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Abstract. Peat surface CO2 emission, groundwater table
depth and peat temperature were monitored for two years
along transects in anAcaciaplantation on thick tropical peat
(>4 m) in Sumatra, Indonesia. A total of 2300 emission mea-
surements were taken at 144 locations, over a 2 year period.
The autotrophic root respiration component of CO2 emis-
sion was separated from heterotrophic emission caused by
peat oxidation in three ways: (i) by comparing CO2 emis-
sions within and beyond the tree rooting zone, (ii) by com-
paring CO2 emissions with and without peat trenching (i.e.
cutting any roots remaining in the peat beyond the tree root-
ing zone), and (iii) by comparing CO2 emissions before and
afterAcaciatree harvesting. On average, the contribution of
autotrophic respiration to daytime CO2 emission was 21 %
along transects in mature tree stands. At locations 0.5 m
from trees this was up to 80 % of the total emissions, but
it was negligible at locations more than 1.3 m away. This
means that CO2 emission measurements well away from
trees were free of any autotrophic respiration contribution
and thus represent only heterotrophic emissions. We found
daytime mean annual CO2 emission from peat oxidation
alone of 94 t ha−1 y−1 at a mean water table depth of 0.8 m,
and a minimum emission value of 80 t ha−1 y−1 after correc-
tion for the effect of diurnal temperature fluctuations, which
may result in a 14.5 % reduction of the daytime emission.
There is a positive correlation between mean long-term wa-
ter table depth and peat oxidation CO2 emission. However,
no such relation is found for instantaneous emission/water
table depth within transects and it is clear that factors other
than water table depth also affect peat oxidation and total
CO2 emissions. The increase in the temperature of the sur-
face peat due to plantation establishment may explain over
50 % of peat oxidation emissions. Our study sets a standard

for greenhouse gas flux studies from tropical peatlands un-
der different forms of agricultural land management. It is
the first to purposefully quantify heterotrophic CO2 emis-
sions resulting from tropical peat decomposition by separat-
ing these from autotrophic emissions. It also provides the
most scientifically- and statistically-rigorous study to date of
CO2 emissions resulting from anthropogenic modification of
this globally significant carbon rich ecosystem. Our find-
ings indicate that past studies have underestimated emissions
from peatland plantations, with important implications for
the scale of greenhouse gas emissions arising from land use
change, particularly in the light of current, rapid agricultural
conversion of peatlands in the Southeast Asian region.

1 Introduction

Lowland peatlands in Southeast Asia cover 24.8 million
hectares (Mha), which is 56 % of the tropical and 6 % of
the global peatland area (Page et al., 2011). Their high car-
bon density gives rise to a large regional peat carbon store of
68.5 Gt, equivalent to 77 % of the tropical and 11–14 % of
the global peat carbon store (Page et al., 2011). These peat
deposits are formed and maintained by continuous organic
matter inputs from tropical evergreen forests under water-
logged conditions. Since 1990, 5.1 Mha of the total 15.5 Mha
of peatland in Peninsular Malaysia and the islands of Borneo
and Sumatra have been deforested, drained and burned while
most of the remaining peat swamp forest has been logged in-
tensively (Langner and Siegert, 2009; Miettinen and Liew,
2010). Over the same period, the area of unmanaged sec-
ondary peat swamp forest doubled to nearly a quarter of all
peatlands, whilst industrial oil palm and pulpwood (Acacia)
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plantations expanded dramatically from 0.3 Mha to 2.3 Mha,
an increase from 2 to 15 % of the total peatland area. By
2008, only 10 % of the peatlands of Peninsular Malaysia,
Borneo and Sumatra remained in an intact or slightly de-
graded condition (Miettinen and Liew, 2010). This high rate
of land use change and associated increased rate of organic
matter oxidation in disturbed and drainage impacted peat,
has received increasing attention in recent years in both sci-
entific and policy fora (e.g. Fargione et al., 2008; Rieley et
al., 2008; Page et al., 2009; Couwenberg et al., 2010; Ed-
wards et al., 2010; Hooijer et al., 2010; Murdiyarso et al.,
2010; Koh et al., 2011). Hence, there is a strong interest
in quantifying accurately carbon losses and greenhouse gas
emissions from drained tropical peatlands as part of the wider
debate on the impacts of tropical land use change on climate
change processes. The carbon dynamics of tropical peatland
involve CO2 uptake via photosynthesis and losses through
autotrophic respiration of vegetation, CO2 and CH4 emis-
sions from soil organic matter decomposition (heterotrophic
respiration), and fluvial exports of dissolved and particulate
organic carbon (DOC and POC) (e.g. Jauhiainen et al., 2005,
2008; Rieley et al., 2008; Moore et al., 2011). The quantity
of methane (CH4) emitted from anaerobic peat decomposi-
tion is small and its effect on atmospheric processes is much
less than concurrent CO2 emissions (Hadi et al., 2005; Jauhi-
ainen et al., 2005, 2008, 2012). In peat swamp forest the
difference between CO2 sequestered and that lost through
autotrophic and heterotrophic respiration is stored as struc-
tural carbon in tree biomass and accumulated as peat. Unfor-
tunately, most data used to assess the scale of peat carbon
losses from drainage-impacted tropical peatlands are con-
fusing and contradictory and the literature on gaseous car-
bon emissions has been questioned for not quantifying sep-
arately autotrophic CO2 emissions from tree roots and het-
erotrophic emissions from peat oxidation (c.f. meta-analyses
by Couwenberg et al., 2010; Hooijer et al., 2010). Two prin-
cipal methods have been employed, namely closed chamber
monitoring (real time) of gaseous CO2 emissions from the
peat surface, and measurement of the lowering of the peat
surface as a result of subsidence over time combined with
information on peat carbon concentration and bulk density
(Couwenberg et al., 2010; Hooijer et al., 2012). Carbon loss
estimates based on the latter approach have been hampered
by small numbers of measurements, incomplete field infor-
mation (inadequacy and inconsistency of monitoring) and
a lack of reference data on peat characteristics that would
enable accurate calculation of carbon loss rates from sub-
sidence. Consequently, most published estimates of carbon
losses are derived from peat surface CO2 emission measure-
ments obtained using the closed-chamber method. Even for
this method, however, there are fewer than ten peer-reviewed
publications presenting CO2 emissions data under monitored
hydrological conditions in SE Asian peatlands (Inubushi et
al., 2003; Furukawa et al., 2005; Hadi et al., 2005; Jauhi-
ainen et al., 2005, 2008; Melling et al., 2005; Ali et al.,

Table 1. Main characteristics of the peat at the CO2 monitoring
transects.

Peat

Transect Depth BD∗ Ash content∗

(m) (g cm−3) (% of dw)

A 4.1–4.7 0.11± 0.01 0.29± 0.11
B 7.8–9.0 0.12± 0.02 2.61± 1.37
C, D 4.6–5.1 0.08± 0.03 0.15± 0.10
E 5.1–5.5 0.07± 0.01 0.08± 0.02
F 7.9–9.5 0.06± 0.01 0.51± 0.24
G, H 5.0–6.2 0.06± 0.01 0.19± 0.05

∗ Mean± SD at 30–50 cm horizon from the peat surface (n = 3−9).

2006; Hirano et al., 2009). None of these has separated
the contribution of CO2 released in root respiration from to-
tal CO2 emissions, making it impossible to determine CO2
emissions arising solely from peat decomposition, i.e. het-
erotrophic emissions. Further complications are caused by
poorly described methods, inconsistent data collection proce-
dures and high variation in the size of data sets, all of which
prevent exact and meaningful comparison of results. There
is, therefore, an urgent need for tropical peat surface emis-
sions data that quantify accurately the separate components
of CO2 emissions and provide sufficient information on their
temporal and spatial variation.

The focus of this paper is on the CO2 emissions aris-
ing from peat decomposition following conversion of peat
swamp forest to industrial plantation ofAcacia pulp wood
trees. Our aim is to quantify heterotrophic CO2 emissions
across a range of conditions and obtain improved understand-
ing of the drivers of peat oxidation. Based on daytime gas
flux monitoring we assessed the effects on emissions of (i)
land cover type and plantation tree growth stage and (ii) wa-
ter table depth on both total (heterotrophic plus autotrophic)
CO2 emissions and emissions caused by peat oxidation alone
(heterotrophic). We determined the relative contributions of
autotrophic and heterotrophic emissions to total emissions.
Based on our field data and values from the literature, we
also investigated the effect of temperature on CO2 emissions
in tree stands at different stages of canopy closure.

2 Site characteristics and methods

2.1 Site location and sampling procedure

The study area is in anAcacia (pulp wood) plantation on
peatland in the Kampar Peninsula, Riau Province, Suma-
tra, Indonesia (N0◦26′ 06.9′′, E101◦53′ 01.4′′). This part of
eastern Sumatra has an average annual rainfall of around
2500 mm and average daytime air temperature around 28◦C.
The Kampar Peninsula contains contiguous peat deposits of
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Fig. 1. Outline of CO2 emission monitoring location arrangement at a sub-transect, and of a 

transect in a tree growing unit. 
Fig. 1. Outline of CO2 emission monitoring location arrangement at a sub-transect, and of a transect in a tree growing unit.

Table 2. Tree stand age characteristics (months) and average water table characteristics (m from the peat surface) at the CO2 monitoring
transects over the two year monitoring period.

Tree stand age (months) Water table depth (m)

A B C D E F G, H A B C D E F G∗ H

Mean 31.2 32.6 46.2 1.3 6.0 7.1 12.20.93 0.77 1.06 0.71 0.72 0.84 0.43 0.92
SD 6.1 4.4 6.0 2.4 0.8 3.4 2.7 0.28 0.16 0.33 0.25 0.22 0.14 0.12 0.16
Range 17 17 20 13 2 12 8 1.28 0.90 1.55 1.26 0.94 0.67 0.55 0.60
Min. 24 26 40 0 5 −2 8 0.30 0.31 0.41 0.07 0.26 0.55 0.17 0.60
Max. 41 43 60 13 7 10 16 1.58 1.21 1.96 1.20 1.20 1.22 0.72 1.20
%ile 25 26 29 41 0 5 6 10 0.72 0.67 0.83 0.58 0.59 0.73 0.34 0.81
%ile 50 28 33 43 0 6 9 13 0.90 0.76 1.04 0.69 0.73 0.83 0.43 0.97
%ile 75 38 35 52 2 7 9 14 1.13 0.87 1.26 0.90 0.86 0.94 0.52 1.04
Cycle 1st 1st 1st 2nd 2nd 2nd 2nd

∗ At G transect water table was maintained closer to surface than is normal in the plantation area.

around 700 000 ha. Prior to clearance of∼160 000 ha for
plantation development from the year 2000 onwards, the area
was peat swamp forest. The area was not affected by fire im-
mediately prior to, during, or after land use change.

Data were collected over a 24-month period (April 2007
to April 2009) along 8 transects, A–H, located on one large
peat dome on which peat thickness ranged from 4–9 m (aver-
age 6 m) (Table 1). The plantation area is drained by a rect-
angular system of canals at 800 m intervals (excluding field
drains). The transects, 700 m long and up to 28 km apart,
were located in different locations on the peat dome at low
altitudes (below 11 m a.s.l.) and were positioned perpendic-
ular to drainage canals (Fig. 1). Each transect consisted of
either two (C, D, G, H) or four (A, B, E, F) sub-transects

along which monitoring locations were situated. The sub-
transects were located at 200 m intervals from each other,
with the first being 100 m from the nearest canal. They were
positioned between tree rows, which were∼3.5 m apart. The
peat surface along all transects was almost flat, and micro-
topographic differences between emission monitoring loca-
tions (5± 11 cm to 9± 7 cm ) were not significant; the maxi-
mum peat surface height difference was only 31 cm between
measurement locations along all 8 transects.

2.2 Acaciatree stand characteristics along transects

Stands of plantation trees along transects consisted of both
1st and 2nd rotation cycles (Table 2); one rotation being
∼5 years from planting to harvest. Monitoring transects
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Table 3. Temperatures (mean± SD) of air close to the peat surface, and at depths of 5, 10, and 60 cm into the peat based on manual
measurements at daytime during CO2 flux monitoring and diurnally collected logger data.

Temperature (◦C) at transects

Manual measurement∗ Logger data

Daytime Daytime Diurnal

Position A B C D B B

Air 30.9± 2.7 28.9± 2.1 30.2± 1.7 33.0± 3.2 29.7± 2.9 26.7± 2.9
5 cm 29.2± 2.3 28.2± 2.0 28.6± 1.4 30.5± 2.5 27.8± 1.6 26.5± 1.6
10 cm 28.9± 2.2 28.2± 1.9 28.5± 1.6 29.4± 2.1 27.1± 1.1 27.0± 1.2
60 cm 31.3± 2.6 29.7± 1.3 30.9± 0.9 30.6± 1.4 28.5± 0.6 28.5± 0.6

E F G H H H

Air 36.9± 2.3 31.0± 3.2 34.1± 3.8 33.2± 2.5 32.6± 3.7 26.9± 4.2
5 cm 31.9± 1.5 29.3± 2.2 33.3± 3.6 32.6± 2.6 28.9± 1.8 27.3± 2.0
10 cm 30.3± 1.6 28.9± 1.7 33.1± 3.5 32.3± 2.7 27.9± 1.0 28.2± 1.2
60 cm 31.9± 1.4 30.7± 1.1 33.5± 3.1 33.4± 2.0 29.9± 0.3 29.9± 0.4

∗ Daytime mean peat temperature at 5 cm depth is 30.5◦C for all transects (A–H), 28.7◦C for transects A–C, and 31.5◦C for transects D–H.

included recently harvested sites with bare peat through to
closed canopy sites with mature trees. The usual planta-
tion tree species wasAcacia crassicarpa, with the excep-
tion of transect G where it wasMelaleucasp. Based on
field observations, three plantation cycle stages were iden-
tified: (1) “open” areas including recently harvested areas
and young plantations with trees up to 6 months old with an
open canopy; (2) “immature” stands with a closing or closed
canopy of 7–30 month old trees, and (3) “mature” closed
canopy stands of 30 month to 5 year old trees. Descriptions
of tree stand characteristics during the 2 year monitoring pe-
riod are provided in Table 2. Transects D, E and F were
located in “open” and “immature” stands; transects G and
H were in the younger end of the “immature” tree growth
stage; transects A and B were in the older end of the “imma-
ture” and “mature” growth stage; and C was in the “mature”
growth stage (Table 2, Fig. 2).

2.3 Measurement of peat characteristics

2.3.1 Groundwater table depth

The depth of the water table below the peat surface was mon-
itored monthly or quarterly, at the same locations and times
as CO2 emissions, in perforated PVC tubes inserted in the
peat surface along the sub-transects.

2.3.2 Bulk density and ash content

Peat samples for determination of bulk density and ash con-
tent were collected following the method explained in Hooi-
jer et al. (2012).

2.3.3 Peat temperature

Peat temperatures were measured, using a digital thermo-
couple (Eutech, EcoScan) equipped with a K-type probe, at
the same times and positions as the CO2 emissions and wa-
ter table measurements. Daytime temperature was measured
above the peat surface and at depths of 5, 10, 20 and 30 cm
in the peat. Towards the end of the study, temperature was
also determined at depths of 40, 50 and 60 cm. Temperatures
were measured close to mid-day (average time 11:33) with
50 % of the observations made between 10:28 and 13:14.
In order to investigate diurnal fluctuations, temperatures in
the peat profile were recorded using Thermochron® data
loggers at 2-hourly intervals at five peat depths (between 5
and 60 cm) along transect B (closed canopyAcacia, 31–36
months old) and transect H (immatureAcacia, 5–11 months
old) during May–October 2008. The key temperature char-
acteristics of the transects are shown in Table 3.

2.4 CO2 emission monitoring

CO2 emissions were measured along arrays of 7 regularly-
spaced (∼0.5 m) gas flux monitoring locations between two
adjacent living trees (Fig. 1), assuming that emissions fur-
thest from the tree rooting zone would have a smaller au-
totrophic component in comparison to those nearest to trees.

Surface peat CO2 emissions were measured by using a
portable infrared gas analyzer EGM-4 connected to an SRC-
1 respiration chamber unit (PP Systems, Hitchin, United
Kingdom). In order to increase the measurement area, the
standard 10 cm cover of the SRC-1 unit chamber was re-
placed by a 30 cm diameter one. During measurements, the
chamber was placed securely over the peat surface and CO2
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Table 4. Mean daytime measured heterotrophic respiration CO2 emissions (in “furthest from trees” locations) and total soil CO2 emissions
(“nearest to trees” locations) and the related mean water table depths at the monitoring transects.

Transect Peat surface CO2 Water table depth p-value p-value
code emission type n (mg m−2 h−1) (m) CO2 WD

Mean SE SD Mean SE SD

Heterotrophic 158 1128 23 292 0.92 0.02 0.27
A < 0.001 ns

Total 284 1758 38 649 0.94 0.02 0.28

Heterotrophic 192 1028 26 364 0.78 0.01 0.15
B∗ < 0.001 < 0.005

Total 270 1242 26 426 0.73 0.01 0.17

Heterotrophic 140 1185 43 507 1.03 0.03 0.32
C ns ns

Total 222 1300 40 596 1.08 0.02 0.33

Heterotrophic 350 903 14 253 0.69 0.01 0.25
D∗ < 0.001 < 0.01

Total 71 705 38 319 0.78 0.03 0.24

Heterotrophic 34 799 67 392 0.75 0.04 0.23
E ns ns

Total 44 755 67 446 0.70 0.03 0.22

Heterotrophic 74 1103 49 417 0.85 0.02 0.14
F < 0.001 ns

Total 154 1366 39 480 0.84 0.01 0.14

Heterotrophic 143 844 24 283 0.45 0.01 0.12
G ns ns

Total 30 887 49 271 0.36 0.02 0.09

Heterotrophic 127 1584 44 496 0.93 0.01 0.16
H < 0.05 ns

Total 29 1345 74 398 0.86 0.02 0.12

∗By accounting water table depth as covariate at B and D transects:

Heterotrophic 192 1019 29
B 0.75 < 0.001

Total 270 1248 24

Heterotrophic 350 904 14
D 0.70 < 0.001

Total 71 702 32

concentrations were recorded automatically at 5 s intervals
for a total incubation period of 81 s to ensure that readings
were consistent and that the chambers were stable and did
not leak. The CO2 emission rates were calculated from the
linear change of gas concentration inside the closed chamber
as a function of measurement time. Readings were rejected if
nonlinear concentration changes were obtained during incu-
bation, owing to leakage or peat disturbance. Readings taken
near to damaged trees (wind thrown) were not included in the
data set. Measurements were made 2-weekly to monthly un-
less there were problems of gaining access to the transects. In

total, more than 2300 CO2 emission measurements were ob-
tained at 144 individual locations forming the sub-transects
and transects (Table 4, Fig. 1). For the timing of measure-
ments during the day see Sect. 2.3.3.

2.5 Treatments to minimize root CO2 emissions

Soil CO2 emission was partitioned into autotrophic root res-
piration and heterotrophic peat oxidation components by us-
ing several methods. First, the presence of autotrophic CO2
emission sources was determined through pit observations,
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which indicated that the bulk of theAcaciaroot system, even
near “mature” trees, was restricted to within less than a me-
tre from the tree although, in some instances, a few roots
close to the peat surface extended over a longer distance in
mature stands. Very few roots were found at monitoring lo-
cations in the middle of sub-transects, and it could there-
fore be assumed that at such locations (i.e.≥1.3 m from
trees on average) respiration from tree roots was negligible
(see Fig. 1). Secondly, monitoring locations were kept free
from any herbaceous vegetation; however it should be noted
that such vegetation was scarce or absent in most locations.
Thirdly, during the last 6 months of monitoring the contri-
bution of root respiration to total CO2 emission was tested
experimentally along transects B, D, G and H by regular
trenching (sawing) of the peat surface down to a depth of
0.5 m around the three central monitoring locations on each
sub-transect (at least∼1.3 m from trees, Fig. 1), which was
the depth within which most lateral tree root growth occurred
according to our pit observations. Finally, trees were felled
along several transects, before (transects E, G, H) or during
(transects D, F) the monitoring period, which allowed mea-
surements also under conditions where live tree roots were
guaranteed to be excluded (following harvesting) or, in very
young plantation stands, where lateral growth of tree roots
was negligible (see minimum tree age in Table 2).

Based on the measures taken in data collection outlined
above and in subsequent data analysis (see Sect. 3.2), CO2
emission data obtained from the “furthest from trees” mon-
itoring locations were defined as “heterotrophic emissions”,
and this expression is used in the results and discussion. The
data from the “nearest to trees” locations include emissions
from both roots and organic matter decomposition and hence
“total soil respiration” is used for this emission in the results
and discussion. Mean daytime autotrophic respiration was
calculated by subtracting the mean of the CO2 emission mea-
sured at the “furthest from trees” locations from that of the
“nearest to trees” locations, i.e. heterotrophic emission was
subtracted from the total soil respiration emission for mature
Acaciagrowth stages (data are based on Table 4).

2.6 Statistical analyses

The SPSS™ statistical package was used for descriptive and
comparative statistical analyses of the data. The main sta-
tistical test was univariate analysis of variance (one-way
ANOVA), run at the 95 % confidence level.

3 Results

3.1 Peat characteristics

3.1.1 Bulk density and ash content

Characteristics of the upper peat layer were similar along
most transects, with ranges of 0.06–0.12 g cm−3 (average

0.09 g cm−3) and 0.08–2.20 % (average 0.71 %), for bulk
density and ash content, respectively (Table 1). This con-
firmed our observation that surface peat at all locations was
fibric to hemic, with a very low mineral content, indicating
the ombrotrophic nature of the peat.

3.1.2 Groundwater table depth

The average water table depth along all transects was about
0.8 m but there were considerable variations in time and
space during the two-year monitoring period (Table 2). On
average, the lowest water table during CO2 flux monitoring
was at transect C (mean 1.06 m, and 75 % quartile upper limit
at 1.04 m). For transects A and H the water table depth mean
was about 0.9 m; along the F, D, B and E transects there were
shallower drainage conditions with mean water table depths
of between 0.84 and 0.70 m. Transects G and H were located
in a hydrology test site where water tables were maintained
at distinctly different depths, i.e. the mean water table was
0.43 m at transect G and 0.92 m at transect H.

CO2 emissions and water table depths as measured at
“nearest to trees” and “furthest from trees” locations differed
significantly only along transects B and D (Table 4). The po-
tential role of water table depth difference on CO2 emission
was tested by applying water table depth as a covariate in the
analysis for these two transects, but the impact of water ta-
ble depth difference on the emissions was found to be low
(Table 4).

3.1.3 Peat temperature

The average daytime air temperature close to the peat sur-
face was 33.6◦C along transects in the open and young im-
matureAcaciastages (transects D, E, F, G, H) and 30.0◦C
in closed canopyAcacia (transects A, B, C), (Table 3). At
a depth of 5 cm below the peat surface, mean daytime tem-
peratures were between 29.3◦C and 33.0◦C (mean 31.5◦C)
in the open and young immature tree stands (transects D, E,
F, G, H) and between 28.2◦C and 29.2◦C (mean 28.7◦C)
in closed canopy tree stands (transects A, B, C). Diurnal
mean (24 h) and mean daytime (11:00 to 13:00) peat temper-
atures at a depth of 5 cm differed by 1.3◦C to 1.6◦C along
the closed canopy transect B and the open canopy transect
H, respectively. The difference between daytime and diur-
nal peat temperature averages rapidly diminished with peat
depth, to 0.3◦C at 10 cm depth. Data from both manual
measurements and automated temperature loggers indicated
comparable temperature differences.
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of variable order. 

Fig. 2. Instantaneous daytime CO2 emissions (mean± SE) at transects representing various tree growth stages using 10 cm wide water
table depth classes. Mean CO2 emissions from heterotrophic respiration (•) and total soil CO2 emissions (◦) are shown separately for each
transect. Note that mean total CO2 emissions especially in open and young immature growth stages have non-existent or low autotrophic
respiration and thus the two flux symbols may be of variable order.
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Fig. 3. Regression of mean peat surface CO2 emission from heterotrophic respiration at 

furthest from trees locations (upper graph) and mean total soil CO2 emission at nearest to 

trees locations (lower graph) at mean water table depths at the monitoring transects. Emission 

values provided in multiple units; daytime emission values (mg m
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, t ha
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) on the left 

axis, and temperature corrected emissions (t ha
-1
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) on the right axis. Linear regression lines 

for ≤16 months old trees (○-symbol, dotted line), ≥24 months old Acacia (●-symbol, dashed 

line), average (solid line), and 95% confidence limits (solid curves) for the combined data 

from 8 transects are provided. Arrows indicate regression mean emissions and water table 

depths. 

Fig. 3. Regression of mean peat surface CO2 emission from het-
erotrophic respiration (upper graph) and mean total soil CO2 emis-
sion (lower graph) at mean water table depths at the monitoring
transects. Emission values provided in multiple units; daytime
emission values (mg m−2 h−1, t ha−1 y−1) on the left axis, and
temperature corrected emissions (t ha−1 y−1) on the right axis. Lin-
ear regression lines for≤16 months old trees (◦-symbol, dotted
line), ≥24 months oldAcacia (•-symbol, dashed line), average
(solid line), and 95 % confidence limits (solid curves) for the com-
bined data from 8 transects are provided. Arrows indicate regres-
sion mean emissions and water table depths.

3.2 CO2 emissions

No significant differences (p > 0.05) in CO2 emission were
identified before and after trenching, at the “furthest from
trees” measurement locations along the B, D, G and H tran-
sects that varied from “mature” to “open” during trenching
operations. This confirmed that the tree roots were relatively
localised around the bases of the trees. Since the data from
emissions monitoring at both trenched and untreated loca-
tions did not differ, all data from the “furthest from trees”
monitoring locations were combined for subsequent analy-
ses. Daytime CO2 emissions data are summarised in Table 4
separated into those for total soil emissions and those for het-
erotrophic emissions.

The highest values for total soil respiration emissions were
obtained along transects A, B, C, F and H, three of which (A,
B and C) were “mature” plantations with average tree stand
ages over 31 months. The lowest total emissions were ob-

tained along the recently replanted and open transects D, E
and G, with average tree stand ages below 13 months. In two
of the three mature tree stands (transects A and B), mean to-
tal emissions were significantly higher than the heterotrophic
emissions, at 56 % and 21 % respectively (Table 4). In the
mature tree stands (A, B and C) the emission difference was
even higher (80 %, 44 % and 14 % respectively) between in-
dividual monitoring locations at∼50 cm distance from trees
(location 3 in Fig. 1). In comparison to the values for het-
erotrophic CO2 emissions, however, the difference was only
28 %, 4 % and 1 % respectively at a distance of∼90 cm from
trees (location 2 in Fig. 1). Along the other transects in the
open and immature trees stands, the differences were in gen-
eral smaller and either of the emission monitoring locations
(“nearest to trees” or “furthest from trees”) could result in the
higher emission (Table 4).

Mean daytime autotrophic respiration, calculated as the
emission difference between total and heterotrophic CO2
emissions, for the 1st rotation cycle closed canopyAca-
cia transects (A, B and C) varied between 115 and 630 mg
CO2 m−2 h−1 (data from Table 4). The highest average day-
time autotrophic respiration at transect A was 36 % of the
total CO2 emission. For transects B and C, the average au-
totrophic respiration emissions were about 17 % and 9 %.
The overall mean autotrophic respiration for these transects
was 320 mg CO2 m−2 h−1, which was 21 % of the total CO2
emission.

3.3 Relation between CO2 emissions, groundwater
table depth and tree growth stage

Analysis of datasets of instantaneous daytime CO2 emissions
(both for total and heterotrophic emissions) and water table
depth along individual transects yielded significant relations
only for transects B, C, F, G and H. However, these relations
were very different, and for the other transects no relation
was evident at all (Fig. 2). Emission readouts in some of
the data sub-sets in the 10 cm wide water table depth classes
were either low in number or missing, which restricted com-
parisons between total and heterotrophic emissions in some
conditions.

3.4 Relation between CO2 emission and long-term
average groundwater table depth

In order to determine a possible effect of average long-term
hydrological conditions on CO2 emissions, mean daytime
emission rates over the two year monitoring period were
tested against mean water table depths for each transect
(Fig. 3, based on Table 4). For this analysis, monitoring
transects were also separated into two categories, i.e.≤16
months and≥24 months old tree growth stages in order to
determine if CO2 emissions differed following recent distur-
bance (harvesting) compared to the more stable conditions in
maturing tree stands.
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There was a trend of reducing CO2 emission when the wa-
ter table was closer to the peat surface (Fig. 3). Correlation
between mean heterotrophic CO2 emission and mean wa-
ter table depth, measured in the≥24 month old tree growth
stages, was very high (R2

= 0.99). It was somewhat lower
(R2

= 0.53) for combined open and≤16 month old tree
growth stages. The total CO2 emission and mean water ta-
ble depth relationship was unclear, however, withR2 values
below 0.22 obtained for the two growth stages used in the
analysis (Fig. 3).

The relation between water table depth (in m) and daytime
CO2 emission (in mg m−2 h−1) for all transects is described
by the following linear regressions (95 % confidence limits):

For daytime heterotrophic CO2 emission:
emission = 953.35× WTD + 309.07 (R2 = 0.47,
SE = 197)

For daytime total CO2 emission:
emission = 989.46× WTD + 391.79 (R2 = 0.34,
SE = 317)

In this study, no significant relationship (R2 values from 0 to
0.02) was found between mean daytime heterotrophic and
total CO2 emissions and peat temperature at all transects
(Tables 3, 4). Several studies suggest temperature differ-
ences in peat impact on organic matter oxidation rates by
ratio Q10 = 2 (see Sect. 4.4 and 4.6 for details). An average
difference between daytime and diurnal peat temperature at
5 cm depth of 1.45◦C was found across theAcaciaplantation
growth stages. By applying temperature correction, based
on diurnal surface peat temperature fluctuation and a Q10
value of 2, daytime CO2 emissions were subject to a 14.5 %
reduction. Presenting these temperature corrected emission
values as scaled-up units (t ha−1 y−1), the regressions for all
transects are:

For temperature corrected heterotrophic CO2
emission: emission = 71.40× WTD + 23.15
(R2 = 0.47, SE = 197)

For temperature corrected total CO2 emission:
emission = 74.11× WTD + 29.34 (R2 = 0.34,
SE = 317)

4 Discussion

4.1 Separation of peat surface CO2 emission sources

Several measures taken in this study allowed us to separate
heterotrophic and autotrophic CO2 emissions. The absence
of tree roots and therefore of autotrophic respiration at loca-
tions “furthest from trees” was confirmed by (i) an observed
lack of tree roots in control pits, (ii) a lack of effect of the

“trenching” treatment on emissions, and (iii) the absence of
a systematic reduction in emissions at locations where trees
were harvested during the measurement period. Moreover,
the finding that mean daytime total CO2 emission values for
the most mature tree stands (transects A, B and C) were in-
deed considerably higher (by up to 80 %, 44 % and 14 % re-
spectively) at “nearest to trees” rather than at “furthest from
trees” locations, demonstrated that the emission measure-
ment method did measure autotrophic root respiration where
it occurred, which further validated the method. We therefore
conclude that it is indeed possible to measure emission that is
largely or completely “root respiration free” in drained peat-
lands, by focusing on measurements well away from trees.

4.2 The contribution of autotrophic respiration to
the total CO2 emission

Autotrophic root emissions contribute 35–45 % to the total
soil CO2 emissions in boreal peatlands (Nykänen et al., 1995;
Silvola et al., 1996), and in non-tropical natural forest sites
the contribution can be between 10 % and 90 %, depending
on vegetation type and season (Hanson et al., 2000). Some-
what similar percentages were found near trees in mature
stands in our study (transects A, B and C), where we es-
tablished that autotrophic respiration accounted for an aver-
age of 21 % (36 %, 17 % and 9 %, respectively) of total CO2
emissions. In immature tree stands of 7–16 months age (tran-
sects E, F, G and H), however, the contribution of autotrophic
respiration to total CO2 emission could not be calculated ow-
ing to very different emissions from the two monitoring lo-
cations (Table 4, Fig. 2), which is probably explained by the
limited extent over which roots have extended in the short
time since planting. Even in relatively mature tree stands,
roots were observed to hardly go beyond 1 m from trees,
which may be explained by the fact that these trees were still
less than 4 years old. Their root systems, therefore, cannot
be compared to those occurring in natural forest, where roots
are known to extend for many metres from mature trees.

In recently harvested areas it is assumed that virtually all
of the CO2 emission is from heterotrophic sources since the
remaining tree roots are no longer functioning. At tran-
sects D, E and H, heterotrophic emission was higher than
total emission, a difference that was statistically significant
for transects D and H (Table 4). Disturbance and the un-
even distribution of tree harvest residues on the peat surface
may have contributed to the apparent anomaly at transect D
(open, immediate post harvest and early immature stages of
the plantation cycle). The reason for the emission difference
at transect H (immature stage) is less clear, but relatively few
measurements of total CO2 emission (n = 29, Table 4) were
made at this site and this could have influenced this result.
Analysis of instantaneous daytime CO2 emissions and wa-
ter table depth classes resulted in a relatively modest rela-
tion (Sect. 3.3, Fig. 2) and the results based on these much
smaller data sub-sets cannot be directly used to explain the
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general contribution of autotrophic respiration to the total
CO2 emission.

The autotrophic respiration contribution of 21 % to the to-
tal CO2 emission in mature tree stands is much lower than
the previous values suggested for oil palm plantations on
peatland, which range from 46 % (Melling et al., 2007), to
36 % (Murdiyarso et al., 2010) and 29 % (Hergoualc’h and
Verchot, 2011). This difference may be caused by the fact
that these earlier studies and reviews were based on very
small numbers of measurements (at only one location in
the case of Murdiyarso et al. (2010) referring to work by
Melling et al., 2005), that were not specifically set up to sepa-
rate autotrophic from heterotrophic CO2 emissions, i.e. these
percentages proposed earlier are rough estimates of the au-
totrophic respiration contribution rather than actual measure-
ments. In this study, the preciseness of the oxidation and to-
tal emission measurement data used in the calculation of root
respiration can be considered to be much higher because the
respective relative standard errors were low, at between 2 %
and 4 % for mature tree stand sites (based on data in Table 4).

CO2 emission values from studies where the distance of
the measurement location(s) from the nearest tree(s) is un-
known (e.g. Melling et al., 2005), may be interpreted tenta-
tively to represent 21 % autotrophic and 79 % heterotrophic
emissions: the same percentages that we found in relatively
matureAcacia plantation. There is no reason to believe
that the percentage autotrophic respiration occurring inAca-
cia plantations differs much from the percentage expected
in other types of plantation on peatland. Most of the root
system of mature oil palms growing on deep peat in Jambi,
Sumatra is concentrated in less than 1 m radius from the
plants (A. Hooijer, unpublished data) similar toAcaciaplan-
tations. Considering that oil palms are generally planted fur-
ther apart thanAcacia trees (4–6 m compared to 3.5 m be-
tween tree rows), there will be relatively more peat surface
where autotrophic respiration emission is negligible. More-
over, mature oil palm stands have heterotrophic CO2 emis-
sions that are in the same range as those from matureAcacia
tree stands, and they have similar water table depth and lim-
ited canopy cover (compared to natural conditions) (Hooijer
et al., 2012). We therefore propose that the autotrophic res-
piration contribution to total soil CO2 emissions inAcacia
plantations are also applicable to other peatlands that have
been drained and converted to other types of peatland culti-
vation.

4.3 Relation between CO2 emission and groundwater
table depth

When quantifying relations between CO2 emission and
groundwater table depth, it must be borne in mind that water
table depthper sedoes not control peat oxidation. Rather,
it is a proxy for the moisture content of the peat above the
water table, which has a direct effect on peat oxidation by in-

fluencing oxygen availability in the pore space (Liyama and
Osawa, 2010).

In peatlands with high groundwater tables and without
controlled drainage, the relation between water table depth
and soil moisture content is strong: both go up when it rains
and down in dry periods. Jauhiainen et al. (2005, 2008) found
that total CO2 emissions from undrained tropical peatland
sites and those with unregulated drainage were lowest under
water saturated conditions and increased as the water table
fell during the dry season. In peatlands with low water tables
and controlled permanent drainage such asAcacia planta-
tions, however, this relation is far weaker. Only during major
rainstorms is it certain that rainfall will reach the ground wa-
ter table, as much of it is stored in the unsaturated zone above
as moisture deficits created in preceding dry periods are re-
plenished; under such conditions the peat moisture content
may fluctuate over time with limited effect on water table
depth (A. Hooijer, unpublished data). Moreover, peat water
tables follow canal water levels that are managed to meet the
operational plantation requirement of stable drainage depth,
so that these can be controlled independently of weather con-
ditions.

Considering the weak connection between water table
depth and soil moisture content in the unsaturated peat where
oxidation occurs, it is not surprising that the current study did
not yield a significant relation between instantaneous CO2
emission and water table as measured on individual tran-
sects. If water tables had remained close to the peat surface
for longer periods during this study, then heterotrophic emis-
sions could possibly have changed faster relative to changes
in water table depth and a nonlinear relationship between
CO2 emission and water table depth might have been de-
tected. The relationship between heterotrophic emissions
from peat and water table depth has been found to be non-
linear at undrained sites and those with unregulated drainage,
especially during periods when water table is close to the
peat surface (e.g. Jauhiainen et al., 2005, 2008; Hirano et al.,
2009). Owing to the permanent drainage required for opti-
mal growth ofAcaciain plantations on peat, these conditions
did not occur along the study transects. However, the poten-
tial for lower emissions (and a non-linear relationship) can
be seen in the data from transect G where water tables were
kept permanently closer to the peat surface and heterotrophic
emissions were lower than at the other transects. There are
no published studies demonstrating the impact of rewetting
on CO2 emissions on previously permanently drained tropi-
cal peat with which to compare this observation.

4.4 The role of soil temperature in peat oxidation and
CO2 emissions

The rate of decomposition of organic matter in peatlands in-
creases positively with increase in temperature (Lafleur et al.,
2005; Minkkinen et al., 2007; M̈akiranta et al., 2009). In
the tropics, diurnal and annual temperature fluctuations are
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relatively modest compared to northern peatlands. There is,
however, a general temperature increase after deforestation
and also an increase in diurnal temperature fluctuation in the
surface peat and hence a likely increase in the rate of peat
decomposition. In this study, a significant relationship was
not found between mean daytime CO2 emission and mean
daytime peat temperature at any of the transects (R2 val-
ues from 0 to 0.02), probably owing to the limited varia-
tion in daytime peat temperature along each (Table 3). For
comparison, it would be important to obtain diurnal temper-
ature data, preferably with simultaneous CO2 emission data,
across clearly different sun exposure/canopy coverage con-
ditions. In a previous study, however, a clear CO2 emis-
sion/temperature relationship for tropical peat was found,
following 4 years of automated hourly monitoring of both
variables in peat swamp forest, of a doubling of the rate of
instantaneous in-situ peat CO2 emission over a temperature
range of 5◦C (from 24◦C to 29◦C) (including autotrophic
respiration emissions) (Hirano et al., 2009). Moreover, long-
term combined field and laboratory studies in the subtropical
peatlands of the Everglades (Florida) showed that peat oxi-
dation expressed as peat surface subsidence doubled with a
10◦C increase in temperature (Stephens and Stewart, 1977).
Similarly, CO2 emission rates from incubated surface sam-
ples of tropical peat from Sumatra were also found to double
between 25◦C and 35◦C (Brady, 1997). Both Brady (1997)
and Hirano et al. (2009) found that increase in temperature
had a greater effect on CO2 emission rate than soil moisture
or water table depth. In our study, we used this relation be-
tween temperature and CO2 emission to adjust CO2 measure-
ments, obtained for higher daytime temperatures, to estimate
diurnal average temperature conditions.

At a landscape-scale, the surface peat temperature in an
intact peat swamp forest is lower and more constant than in
deforested and developed tropical peatland (Jaya, 2007), not
only because the forest floor is sheltered from direct sunlight
but also because it is cooled by evaporation from the peat
surface, which usually has a high water content. Average
daytime peat temperature at a depth of 5 cm in peat swamp
forest (26.5◦C) in Central Kalimantan is 2.9◦C below the
average air (29.4◦C) temperature inside the forest (Jauhi-
ainen et al., 2008). After deforestation the amount of so-
lar radiation reaching the peat surface increases and so does
the temperature of the peat surface. In Central Kalimantan,
the average daytime peat temperature at 5 cm depth is 4.4◦C
higher (at 29.9◦C) in open degraded peatland than in nearby
non-drained forest (25.5◦C), while the air temperatures just
above these peat surfaces are 32.4◦C and 26.4◦C respec-
tively, a difference of 6◦C (Jauhiainen et al., 2005, 2008).
Jaya (2007) reports an even greater difference for elsewhere
in Central Kalimantan, of 7.3◦C between average diurnal
surface peat temperature in an agricultural area (30.2◦C) and
in adjacent, relatively intact forest (22.9◦C), while average
daytime air temperatures are 33.4◦C and 28.8◦C, respec-
tively. In nearby heavily degraded forest, the average diurnal

peat surface temperature and daytime air temperatures were
26.7◦C and 30.4◦C, suggesting that even removing part of
the canopy cover has a profound effect on peat surface and
air temperatures. We conclude that the average temperature
of surface peat under intact tropical forest cover is around
25◦C at most, a value that we used in further calculations.

In this study, average daytime temperatures of peat and
air in the Acacia plantation were similar to those in de-
graded peatland in Kalimantan. Average peat temperature at
5 cm depth was between 29.3◦C and 33.3◦C (mean 31.5◦C)
in open areas and from 28.2◦C to 29.2◦C (mean 30◦C)
in closed canopyAcacia tree stands, and respective mean
air temperatures were 33.6◦C and 30◦C. It was likely that
these temperatures had increased considerably since defor-
estation and drainage. If we assume the same original sur-
face peat temperature of 25◦C that was reported for natural
peat swamp forest in Central Kalimantan (Jaya, 2007), then
the temperature of the surface peat would have increased by
5.6◦C.

4.5 CO2 emission rates and long-term, average
groundwater table

The means of the water table depths along each transect
throughout the entire study period (i.e. long-term water ta-
ble depth) showed a strong relationship with long-term mean
heterotrophic respiration CO2 emissions (Fig. 3). CO2 emis-
sion rates along the transects were lower at higher water table
depths (i.e. when the water table was nearer to the surface).
A similar CO2 emission/water table depth relationship was
found for the unplanted and recently planted (≤16 month
old) transects and for those with older (≥24 month old) trees.
The highest regressionR2-value (0.99) was for the mature
tree growth stage, which represented comparatively constant
environmental conditions after several years had elapsed fol-
lowing harvesting and re-planting operations, and where the
closed canopy provided relatively stable microclimatic con-
ditions at the peat surface.

As the CO2 emission means were based on 2 years of data
collected intensively from a relatively large area (Table 4),
the values could be used to quantify annual emissions for
the entire plantation. The overall daytime mean (±SE) het-
erotrophic respiration emission derived by regression (Fig. 3)
was 93.9± 17.2 t CO2 ha−1 y−1 (1072± 197 mg m−2 h−1) at
0.8 m water table depth. Other studies on permanently
drained peat, albeit with relatively few measurements over
shorter periods and without measures to quantify the contri-
bution of autotrophic respiration, have provided emissions of
201 mg m−2 h−1 (water table depth 0.07 m) on a taro field
(Chimner and Ewel, 2004), 733 mg m−2 h−1 (water table
depth 0.24 m) on a cassava field (Furukawa et al., 2005),
504 mg m−2 h−1 (water table depth 0.27 m) under sago and
693 mg m−2 h−1 (water table depth 0.60 m) under oil palm
(Melling et al., 2005). Although most of these mean CO2
emissions (op. cit.) were obtained at water table depths
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less than those recorded in this study, an extended regres-
sion line to water table depths of 0.2 m and 0.3 m (Fig. 3)
would result in a similar CO2 emission range from 502 to
597 mg CO2 m−2 h−1.

The mean daytime heterotrophic respiration emission
from this study of∼94 t CO2 ha−1 y−1 at 0.8 m drainage
depth (Fig. 3), is higher than reported in most other stud-
ies that have used subsidence measurements, as presented in
recent meta-analyses (Couwenberg et al., 2010; Hooijer et
al., 2010). One explanation for this may be that this value
is based on daytime CO2 flux measurements, which may re-
sult in an overestimate because peat temperatures vary di-
urnally. This emission value can therefore be considered a
maximum, which should be moderated for daytime tempera-
ture and emission both being above the daily average.

4.6 Correcting CO2 emissions for temperature effect

In this study, we calculated the potential impact of diur-
nal peat temperature differences on heterotrophic respiration
rates on the basis ofQ10-values provided from the litera-
ture for comparable environmental conditions (see Sect. 4.4).
The average daytime heterotrophic respiration emission of
94 t CO2 ha−1 y−1, which covered both open and closed
canopy conditions, was used as a reference. The diurnal
mean temperatures of the surface peat were found to be lower
than daytime temperatures measured during gas flux moni-
toring. The average difference between daytime and diur-
nal temperatures was 1.45◦C across both open and closed
canopy conditions insideAcaciaplantations. Assuming that
a difference in peat temperature of 1◦C results in a 10 % dif-
ference in CO2 emission (op. cit. in Sect. 4.4), the day-
time CO2 emission value may therefore be reduced by up to
14.5 % to account for diurnal temperature fluctuation in peat.
Applying this correction to the mean daytime CO2 emis-
sion value of 94 t ha−1 y−1 we calculate an average emission
value of 80 t ha−1 y−1 (Fig. 3).

This temperature corrected emission value of
80 t CO2 ha−1 y−1, at an average water depth of 0.8 m,
is close to the value of 76 t CO2eha−1 y−1 resulting from
subsidence and bulk density measurements conducted
partly in the same landscape at the same water table depth
(Hooijer et al., 2012). It is also close to the values of 72
to 72.8 t CO2eha−1 y−1 suggested by Hooijer et al. (2010)
and Couwenberg et al. (2010) in their meta-analyses, for
a plantation water depth of 0.8 m. In two other studies,
Murdiyarso et al. (2010) and Koh et al. (2011) apply a much
lower estimate (34.1 t ha−1 y−1 at 0.5 m water table depth)
for heterotrophic respiration emissions under plantation
conditions. This estimate, however, is based on only two
case studies (Murayama and Bakar, 1996; Melling et al.,
2005) that present very limited datasets at only one or a few
locations, and a poor description of measurement method
and field conditions.

The adjusted value (80 t CO2eha−1 y−1) is based upon di-
urnal temperature difference measured near the peat surface,
at 5 cm depth, whereas we found that temperature fluctua-
tion diminished rapidly with increasing depth. Our approach
therefore suggests that most peat oxidation, and therefore
production of CO2 gas, takes place in the upper 10 cm of the
peat profile. We may assume therefore that oxygen availabil-
ity is highest at shallowest depth where the near-surface peat
layer contains a relatively larger amount of the most labile
peat carbon compounds that are substrates for heterotrophic
organisms. Consequently, the highest oxidation rate, i.e. het-
erotrophic respiration emission will take place near to the
peat surface. While we have no information on the distri-
bution of CO2 gas production in the peat profile, it is likely
that part of it is generated at greater depth and, therefore, the
temperature corrected emission value of 80 t ha−1 y−1 may
be seen as a minimum estimate.

In drained forest in Kalimantan, the average of long-term
diurnal CO2 emission was 18 % below emissions measured
at mid-day (Hirano et al., 2009). A single 24-h CO2 emission
monitoring study by Ali et al. (2006) in Jambi also yielded
a similar diurnal emission difference of 18 % in selectively
logged and drained peatland, and a 13 % difference in an oil
palm plot on peat. These three values, with a narrow range
of 13 % to 18 % in very different land uses in different parts
of Indonesia, are close to the 14.5 % reduction applied in the
current study for daytime emission measurements inAcacia
plantations.

The high sensitivity of CO2 emissions to peat temperature,
and the resulting relative insensitivity to water table depth,
implies that bringing up water tables in plantations will not
reduce carbon losses by as much as would be expected on the
basis of peat surface emissions in forest systems (e.g. Jauhi-
ainen et al., 2005, 2008) or earlier relations between water
table depth and CO2 emission (e.g. Couwenberg et al., 2010;
Hooijer et al., 2010). The implication of this is that high CO2
emission from any peatland that is converted to agriculture,
whatever its water and land management, should be regarded
as inevitable.

4.7 Comparing temperature and water table depth as
likely main drivers of heterotrophic CO 2 emissions
in tropical peatland plantations

The effect of temperature on average CO2 emission arising
from heterotrophic respiration inAcaciaplantations can be
estimated by applying the same correction factor as used
above, of a 1◦C temperature difference yielding a 10 % dif-
ference in CO2 emission, to the average increase of 5.6◦C
after deforestation and drainage that follows from the above
analysis of data from Central Kalimantan. This indicates that
up to 56 % of the CO2 emission inAcaciaplantations may be
caused by the change in peat temperature after plantation de-
velopment alone, which would make it the most important
single controlling factor. The remaining 44 % of emission
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can be attributed to reduction in soil moisture content (with
water table depth as a proxy), and also to soil disturbance
and fertilization. This likely dominance of temperature as
a cause of oxidation in tropical peatland plantations has not
been given sufficient attention in earlier studies reviewed by
Hooijer et al. (2010) and Couwenberg et al. (2010), which
focused on the effect of water table depth.

5 Conclusions

This study is the largest and most detailed investigation of
CO2 emissions undertaken in an industrial plantation on trop-
ical peat. It is also the first study to separate and quantify
autotrophic and heterotrophic CO2 emissions. We conclude
that the scale of this study, and its consistent approach to
separating emission contributions, is necessary in order to
determine “net” CO2 emissions from drained tropical peat-
land. We present a monitoring system that yields reliable and
checkable results, but which differs markedly from methods
applied in previous studies.

The contribution of autotrophic respiration to CO2 emis-
sion was found to be 21 % on average along transects in ma-
ture tree stands. Significantly higher autotrophic respiration
occurred very close toAcacia trees, but was negligible at
distances of more than 1.3 m from them, indicating that our
emission measurements well away from trees were free of
any contribution from autotrophic respiration and represen-
tated heterotrophic respiration only.

We calculated an average minimum heterotrophic respi-
ration emission rate of 80 t CO2 ha−1 y−1 for the Acacia
plantation, after reducing the initial average daytime rate of
94 t ha−1 y−1 by 14.5 % to account for the lower night time
peat temperatures. A temperature correction has not been ap-
plied before, but we believe it is necessary in order to com-
pare the results of different emission studies more precisely.
The resulting value applies at an average water table depth
of 0.8 m, in peatland with a thickness greater than 4 m, for
a peat surface covered by vegetation and with limited fertil-
izer applied only in the first year after planting. This value
(80 t CO2 ha−1 y−1) is supported by the results of a parallel
study of carbon loss, carried out at the same location at the
same time, of peat subsidence and peat characteristics (bulk
density and carbon content) (Hooijer et al., 2012).

Mean long-term water table depth along transects corre-
lates well with average heterotrophic respiration emissions,
although the results of our study indicate that temperature
differences may be the most important factor controlling
peat oxidation and account for over 50 % of heterotrophic
CO2 emissions from drained peatlands when compared to
forested, pre-clearance conditions. Even if the water table
were at the surface, which is impossible in plantations, the re-
lation would predict that CO2 emissions from heterotrophic
respiration are 23 t ha−1 y−1 or more. It is therefore evident

that high CO2 emissions are inevitable in any type of agri-
cultural or plantation development on tropical peatland.

There is no reason to assume these conclusions apply only
to Acaciaplantations. All developments on tropical peatland
require removal of forest cover and lowering of the water ta-
ble. Growing non-permanent crops (e.g. vegetables, rice) on
peat results in less ground cover and higher temperatures than
in Acaciaor oil palm plantations. Most crops, including oil
palm, also require much higher fertilizer inputs thanAcacia,
which will further enhance peat oxidation. Thus emissions
from other types of cultivation on peat are likely to be as
high or higher than those fromAcaciaplantations, at similar
water depths and on similar peat types.

This study sets a new standard for greenhouse gas flux
studies from tropical peatlands under different forms of land
management. Our findings indicate that past studies have un-
derestimated peat surface CO2 emissions from peatland plan-
tations, with important implications for the scale of green-
house gas emissions arising from land use change, particu-
larly in the light of current, rapid agricultural conversion of
peatlands in the Southeast Asian region (Miettinen and Liew,
2010).
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