hu DD, Shi QZ, Tang ZX, Fang Y, Kennedy JF (2001) CoSalen immobilized to
chitosan and its electrochemical behavior. Carbohydr Polym 45(4):385–393

10. Chang Y, Wang Y, Zha F, Wang R (2004) Preparation and catalytic properties of
chitosan bound Schiff base complexes. Polym Advan Technol 15(5):284–286

11. Silva AR, Vital J, Figueiredo JL, Freire C, Castro B (2003) Activated carbons with
immobilised manganese(III) salen complexes as heterogeneous catalysts in the
epoxidation of olefins: influence of support and ligand functionalisation on
selectivity and reusability. New J Chem 27(10):1511–1517

12. Silva AR, Martins M, Freitas MMA, Valente A, Freire C, Castro B et al (2002)
Immobilisation of amine-functionalised nickel(II) Schiff base complexes onto
activated carbon treated with thionyl chloride. Micropor Mesopor Materials
55(3):275–284

13. Silva AR, Freire C, Castro B, Freitas MMA, Valente A, Figueiredo JL (2001)
Anchoring of a nickel(II) Schiff base complex onto activated carbon
mediated by cyanuric chloride. Micropor Mesopor Materials 46(2–3):211–221

14. Silva AR, Freitas MMA, Freire C, Castro B, Figueiredo JL (2002) Heterogenization
of a functionalized copper(II) Schiff base complex by direct immobilization
onto an oxidized activated carbon. Langmuir 18(21):8017–8024

15. Murphy EF, Ferri D, Baiker A (2003) Novel routes to Cu(salicylaldimine)
covalently bound to silica: combined pulse EPR and situ attenuated total
reflection-IR studies of the immobilization. Inorg Chem 42(8):2559–2571

16. Chisem IC, Rafelt J, Shieh MT, Chisem J, Clark JH, Jachuck R et al (1998)
Catalytic oxidation of alkyl aromatics using a novel silica supported Schiff
base complex. Chem Commun 18:1949–1950

17. Feng HX, Wang RM, He YF, Lei ZQ, Wang YP, Xia CG et al (2000) Preparation
and catalysis of porous silica supported metal Schiff-base complex. J Molec
Catalysis A: Chemical 159:25–29

18. Murphy EF, Schmid L, Burgi T, Maciejewski M, Baiker A, Gunther D et al
(2001) Nondestructive sol-gel immobilization of metal(salen) catalysts in
silica aerogels and xerogels. Chem Mater 13(4):1296–1304

19. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Ordered mesoporous and
microporous molecular sieves functionalized with transition metal complexes
as catalysts for selective organic transformations. Chem Rev 102(8):3615–3640

20. Saha PK, Banerjee S, Saha S, Mukherjee AK, Sivasanker S, Koner S (2004)
Immobilization of a metal complex in Y-zeolite matrix: synthesis, X-ray
single-crystal, and catalytic activities of a copper (Schiff-base)-Y zeolite
based hybrid catalyst. Bull Chem Soc Jpn 77(4):709–714

21. Deshpande S, Srinivas D, Ratnasamy P (1999) EPR and catalytic investigation
of Cu(salen) complexes encapsulated in zeolites. J Catalysis 188(2):261–269

22. Koner S (1998) Novel color isomerism and catalytic activities of Cu(salen)
complex encapsulated in a zeolitic matrix. Chem Commun 5:593–594

23. Poltowicz J, Pamin K, Tabor E, Haber J, Adamski A, Sojka Z (2006)
Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic
oxidation of cyclooctane. Appl Catal Gen 299:235–242

24. Kim GJ, Shin JH (1999) The synthesis of new chiral salen complexes
immobilized on MCM-41 by grafting and their catalytic activity in the
asymmetric borohydride reduction of ketones. Catal Letters 63:205–212

25. Rakitskaya TL, Truba AS, Raskola LA, Radchenko EA, Strizhak AV, Golub AA
(2013) Antiozonant activity of the silica modified with 3d metal complexes.
Rus J Gen Chem 83(2):360–367

26. Bhadbhade MM, Srinivas D (1993) Effects on molecular association, chelate
conformation, and reactivity toward substitution in copper Cu(5-X-salen)
complexes, salen2− = N,N′-ethylenebis(salicylidenaminato), X = H, CH3O, and
Cl: synthesis, X-ray structures, and EPR investigations. Inorg Chem 32(26):
6122–6130

27. Tas E, Aslanoglu M, Guler M, Ulusoy M (2004) Synthesis, characterization and
electrochemical properties of copper(II) complexes with novel bidentate
salicylaldimines derived from 3,5-DI-t-butyl-2-hydroxybenzaldehyde. J Coord
Chem 57(7):583–589

28. Chellamani A, Kulanthaipandi S, Rajagopal S (1999) Oxidation of aryl methyl
sulfoxides by oxo(salen)manganese(V) complexes and the reactivity-selectivity
principle. J Org Chem 64(7):2232–2239

29. Rakitskaya TL, Truba AS, Raskola LA, Bandurko AY, Golub AA (2006) Effect of the
structure of copper(II) complexes adsorbed on the surface of SiO2 on their
catalytic activity in ozone decomposition. Theoret Experim Chem 42(1):60–66

30. Rakitskaya TL, Truba AS, Golub AA, Kiose TA, Radchenko EA (2011) Effect of
composition and structure of cobalt(II) complexes with
oxyaldiminopropylaerosils on their catalytic activity in the decomposition of
ozone. Theor Experim Chem 47(5):337–341

31. Tertyh VA, Chuiko AA, Khrenovskii VA, Neimark IE (1968) Investigation of
adsorption properties of amino organic silica by IR spectroscopy. Zh Fiz
Khim 42(7):1758–1761

32. Yatsimirskii KB, Chuiko AA, Filippov AP (1977) Copper, molybdenum, and
palladium complexes with nitrogen-containing ligands anchored on a silica
surface. The Proceedings of the USSR Academy of Sciences 237(5):1137–1139

33. Domenech A, Formentin P, Garcia H, Sabater MJ (2000) Combined
electrochemical and EPR studies of manganese Schiff base complexes
encapsulated within the cavities of zeolite Y. Eur J Inorg Chem 2000(6):1339–1344

34. Kureshy RI, Ahmad I, Khan NH, Abdi SHR, Pathsk K, Jasra RV (2006) Chiral Mn(III)
salen complexes covalently bonded on modified MCM-41 and SBA-15 as
efficient catalysts for enantioselective epoxidation of nonfunctionalized
alkenes. J Catal 238(1):134–141

35. Silva AR, Wilson K, Clark JH, Freire C (2006) Covalent attachment of chiral
manganese(III) salen complexes onto functionalised hexagonal mesoporous
silica and application to the asymmetric epoxidation of alkenes. Micropor
Mesopor Materials 91(1–3):128–138

Rakytska et al. Nanoscale Research Letters  (2015) 10:472 Page 8 of 9



36. Boggess RK, Heghes W, Coleman WM, Taylor LT (1980) Preparation and
electrochemical studies of tetradentate manganese(III) Schiff base
complexes. Inorg Chem Acta 38(2):183–189

37. Venkataramanan NS, Premsingh S, Rajagopal S, Pitchumani K (2003)
Electronic and steric effects on the oxygenation of organic sulfides and
sulfoxides with oxo(salen)chromium(V) complexes. J Org Chem 68(19):
7460–7470

38. Palucki M, Finney NS, Pospisil PJ, Güler ML, Ishida T, Jacobsen EN (1998) The
mechanistic basis for electronic effects on enantioselectivity in the
(salen)Mn(III)-catalyzed epoxidation reaction. J Am Chem Soc 120(5):948–954

39. Yildirim LT, Emregul KC, Kurtaran R, Atakol O (2002) Structure and
electrochemical behaviour of bis[N-(4-
methylphenyl)salicylaldimine]copper(II) N,N′dimethylformamide solvate.
Cryst Res Technol 37(12):1344–1351

40. Samide MJ, Peters DG (1998) Electrochemical reduction of copper(II) salen at
carbon cathodes in dimethylformamide. J Electroanal Chem 443(1):95–102

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Rakytska et al. Nanoscale Research Letters  (2015) 10:472 Page 9 of 9


	Abstract
	Background
	Methods
	Results
	Composition and Structure of Mn(II) Complexes
	Testing  L /      S   i    ¯ $$\mathrm{L}/\overline{\mathrm{Si}}$$ Nanocompositions in the Reaction of Ozone Decomposition
	Testing  M n          L    2       2  /      S   i    ¯ $$\mathrm{M}\mathrm{n}{\left(\mathrm{L}2\right)}_2/\overline{\mathrm{Si}}$$ Nanocompositions in the Reaction of Ozone Decomposition
	Kinetic and Stoichiometric Parameters of the Reaction of Ozone Decomposition by  L /      S   i    ¯ $$\mathrm{L}/\overline{\mathrm{Si}}$$ and  M n      L    2  /      S   i    ¯ $$\mathrm{M}\mathrm{n}{\left(\mathrm{L}\right)}_2/\overline{\mathrm{Si}}...

	Conclusions
	Competing Interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References



