
Proceedings of

SAT CHALLENGE 2012
Solver and Benchmark Descriptions

Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, & Carsten Sinz (editors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14924804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2012-2

ISSN 1458-4786
ISBN 978-952-10-8106-4 (PDF)
Helsinki 2012

2

PREFACE

The area of SAT solving has seen tremendous progress over the last years. Many
problems (e.g., in hardware and software verification) that seemed to be completely out
of reach a decade ago can now be handled routinely. Besides new algorithms and better
heuristics, refined implementation techniques turned out to be vital for this success. To
keep up the driving force in improving SAT solvers, we want to motivate implementors to
present their work to a broader audience and to compare it with that of others.

SAT Challenge 2012 (SC 2012), a competitive event for solvers of the Boolean Satisfi-
ability (SAT) problem, took place within 2012. It was organized as a satellite event to the
15th International Conference on Theory and Applications of Satisfiability Testing (SAT
2012) and stands in the tradition of the SAT Competitions held yearly from 2002 to 2005
and biannually starting from 2007, and the SAT-Races held in 2006, 2008 and 2010.

SC 2012 consisted of 5 competition tracks, including three main tracks for sequential
solvers (Application SAT+UNSAT containing problem encodings (both SAT and UNSAT)
from real-world applications, such as hardware and software verification, bio-informatics,
planning, scheduling, etc; Hard Combinatorial SAT+UNSAT containing combinatorial
problems (both SAT and UNSAT) to challenge current SAT solving algorithms, similar
to the SAT Competition’s category “crafted”; and Random SAT, containing randomly
generated satisfiable instances); one track for parallel solvers (with eight computing cores,
using Application SAT+UNSAT instances); and one track for sequential portfolio solvers
(1/3 Application SAT+UNSAT, 1/3 Hard Combinatorial SAT+UNSAT, and 1/3 Random
SAT+UNSAT instances).

There were two ways of contributing to SC 2012: in the form of submitting one or
more solvers for competing in one or more of the competition tracks, and in the form
of submitting interesting benchmark instances on which the submitted solvers could be
evaluated on in the competition. The rules of SC 2012 required all contributors (both
solver and benchmark submitters) to submit a short, around 2-page long solver/benchmark
description as part of their contribution. As a result, we received high-quality descriptions
that we believe to be of value to the research community at large both at present and in
the future. This book contains all these descriptions in a single volume, providing a way of
consistently citing the individual descriptions. Furthermore, we have included descriptions
of the selection and generation process applied in forming the benchmark instances used in
the SC 2012 competition tracks.

SC 2012 was run under the Experiment Design and Administration for Computer
Clusters (EDACC) platform using the bwGrid computing infrastructure operated by eight
Baden-Württemberg state universities, both providing critical infrastructure for success-
fully running the competition.

Last but not least, we would like to thank all those who contributed to SC 2012 by
submitting either solvers or benchmarks, and for contributing the solver and benchmark
descriptions that form the core of this proceedings volume. We hope this compilation pro-
vides the reader new insights into the details of state-of-the-art SAT solver implementations
and the SC 2012 benchmarks.

Dublin, Helsinki, Karlsruhe, and Ulm, June 12, 2012
SAT Challenge 2012 Organizers

Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, & Carsten Sinz

3

4

Contents

Preface . 3

Solver Descriptions

BossLS: Preprocessing and Stochastic Local Search

Oliver Gableske . 10

CaGlue: Particular Clause Analysis in a CDCL Solver

Djamat Habet and Donia Toumi . 12

CCASat: Solver Description

Shaowei Cai, Chuan Luo, and Kaile Su . 13

Concurrent Cube-and-Conquer

Peter van der Tak, Marijn J.H. Heule, and Armin Biere 15

clasp, claspfolio, aspeed : Three Solvers from the Answer Set Solving Collection Potassco

Benjamin Kaufmann, Torsten Schaub, and Marius Schneider 17

Contrasat12

Allen Van Gelder . 20

GLUCOSE 2.1 in the SAT Challenge 2012

Gilles Audemard and Laurent Simon . 21

Glucose with Implied Literals (Glucose IL 1.0)

Arie Matsliah, Ashish Sabharwal, and Horst Samulowitz 22

Glucans System Description

Xiaojuan Xu, Yuichi Shimizu, and Kazunori Ueda 23

Trap Avoidance heuristics using pseudo-conflict learning applied to gNovelty+ and spar-

row2011

Thach-Thao Duong and Duc-Nghia Pham . 25

Industrial Satisfiability Solver (ISS)

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann . . 27

5

interactSAT{_c}: Interactive SAT Solvers and glue dyphase: A Solver with a Dynamic

Phase Selection Strategy

Jingchao Chen . 28

Linge_dyphase

Jingchao Chen . 31

Lingeling and Friends Entering the SAT Challenge 2012

Armin Biere . 33

march_nh

Marijn J.H. Heule . 35

Minifork

Yuko Akashi . 37

Parallel CIR MiniSAT

Tomohiro Sonobe . 38

Parallel Semi-Static Satisfiability Solver Selector (p3S-semistat)

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann . . 39

Parallel Static Satisfiability Solver Selector (p3S-stat)

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann . . 41

PeneLoPe, a parallel clause-freezer solver

Gilles Audemard, Benoît Hoessen, Saïd Jabbour, Jean-Marie Lagniez, and Cé-

dric Piette . 43

pfolioUZK: Solver Description

Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer, and Stefan

Porschen . 45

Description of ppfolio 2012

Olivier Roussel . 46

Relback: Relevant Backtracking in CDCL Solvers

Djamat Habet and Chu Min Li . 47

Solver Description of RISS 2.0 and PRISS 2.0

Norbert Manthey . 48

Satisfiability Solver Selector (3S)

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann . . 50

Sat4j 2.3.2-SNAPSHOT SAT solver

Daniel Le Berre . 52

Description of Sattime2012

Chu Min Li and Yu Li . 53

satUZK: Solver Description

Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer, and Stefan

Porschen . 54

6

Parallel SAT Solver SatX10-EbMiMiGlCiCo 1.0

Bard Bloom, David Grove, Benjamin Herta, Ashish Sabharwal, Horst Samu-

lowitz, and Vijay Saraswat . 56

SATzilla2012: Improved Algorithm Selection Based on Cost-sensitive Classification Models

Lin Xu, Frank Hutter, Jonathan Shen, Holger H. Hoos, and Kevin Leyton-Brown 57

SimpSat 1.0 for SAT Challenge 2012

Cheng-Shen Han and Jie-Hong R. Jiang . 59

SINN

Takeru Yasumoto . 61

Splitter — a Scalable Parallel SAT Solver Based on Iterative Partitioning

Antti E.J. Hyvärinen and Norbert Manthey . 62

The Stochastic Local Search Solver: SSA

Robert Stelzmann . 63

TENN

Takery Yasumoto . 64

ZENN

Takery Yasumoto . 65

ZENNfork

Yuko Akashi and Takery Yasumoto . 66

Benchmark Descriptions

Application and Hard Combinatorial Benchmarks in SAT Challenge 2012

Adrian Balint, Anton Belov, Matti Järvisalo, and Carsten Sinz 69

SAT Challenge 2012 Random SAT Track: Description of Benchmark Generation

Adrian Balint, Anton Belov, Matti Järvisalo, and Carsten Sinz 72

Advanced Encryption Standard II benchmarks

Matthew Gwynne and Oliver Kullmann . 74

Horn backdoor detection via Vertex Cover: Benchmark Description

Marco Gario . 77

Finding Circuits for Ensemble Computation via Boolean Satisfiability

Matti Järvisalo, Petteri Kaski, Mikko Koivisto, and Janne H. Korhonen 79

Fixed-shape Forced Satisfiable CNF Benchmarks

Anton Belov . 82

Solving Logic Puzzles with SAT

Norbert Manthey and Van Hau Nguyen . 83

sgen3: A generator for small but difficult satisfiability instances

Ivor Spence . 85

7

SAT Instances for Traffic Network Scheduling Problems

Peter Großmann and Norbert Manthey . 87

Solver Index . 89

Benchmark Index . 90

Author Index . 91

8

SOLVER DESCRIPTIONS

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

BossLS
Preprocessing and Stochastic Local Search

Oliver Gableske
Institute of Theoretical Computer Science

Faculty for Engineering and Computer Science
Ulm University

Baden-Württemberg, Germany
Contact: https://www.gableske.net/oliver

Abstract—This paper briefly describes the BossLS SAT Solver
by explaining its basic functionality and outlining its features.

I. THE k-SAT PROBLEM

In the following, let F be a Boolean formula in con-
junctive normal form (CNF), containing the n Boolean vari-
ables V = {x1, . . . , xn} in the form of 2n literals L =
{x1,¬x1, . . . , xn,¬xn}. A formula in CNF is a conjunction
(and) of disjunctions (or) of literals. The disjunctions of literals
are called clauses.

An assignment α : V → {0, 1} satisfies a formula in CNF, if
and only if it assigns values to the variables such that in each
clause there is at least one literal evaluating to true. Then,
all clauses evaluate to true, and the formula’s conjunction
evaluates to true as well (α(F) = 1). Such assignments are
called satisfying assignments or solutions (for F). We call F
satisfiable, if and only if there is at least one satisfying for it.

SAT is a language that consists of all satisfiable Boolean
formulas. The restriction to formulas in CNF, where a clause
has at most k literals, is called k-SAT. The k-SAT problem is
the problem to decide whether a given formula F is in k-SAT,
that is, decide if the given formula is satisfiable.

II. GENERAL IDEA BEHIND BOSSLS

A SAT Solver is an algorithm that might solve the (k-)SAT
problem for a given (CNF-)formula F . We call such a SAT
Solver complete, if it can decide F ∈ SAT and F 6∈ SAT, and
incomplete if it can decide F ∈ SAT but not F 6∈ SAT.

The BossLS SAT solver is an incomplete SAT solver,
following the approach of stochastic local search (SLS). Its
basic functionality is equal to solvers like Sparrow [1] or
gNovelty+ [8].

The general approach of these solvers is to assume that
F is satisfiable by some (randomly created) assignment, and
perform search by making local modifications to the assign-
ment in order to increase the number of satisfied clauses. If a
solution is found, it is used as a proof to support the claim that
F is indeed satisfiable. If F is not satisfiable, the algorithm
will not terminate.

To be more precise: given F with n variables, SLS solvers
will first create a random starting assignment α. They then
check which of the clauses from F are not satisfied under α,

that is α(Ci) = 0. Let this set of clauses be U . If U = ∅ then
all clauses are evaluating to true, and then α is a solution. In
this case, the search is over.

If U 6= ∅, α can be no solution. SLS solvers then typically
pick one of the clauses Ci ∈ U at random and try to fix the
assignment α, such that α(Ci) = 1. This is done by selecting
exactly one of the literals in α in order to invert its assignment.
After flipping the assignment to the corresponding variable,
and thereby modifying α into α′, the solvers will again check
if all clauses are satisfied under this modified α′. The major
difference between the solvers named above is how exactly
they pick the literal from Ci in order to flip the corresponding
variable assignment.

III. PICKING LITERALS FOR FLIPPING THE
CORRESPONDING VARIABLE ASSIGNMENT

Let Ci ∈ F be a clause and let α(Ci) = 0. Assume, that
Ci has been selected for fixing as explained in the previous
section. Let w.l.o.g. Ci = (l1 ∨ . . . ∨ lk). The BossLS
solver will now investigate each li and count the number
of clauses that would become unsatisfied if it would indeed
flip the assignment to the corresponding variable. This is
called the break count of the variable and is denoted with
blj := b(lj , α, F) = b(¬lj , α, F). Using these break counts,
and a parameter called cb (the break base parameter value),
the solver computes a function f of values for each lj ∈ Ci:

f(lj , α, F) = (cb)
−blj (1)

The probability for each literal in the clause to be selected for
flipping then follows by computing [2]:

P (select lj ∈ Ci) =
f(lj , α, F)∑

lw∈Ci
f(lw, α, F)

. (2)

According to this distribution, it picks a literal at random and
then flips the corresponding variable assignment. According
to [2], this scheme gives superior performance for random 3-
SAT formulae. We refer the reader to this paper for additional
information.

IV. HANDLING CRAFTED INSTANCES

A. Preprocessing
The BossLS solver was supposed to give good perfor-

mance on crafted formulae, too. This is why a preprocessor

10

was implemented in order to simplify the formulas before they
are being handed over to the local search component within
the solver. The preprocessing consists of unit propagation,
failed literal detection, and asymmetric covered clause elimi-
nation (ACCE). ACCE is an extension to asymmetric blocked
clause elimination (ABCE), additionally using covered literal
addition (CLA). See [4], [5], [6] for an overview of clause
elimination techniques.

All the techniques named above have in common that they
cannot increase the clause count m of the formula. In contrast
to unit propagation and failed literal detection, ACCE does
not even decrease the size of the clauses but drops them
completely, if possible. Furthermore, ACCE is preserving sat-
isfiability equivalence, but not logical equivalence. This means,
that for a given unsatisfiable formula F the resulting formula
ACCE(F) will stay unsatisfiable, but if F is satisfiable, the set
of satisfying assignments for F might change for ACCE(F).
Since ACCE can only drop clauses, it can only increase the
amount of satisfying assignments to a satisfiable formula F .

Preliminary tests suggested, that these techniques are bene-
ficial for SLS on crafted formulas as they seem to increase the
success rate of BossLS where ACCE does indeed succeed in
removing a significant amount of clauses. We assume that the
ability of ACCE to increase the set of satisfying assignments
for a satisfiable formula is the main reason for this increased
success rate. On formulae where ACCE does not remove a
significant amount of clauses the preprocessing at least did
not seem to degrade the solver’s performance.

After a closer investigation, however, we found that CE
does not necessarily improve the performance. We were able
to find formulae (for example the em* from the SAT 2011
Competition crafted set), where a large number of clauses can
be dropped by CE, but afterwards, the performance of the
SLS is much worse then before. A paper dealing with this is
currently in preparation.

B. Restarts
Fixed interval restarts have also been implemented, and are

in use on crafted formulae. This type of restart is the most
simple one possible: it picks the number of variables n and
multiplies it with a fixed constant (currently 640). If the solver
did this amount of flips, it performs a flip on all variables in
a row with probability 50% for each variable.

C. Tabu
The solver could use a very simple tabu scheme (tabu-1)

that penalizes the variable flipped last. The penalty is realized
by increasing the variables break count blj by 1, which will
impact the probability of the variable being flipped depending
on the parameter cb chosen for equation (1).

Restarts and tabu are optional compile features. For the
SAT 2012 Challenge, BossLS was compiled with restarts but
without tabu.

V. MISCELLANEOUS

The solver has been implemented in a way that is supposed
to make it CPU cache friendly. That is, break scores for

literals are stored along with the literal’s occurrence list
pointer (as you usually need both, if you access the literal).
The clause data, like the current number of satisfied literals
and a representative satisfied literal of a clause under the
current assignment, are separated from the list of literals of
the clause (as the solver usually does not need them). It is
disadvantageous to store both in one array, as the infrequently
used literal information supersedes the relevant information
from the CPU cache as soon as the clause data is touched.

ACCE, and ABCE alike, are preprocessing techniques that
may increase the number of satisfying assignments to a
satisfiable formula. This means, that after the preprocessed
formula is solved, a solution to the original formula must be
reconstructed. The ABCE, the ABCE solution reconstruction
algorithm, and the ACCE algorithm have been published
in [4], [6]. The ACCE solution reconstruction algorithm is,
however, not yet published. Therefore, the ACCE itself is
available in the BossLS, but we commented out the CLA (that
lifts ABCE to ACCE), and deleted the solution reconstruction
algorithm from the sources in order to not leak the details. The
source-code available from the website [7] currently performs
ABCE and not ACCE. Even though the CLA/ACCE itself is
still in the sources, without the proper reconstruction algorithm
it does not make sense to activate CLA.

You can get the latest sources of the solver at [7]. The solver
and its sources are published under the GNU General Public
License version 3.

ACKNOWLEDGMENTS

The author would like to thank Marijn Heule for advices
and technical help. Additionally, the author would like to
thank Armin Biere and Matti Järvisalo for providing not
yet published information. Further thanks go to Timo Beller
for fruitful discussions regarding the compressed assignments
implementation.

REFERENCES

[1] Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with
a New Probability Distribution. Proc. of the 13th international Conference
of the Theory and Application of Satisfiability Testing, Springer LNCS
6175, p. 10-16, 2010.

[2] A. Balint and U. Schöning, Choosing Probability Distributions for
Stochastic Local Search and the Role of Make versus Break, To be
published in Theory and Applications of Satisfiability Testing – SAT
2012, Lecture Notes in Computer Science (LNCS), Springer, 2012.

[3] A. Biere and M. J. H. Heule and H. v. Maaren and T. Walsh (Eds.).
Handbook of Satisfiability, IOS Press, 2009, ISBN 978-1-58603-929-5.

[4] M. J. H. Heule and M. Järvisalo and A. Biere, Clause Elimination Pro-
cedures for CNF Formulas, In Christian Fermller and Andrei Voronkov
(Eds.) Proceedings of the 17th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR-17), LNCS
6397, pages 357–371. Springer, 2010.

[5] M. J. H. Heule and M. Järvisalo and A. Biere, Clause Elimination
Procedures, a manuscript in preparation, 2012.

[6] M. J. H. Heule and M. Järvisalo and A. Biere, Covered Clause Elimi-
nation, In Christian Fermüller and Andrei Voronkov (Eds.) Short Paper
Proceedings of the 17th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, 2011 (to appear)

[7] O. Gableske, The BossLS project homepage, Get the latest sources here:
https://www.gableske.net/bossls.

[8] D. N. Pham and C. Gretton, gNovelty+, SAT solver
description from the SAT 2007 Competition. See
http://www.satcompetition.org/2007/gNovelty+.pdf.

11

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

CaGlue: Particular Clause Analysis
in a CDCL Solver

Djamal Habet
LSIS, UMR CNRS 7296
Université Aix-Marseille

Av. Escadrille Normandie Niemen
13397 Marseille Cedex 20 (France)

Djamal.Habet@lsis.org

Donia Toumi
LSIS, UMR CNRS 7296
Université Aix-Marseille

Av. Escadrille Normandie Niemen
13397 Marseille Cedex 20 (France)

Donia.Toumi@lsis.org

I. MAJOR SOLVING TECHNIQUES

The following description concerns the submitted solver
caglue. This solver is based on an existing implementation
of a CDLC like solver. Indeed, caglue is implemented under
the glucoe solver [1] (without SatElite formula simplification
[2]).

CDLC solvers start the conflict analysis on the basis of the
first falsified clause (which we will note by c) reached during
the propagation phase of the enqueued literals. Classically,
this analysis is done according to the first implication point
[3] by applying a sequence of resolutions between the clauses
involved by the conflict. The clause c is the first to be used
in this sequence. Also, for combinatorial reasons, keeping all
learnt clauses during the search is shown to be unsuccessful.
Hence, some learnt clauses are kept, and the other dropped,
according to some parameters (clause activities, LBD values
...). However, what about the relevance of learnt clauses
regarding to conflict analysis? Is it relevant to accomplish
the analysis on the first reached empty clause? Is there any
difference in the behavior of a CDCL solver if we restrict the
analysis on the basis of a particular empty clause?

Accordingly, the main purpose of our solver caglue is to
continue the propagation even if a conflict is reached and to
stop it under given criteria. Such implementation modify the
behavior of the glucose solver.

II. PARAMETER DESCRIPTION

In caglue, the only difference with glucose is that the
propagation of the enqueued literals is stopped, in this case
of a conflict, if the falsified clause c is:

1) among the original clauses, or
2) For one case on two, c is a learnt clause such that its

LBD value ≤ 2 or its size ≤ 3,
3) For the other case, stop at the first falsified learnt clause.

These criteria are near to those used in glucose to reduce the
size of the database of the learnt clauses.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

Incaglue, there is no preprocessing step. The data structures
are strictly similar to the existing ones in glucose.

IV. IMPLEMENTATION DETAIL

1) The programming language used is C++
2) The solver is based on glucose 2 with the additional

features explained above.

V. SAT CHALLENGE 2012 SPECIFICS

1) The solver is submitted in ”Solver Testing Track” includ-
ing : Hard Combinatorial SAT+UNSAT and Application
SAT+UNSAT.

2) The used compiler is g++
3) The optimization flag used is ”-O3”. The compilation

options are the same as the used existing solver.

VI. AVAILABILITY

Our solver is not yet publicly available.

ACKNOWLEDGMENT

We would like to thank the authors of glucose1 for making
available the source code of their solver.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st international joint conference on
Artificial intelligence, ser. IJCAI’09. Morgan Kaufmann Publishers Inc.,
2009, pp. 399–404.

[2] N. E. en and A. Biere, “Effective preprocessing in sat through variable and
clause elimination,” in In proc. SAT?05, volume 3569 of LNCS. Springer,
2005, pp. 61–75.

[3] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient
conflict driven learning in a boolean satisfiability solver,” in Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided
design, ser. ICCAD ’01. IEEE Press, 2001, pp. 279–285.

1Available on http://www.lri.fr/∼simon/

12

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

CCASat: Solver Description
Shaowei Cai and Chuan Luo

School of Electronics Engineering and Computer Science
Peking University, Beijing, China

shaowei cai@126.com, chuanluosaber@gmail.com

Kaile Su
Institute for Integrated and Intelligent Systems

Griffith University, Brisbane, Australia
k.su@griffith.edu.au

Abstract—An interesting strategy called configuration checking
(CC) was recently proposed to deal with the cycling problem
in local search for Minimum Vertex Cover. A natural question
is whether this CC strategy also works for SAT. The direct
application of CC did not result in stochastic local search (SLS)
algorithms that can compete with the current best SLS algorithms
for SAT. We propose a new heuristic based on CC for SLS
algorithms for SAT, which is called configuration checking with
aspiration (CCA). In CCA, there are two levels with different
priorities in the greedy mode. Those variables with great scores
have a chance to be selected on the the second level, even if they
do not satisfy the CC criterion. The CCA heuristic is used to
develop a new SLS algorithm called CCASat.

I. INTRODUCTION

The basic schema for an SLS algorithm for SAT is as
follows: Beginning with a random complete assignment of
truth values to variables, in each subsequent search step a
variable is chosen and flipped. We use pickVar to denote the
function for choosing the variable to be flipped.

SLS algorithms for SAT usually work in two different
modes, i.e., the greedy (intensification) mode and the diversifi-
cation mode. In the greedy mode, they prefer variables whose
flips can decrease the number of unsatisfied clauses; in the
diversification mode, they tend to better explore the search
space, usually using randomized strategies and exploiting
diversification properties to pick a variable.

Recently, a diversification strategy called configuration
checking (CC) was proposed, which may help deal with the
cycling problem, i.e., revisiting a candidate solution that has
been visited recently [1]. It was recently proposed to deal with
this issue, and was used to improve a state-of-the-art Minimum
Vertex Cover (MVC) local search algorithm called EWLS [2],
which leads to the much more efficient SLS solver EWCC for
MVC [3]. A natural question is whether this CC strategy also
works for SAT.

According to the CC strategy for MVC in [3], it is easy to
develop a CC strategy for SAT, which forbids a variable to
flip if since its last flip all its neighboring variables have not
changed their truth values. Actually, this has been used in an
SLS algorithm called Swcc. However, Swcc cannot compete
with the current best SLS solvers such as Sparrow2011 [4]. In
our opinion, the CC strategy is too strict for SLS algorithms
for SAT, as it forbids all variables whose circumstance has not
changed since its last flip to be flipped, regardless of its score.
We believe this lack of differentiation is a big disadvantage.

We propose a new heuristic based on CC for SLS algorithms
for SAT. We name it Configuration Checking with Aspiration
(CCA), as this new heuristic utilizes a mechanism which is
inspired by the aspiration mechanism in tabu search. Accord-
ing to CCA, there are two levels with different priorities in
the greedy mode. Those variables whose flips can bring a big
benefit have a chance to be selected on the the second level,
even if they do not satisfy the CC criterion.

II. CONFIGURATION CHECKING

Originally introduced in [3], configuration checking (CC) is
a diversification strategy aiming to reduce the cycling problem
in local search. The CC strategy is based on the concept
configuration. In the context of SAT, the configuration of a
variable refers to truth values of all its neighboring variables.

Let V (F) denote the set of all variables appear in the
formula F , and N(x) = {y|y ∈ V (F) and y occurs in at
least one clause with x} is the set of all neighboring variables
of variable x. The formal definition of the configuration of a
variable is given as follows:

Definition 1: Given a CNF formula F and s the current
assignment to V (F), the configuration of a variable x ∈
V (F) is a vector Cx consisting of truth values of all variables
in N(x) under s (i.e., Cx = s|N(x), which is the assignment
restricted to N(x)).

Given a CNF formula F , the CC strategy can be described
as follows: When selecting a variable to flip, for a variable
x ∈ V (F), if the configuration of x has not been changed
since x’s last flip, which means the circumstance of x never
changes, then it is forbidden to be flipped. To implement
the CC strategy, we employ an array confChange, whose
element is an indicator for a variable — confChange[x] = 1
means the configuration of variable x has been changed since
x’s last flip; and confChange[x] = 0 on the contrary. During
the search procedure, the variables with confChange[x] = 0
are forbidden to be flipped.

III. CONFIGURATION CHECKING WITH ASPIRATION

As we have pointed out, the CC strategy is too strict in
picking a variable to flip in the greedy mode. Any variable
whose configuration has not been changed since its last flip is
forbidden to be flipped in the greedy mode, regardless of its
score. To overcome this drawback, we propose a new pick-var
heuristic based on CC, which is called configuration checking
with aspiration (CCA) [5].

13

We first give some definitions. A variable x is said con-
figuration changed iff confChange[x] = 1. A configuration
changed decreasing (CCD) variable is a variable with both
confChange[x] = 1 and score(x) > 0. A significant
decreasing (SD) variable is a variable with score(x) > g,
where g is a positive integer large enough, and in this work g
is set to the averaged clause weight (over all clauses) w.

The CCA heuristic switches between the greedy mode and
the diversification mode. In the greedy mode, there are two
levels with descending priorities. On the first level it picks
the CCD variable with the greatest score to flip. If there are
no CCD variables, CCA selects the SD variable with the
greatest score to flip if there is one, which corresponds to
the second level. If there are neither CCD variables nor SD
variables, CCA switches to the the diversification mode, where
clause weights are updated, and the oldest variable in a random
unsatisfied clause is picked to flip.

IV. THE CCASAT SOLVER

We use the CCA heuristic to develop a new SLS algorithm
called CCASat, which has been submitted to SAT Challenge
2012, for the Random SAT track.

A. Clause Weighting in CCASat

CCAsat uses two different clause weighting schemes, one
for 3-SAT and structured SAT (i.e., not k-SAT), and the other
for large k-SAT (k > 3).

Clause Weighting for 3-SAT and non-k-SAT: The details
of the CCA heuristic and the clause weighting scheme for
3-SAT and structured SAT can be found in [5], as described
briefly as follows.

We adopt a clause weighting scheme based on a threshold of
the averaged weight. Clause weights of all unsatisfied clauses
are increased by one; further, if the averaged weight w exceeds
a threshold γ, all clause weights are smoothed as w(ci) :=
⌊ρ · w(ci)⌋ + ⌊(1 − ρ)w⌋.

For SAT Challenge 2012, we set γ = 300 and ρ = 200 +
|V (F)|+250

500 .
Clause Weighting for large k-SAT: We adopt a clause

weighting scheme similar to PAWS. With probability sp,
smooth clause weights: for each satisfied clauses whose weight
is bigger than 1, decrease the weight by 1. Otherwise, clause
weights of all unsatisfied clauses are increased by one.

For SAT Challenge 2012, sp is set to 0.75 for k-SAT with
3 < k ≤ 5, and 0.92 for k-SAT with k > 5.

B. Implementation

CCASat is implemented in C++ on the basis of the codes of
Swcca [5]. It is compiled by g++ with the following command:

g++ cca.cpp -m32 -O2 -static -o CCASat.
Its running command is:
CCASat <instance file name> <random seed>.

V. CONCLUSIONS

Inspired by the success of the configuration checking (CC)
strategy on the Minimum Vertex Cover problem, we proposed
a new variable selection heuristic called configuration check-
ing with aspiration (CCA) for SLS algorithms for SAT. The
CCA heuristic works on two levels in the greedy mode, which
is more flexible compared to the CC strategy. We utilized the
CCA heuristic to develop a new SLS algorithm called CCASat.
We would like to note CCA can be seen as a local search
framework, which can be combined with various techniques
such as different clause weighting schemes.

VI. ACKNOWLEDGEMENTS

We would like to thank Zhong Jie for testing our solver on
the EDACC platform.

REFERENCES

[1] W. Michiels, E. H. L. Aarts, and J. H. M. Korst, Theoretical aspects of
local search. Springer, 2007.

[2] S. Cai, K. Su, and Q. Chen, “EWLS: A new local search for minimum
vertex cover,” in Proc. of AAAI-10, 2010, pp. 45–50.

[3] S. Cai, K. Su, and A. Sattar, “Local search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artif. Intell.,
vol. 175, no. 9-10, pp. 1672–1696, 2011.

[4] A. Balint and A. Fröhlich, “Improving stochastic local search for SAT
with a new probability distribution,” in Proc. of SAT-10, 2010, pp. 10–15.

[5] S. Cai and K. Su, “Configuration checking with aspiration in local search
for SAT,” in Proc. of AAAI-12, 2012, p. to appear.

14

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Concurrent Cube-and-Conquer
Peter van der Tak

Delft University of Technology,
The Netherlands

Marijn J.H. Heule
Delft University of Technology,

The Netherlands

Armin Biere
Johannes Kepler University Linz,

Austria

I. I NTRODUCTION

The concurrent cube-and-conquer (CCC) solver implements
the ideas in the paper we submitted to the PoS 2012 work-
shop [1]. This system description describes the main concepts,
a more detailed explanation is in the paper.

Recent work has introduced the cube-and-conquer (CC)
technique [2], which first partitions the search space into
disjunctive sets of assumptions (cubes) using a lookahead (LA)
solver (the cube phase) and then solves each cube using a
CDCL solver (the conquer phase). It uses acutoff heuristic to
control after what number of decisions the lookahead solver
should be cut off and store its decision variables (its current
cube) for the CDCL solver to solve in the conquer phase.
However, this heuristic is not ideal particularly because no
information about the performance of CDCL on the cubes is
present in the cube phase. Concurrent cube-and-conquer uses
a synchronized LA and CDCL solver concurrently in the cube
phase to improve the cutoff heuristic.

II. M OTIVATION

Cube-and-conquer shows strong performance on several
hard application benchmarks [2], beating both the lookahead
and CDCL solvers that were used for the cube and conquer
phases respectively. However, on many other instances, either
lookahead or CDCL outperforms CC. We observed that for
benchmarks for which CC has relatively weak performance,
two important assumptions regarding the foundations of CC
do not hold in general.

First, in order for CC to perform well, lookahead heuris-
tics must be able to split the search space into cubes that,
combined, take less time for the conquer solver (CDCL) to
solve. Otherwise, cube-and-conquer techniques are ineffective
and CDCL would be the preferred solving technique. Second,
if lookahead can refute a cube, then this must mean that
nearby cubes can be efficiently solved using CDCL. When this
assumption fails, the cube phase either generates too few cubes
and leaves a potential performance gain unused, or generates
too many cubes because cubes with fewer decisions are also
easy for CDCL to solve.

CCC solves these problems separately. The first by pre-
dicting on which instances cube-and-conquer techniques are
ineffective and aborting in favor of a classical CDCL search.
The second by also using a CDCL solver in the cube phase
to better estimate the performance of CDCL on nearby cubes.
This naturally cuts off easy cubes. We first discuss CCC∞,
a simplified version of CCC with no cut off heuristic and

prediction in the next section, and add these two features in
sections IV and V respectively. The submitted solver includes
all features.

III. C ONCURRENT CUBE-AND-CONQUER

CCC∞ is implemented by sending messages between the
CDCL and the lookahead solvers using two queues: the deci-
sion queueQdecision and the result queueQsolved. Whenever
the lookahead solver assigns a decision variable, it pushes
the tuple〈cubecid, literal ldec, backtrackLevel〉 comprising a
uniquely allocatedid, the decision literal, and the number of
previously assigned decision variables (backtrackLevel). When
the CDCL solver reads the new decision from the queue, it
already knows all previous decision literals, and only needs to
backtrack to thebacktrackLevel and addldec as an assumption
to start solvingcid. Theid is used to identify the newly created
cube.

If the CDCL solver proves unsatisfiability of a cube before it
receives another decision, it pushes thecid of the refuted cube
to Qsolved. The solver then continues with the parent cube,
by backtracking to the level where all but the last decision
literal were assigned. When the lookahead solver reads thecid

from Qsolved, it backtracks to the level just above this cube’s
last decision variable and continues its search as if it proved
unsatisfiability of the cube by itself.

To keep track of the cubes that are pending to be solved,
both solvers keep the trail of decision literals (or assumptions
for the CDCL solver) and theid’s of the cubes up to and
including each decision literal (or assumption). Whenever
either solver proves unsatisfiability of the empty cube, or when
it finds a satisfying assignment, the other solver is aborted.

The submitted version of CCC first simplifies the instance
using Lingeling, and then uses marchrw [3] (LA) and Min-
iSAT 2.2 [4] (CDCL) concurrently. The CCCeq version runs
march rw with equivalence reasoning [3] enabled, CCCneq
with equivalence reasoning disabled, as this has shown to
affect the performance of CCC.

IV. CUTOFF HEURISTIC

One advantage of CC was that the conquer phase can be
parallelized efficiently by using multiple CDCL solvers in
parallel, each solving a single cube. With CCC∞ this is no
longer possible, since the lookahead solver will continue with
a single branch until it is solved by either CDCL or lookahead.
Additionally, CCC∞ always uses twice as much CPU time as

15

wall clock time, because the lookahead and CDCL solver run
in parallel.

To reduce this wasted resource utilization and allow for
parallelization of the CDCL solver, we reintroduce the conquer
phase by applying a suitable cutoff heuristic. As with CC,
we pass cubes from the cube phase to the conquer phase
using the iCNF1 format (via the filesystem, unlike the shared
memory queues in the cube phase), which is basically a
concatenation of the original formulaF and the generated
cubes as assumptions. An incremental SAT solver iterates over
each cubecid in the file, and solvesF ∧ cid until a solution
is found or all cubes have been refuted.

The cutoff heuristic of CC is based on a rough prediction
of the performance of CDCL on a cube. Given a cubecid, it
computes its difficulty23 d(cid) := |ϕdec|2·(|ϕdec|+|ϕimp|)/n,
where |ϕdec| and |ϕimp| are the number of decision and
implied variables respectively, andn is the total number of
free variables. Ifd(cid) is high, the CDCL solver is expected
to solvecid fast.

The cutoff heuristic in CC focuses on identifying cubes that
are easy for CDCL to solve. It cuts off a branch ifd(cid)
exceeds a dynamic threshold valuetcc. Initially tcc = 1000,
and it is multiplied by 0.7 whenever lookahead solves a cube
(because it assumes that CDCL would have solved this cube
faster) or when the number of decisions becomes too high (to
avoid generating too many cubes). It is incremented by 5% at
every decision to avoid the value from dropping too low.

For CCC, the same heuristic does not work because easy
cubes are solved quickly by the CDCL solver. This makes the
threshold very unstable so that it quickly converges to 0 or
infinity depending on the instance. We therefore use a different
heuristic, but using the same difficulty metricd(cid).

Easy cubes can be detected better by CCC than by CC,
because CCC can detect for which cubes CDCL finds a
solution before the lookahead solver does. CCC would ideally
cut off these cubes so that they can be solved in parallel. The
contrary goes for when the lookahead solver solves a cube:
it then seems that lookahead contributes to the search, which
means that it is not desirable to cut off.

CCC uses the same difficulty metricd(cid) as CC, but a
different heuristic for determining the threshold valuetccc. If
a cubecid is solved by CDCL, the value is updated towards
s := 0.4 · d(cid), whereas it is updated towardss := 3 · d(cid)
if cid was solved by lookahead. To avoid too sudden changes,
tccc is not changed tos directly but is filtered byt′ccc :=
0.4 · s + 0.6 · tccc. To furthermore avoid the threshold from
dropping too low, it is incremented for every cube that is cut
off.

The submitted implementation of CCC uses iLingeling to
solve the cubes that were cut off by the heuristic. iLingeling
basically submits these cubes to a number of independent
incremental Lingeling solvers in parallel.

1http://users.ics.tkk.fi/swiering/icnf
2CC’s heuristic has been improved slightly since it was initially pub-

lished [2]; it now uses|ϕdec|2 instead of|ϕdec|.
3The notation is ours.

V. PREDICTION

Since cube-and-conquer techniques do not work well on
all instances, CCC aims to detect quickly if an instance is
unsuitable. It does this based on two measurements.

First, lookahead techniques appear effective if they can
solve some cubes faster than CDCL. While running the
lookahead and CDCL solver in parallel, we count the number
of times that lookahead is faster than CDCL. For benchmarks
for which this count is increased very slowly, say less than
once per second, we observed that CC was generally not an
effective solving strategy.

Second, if the variable heuristics are effective then each
discrepancy should result in a large reduction of the formula.
Hence after a certain number of discrepancies the solver
should be able to refute that branch. Preliminary experiments
suggest that if CCC finds a leaf with over 20 discrepancies
early in the search-tree, then lookahead variable heuristics
should be considered as ineffective.

These metrics are combined as follows. CCC runs the LA
and CDCL solver for a few seconds concurrently. If the LA
solver enters a branch with more than 20 discrepancies ter-
minate the solvers and use fallback solver pLingeling instead.
If after 5 seconds the solvers are still running and less than
10 cubes were solved by lookahead, the solvers should also
be terminated in favor of pLingeling. Otherwise, CCC is the
preferred solving method and the solvers can continue. For
CC, the same instances usually work well, but they cannot be
detected as early because CDCL is only used in the conquer
phase.

VI. CONCLUSION

Without performance prediction, cube-and-conquer tech-
niques are not competitive with current state-of-the-art solvers.
CCC’s predictor is able to efficiently select instances for which
cube-and-conquer techniques are suitable and fall back to
pLingeling if not. This allows cube-and-conquer to compete
with other solvers. In addition, CCC improves over CC’s
performance by using concurrency and improved heuristics in
the cube phase.

CCC uses marchrw (LA) and the same versions of Lin-
geling (simplification and CDCL), iLingeling (conquer), and
pLingeling (fallback) submitted to this SAT challenge. All
sources are compiled into a single binary with -O3. Threading
is implemented using pthreads, and communication in the
cube phase using lockless queues. Communication between
the simplification, cube, conquer, and fallback solvers is done
via temporary CNF and iCNF files.

REFERENCES

[1] P. van der Tak, M. J. H. Heule, and A. Biere, “Concurrent cube-and-
conquer,” 2012, submitted to PoS 2012.

[2] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
conquer: Guiding CDCL SAT solvers by lookaheads,” 2011, accepted for
HVC.

[3] M. J. H. Heule, “Smart solving: Tools and techniques for satisfiability
solvers,” Ph.D. dissertation, Delft University of Technology, 2008.

[4] N. Eén and N. S̈orensson, “An extensible SAT-solver,” inSAT’03, ser.
LNCS, vol. 2919. Springer, 2004, pp. 502–518.

16

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

clasp, claspfolio, aspeed: Three Solvers from the
Answer Set Solving Collection Potassco
Benjamin Kaufmann
University of Potsdam,

kaufmann@cs.uni-potsdam.de

Torsten Schaub
University of Potsdam,

torsten@cs.uni-potsdam.de

Marius Schneider
University of Potsdam,

manju@cs.uni-potsdam.de

I. clasp (2.0.6)

Authors:
M. Gebser (University of Potsdam),
B. Kaufmann, and T. Schaub

clasp1 combines the high-level modeling capacities of An-
swer Set Programming (ASP; [1]) with state-of-the-art tech-
niques from the area of Boolean constraint solving. It is
originally designed and optimized for conflict-driven ASP
solving [2], [3], [4]. Most of its innovative algorithms and data
structures, like e.g. ASP-oriented pre-processing [5] or native
support of aggregates [6], are thus outside the scope of SAT
solving. However, given the proximity of ASP to SAT, clasp
can also deal with formulas in CNF via an additional DIMACS
frontend. As such, it can be viewed as a chaff-type Boolean
constraint solver [7] featuring a number of techniques found
in SAT solvers based on Conflict-Driven Clause Learning.
For example, clasp supports pre-processing [8], [9], phase
caching [10], on-the-fly subsumption [11], and aggressive
deletion [12].

Starting with version 2.0, clasp also supports parallel (multi-
threaded) solving either by search space splitting and/or com-
peting strategies. While the former involves dynamic load
balancing in view of highly irregular search spaces, both
modes aim at running searches as independently as possible
in order to take advantage of enhanced sequential algorithms.
Furthermore, clasp supports the exchange and physical sharing
of (recorded) nogoods. While unary, binary, and ternary no-
goods are always shared among all threads, sharing of longer
ones is mainly controlled by their respective number of distinct
decision levels associated with the contained literals, called the
Literal Block Distance [12].

clasp is implemented in C++ using Intel’s Threading Build-
ing Blocks library for platform-independent threads, atomics,
and concurrent containers. All major routines of clasp are
lock-free and optimized representations of constraints based
on a clear distinction between read-only, shared, and thread-
local data further promote the scalability of parallel search.
clasp currently supports up to 64 freely configurable (non-
hierarchic) threads.

The following configurations of clasp participated in the
respective tracks of SAT Challenge 2012:

1http://potassco.sourceforge.net/#clasp

• Application:
--sat-p=20,25,240,-1,1
--heuristic=Vsids
--dynamic-restarts=100,0.7
--dfrac=0.5 --del=3.0,1.1,20.0
--dgrowS=100,1.5 --dinit=500,20000
--dsched=+,10000,2000 --dglue=2
--update-lbd --save-p=75
--recursive-str --otfs=2
--reverse-arcs=2 --cir=3
--cir-bump=1023

• Combinatorial:
--sat-p=10,25,240,-1,1
--heuristic=Vsids --restarts=128,1.5
--del=10.0,1.1,20.0 --dinit=1000,10000
--dsched=+,10000,1000 --dglue=2
--otfs=2 --reverse-arcs=1 --cir=3

• Parallel:
--sat-p=20,25,240,-1,1
--threads=8 --port=sat12-port.txt
--distribute=all,4 --integrate=gp,512

The main difference between the application and the combina-
torial configuration lies in the selected restart strategy. While
the application configuration uses an aggressive dynamic strat-
egy, the combinatorial uses a geometric policy restarting every
128×1.5i conflicts. The meaning of the individual parameters
is as follows:

• sat-p: Enables SatELite-like preprocessing with (op-
tional) blocked clause elimination. The first three param-
eters control number of iterations, maximal occurrence
cost, timeout in seconds, respectively. The last parameter
controls blocked clause elimination.

• heuristic: Both configurations use a MiniSAT-like
version of the VSIDS heuristic.

• dynamic-restarts: Enables a dynamic restart strat-
egy similar to the one of glucose [13]. It maintains the
running average of LBDs R over the last x conflicts and
restarts if R > y× global average. In contrast to other
strategies, our version does not use a fixed threshold.
Instead, it monitors the current restart-frequency and
adapts the threshold dynamically in order to avoid either
very slow or overly aggressive restarts.

• dfrac: Sets the fraction of clauses removed on clause

17

deletion. The default is 0.75.
• del=F,G,Z, dinit, dgrowS: Configure the pri-

mary deletion schedule based on number of lerant
clauses. Given P , the number of problem clauses, the
initial limit X is set to 1

F × P clamped to the interval
given by dinit. Whenever the grow schedule fires, X is
multiplied by G but growth stops once X exceeds Z×P .
If dgrowS is not given, the selected restart strategy is
used.

• dsched: Configures the secondary deletion schedule
based on number of conflicts. The current threshold of
this schedule is reset, whenever the primary schedule
fires. Both configurations use an arithmetic policy firing
every X + Y × i conflicts.

• dglue: Enables glucose-like glue clauses. Clauses with
an lbd ≤ X are not deleted.

• update-lbd: Enables updates of LBD values of learnt
clauses. In contrast to other solvers, clasp updates LBD
values only for clauses participating in the resolution of
new conflict clauses.

• save-p=X: Enables Rsat-like phase caching on back-
jumps of length ≥ X . By default, phase caching is
disabled.

• recursive-str: Enables MiniSAT-like expensive
conflict clause minimization.

• otfs: Enables on-the-fly subsumption.
• reverse-arcs: Enables ManySAT-like inverse-arc

learning [14].
• cir=X, cir-bump=Y: Enables counter implication

restarts (see Pragmatics of SAT 2011) every Xth restart.
The heuristic value Y is used to compute the amount
added to the activity of variables.

Finally, the parallel configuration uses a portfolio of eight
threads including the aforementioned application configura-
tion. Individual threads distribute learnt conflict clauses with
an lbd ≤ 4. Furthermore, the 512 most recently received
clauses are excluded from clause deletion.

II. claspfolio (1.1.0)

Authors:
C. Schulz-Hanke (University of Potsdam),
T. Schaub, and M. Schneider

Inspired by satzilla [15], we address the high sensitivity of
ASP and SAT solving to search configuration by exploring
a portfolio-based approach, named claspfolio2 [16]. To this
end, we concentrate on the solver clasp and map a collection
of numeric instance features onto an element of a portfolio
of distinct clasp configurations (based on a Support Vector
Regression [17]), in contrast to satzilla, which maps to a
portfolio of different solvers.

In detail, claspfolio is based on 60 static and 28 dynamic
features for SAT problems. The features are mainly inspired
by satzilla [15] which are based on the results of Nudelman
et al. [18]. The static features include the number of variables,

2http://potassco.sourceforge.net/#claspfolio

number of clauses, the variable per clause ratio, balance
between positive and negative occurrences of variables, the
fraction of horn clauses and statistics about a randomly sam-
pled part of the variable graph, clause graph, and variable-
clause graph. The dynamic features are recorded after each
restart of a pre-solving phase with at most three restarts. After
each restart, these dynamic features include the number of
deleted clauses, free variables, choices, conflicts, restarts and
backjumps. The features are normalized with a z-score and
used to evaluate the Support Vector Regression models of
each configuration in the portfolio. Hence, claspfolio selects
the configuration with the best predicted performance to solve
the given instance.

The portfolio of claspfolio consists of complementary clasp
configurations which have been found by manual tuning and
using the automatic algorithm configuration tool paramils [19].
paramils tuned clasp on instances of the 2008 SAT Race, 2010
SAT Race, and 2011 SAT Competition; both on the entire
instance set and on individual subclasses. In the end, claspfolio
uses 30 configurations of clasp (2.0.6).

claspfolio is a branch of clasp and therefore, the algorithm
selection is directly integrated in clasp. Hence, claspfolio is
also implemented in C++.

III. aspeed (1.0.0)

Authors:
R. Kaminski (University of Potsdam),
H. Hoos (University of British Columbia),
T. Schaub, and M. Schneider

Inspired by the simple, yet successful portfolio-based SAT-
solver ppfolio [20] (in the 2011 SAT Competition), our ap-
proach, dubbed aspeed3 [21], computes timeout-minimal time
slices for a portfolio of solvers or solver configurations and
sequences these to minimize average runtime. aspeed performs
these calculations by means of a declarative specification in
ASP; its execution relies on ASP tools from the Potassco col-
lection [22], allowing for a flexible and compact encoding of
the problem constraints. In addition, aspeed is able to compute
parallel schedules for execution on multi-core architectures.
In contrast to powerful portfolio-based approaches, such as
satzilla [15] and 3S [23], aspeed does not rely on instance
features and is therefore more easily applicable to problems
for which features are not (yet) available.

In the 2012 SAT Challenge, aspeed uses a portfolio of clasp
configurations (2.0.6). The portfolio and the corresponding
runtime data are the same as used for training claspfolio (see
above). Since the portfolio consists of clasp configurations and
clasp is used to compute the schedules, aspeed can be seen
as a self-optimizing solver.

aspeedc uses the same portfolio as claspfolio. Further-
more, aspeedm includes the medal-winning solvers of the
2011 SAT Competition, i.e. glueminisat [24], lingeling [25],
march rw [26], qutersat [27], sattime, and sparrow [28], in
addition to the claspfolio portfolio.

3http://potassco.sourceforge.net/labs.html#aspeed

18

The aspeed framework is implemented in Python-2.7 and
uses the ASP Potassco collection to compute the optimal
schedules.

ACKNOWLEDGMENTS

This work was funded by the German Science Foundation
(DFG) under grant SCHA 550/8-1/2.

REFERENCES

[1] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[2] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), M. Veloso, Ed. AAAI
Press/The MIT Press, 2007, pp. 386–392.

[3] ——, “clasp: A conflict-driven answer set solver,” in Proceedings
of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), ser. Lecture Notes in Artificial
Intelligence, C. Baral, G. Brewka, and J. Schlipf, Eds., vol. 4483.
Springer-Verlag, 2007, pp. 260–265.

[4] ——, “Conflict-driven answer set enumeration,” in Proceedings of the
Ninth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’07), ser. Lecture Notes in Artificial Intelli-
gence, C. Baral, G. Brewka, and J. Schlipf, Eds., vol. 4483. Springer-
Verlag, 2007, pp. 136–148.

[5] ——, “Advanced preprocessing for answer set solving,” in Proceed-
ings of the Eighteenth European Conference on Artificial Intelligence
(ECAI’08), M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris,
Eds. IOS Press, 2008, pp. 15–19.

[6] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “On the im-
plementation of weight constraint rules in conflict-driven ASP solvers,”
in Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), ser. Lecture Notes in Computer Science, P. Hill
and D. Warren, Eds., vol. 5649. Springer-Verlag, 2009, pp. 250–264.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proceedings of the Thirty-eighth
Conference on Design Automation (DAC’01). ACM Press, 2001, pp.
530–535.

[8] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proceedings of the Eighth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’05),
ser. Lecture Notes in Computer Science, F. Bacchus and T. Walsh, Eds.,
vol. 3569. Springer-Verlag, 2005, pp. 61–75.

[9] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the Sixteenth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10),
ser. Lecture Notes in Computer Science, J. Esparza and R. Majumdar,
Eds., vol. 6015. Springer-Verlag, 2010, pp. 129–144.

[10] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Proceedings of the Tenth Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(SAT’07), ser. Lecture Notes in Computer Science, J. Marques-Silva and
K. Sakallah, Eds., vol. 4501. Springer-Verlag, 2007, pp. 294–299.

[11] H. Han and F. Somenzi, “On-the-fly clause improvement,” in Proceed-
ings of the Twelfth International Conference on Theory and Applications
of Satisfiability Testing (SAT’09), ser. Lecture Notes in Computer Sci-
ence, O. Kullmann, Ed., vol. 5584. Springer-Verlag, 2009, pp. 209–222.

[12] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern SAT solvers,” in Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI’09), C. Boutilier, Ed.
AAAI Press/The MIT Press, 2009, pp. 399–404.

[13] ——, “GLUCOSE: A solver that predicts learnt clauses quality,” in
SAT 2009 competitive events booklet: preliminary version, D. Le Berre,
O. Roussel, L. Simon, V. Manquinho, J. Argelich, C. Li, F. Manyà, and
J. Planes, Eds., 2009, pp. 7–8, available at http://www.cril.univ-artois.
fr/SAT09/solvers/booklet.pdf.

[14] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais,
“A generalized framework for conflict analysis,” in Proceedings of
the Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), ser. Lecture Notes in Computer Science,
H. Kleine Büning and X. Zhao, Eds., vol. 4996. Springer-Verlag, 2008,
pp. 21–27.

[15] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-
based algorithm selection for SAT,” Journal of Artificial Intelligence
Research, vol. 32, pp. 565–606, 2008.

[16] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and
S. Ziller, “A portfolio solver for answer set programming: Preliminary
report,” in Proceedings of the Eleventh International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’11), ser.
Lecture Notes in Artificial Intelligence, J. Delgrande and W. Faber, Eds.,
vol. 6645. Springer-Verlag, 2011, pp. 352–357.

[17] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp.
27:1–27:27, 2011.

[18] E. Nudelman, K. Leyton-Brown, H. Hoos, A. Devkar, and Y. Shoham,
“Understanding random SAT: Beyond the clauses-to-variables ratio,” in
Proceedings of the Tenth International Conference on Principles and
Practice of Constraint Programming (CP’04), ser. Lecture Notes in
Computer Science, M. Wallace, Ed., vol. 3258. Springer-Verlag, 2004,
pp. 438–452.

[19] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stutzle, “ParamILS: An
Automatic Algorithm Configuration Framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, 2009.

[20] O. Roussel, “Description of ppfolio,” Centre de Recherche en Informa-
tique de Lens, Tech. Rep., 2011.

[21] H. Hoos, R. Kaminski, T. Schaub, and M. Schneider, “aspeed: ASP-
based solver scheduling,” 2012, to appear in Proceedings of ICLP’12.

[22] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The Potsdam answer set solving collection,”
AI Communications, vol. 24, no. 2, pp. 105–124, 2011.

[23] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sell-
mann, “Algorithm Selection and Scheduling,” in Proceedings of the
Seventeenth International Conference on Principles and Practice of
Constraint Programming (CP’10), ser. Lecture Notes in Computer
Science, J. Lee, Ed., vol. 6876. Springer-Verlag, 2011, pp. 454–469.

[24] H. Nabeshima, K. Iwanuma, and K. Inoue, “Glueminisat2.2.5,” Univer-
sity of Yamashima and National Institute of Informatics, Japan, Tech.
Rep., 2011.

[25] A. Biere, “Lingeling and friends at the SAT competition 2011,” Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Technical Report FMV 11/1, 2011.

[26] M. Heule and H. van Maaren, “March dl: Adding adaptive heuristics and
a new branching strategy,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 2, pp. 47–59, 2006.

[27] C. Wu, T. Lin, C. Lee, and C. Huang, “Qutesat: a robust circuit-based
sat solver for complex circuit structure,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exposition (DATE’07),
R. Lauwereins and J. Madsen, Eds. ACM, 2007, pp. 1313–1318.

[28] D. Tompkins, A. Balint, and H. Hoos, “Captain Jack – New Variable
Selection Heuristics in Local Search for SAT,” in Proceedings of the
Fourteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’11), ser. Lecture Notes in Computer Science,
K. Sakallah and L. Simon, Eds., vol. 6695. Springer-Verlag, 2011, pp.
302–316.

[29] C. Baral, G. Brewka, and J. Schlipf, Eds., Proceedings of the Ninth
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), ser. Lecture Notes in Artificial Intelligence,
vol. 4483. Springer-Verlag, 2007.

19

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Contrasat12

Allen Van Gelder

University of California

Santa Cruz, CA 95064, U.S.A.

Abstract—This note is the Contrasat12 Description required
for SAT Challenge 2012.

I. MAJOR SOLVING TECHNIQUES

Contrasat is a CDCL solver based on Minisat 2.2.0.

Contrasat has been described in a JSAT System Descrip-

tion entitled “Contrasat – A Contrarian Sat Solver,” which

appeared early in 2012. That paper refers to this URL for the

code:

http://www.cse.ucsc.edu/∼avg/Contrasat/.

The version submitted to SAT Challenge 2012 is the same,

except that there is a new command-line option “-contra-early”

that permits the parameter to be varied at run time from its

default value of 40. The public code requires recompilation

to vary the parameter. The paper shows a table with various

parameter values, including 40. The program is expected to

compete using the default of 40.

The idea is to use a priority queue instead of a FIFO queue

for literals that have been implied and are awaiting unit-

clause propagation. Changing the order can also change the

antecedent clauses and can change when a conflict is discov-

ered. The learned clause can change due to the antecedent

changes.

II. PARAMETER DESCRIPTION

1) contra-early is the only new parameter; it is under

user control. It limits the number of literals in an an-

tecedent clause that are examined to compute a priority.

2) There are no “magic numbers”.

3) contra-early is 40 for the competition.

4) The value of contra-early is not dependent on

instance properties.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND

FEATURES

Contrasat uses a priority queue implemented as a binary

heap.

IV. IMPLEMENTATION DETAIL

1) The programming language is C++.

2) The code basis is Minisat 2.2.0.

V. SAT CHALLENGE 2012 SPECIFICS

1) The solver was submitted in all tracks for sequential

solvers.

2) The compiler was g++.

3) Optimization flags were -O3 and -static.

4) 64-bit binary.

5) The only command-line parameter is the input file.

VI. AVAILABILITY

1) Contrasat12 is not publicly available, but it is func-

tionally the same as Contrasat-2.2.0.B.tar.gz.

2) http://www.cse.ucsc.edu/∼avg/Contrasat
is the URL. Download anything you want in the

directory listing.

20

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

GLUCOSE 2.1 in the SAT Challenge 2012
Gilles Audemard

Univ Lille-Nord de France CRIL / CNRS UMR8188,
Lens, F-62307

Laurent Simon
Univ Paris-Sud, LRI / CNRS UMR8623

Orsay, F-91405

Abstract—This document shortly describes the novelties em-
bedded in GLUCOSE 2.1, the new GLUCOSE version that par-
ticipated to the SAT Challenge 2012. It is a CDCL solver, based
on MINISAT 2.2, that incorporates aggressive clause database
cleaning and a new restart strategy.

I. GLUCOSE METABOLISM

GLUCOSE is a typical CDCL (Conflict Driven Clause
Learning) solver [6], [4], [2] built on top of MINISAT 2.2
[2]. The version 1.0 of GLUCOSE was extensively described
in [1]. It was ranked first in the SAT competition 2009 [3],
category Application, UNSAT. It was also ranked first in the
Competition 2011, category Application, SAT+UNSAT.

II. NOVELTIES OF THE GLUCOSE FAMILY

The fundamental novelty of the family of GLUCOSE solvers
is based on a static measure of learnt clause usefulness,
called the Literal Block Distance (LBD). It corresponds to the
number of distinct decision levels that a learnt clause contains.
As we have previously shown, this measure can be also
dynamically updated when a clause is used for propagation.
It was shown how important are clauses of LBD score of 2.
We called those clauses “glue clauses” because they intuitively
allows to stick a new literal to a block of propagation literals.
The name of GLUCOSE comes from the importance of those
clauses.

Based on this measure, the solvers uses a very aggressive
clause deletion strategy, that is independent of the size of
the initial formula. In GLUCOSE 1.0, the clause database
cleaning was triggered every 20000+500*x conflicts (x being
the number of previous cleaning). In GLUCOSE 2.0/2.1, the
cleaning is triggered every 4000+300*x conflicts, leading to
an impressive cleaning of the clause database. If we look at the
traces of the SAT 2011 competition, second phase, GLUCOSE
deleted more than 90% of the learnt clauses during search.

Our solver also has a dynamic restart strategy based on an
estimation of whether the Solver is currently producing good
clauses or not. This estimation is done thanks to an observation
window of the last X conflicts, taking into account the average
of clauses LBD. If Y times this average is above the average
of this value over all the conflicts (Y is 0.7 in GLUCOSE 1.0
/2.0 and 0.8 in GLUCOSE 2.1, like in GLUEMINISAT [5]), then
the solver estimates that the production is below the average,
and thus a restart is triggered. In GLUCOSE 1.0 and 2.0, the
window size X was 100. In GLUCOSE 2.1, the window size
X is 50 (again, the same constant as GLUEMINISAT), but an
additional component is embedded which allows to postpone

(possibly many times) the next restart(s). Thus GLUCOSE has
this very particular property: no guarantee is given on the
restart window size (there can be a restart every 50 conflicts,
or none).

In GLUCOSE 2.0, a dynamic adjustment of the clause
database size was added to take into account the cases were
the LBD was not discriminant enough.

III. PARAMETER AND OTHER DESCRIPTIONS

Like all the solvers, GLUCOSE is full of magic numbers.
Those constant were fixed according to a few tests of classical
benchmarks [3]. GLUCOSE 2.0 was tuned to improve its
overall score of solved instances on the current bank of
benchmarks. GLUCOSE 2.1 was tuned to first target UNSAT
instances, then a refinement of our restart policy was added
to gain a substantial number of new SAT instances without
loosing performances on UNSAT problems.

GLUCOSE also uses a special data structure for binary
clauses, and a very limited self-subsumption reduction with
binary clauses, when the learnt clause is of interesting LBD.

GLUCOSE is open source, and thus constants are easily
accessible. Most constants were described in [1] and above.
The additional constants regarding the postponing of restarts
are described in a paper under submission.

GLUCOSE is targeting Application problems. It is compiled
in 32 bits. The main page of GLUCOSE is

http://www.lri.fr/∼simon/glucose.

REFERENCES

[1] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In IJCAI, 2009.

[2] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages
502–518, 2003.

[3] D. Le Berre, M. Jarvisalo, O. Roussel, and L. Simon. SAT competition,
2002–2011. http://www.satcompetition.org/.

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff :
Engineering an efficient SAT solver. In DAC, pages 530–535, 2001.

[5] Hidetomo Nabeshima, Koji Iwanuma, and Katsumi Inoue. Gluemi-
nisat2.2.5. System Desciption, available on glueminisat.nabelab.org.

[6] Joao Marques Silva and Karem Sakallah. Grasp - a new search algorithm
for satisfiability. In ICCAD, pages 220–227, 1996.

21

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Glucose with Implied Literals (Glucose IL 1.0)
Arie Matsliah∗, Ashish Sabharwal†, and Horst Samulowitz†

∗IBM Research, Haifa, Israel
Email: ariem@il.ibm.com

†IBM Watson Research Center, Yorktown Heights, NY 10598, USA
Email: {ashish.sabharwal,samulowitz}@us.ibm.com

Glucose IL (also referred to as Glucose++ in SAT Challenge
2012) is an extension of the Glucose SAT solver [1] that
uses implied literals to strengthen inference and learning
during search. Like Glucose, it is a conflict directed clause
learning SAT solver. Glucose IL version 1.0 participated in
the Application category of SAT Challenge 2012.

I. SOLVING TECHNIQUES

The main idea behind Glucose IL is to strengthen clause
learning by dynamically inferring implied literals that a newly
learned conflict clause entails. We refer the reader to [5] for a
more in-depth discussion of the internals of Glucose IL. The
technique is related to (but not the same as) some methods
known in the literature. For example, probing [4] simply
applies unit propagation of literals at the root node in order
to detect failed literals [2] or to populate literal implication
lists. The latter information can then for instance be used to
shrink clauses by hidden literal elimination (e.g., if a 7→ b
then (a ∨ b ∨ c) can be reduced to (b ∨ c); see e.g., [3]).

At a high level, the technique employed is as follows. We
say that a literal l is an implied literal if all literals in a clause
entail l. For instance, if a 7→ d, b 7→ d, and c 7→ d, then (a ∨
b∨ c) entails d. While this insight has already been exploited
in several methods (e.g., variations of hyper binary resolution
and hidden literal elimination), we apply it to clause learning:
when the SAT solver derives a new conflict clause c, we check
if the literals in c imply a single or multiple literals which can
then be propagated as new unit literals.

In order to employ this technique we first need to generate
implication lists L(l) = UnitPropagation(l) for each literal
l. This is done at the root node of the search tree before
the solving process starts, and periodically during search.
During this computation we also add the corresponding not yet
existing binary clauses of the following formulas: ∀l ∈ L(p) :
¬l 7→ ¬p. Some other clauses are also added and appropriate
optimizations are performed to make the technique practical.
The reader is referred to [5] for details.

II. IMPLEMENTATION DETAILS

Glucose IL is built upon version 2.0 of Glucose [1] and
compiled on x86-64 linux using GNU g++ 4.4.5 using options
“-O3 –static”. The main parameters controlling the proposed
technique are as follows: a maximum size limit (in terms
of number of clauses and number of literals) on the CNF

formula beyond which we turn off implied literal computa-
tion, constants for the geometrically increasing frequency of
computation of lists of implied literals, the maximum number
of implied literals and binary clauses, and the maximum size
of learned clauses beyond which we do not analyze clauses
for implied literals detection.

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The parameters used for the SAT Challenge 2012 submis-
sion were as follows: (a) the method is used only if the input
formula has no more than 2 × 106 clauses, it has no more
than 216 × 103 literals appearing in binary clauses, and the
product of the number of clauses and the number of literals
appearing in binary clauses is smaller than 30× 109; (b) lists
of implied literals are computed at the very beginning, after
16 restarts, then after 100 restarts, and from then on in a
geometrically increasing fashion with a factor of 1.2; (c) no
more than 8.5 × 106 new binary clauses are added and no
more than 20×106 implied literal are maintained; and (d) the
maximum learned clause size for implied literals inference is
7.

ACKNOWLEDGMENT

We express our sincere thanks to Gilles Audemard and
Laurent Simon for making available their SAT solver Glucose.

REFERENCES

[1] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
SAT solvers. IJCAI, 399¡96¿-404, 2009.

[2] Jon Freeman. Improvements to Propositional Satisfiability Search
Algorithms. PhD. Thesis, University of Pennsylvania, 1995.

[3] Marijn J. H. Heule, Matti Järvisalo, Armin Biere. Efficient CNF
simplification based on binary implication graphs. SAT, 201–215, 2011.

[4] Ines Lynce, Joao Marques-Silva. Probing-Based Preprocessing Tech-
niques for Propositional Satisfiability. ICTAI, 105, 2003.

[5] A. Matsliah, A. Sabharwal, H. Samulowitz. Augmenting Clause Learn-
ing with Implied Literals. SAT, 2012 (to appear).

22

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Glucans System Description
Xiaojuan Xu∗, Yuichi Shimizu∗, and Kazunori Ueda∗

∗Department of Computer Science and Engineering
Waseda University, Tokyo, Japan

Email: {xxj, yusui, ueda}@ueda.info.waseda.ac.jp

Abstract—This document describes “Glucans”, a family of
parallel SAT solvers based on existing CDCL solvers. Glucans
run GLUCOSE and/or GLUEMINISAT in parallel, exchanging
learnt clauses limited by their LBDs. The base solvers incorporate
the ideas of two minisat-hack-solvers: Contrasat and CIRMinisat.

I. OVERVIEW

Glucans are a family of parallel SAT solvers based on GLU-
COSE. These solvers run GLUCOSE [1] and/or GLUEMI-
NISAT [3] in parallel using Pthreads, letting them exchange
learnt clauses [4] selected based on Literal Block Distance
[2] (LBD). Based on experimental results, the learnt clauses
whose LBDs are not greater than 5 will be sent to other
threads. The base solvers also incorporate the ideas of two
minisat-hack solvers: Contrasat [5], which improves the order
of literals that are waiting to be propagated, and CIRMinisat
[6], which changes the VSIDS scores on each restart. The base
solvers can behave like these solvers by using options. Since
these minisat-hack solvers were strong in the SAT instances
of SAT Competition 2011, we expect our modified solvers to
perform well for such instances by including them into the set
of solvers.

II. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

Glucans exchange learnt clauses using queues whose ele-
ments are pointers to clauses. The exchanges are made with
the LBD values after each conflict. Our experimental results
show that the exchanging time takes less than 1% of the
total runtime. Different random seed values are used for each
thread, and some threads run in the weak polarity mode.

III. VARIATIONS

Glucans consist of a basic version and two variations. The
description of the three versions is as follows.

A. Glycogen

In this basic version, all threads run GLUCOSE.

B. Cellulose

Cellulose is a variation of Glycogen. The difference between
Glycogen and Cellulose is that one of the threads incorporates
CIRMinisat’s hack and another thread incorporates Contrasat’s
hack. This version performs the preprocessing of GLUCOSE
also.

C. Sucrose

Sucrose is another variation. In this version, half of the
threads run GLUCOSE and the other half run GLUEMINISAT.
Each group incorporates Contrast’s and CIRMinisat’s hacks as
in Cellulose.

IV. IMPLEMENTATION DETAIL

We use GLUCOSE, GLUEMINISAT, Contrasat and
CIRMinisat as base solvers. The differences between our
solver and the original solvers are about two hundreds lines
in total.

Each thread autonomously shares the learnt clauses using
queues (implemented as linked lists) by the following steps.

1) Create a copy of the learnt clause when the state of the
thread is conflicting.

2) Lock the tails of the queues of the other threads and
insert the pointers to the created copy.

3) Read its own queue and add received clauses to the
database.

V. SAT CHALLENGE 2012 SPECIFICS

This solver is submitted to the track of Parallel Solvers –
Application SAT+UNSAT. It is a 64-bit binary and compiled
by gcc 4.4.4 with the -O3 flag. The solver has the following
command-line options.

1) -rnd-seed= : the initial seed of the first thread,
2) -nof-threads= : the number of threads to use, and
3) -ex-size= : the maximum LBD for exchanging learnt

clauses.

VI. AVAILABILITY

Glucans will be available soon after the competition at our
website, http://www.ueda.info.waseda.ac.jp/ .

ACKNOWLEDGMENT

This solver was tested with EDACC [7]. We would like to
thank the authors of the base solvers and EDACC.

REFERENCES

[1] Gilles Audemard, Laurent Simon, GLUCOSE: a solver that pre-
dicts learnt clauses quality, SAT 2009 Competition Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf, 2009.

[2] Gilles Audemard, Laurent Simon, Predicting Learnt Clauses Quality
in Modern SAT Solver, Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI’09), 399-404, 2009.

[3] Hidetomo Nabeshima, Koji Iwanuma, Katsumi Inoue, GLUEMINISAT,
http://GLUEMINISAT.nabelab.org/, 2011.

23

[4] Kei Ohmura, Kazunori Ueda, c-sat: A parallel SAT solver for clusters,
SAT 2009. LNCS 5584, 524–537. Springer, Heidelberg, 2009.

[5] Allen Van Gelder, Contrasat – A Contrarian Sat Solver, Extended System
Description, Journal on Satisfiability, Boolean Modeling and Computation
8, 117–122, 2012.

[6] The results of SAT Competition 2011, http://www.satcompetition.
org/2011/, 2011.

[7] Balint, A., Gall, D., Kapler, G., Retz, R.: Experiment design and admin-
istration for computer clusters for SAT-solvers (EDACC). JSAT 7, 77–82,
2010.

24

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Trap Avoidance heuristics using pseudo-conflict
learning applied to gNovelty+ and sparrow2011

Thach-Thao Duong∗†, Duc-Nghia Pham∗†
∗Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia

†Queensland Research Laboratory, NICTA
Email: {thao.duong,duc-nghia.pham}@nicta.com.au

I. INTRODUCTION

Stochastic Local Search (SLS) for Satisfiability (SAT) prob-
lems is an effective method solving real world problems.
However, the approach has a limitation of local minima
stagnation, which can degrade the searching quality. Our
proposed heuristics [4] stems from the idea of preventing
stagnation instead of treating it. The stagnation heuristics
consists of two phases: a pseudo-conflict learning (PCL) phase
and a prevention phase. Integrations of gNovelty+ [3] and
sparrow2011 [1] with the heuristics, named gNovelty+PCL
and sparrow2011-PCL, are presented in this report.

II. PCL HEURISTICS : TRAP PREVENTION STRATEGY

The heuristics derived from the hypothesis that local min-
ima may cause from conflicts between the assignment of
variables and constraints between clauses can be established.
Assuming that conflicts occur strongly in the around area of
stagnation points, the proposed heuristic focus to learn the
information at local areas of stagnation points. A simple way
counting the frequency a variable appearing in the warning
stagnation areas was implemented. The high value of fre-
quency indicates the high likelihood of leading to stagnation
if that variable is flipped. For that reason, variables having
low stagnation weight value are preferred to be selected.
The learning mechanism is described under pseudo-code in
Algorithm 1 and the prevention behavior will be explained
more in the integrated versions with specific algorithms.

Algorithm 1: Pseudo-conflict learning strategy PCL(k,s,T,H,W)

Input : tenure k > 0, “Static”or “Dynamic”option s, window size T > 0,
flipped variable history stack H , window Queue W

stagntion zone = � ;1
recent flipped var ← pop stack(H) ;2
stagntion zone← recent flipped var ;3
for i← 1 to k − 1 do4

var ← pop stack(H) ;5
if s== “Dynamic”and var == recent flipped var then break;6
stagntion zone← var ;7

8
for all var in stagntion zone do9

stagnation weight[var] + +;10
11

if Size(P) == T then12
far most stagntion zone = pop queue(W);13
remove far most stagntion zone from W ;14
for all var in stagntion zone do15

stagnation weight[var]−−;16
17

W ← push queue(W, stagntion zone)18

There are two options of stagnation zone: “Static”and “Dy-
namic”. Static stagnation zones have fix lengths of pathways
whereas dynamic stagnation areas have adaptive lengths ac-
cording to the stagnation environment. For more clarification,
static zone is the backtracking path to the flipped variable
history within a fixed length of tenure. The dynamic stag-
nation zone is the maximum backtracking pathway within
tenure k so that there is no duplication of the most recent
flipped variable. After identifying affected stagnation zones,
the stagnation weight of the variables in these areas are
increased by one. The time window smoothing is resembled
a mechanism in which a window flows along side with the
searching progress. The aim of this smoothing techniques is
to restrict the effects of the stagnation learning experience
into limited recent stagnation times. As the window is floating
along with the searching, once the far most stagnation zone
is out of the window view, the experience learning from that
stagnation zone will be elapsed. The far most stagnation zone
is popped out and removed from the window and a new
encountered stagnation path is pushed in window queue.

III. GNOVELTY+PCL: INTEGRATED STAGNATION
PREVENTION STRATEGY INTO GNOVELTY+

The algorithm gNovelty+PCL is illustrated in Algorithm
2. In the initialization phase, the stagnation weight of all
variables are set to zero. The variable history H and stagnation
window W are initialized empty. When there is no promising
variable to improve the score value, the learning strategy PCL
is performed. In selecting variable procedure, breaking tie by
the least stagnation weight variable instead of breaking tie
by least recent flipped variable like gNovelty+.

IV. SPARROW2011+PCL: INTEGRATED STAGNATION
PREVENTION STRATEGY INTO GNOVELTY+

The sparrow2011 [1], the winner of SAT competition 2011,
is based on gNovelty+ [3] framework. But instead of using the
Novelty+ jump [2], sparrow2011 uses its own dynamic scoring
function at stagnation phase. That dynamic scoring function
in sparrow2011-PCL was justified by using function pf (vi) of
stagnation weight(xi) instead of using pa(vi) of age(xi)
of sparrow2011. The new scoring function is described as
following.

p(vi) =
ps(vi)∗pf (vi)∑
vi
ps(vi)∗pf (vi)

25

Algorithm 2: gNovelty+PCL(k, s, T, sp)
Input : A formula Θ, smooth probability sp, tenure k, window size

T ,“Static”or “Dynamic”option s
Output: Solution α (if found) or TIMEOUT

randomly generate a candidate solution α;1
set up window queue W = �; set up flipping history stack H = �;2
initialized stagnation weight of all variables to 0;3
while not timetout do4

if α satisfied the formula Θ then return α ;5
if in the random walk probability wp then6

randomly pick up a variable in a false clause;7
else8

if there exist promising variables then9
select most promising variable, breaking tie by least10
stagnation weight;

else Stagnation happens: perform pseudo-conflict learning11
update (and smooth in probability sp) clause frequency;12
PCL(k,s,T,H,W);13
Novelty Jump : select the most improving variable in a random14
unsatisfied clause, breaking tie by least stagnation weight;

15
update candidate solution α with the flipped variable var;16
H ← push stack(H, var);17

return TIMEOUT;18

Algorithm 3: sparrow2011− PCL(k, s, T, sp)
Input : A formula Θ,tenure k, window size T ,“Static”or “Dynamic”option s
Output: Solution α (if found) or TIMEOUT

randomly generate a candidate solution α;1
set up window queue W = �; set up flipping history stack H = �;2
initialized stagnation weight of all variables to 0;3
while not timetout do4

if α satisfied the formula Θ then return α ;5
if in the random walk probability wp then6

randomly pick up a variable in a false clause;7
else8

if there exist promising variables then9
select most promising variable, breaking tie by least10
stagnation weight;

else Stagnation happens: perform pseudo-conflict learning11
update (and smooth in probability sp) clause frequency;12
PCL(k,s,T,H,W);13
Select variable in an random unsatisfied clause: prefer higher new14
score breaking tie by least stagnation weight variable;

15
update candidate solution α with the flipped variable var;16
H ← push stack(H, var);17

return TIMEOUT;18

As reported in the work [1], component p(vi) has param-
eters c1 wheres pa(vi) has two parameters of c2 and c3.
The new component pf (vi) is based on two parameters c4
and c5 according to the following formula. According to this
scoring function, the variable whose stagnation weight is low
is preferred to be selected.

pf (vi) = (c5
stagnation weight(vi)+1)

c4 + 1

Algorithm 3 illustrates integration of sparrow2011 and PCL
heuristics. Similarly to gNovelty+PCL, the PCL heuristics
was invoked at the stagnation point. Additionally, instead of
breaking tie by least recent flipped variable, the algorithm
prefers least stagnation frequent variable.

V. IMPLEMENTATION ENVIRONMENTS AND SETTINGS FOR
THE COMPETITION

gNovelty+PCL and sparrow2011-PCL were written on C
language and developed respectively from gNovelty+ and
sparrow2011 (which was published on SAT2011 competition

website 1). Both solvers were complied by gcc using optimiza-
tion flag as the following

CFLAGS= -static-libgcc -O3 -fno-strict-aliasing -fomit-
frame-pointer -funroll-all-loops -fexpensive-optimizations -
malign-double -Wall -march=native -pipe -msse4.2 -ffast-math

The two solvers registered for 3 tracks: Application
SAT+UNSAT, Hard Combinatorial SAT+UNSAT and Ran-
dom SAT. Unfortunately, source codes are not allowed to be
published but the binary executive files. For the SAT 2012
Challenge, parameter setting for gNovelty+PCL is k = 20, s
= “Static”, T = 200, sp = 0. Meanwhile, sparrow2011-PCL
in the competition employs the dynamic stagnation zone s
= “Dynamic”and other parameters presented as the following
table.

Problems k T c4 c5
3-SAT 10 300 1 1.5
5-SAT 25 200 2 2.0
7-SAT 30 250 5 16.0

REFERENCES

[1] Balint, A., Fröhlich, A.: Improving stochastic local search for sat with a
new probability distribution. In: SAT. pp. 1015 (2010)

[2] Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings
of the 18th National Conference on Artificial Intelligence (AAAI-02). pp.
635660 (2002)

[3] Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive
and dynamic local search for satisfiability. JSAT 4(2-4), 149172 (2008)

[4] Pham, D.N., Duong, T.T., Sattar, A.: Trap avoidance in local search using
pseudo-conflict learning. To appear in AAAI’12 Proceedings, 2012

1http://www.satcompetition.org

26

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Industrial Satisfiability Solver (ISS)
Yuri Malitsky∗, Ashish Sabharwal†, Horst Samulowitz†, and Meinolf Sellmann†

∗Brown University, Dept. of Computer Science, Providence, RI 02912, USA
Email: ynm@cs.brown.edu

†IBM Watson Research Center, Yorktown Heights, NY 10598, USA
Email: {ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

The Industrial Satisfiability Solver is a systematic SAT solver
with the capability of proving unsatisfiability. ISS version 2.1
participated in the Application track of SAT Challenge 2012.

I. SOLVING TECHNIQUES

ISS is based on a number of existing solvers, including
systematic and local search solvers. The program hybridizes
these solvers by running meta-restarts.

First, we simplify the given instance using SatELite [1].
We then continue in standard restarted clause learning manner.
When a fail-limit is reached, the solver used may continue with
a new ordinary restart, by setting a new fail-limit and restart-
ing the search. However, it may also launch a meta-restart:
Rather than continuing the search by itself, it may forward
information learnt (conflict clauses, variable activities, polarity
information etc) to another systematic solver – potentially after
invoking one or more local search methods first. Moreover,
before the new solver is called, the SAT instance, augmented
by newly learnt clauses, is simplified again by SatELite.

Then, the new systematic solver takes over the search using
its own specific way of slecting variables, forgetting clauses,
adjusting variable activity levels, setting fail limits, etc. When
the new solver decides to launch a meta-restart itself, it may
again invoke solvers that were used already earlier.

Given an instance, the schedule of solvers to execute in this
fashion is generated by analyzing the instance and choosing
among a set of baseline solvers. Similar to the solver 3S [3],
ISS makes its selection from 38 sequential baseline solvers.

II. IMPLEMENTATION DETAILS

Several of the conflict directed clause learning solvers were
enhanced in an effort to support the concept of meta-restart.
E.g., the solver code was modified to allow forwarding of
learnt clauses to other solvers scheduled subsequently. With
regard to managing launching of different solvers, even though
ISS is developed with a very different mindset than the
portfolio solver 3S, for convenience we used a similar Python-
based setup to launch individual solvers [3]. The launcher,
however, was enhanced to work with meta-restarts. E.g., it
has the capability to parse learnt clause generated by baseline
solvers and add them to the formula provided as input to
subsequent solvers. ISS selects amongst the same 38 sequential
solvers as used by 3S.

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The command line for ISS in SAT Challenge 2012 was:

python ISS-2.1.py –scale 1.3 -l 2
–tmpdir TEMPDIR INSTANCE

Please refer to the solver description of 3S [3] for an expla-
nation of the scaling parameter used by the launcher.

The solvers exchanging information are tts-4-0, ebminisat,
Glucose, Minisat, and Precosat570. A solver from the list in [3]
may be launched depending on the given SAT instance. ISS is
optimized for the competition timeout of 900 seconds on the
competition machines. Execution with different timeouts or on
other machines will likely result in reduced performance.

The solver presented is not a portfolio, although it uses
existing SAT solvers that we augmented to exchange informa-
tion in a non-trivial way. The resulting solver is able to solve
instances that none of the existing SAT solvers it uses could
solve by itself. Moreover, the source code of solvers needed
to be changed to enable the exchange of information between
consecutively scheduled solvers.

ACKNOWLEDGMENT

With the previous statement in mind, the solver that com-
peted is nevertheless based heavily on existing work on “pure”
SAT solvers. A complete list of these solvers is given in [3].
The authors of these solvers have invested countless hours into
their implementations. It is their dedication that transforms
original ideas on efficient data structures and very sophisti-
cated algorithmic methods into practice. These authors have
effectively driven the tremendous advancements that could be
achieved over the past two decades in our ability to solve SAT
formulae in practice. We hereby express our sincere thanks and
honest admiration for their work.

REFERENCES

[1] N. Een, A. Biere. Effective Preprocessing in SAT Through Variable and
Clause Elimination. SAT, pp. 61-75, 2005.

[2] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann.
Algorithm Selection and Scheduling. CP, pp. 454-469, 2011.

[3] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann. Satisfiability
Solver Selector (3S). SAT Challenge 2012 solver descriptions, 2012.

Licensed Materials - Property of IBM
Satisfiability Solver Selector (3S) family of solvers
(C) Copyright IBM Corporation 2011-2012
All Rights Reserved

27

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

interactSAT{ c}: Interactive SAT Solvers and
glue dyphase: A Solver with a Dynamic Phase

Selection Strategy
Jingchao Chen

School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China

Email: chen-jc@dhu.edu.cn

Abstract—The SAT solvers submitted to the SAT Challenge
2012 are interactSAT, inteactSAT c and glue dyphase, which
are sequential solvers. The former two solvers are based on
an interactive framework. the core solver of interactSAT is
Glucose, while that of interactSAT c is clasp. So they are suitable
for solving the application and crafted category respectively.
glue dyphase is the improved version of Glucose. With respect to
variable phase selection, glue dyphase adopts a dynamic phase
selection strategy, while Glucose does a static RSAT strategy.

I. INTRODUCTION

The main solving mechanisms used in the state-of-the-art
solvers are conflict-driven, look-ahead and local search. For
some SAT problems, these mechanisms are still failure. For
this reason, in our solvers interactSAT and interactSAT c,
we introduce a new solving mechanisms called interactive
technique.

For conflict-driven solvers, a lot of effort has been made
in designing smart restart policies, conflict analysis and learnt
clause database management. Only a few work is to study the
phase selection of a variable. In [3], we present a dynamic
phase selection strategy that can dramatically improve the
performance of Glucose [1], [2] on which glue dyphase is
based. glue dyphase is based on the latest publicly available
version of glucose.

II. AN INTERACTIVE SOLVING TECHNIQUE

Due to the diversification feature of SAT problems, different
problems needs different solving strategies. If the same prob-
lem consists of multiple different structures, it needs multiple
solving strategies. So far, for a SAT problem, all the state-
of-the-art sequential solvers use a solving strategy to solve it.
Even if the solver is based on portfolio methods, it use one
solving strategy one time. If the prediction is not correct, the
portfolio solver fails often to find a solution. Our interactive
solver does not perform any prediction computation, but runs
multiple solving strategies independently and exchanges their
intermediate solutions. The interactive solving strategy used
in our solver may be outlined briefly as follows.

(1) Run simultaneously m solvers with different solving
strategies. For each solving strategy, each time there is a

limit of at most n conflicts to solve the instance. Initially
n = 10000.

(2) Pass the intermediate solution of the i-th solver to the
(i+1)-th solver, where 1 ≤ i ≤ m. When i = m, i+1
corresponds to 1.

(3) If a solution has been found, the solving process termi-
nates .

(4) Modify the maximum number n of conflicts. If a solving
strategy is better than the other solving strategy, the
corresponding n increases. Otherwise, the corresponding
n decreases. Goto step (1).

Measuring the quality of a solving strategy can be done by
computing the number of fixed variables or other parameters.
The above is only a framework. The specific implementation
must be fine-tuned further.

III. A DYNAMIC PHASE SELECTION STRATEGY

In modern conflict-driven SAT solvers, How to select the
phase of a variable is an inseparable step that follows the
decision variable selection, because we must assign each
decision variable to a value. The simplest phase selection
policy is that each decision variable is always assigned to false,
which is used as a default heuristic of MiniSAT. No evidence
shows that such a policy is always efficient. Therefore, other
policies are adopted in some solvers. For example, PrecoSAT
[4] used Jeroslow-Wang heuristic. Here we use a new dynamic
phase selection policy. Its weight is based on a static weight,
but computed dynamically. Let F define an input formula in
CNF (Conjunctive Normal Form) clauses. The static weight
of a literal x on F is defined as

W (x,F) = ∑
c∈F(x)

52−size(c)

where F(x) is the set of clauses in which x occurs, and size(c)
is the size of clause c. This is very similar to the definition of
a weight in Jeroslow-Wang heuristic [5]. The main difference
between them is that the base is different. Our base is 5, while
the base Jeroslow-Wang heuristic is 2. Selecting 5 is because
the March solver uses 5 also [8]. In our solvers, the dynamic
weight of a literal x is defined as the sum of the static weight
of literals implied by it. This definition can be formulated as
follows.

28

DW (x,F ,F ′) = ∑
x∧F ′`y

W (y,F)

where F and F ′ are an input formula and a formula at a search
state, respectively. Usually, F is constant, and F ′ varies with
the search state. x ∧ F ′ ` y means that using the fact that x
is true, applying unit resolution on formula F ′ can derive an
implication y. That is, y is an implied literal of x under F ′.
Computing implied literals is simple. This can be done by a
unit propagation, i.e. so-called BCP. The dynamic strategy here
need not any additional data structure such as a full watched-
literals scheme, and can apply directly a two watched-literals
scheme. Therefore, our dynamic strategy is very efficient.
Once a variable is decided, the dynamic strategy elects the
branch with the highest dynamic weight DW . Let x be the
decision variable. A search on x, including the computation
of dynamic weights, may be described as follows.

search (x,W,F ′)
〈Y+, Ret〉 ← BCP(x, F ′)
if Ret=UNSAT then return UNSAT
backtrack to current level
〈Y−, Ret 〉 ← BCP(¬x, F ′)
if Ret=UNSAT then return UNSAT
if DW (W,Y−) > DW (W,Y+) then y = ¬x, goto next
y = x
backtrack to current level
BCP(x, F ′)

next:
find next literal on branch y

In the above procedure, parameters W is used to store the
static weights of all the literals. F ′ is the current formula,
which can be maintained usually by a trail tack. Y+ and Y−
are the set of literals implied by x and ¬x, respectively. Like
the usual BCP, BCP(x,F ′) fulfills two tasks of compute the
implied literals and determine whether it reaches a conflict.
The usual search runs only one time, but our search need to
run at most three times. If the dynamic weight of ¬x is large
than that of x, we run BCP just two times, since in such a case,
the last BCP is consistent with the search direction. Clearly,
in the worst case, the cost of our search is at most triple the
cost of the usual search if each BCP has the same cost.

IV. SYSTEM DESCRIPTION OF SAT SOLVERS

A. interactSAT

interactSAT is a kind of CDCL solver based on an in-
teractive framework. It is dedicated to solving application
instances. This solver consists of two stages. The first stage
is a preprocessing developed by us, which simplifies a CNF
formula. The second stage is to solve the simlified CNF
formula. The solving process in this solver is based on an
interactive solving strategy. Its main framework is Glucose.
It consists of four solving strategies, three of which are
Glucose-style solvers with different dynamic phase selection
parameters. Another solving strategy is CryptoMiniSat [6]. For
very large instances, we use directly Glucose to solve them.

B. interactSAT c

interactSAT c is a new kind of hybrid solver combining
local search, CDCL and look-ahead. Its basic framework is
the same as that of interactSAT mentioned above. It is a
interactive solver. However, the solving strategy is different
from interactSAT, since this solver is mainly used to solve
crafted instances. The solving strategis used in interactSAT c
have clasp [7], march [8], sparrow2011 [9]. Like interactSAT,
its framework is based on Glucose. The interactive feature
of many crafted instances is weak. Therefore, in many cases,
interactSAT c uses mainly clasp to solve crafted instances.

C. glue dyphase

glue dyphase is an improved version of Glucose, a kind
of CDCL solver. Except for the variable polarity selection
strategy, glue dyphase is the same as Glucose. glue dyphase
uses a dynamic phase selection strategy given above, while
Glucose does a phase selection policy based on the RSAT
heuristic[10]: it always assigns a decision variable to false if
that variable was never visited, and the previous value other-
wise. However, for very large instances, the phase selection
strategy of glue dyphase is the same as that of Glucose.

V. THE PERFORMANCE SENSITIVE PARAMETERS

The performance sensitive parameters used in interactSAT
are the number of conflicts, the total number of literals, the
number of clauses (c#), the number of variables (v#), the
number of binary clauses and the number of fixed variables.
When c# > 6000000 or v# > 2000000, interactSAT switches
to the original Glucose. Otherwise, it solves the SAT problem
in the following way: In the first 150000 conflicts, we run
an improved Glucose, using one of three dynamics phase
selection policies. If no solution was found in this stage, we
proceed to the interactive solving stage. In this stage, we
prepare four sub-solvers: one is CryptoMiniSat and the other
three ones are Glucose-style solvers with different dynamic
phase selection policies. Initially, each sub-solver runs 8 search
periods (A search period refers to the search process between
two restarts). In the subsequent search process, the running
length of a sub-solver depends on its current performance. The
performance of a solver is measured by the number of fixed
variables. In the final stage, at each time, the solver with the
best performance runs until at least a new variable is fixed, and
the other solvers runs only one search period with the maximal
number limit 1000 of conflicts. In the interactive solving stage,
if the total number of literals in the input formula is very
large, say 3000000, we do not run CryptoMiniSat. In the first
stage, selecting which dynamic phase policies depends on the
number of binary clauses.

The performance sensitive parameters used in interactSAT c
are almost the same as those used in interactSAT. In addition
to the parameters given above, interactSAT c uses the average
search depth (D#) to select sub-solvers. For large instances,
say c# > 6000000 or v# > 2000000, interactSAT c switches
also to the original Glucose. In the interactive solving stage, if
D# < 29, we run march first and then run clasp. Otherwise,

29

we run directly clasp. Before entering the interactive solving
stage, if D# > 11 and D# < 100 and v# < 20000, we
try to run sparrow2011 for at most three times. The maximal
number of flips each time is limited to 4000000.

The performance sensitive parameters used in glue dyphase
are the number of conflicts, the total number of literals and the
number of fixed variables. When the total number of literals is
large, say 1600000, glue dyphase switches also to the original
Glucose. Initially, the phase saving policy is set to 2. However,
in the first 1000000 conflicts, if the number of fixed variables
has increased, the phase saving policy is switched to 1. In
general, we adopt the first dynamic phase selection policy.
When the number of conflicts reaches 5000000, we switch to
the second dynamic phase selection policy.

VI. CONCLUSION

All the SAT solvers we submitted to the SAT Challenge
2012 are sequential. Nevertheless, the interactive solving tech-
nique described above is of parallel characteristic by itself.
Therefore, parallelizing these SAT solvers should be very easy.
Furthermore, the parallel solver with the interactive solving
technique should be more efficient. This will be our future
further work.

REFERENCES

[1] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern
SAT solvers, IJCAI 2009, 399–404 (2009)

[2] Audemard, G., Lagniez, J.M., Mazure, B., Saı̈s, L.: On Freezing and
Reactivating Learnt Clauses, SAT 2011, LNCS 6695, 188–200 (2011)

[3] Chen, J.C.: A Dynamic Phase Selection Strategy for Satisfiability Solvers,
submitted for publication, 2012.

[4] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver 1+2+3+6.pdf

[5] Jeroslow, R., Wang, J.: Solving propositional satisfiability problems,
Annals of Mathematics and Artificial Intelligence, 1, 167–187 (1990)

[6] Soos, M.: CryptoMiniSat 2.5.0,
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver 13.pdf

[7] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-
driven answer set solver, Proceedings of the Ninth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR07),
LNAI 4483, 260 – 265 (2007)

[8] Heule, M. : March: towards a look-ahead SAT solver for general purposes,
Master thesis, 2004.

[9] Tompkins, D. A. D., Hoos, H. H. : Dynamic Scoring Functions with
Variable Expressions: New SLS Methods for Solving SAT, SAT 2010,
278–292 (2010)

[10] Pipatsrisawat, K., Darwiche, A.: A lightweight component caching
scheme for satisfiability solvers, SAT 2007, LNCS 4501, 294–299 (2007)

30

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Linge dyphase
Jingchao Chen

School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China

Email: chen-jc@dhu.edu.cn

Abstract—Linge dyphase is an improved version of the se-
quential solver Lingeline 587f [2]. In addition to adopting a static
Jeroslow-Wang strategy [3] + RSAT strategy [4], Linge dyphase
adopts a dynamic phase selection strategy, while Lingeline does
only a static Jeroslow-Wang strategy + RSAT strategy.

I. A DYNAMIC PHASE SELECTION STRATEGY

In modern conflict-driven SAT solvers, How to select the
phase of a variable is an inseparable step that follows the
decision variable selection, because we must assign each
decision variable to a value. The simplest phase selection
policy is that each decision variable is always assigned to false,
which is used as a default heuristic of MiniSAT. No evidence
shows that such a policy is always efficient. Therefore, other
policies are adopted in some solvers. For example, PrecoSAT
[2] used Jeroslow-Wang heuristic. Here we use a new dynamic
phase selection policy. Its weight is based on a static weight,
but computed dynamically. Let F define an input formula in
CNF (Conjunctive Normal Form) clauses. The static weight
of a literal x on F is defined as

W (x,F) = ∑
c∈F(x)

52−size(c)

where F(x) is the set of clauses in which x occurs, and size(c)
is the size of clause c. This is very similar to the definition of
a weight in Jeroslow-Wang heuristic [3]. The main difference
between them is that the base is different. Our base is 5, while
the base Jeroslow-Wang heuristic is 2. Selecting 5 is based on
the fact that the March solver uses also 5 [5]. In our solvers,
the dynamic weight of a literal x is defined as the sum of the
static weight of literals implied by it. This definition can be
formulated as follows.

DW (x,F ,F ′) = ∑
x∧F ′`y

W (y,F)

where F and F ′ are an input formula and a formula at a search
state, respectively. Usually, F is constant, and F ′ varies with
the search state. x ∧ F ′ ` y means that using the fact that x
is true, applying unit resolution on formula F ′ can derive an
implication y. That is, y is an implied literal of x under F ′.
Computing implied literals is simple. This can be done by a
unit propagation, i.e. so-called BCP. The dynamic strategy here
need not any additional data structure such as a full watched-
literals scheme, and can apply directly a two watched-literals
scheme. Therefore, our dynamic strategy is very efficient.
Once a variable is decided, the dynamic strategy elects the
branch with the highest dynamic weight DW . Let x be the
decision variable. A search on x, including the computation
of dynamic weights, may be described as follows.

search (x,W,F ′)
〈Y+, Ret〉 ← BCP(x, F ′)
if Ret=UNSAT then return UNSAT
backtrack to current level
〈Y−, Ret 〉 ← BCP(¬x, F ′)
if Ret=UNSAT then return UNSAT
if DW (W,Y−) > DW (W,Y+) then y = ¬x, goto next
y = x
backtrack to current level
BCP(x, F ′)

next:
find next literal on branch y

In the above procedure, parameters W is used to store the
static weights of all the literals. F ′ is the current formula,
which can be maintained usually by a trail tack. Y+ and Y−
are the set of literals implied by x and ¬x, respectively. Like
the usual BCP, BCP(x,F ′) fulfills two tasks of compute the
implied literals and determine whether it reaches a conflict.
The usual search runs only one time, but our search need to
run at most three times. If the dynamic weight of ¬x is large
than that of x, we run BCP just two times, since in such a case,
the last BCP is consistent with the search direction. Clearly,
in the worst case, the cost of our search is at most triple the
cost of the usual search if each BCP has the same cost.

II. SYSTEM DESCRIPTION OF LINGE DYPHASE

Linge dyphase is an improved version of lingeling, a kind
of CDCL solver. Except for the phase selection strategy,
linge dyphase is the same as lingeling. In general, in even
depths of even search periods (A search period refers to
the search process between two restarts), linge dyphase uses
a dynamic phase selection strategy, while in odd depths of
even search periods, linge dyphase uses almost the same as
lingeline, i.e., a static Jeroslow-Wang+RAST strategy [3].
However, in odd search periods, conversely, in even depths
linge dyphase uses almost the same as lingeline, while in
odd depths it uses a dynamic phase selection strategy. The
Jeroslow-Wang strategy here is a bit different from that of
lingeline. When linge dyphase applies initially the Jeroslow-
Wang strategy, its weight is based on the dynamic weight given
above.

III. PARAMETER DESCRIPTION

The performance sensitive parameters used in
linge dyphase are the number of conflicts. Within the
first 10000 conflicts, we adopt the full dynamic phase

31

selection policy. This dynamic policy means that each
decision variable need to be computed its dynamic weight.
When the number of conflicts exceeds 10000, we adopt
the half dynamic phase selection policy. In this stage, only
half decision variables need to be computed their dynamic
weights.

REFERENCES

[1] Chen, J.C.: A Dynamic Phase Selection Strategy for Satisfiability Solvers,
submitted for publication, 2012.

[2] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver 1+2+3+6.pdf

[3] Jeroslow, R., Wang, J.: Solving propositional satisfiability problems,
Annals of Mathematics and Artificial Intelligence, 1, 167–187 (1990)

[4] Pipatsrisawat, K., Darwiche, A.: A lightweight component caching
scheme for satisfiability solvers, SAT 2007, LNCS 4501, 294–299 (2007)

[5] Heule, M. : March: towards a look-ahead SAT solver for general purposes,
Master thesis, 2004.

32

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

LINGELING and Friends
Entering the SAT Challenge 2012

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

This note describes our SAT solvers submitted to the SAT
Challenge 2012, all based on the same LINGELING backend.

I. LINGELING

Compared to the version submitted to the SAT competition
2011 and described in [1], we removed complicated algorithms
and features, which did not really have any observable impact
on the run-time for those benchmarks we tried. In particular,
various versions of distillation inprocessors were removed.

Regarding inprocessing [4], there are two new probing
variants. One is called simple probing and tries to learn
hyper binary resolutions eagerly. The other variant is based
on tree-based look-ahead, which is a simplified version of
the implementation in March [2]. These two techniques are
complemented by gaussian elimination and a new congruence
closure algorithm, which both use extracted gates to generate
and propagate equivalences.

We also switched to one merged inprocessing phase, called
simplification, where all inprocessors run one after each other,
instead of allowing each inprocessor to be scheduled and
interleaved with search individually.

Furthermore, for most inprocessors we have now a way
to save the part of the formula on which the inprocessor
did not run until completion (actually currently only “untried
variables”). In the next simplification phase, the algorithm
can be resumed on that part, such that eventually we achieve
the same effect as really running the various algorithms until
completion. Previously we used randomization to achieve a
similar effect. This technique also allowed us to remove certain
limits, such as the maximum number of occurrences or the
maximum resolvent size in variable elimination.

We moved to an inner-outer scheme for the size of kept
learned clauses, also called reduce schedule. The inner scheme
follows the previously implemented LBD resp. glue based
scheme as in Glucose. As in the previous version the solver
might switch to activities dynamically, if the glue distribution
is skewed. The outer schedule is Luby controlled and resets
the learned clause data based limit to its initial size. This idea
is particularly useful for crafted instances.

Another new feature is to occasionally use the opposite of
the saved phase for picking the value for the decision variable.
These flipping intervals start at the top-level and while flipping
is enabled the phases of assigned variables are not saved (as
in probing) in order not to counteract the effect of the phase
saving mechanism.

The exponential VSIDS scheme of MiniSAT has been
replaced by a new variant of a variable-move-to-front strategy
with multiple queues ordered by priority. This seems to be
at least as effective as the previous scheme, but updating and
querying the queue turns out to be substantially faster.

In general we simplified internal data structures with the
hope to make the code a little bit more accessible.

II. PLINGELING

The parallel version of LINGELING has not changed much.
Still only units and equivalences are shared among multiple
solver instances. Actually, we even removed most options
previously set differently for each instance of the LINGELING
core library, except of course for the seed of the random
number generator and in addition kept the different choices
for the default phase. Last but not least we only use one
instance during parsing. This first solver instance is cloned
after preprocessing. This reduces the memory usage on certain
instances considerably, particularly, since we can stop cloning
as soon too much memory is already in use.

III. CLINGELING

CLINGELING is based on our new Concurrent Cube and
Conquer (CCC) approach [5]. This is an extension of our
previous Cube and Conquer (CC) technique [3]. The new idea
is to run a CDCL solver and a look-ahead solver concurrently.

CLINGELING uses the new lglfork API call, provided by
the LINGELING library for copying a solver instance. It addi-
tionally uses a global LINGELING instance with assumptions
to partially simulate what ILINGELING does in the original
CC approach (but in an interleaving fashion and with only
one worker thread). The look-ahead literal is computed by the
tree-based probing algorithm discussed already above.

In the current version of CLINGELING, the CDCL part and
the look-ahead are interleaved, and thus not really run in
parallel. Which also means that there is no benefit from multi-
core machines as in the original CC (and CCC) approach. But
compared to CC we can find better cut-off limits for switching
from look-ahead to pure CDCL with inprocessing this way,
which is one of the motivations behind CCC.

Another drawback of this online approach is that the global
solver, can not determine up-front the set of variables that can
be eliminated in pre- and inprocessing.

33

IV. FLEGEL

FLEGEL can be seen as a poor man’s version of CLIN-
GELING. It uses the fork system call for backtracking and in
principle such a front-end should be easy to build for any SAT
library, which can produce a look-ahead decision. It just runs
preprocessing and a limited amount of search of the CDCL
solver (with inprocessing) at each node before calculating the
next look-ahead literal. Then the process is forked. The child
process adds the look-ahead literal as unit and continues the
same procedure recursively. Currently parents wait for their
child to terminate, before adding the negation of the original
look-ahead literal as unit. So even FLEGEL uses as many
processes as active search nodes, i.e. the height of the search
tree, no parallelism is used.

V. TREENGELING

TREENGELING is our latest SAT solver with LINGELING
backend and tries to capture the positive aspects of PLIN-
GELING, FLEGEL and CLINGELING and actually to some
extend also ILINGELING [3]. To simulate forking in FLEGEL
we implemented a clone function lglclone as part of
LINGELING. This function in contrast to lglfork, which is
used in CLINGELING, generates an identical behaving solver
instance, instead of just copying clauses and assumptions. In
the context of TREENGELING this allows to additionally copy
saved phases, variable queue, etc., so all the state, from the
original solver instance to the clone.

The clone has all information for reconstructing a solution.
So there is no need to propagate the solution back by merging
a forked copy with the lgljoin API call, as it is necessary if
the copy was generated by lglfork, e.g., as in CLINGELING.

Up to this point TREENGELING is very similar to FLEGEL.
However, since we have all the cloned solver instances in one
address space (as in CLINGELING) we can easily use multiple
threads to run the updated clones in parallel. TREENGELING
is a parallel solver and uses the infra-structure for parallel
execution also used in PLINGELING and ILINGELING.

Solver instances are stored in nodes and we start with one
single solver instance with the original formula, which is then
first simplified in a simplification phase. If there are less open
nodes than a predefined limit, a decision literal is selected by
tree-based look-ahead from the smallest solver instance in a
look-ahead phase. This instance is cloned and saved in a new
node during the splitting phase. The decision is added as unit
to the clone and negated to the original solver instance.

Lookahead and then splitting existing solvers this way is
actually performed in parallel. After splitting, the solvers of
open nodes are run for a certain conflict limit in a search
phase. If a solver instance finds a solution it is printed and the
whole search terminates. If the solver instance of one node
proves unsatisfiability, it is closed. After all solver instances
terminated their limited search, closed nodes are flushed. If
no more nodes remain, the search terminates with proving
unsatisfiability.

Then the conflict limit is updated in an update phase.
If a node was closed in this round the limit is decreased

and otherwise increased, both in a geometrical way. Due to
the potential exponential increase of the conflict limit over
multiple rounds, TREENGELING with one worker behaves very
similar to the base LINGELING solver. It does not behave
identically though, as it is the case for PLINGELING with one
worker. The pseudo-code of this procedure looks as follows:

search(lim);
while (!flush) {
simp; lookahead; split; upd(lim); search;

}
Sub-procedures work in parallel, e.g. simplification (simp)
is run in parallel for the minimum of still open nodes and
number of cores. The default is to use both the number of
cores as maximum limit on the number of open nodes and
worker (threads). For multiple workers units are added and
tree-based lookahead has to be performed, but otherwise, since
the workers run in parallel independently, the (wall-clock time)
performance is not expected to be much worse than for plain
LINGELING. Preliminary experiments justify this claim. This
does not seem to hold for CLINGELING nor FLEGEL.

TREENGELING is deterministic, e.g. always traverses the
same search space and produces the same number of conflicts
(actually only for unsatisfiable instances) etc., as long the
maximum number of active nodes stays the same and the same
memory limit is used. The number of threads available to work
in parallel during simplification, search or lookahead does not
influence the search. With more available cores, more threads
can be run in parallel, without run-time penalty.

However, in order to use more threads, more active nodes
have to exist in parallel. In preliminary experiments we un-
fortunately saw a negative effect on wall-clock time, if more
open nodes are used than available cores (except when hyper-
threading is available). Thus the effectiveness of this approach
w.r.t. speed-up is not really understood yet. On processors
with four cores and no hyper-threading, TREENGELING with
a maximum of four open nodes, is expected to perform
slightly better than PLINGELING, e.g., substantially, but not
dramatically better than plain LINGELING.

VI. ACKNOWLEDGEMENTS

This work heavily depends on research results obtained with
my collaborators Marijn, Matti, Oliver, Siert, and Peter, and
of course the whole SAT community. A full list of proper
references can be found in the following papers.

REFERENCES

[1] Armin Biere. Lingeling and friends at the SAT Competition 2011. FMV
Report Series Technical Report 11/1, Johannes Kepler University, Linz,
Austria, 2011.

[2] Marijn Heule, Mark Dufour, Joris van Zwieten, and Hans van Maaren.
March eq: Implementing additional reasoning into an efficient look-ahead
SAT solver. In SAT 2004 Selected Papers, volume 3542 of LNCS, pages
345–359. Springer, 2005.

[3] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere.
Cube and Conquer: Guiding CDCL SAT solvers by lookaheads. In
Proc. HVC 2011, 2012. To appear.

[4] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In
Proc. IJCAR’12. To appear.

[5] Peter van der Tak, Marijn Heule, and Armin Biere. Concurrent Cube-
and-Conquer. Submitted.

34

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

march nh
Marijn J. H. Heule

Department of Software Technology,
Delft University of Technology,

The Netherlands
Email: marijn@heule.nl

I. INTRODUCTION

The march nh SAT solver is the latest version of the
successfulmarch lookahead solver, which won several awards
at the SAT 2004, 2005, 2007, 2009 and 2011 competitions.
For the latest detailed description of the various techniques
used inmarch, we refer to [1], [2], [3], [4]. Like its predeces-
sors,march nh integrates equivalence reasoning into a DPLL
architecture and uses look-ahead heuristics to determine the
branch variable in all nodes of the DPLL search-tree. The
enhancements (apart from bug fixes) inmarch nh are:

• support for the cube-and-conquer technique [5]. This
technique splits the input formula in multi subformulas
(each subformula expressed as a cube) which is written to
file (iCNF format1) to be used by in incremental conflict-
driven clause learning solver.

• hyper binary resolvents [6] are added much more ag-
gressively compared to earlier versions, especially in the
nodes near the root of the search tree.

II. PRE-PROCESSING

The pre-processor ofmarch nh, reduces the formula at hand
prior to calling the main solving (DPLL) procedure. Earlier
versions already contained unit-clause and binary equivalence
propagation, as well as equivalence reasoning, a 3-SAT trans-
lator, and finally a full - using all free variables - iterative
root look-ahead. However,march nh (as well as the versions
sincemarch ks) does not use a 3-SAT translator by default
(although it is still optional). The motivation for its removal
is to examine the effect of (not) using a 3-SAT translator
on the performance. Because the addition of resolvents was
only based on the ternary clauses in the formula (after the
translation) we developed a new algorithm for this addition
which uses all clauses with at least three literals

III. PARTIAL LOOKAHEAD

The most important aspect ofmarch nh is the
PARTIAL LOOKAHEAD procedure. The pseudo-code of
this procedure is shown in Algorithm 1.

1http://users.ics.tkk.fi/swiering/icnf/

Algorithm 1 PARTIAL LOOKAHEAD()
1: Let F ′ andF ′′ be two copies ofF
2: for each variablexi in P do
3: F ′ := ITERATIVEUNITPROPAGATION(F ∪ {xi})
4: F ′′ := ITERATIVEUNITPROPAGATION(F ∪ {¬xi})
5: if empty clause∈ F ′ and empty clause∈ F ′′ then
6: return “unsatisfiable”
7: else if empty clause∈ F ′ then
8: F := F ′′

9: else if empty clause∈ F ′′ then
10: F := F ′

11: else
12: H(xi) = 1024× DIFF(F , F ′) × DIFF(F , F ′′)

+ DIFF(F , F ′) + DIFF(F , F ′′)
13: end if
14: end for

15: return xi with greatest H(xi) to branch on

IV. ADDITIONAL FEATURES

• Prohibit equivalent variables from both occurring inP :
Equivalent variables will have the same DIFF, so only
one of them is required inP .

• Timestamps: A timestamp structure in the lookahead
phase makes it possible to perform PARTIAL LOOKA-
HEAD without backtracking.

• Cache optimisations: Two alternative data-structures are
used for storing the binary and ternary clauses. Both are
designed to decrease the number of cache misses in the
PARTIAL LOOKAHEAD procedure.

• Tree-based lookahead: Before the actual lookahead oper-
ations are performed, various implication trees are built
of the binary clauses of which both literals occur inP .
These implications trees are used to decrease the number
of unit propagations.

• Necessary assignments: If bothxi → xj and¬xi → xj

are detected during the lookahead onxi and ¬xi, xj is
assigned to true because it is a necessary assignment.

• Binary equivalences: If bothxi → xj and ¬xi → ¬xj

are detected during the look-ahead onxi and ¬xi, bi-
nary equivalencexi ↔ xj is propagated in the CoE
data-structure to reduce the length of some equivalence
clauses.

• Resolvents: Several binary resolvents are added during
the solving phase. Those resolvents that are added have
the property that they are easily detected during the
lookahead phase and that they could increase the number
of detected failed literals.

35

• Restructuring: Before calling procedure PARTIAL -
LOOKAHEAD, all satisfied ternary clauses of the prior
node are removed from the active data-structure to speed-
up the lookahead.

REFERENCES

[1] M. J. H. Heule, J. E. van Zwieten, M. Dufour, and H. van Maaren,
“March eq: Implementing additional reasoning into an efficient looka-
head SAT solver,” inSAT 2004, ser. Lecture Notes in Computer Science,
H. H. Hoos and D. G. Mitchell, Eds., vol. 3542. Springer, 2005, pp.
345–359.

[2] M. J. H. Heule and H. van Maaren, “Marchdl: Adding adaptive heuris-
tics and a new branching strategy,”Journal on Satisfiability, Boolean
Modeling and Computation, vol. 2, pp. 47–59, mar 2006.

[3] S. Mijnders, B. de Wilde, and M. J. H. Heule, “Symbiosis ofsearch and
heuristics for random 3-sat,” inProceedings of the Third International
Workshop on Logic and Search (LaSh 2010), D. Mitchell and E. Ter-
novska, Eds., 2010.

[4] M. J. H. Heule and H. van Maaren, “Whose side are you on? finding
solutions in a biased search-tree,”Journal on Satisfiability, Boolean
Modeling and Computation, vol. 4, pp. 117–148, 2008.

[5] M. J. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube
and conquer: Guiding cdcl sat solvers by lookaheads,” inBest
paper award at HVC 2011, to appear, 2012. [Online]. Available:
http://www.st.ewi.tudelft.nl/ marijn/publications/cube.pdf

[6] F. Bacchus and J. Winter, “Effective preprocessing withhyper-resolution
and equality reduction,” inProc. SAT 2003, ser. LNCS, vol. 2919.
Springer, 2004, pp. 341–355.

36

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Minifork
Yuko Akashi

Kyushu University, Japan
2ie11001y@s.kyushu-u.ac.jp

I. I NTRODUCTION

Minifork is a parallel SAT solver based on a CDCL solver
MiniSat2.2.0[1]. It parallelization is performed by using a
UNIX system call ’fork’. The fork is invoked just after
selecting a variable to assign. After the fork, the parent process
deals with a case where the variable is assigned ’1’ while
the child process deals with another case where the variable
is assigned ’0’. Thus, both the parent and child processes
search distinct search spaces and can run independently. Their
synchronization occurs only when they finish their jobs or fork
again. The parent process waits until its all child processes
terminate in order to prevent them from becoming zombie
processes. Before a process forks, it checks whether the
number of active SAT processes less than the number of the
cores in order to prevent the system from being overload.

No parameter of MiniSat is changed for any SAT instances.
Minifork is written in C++ and its compiling method is the
same as MiniSat.

II. T IMING OF FORK

To start with we invoke a SAT process. After its ten restarts,
it executes fork. Just before the fork, we select a variable using
pickBranchLit(). After the fork, the parent process solves the
case where the variable is assigned ’1’ while the child process
solves another case where the variable is assigned ’0’. The
child process has a copy of learned clauses which may reduce
search space afterward.

After the first fork, every process executes fork at every
restart if the number of the current SAT processes is less
than the number of the cores. Thus, we can keep the number
of SAT processes being less than or equal the number of
the cores. Because several SAT processes may execute fork
simultaneously, these processes need to synchronize. The
synchronization is realized by using a semaphore. The number
of the current SAT processes is memorized in a semaphore.
The number is increased by 1 when a fork succeeds while it
is decreased by 1 when a SAT process is finished.

A semaphore is useful abstraction for controlling access
by multiple processes to a common resource in a parallel
programming environment. The semaphore in Miniforks is
implemented by including< sys/sem.h > of the C language.
The number of the current SAT processes is memorized in a
semaphore which is shared by all SAT processes. The share is
implemented by including< sys/shm.h > of the C language.
The critical section is protected with the semaphore.

III. T ERMINATION

If a SAT process find a model, the other processes do
not need to continue their jobs any more. In order to tell
the processes that the model is found, we also use the
same semaphore introduced in the previous section. When a
process find a model, it writes a big number, which indicates
SATISFIABLE, to the semaphore instead of the decrement.
The other processes notice the fact at their next restarts. Thus,
the processes do not terminate immediately.

IV. CONCLUSION

Minifork implementation is simple in the sense that there
is no complicated synchronization mechanism, and light in
the sense that the SAT processes do not share any learned
clauses after forks. We plan to introduce a light mechanism
for sharing useful learned clauses, and solve open problems
with Minifork.

ACKNOWLEDGMENT

My deepest appreciation goes to Prof. Hasegawa whose
enormous support and insightful comments were invaluable
during the course of my study. I am also indebt to Associate
Prof.Fujita and Assistant Prof.Koshimura whose comments
made enormous contribution to my work. This work was
supported by JSPS KAKENHI(20240003, 21300054).

REFERENCES

[1] Niklas Éen and Niklas S̈orensson. An extensible SAT-solver. In SAT 2003,
2003.

37

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Parallel CIR MiniSAT
Tomohiro Sonobe

Graduate School of Information Science and Technology, University of Tokyo
Email: tominlab@gmail.com

Abstract—We introduce a new parallel solver based on counter
implication restart (CIR) MiniSAT which we submitted to SAT
Competition 2011. In this description, we explain the details of
CIR and its role in parallel context.

I. INTRODUCTION

In SAT Competition 2011, we submitted a sequential SAT
solver that employs Counter Implication Restart (CIR). CIR
is a novel restart policy for escaping from wrong branches
vigorously. It consists of the standard restart and bumping
VSIDS scores in order to change decision orders after the
restart by analyzing the implication graph. We found that CIR
is effective for time-consuming instances.

We implement a new parallel solver, Parallel CIR MiniSAT
(ParaCIRMiniSAT), by modifying MiniSAT 2.2 [4] and using
OpenMP. ParaCIRMiniSAT is based on portfolio approach. In
portfolio approach, diversification and intensification [2] of the
searching are important. We believe that CIR is useful for the
diversification.

II. COUNTER IMPLICATION RESTART

One of the important objectives of restart is to move
different search space by changing the shallow level decisions
which may be kept during bactracks. In recent year, frequent
restart policies such as nested restart [1] and Luby restart [3]
were turned out to be effective for many instances. However
for some instances, we think they are insufficient to escape
from large wrong branches where neither a solution nor useful
learnt clauses exist. It can often occur because the search after
the restart can be affected by the search before the restart, in
other word, VSIDS scores are taken over to the next search.

For this issue, we proposed CIR that consists of standard
restart and changing VSIDS scores of variables. In order
to change VSIDS scores reasonably, CIR analyzes the im-
plication graph constructed right before the restart. When
CIR is invoked, CIR traverses whole implication graph and
increases each VSIDS score of each variable, proportional to
its indegree. A variable with large indegree is a unit literal in a
large clause, and we believe that this variable has an important
role. Finally, CIR conduct the standard restart.

The pseudo code of the function of CIR is shown below.
This function is called just before the restart routine.

1. int run_count = 0;
2. CounterImplicationRestart() {
3. if (run_count++ % INTERVAL == 0) {
4. int indegree[nVar] = {0};
5. int max_indegree = 0;

6. [calculate indegree for each variable
and max_indegree]

7. for each variable var
8. bumpScore(var, BUMP_RATIO *

indegree[var] / max_indegree);
9. }

10. restart();
11. }

The variable “run count” on the first line stands for the
number of calls of this function. The constant number “IN-
TERVAL” on third line limits the number of the executions of
this function. In other words, the main part of this function is
executed for every “INTERVAL” restart. On sixth line, the
indegree is calculated by traversing the implication graph.
Then, on seventh and eighth line, the VSIDS score for each
variable is bumped according to the number of indegree. For
this process, “BUMP RATIO” stands for a relatively large
constant number. Thus, the scores are bumped drastically.
We found that the value of “INTERVAL” affects the overall
performance.

Since CIR can change the search after the restart strongly,
we are sure that CIR is useful for the diversification of the
search in parallel context.

III. PARACIRMINISAT

The base solver of ParaCIRMiniSAT is MiniSAT 2.2. We
use OpenMP for parallelization. In ParaCIRMiniSAT, one
thread run the original MiniSAT 2.2 and the others run the
MiniSAT 2.2 with CIR changing some parameters such as
“INTERVAL”, base number of Luby restart, and so on. Each
thread shares learnt clauses whose size doesn’t exceed 8.

REFERENCES

[1] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), Vol. 4, No. 2-4, pp. 75–97, 2008.

[2] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversifi-
cation and intensification in parallel sat solving. In Proceedings of the
16th international conference on Principles and practice of constraint
programming, CP’10, pp. 252–265, Berlin, Heidelberg, 2010. Springer-
Verlag.

[3] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup
of las vegas algorithms. Inf. Process. Lett., Vol. 47, No. 4, pp. 173–180,
1993.

[4] Niklas Sorensson. Minisat 2.2 and minisat++ 1.1. A short description in
SAT Race 2010, 2010.

38

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Parallel Semi-Static Satisfiability Solver Selector
(p3S-semistat)

Yuri Malitsky∗, Ashish Sabharwal†, Horst Samulowitz†, and Meinolf Sellmann†
∗Brown University, Dept. of Computer Science, Providence, RI 02912, USA

Email: ynm@cs.brown.edu
†IBM Watson Research Center, Yorktown Heights, NY 10598, USA

Email: {ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

The Parallel Semi-Static Satisfiability Solver Selector (p3S-
semistat) is a parallel portfolio solver that dynamically selects
and schedules various solvers across multiple cores, depending
on the input instance. p3S-semistat version 2.1 participated in
the Parallel Solvers track of SAT Challenge 2012.

I. SOLVING TECHNIQUES

The Parallel Satisfiability Solver Selector (p3S) is a general-
ization of its sequential version 3S [2], [3]. p3S schedules both
sequential and parallel “pure” solvers across multiple compute
cores available on one machine. These solvers are determined
by solving a corresponding optimization problem modeled as
an Integer Program (IP).

The semi-static version of p3S, named p3S-semistat, sched-
ules a pre-determined set of solvers on some of the available
cores and a dynamically computed schedule on the remaining
cores. p3S-semistat is built upon a variety of conflict directed
clause learning SAT solvers (both sequential and parallel
solvers), lookahead based solvers, and local search solver.

Similar to 3S, p3S works in two phases, an offline learning
phase, and an online execution phase. We refer the reader to
the solver description of 3S [3] for details, including a list of
the 38 sequential baseline solvers used.

II. IMPLEMENTATION DETAILS

Since p3S builds upon the implementation of 3S, many
of the implementation specific details remain the same as in
3S [3], including the benchmark set and timeout used in the
offline training phase of p3S. The launching of (single-core
and multi-core) solvers in parallel is managed by extending
the Python 2.6 based sequential launcher of 3S, using the
Subprocess and Signal packages. In essence, the launcher for
p3S creates one schedule for each core and launches one
independent copy of 3S to execute that schedule.

In addition to the 38 sequential solvers used by 3S (used
both with and without preprocessing, resulting in 76 sequen-
tial solver choices), p3S also uses multi-core “pure” solvers
Plingeling [1] and CryptoMiniSat [4]. Both of these solvers
were run using 1, 2, 3, and 4 cores. Each of these variants,
taken with and without preprocessing, counts towards the set
of baseline solver for p3S, resulting in a total of 92 baseline
solvers.

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The command line used to launch p3S-semistat in SAT
Challenge 2012 was:

python p3Ssemistat-2.1.py –scale 1.3
–tmpdir TEMPDIR INSTANCE

Please refer to the solver description of 3S [3] for an expla-
nation of the scaling parameter.

A pre-determined schedule was used for 7 cores and a
dynamic schedule computed for the 8th core. The specifics of
the preschedule used for the first 7 cores may be found in the
file named preschedules/sch-p3Ssemistat.txt of the submitted
solver. One invariant in this preschedule was that if, say, a 3-
core solver is launched by core number k at some point of time
T , then it was made sure that at least two other cores were
free and available at time T to help execute the 3-core solver
launched by core k. In the 8th core, along with a dynamic
selection of solvers, the technique of clause forwarding was
also employed, whereby clauses of size up to 10 learnt by
certain solvers were “forwarded” to the next solver in the
schedule.

Note that the offline training of p3S, similar to 3S, was
done using a 2,000 timeout on the training machines and the
8-core schedule eventually used is optimized for the compe-
tition timeout of 900 seconds on the competition machines.
Execution with different timeouts or on other machines will
likely result in reduced performance.

ACKNOWLEDGMENT

The solver presented is a portfolio of existing SAT solvers.
We merely added a front-end that selects and schedules these
solvers intelligently, based on the features of the given SAT
instance. The solver that competes here is thus heavily based
on existing work on “pure” SAT solvers. The authors of these
solvers have invested countless hours into their implemen-
tations. It is their dedication that transforms original ideas
on efficient data structures and very sophisticated algorithmic
methods into practice. These authors have effectively driven
the tremendous advancements that could be achieved over the
past two decades in our ability to solve SAT formulae in
practice. We hereby express our sincere thanks and honest
admiration for their work.

39

REFERENCES

[1] A. Biere. PLingeling, SAT Race 2010 solver descriptions, 2010.
[2] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann.

Algorithm Selection and Scheduling. CP, pp. 454-469, 2011.
[3] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann. Satisfiability

Solver Selector (3S). SAT Challenge 2012 solver descriptions, 2012.
[4] M. Soos. CryptoMiniSat. SAT Race solver descriptions, 2010.

Licensed Materials - Property of IBM
Satisfiability Solver Selector (3S) family of solvers
(C) Copyright IBM Corporation 2011-2012
All Rights Reserved

40

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Parallel Static Satisfiability Solver Selector
(p3S-stat)

Yuri Malitsky∗, Ashish Sabharwal†, Horst Samulowitz†, and Meinolf Sellmann†
∗Brown University, Dept. of Computer Science, Providence, RI 02912, USA

Email: ynm@cs.brown.edu
†IBM Watson Research Center, Yorktown Heights, NY 10598, USA

Email: {ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

The Parallel Static Satisfiability Solver Selector (p3S-stat) is a
parallel portfolio solver that statically selects and schedules
various solvers across multiple cores. p3S-stat version 2.1
participated in the Parallel Solvers track of SAT Challenge
2012.

I. SOLVING TECHNIQUES

The Parallel Satisfiability Solver Selector (p3S) is a general-
ization of its sequential version 3S [2], [3]. p3S schedules both
sequential and parallel “pure” solvers across multiple compute
cores available on one machine. These solvers are determined
by solving a corresponding optimization problem modeled as
an Integer Program (IP).

The static version of p3S, named p3S-stat, schedules a pre-
determined set of solvers on all of the available cores. p3S-stat
is built upon a variety of conflict directed clause learning SAT
solvers (both sequential and parallel solvers), lookahead based
solvers, and local search solver.

Similar to 3S, p3S works in two phases, an offline learning
phase, and an online execution phase. We refer the reader to
the solver description of 3S [3] for details, including a list of
the 38 sequential baseline solvers used.

II. IMPLEMENTATION DETAILS

Since p3S builds upon the implementation of 3S, many
of the implementation specific details remain the same as in
3S [3], including the benchmark set and timeout used in the
offline training phase of p3S. The launching of (single-core
and multi-core) solvers in parallel is managed by extending
the Python 2.6 based sequential launcher of 3S, using the
Subprocess and Signal packages. In essence, the launcher for
p3S creates one schedule for each core and launches one
independent copy of 3S to execute that schedule.

In addition to the 38 sequential solvers used by 3S (used
both with and without preprocessing, resulting in 76 sequen-
tial solver choices), p3S also uses multi-core “pure” solvers
Plingeling [1] and CryptoMiniSat [4]. Both of these solvers
were run using 1, 2, 3, and 4 cores. Each of these variants,
taken with and without preprocessing, counts towards the set
of baseline solver for p3S, resulting in a total of 92 baseline
solvers.

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The command line used to launch p3S-stat in SAT Chal-
lenge 2012 was:

python p3Sstat-2.1.py –scale 1.3
–tmpdir TEMPDIR INSTANCE

Please refer to the solver description of 3S [3] for an expla-
nation of the scaling parameter.

A pre-determined schedule, generated by solving an IP
optimization problem during the offline training phase, was
used for all 8 cores. The specifics of the preschedule may
be found in the file named preschedules/sch-p3Sstat.txt of the
submitted solver. One invariant in this preschedule was that
if, say, a 3-core solver is launched by core number k at some
point of time T , then it was made sure that at least two other
cores were free and available at time T to help execute the
3-core solver launched by core k.

Note that the offline training of p3S, similar to 3S, was
done using a 2,000 timeout on the training machines and the
8-core schedule eventually used is optimized for the compe-
tition timeout of 900 seconds on the competition machines.
Execution with different timeouts or on other machines will
likely result in reduced performance.

ACKNOWLEDGMENT

The solver presented is a portfolio of existing SAT solvers.
We merely added a front-end that selects and schedules these
solvers intelligently, based on the features of the given SAT
instance. The solver that competes here is thus heavily based
on existing work on “pure” SAT solvers. The authors of these
solvers have invested countless hours into their implemen-
tations. It is their dedication that transforms original ideas
on efficient data structures and very sophisticated algorithmic
methods into practice. These authors have effectively driven
the tremendous advancements that could be achieved over the
past two decades in our ability to solve SAT formulae in
practice. We hereby express our sincere thanks and honest
admiration for their work.

REFERENCES

[1] A. Biere. PLingeling, SAT Race 2010 solver descriptions, 2010.
[2] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann.

Algorithm Selection and Scheduling. CP, pp. 454-469, 2011.

41

[3] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann. Satisfiability
Solver Selector (3S). SAT Challenge 2012 solver descriptions, 2012.

[4] M. Soos. CryptoMiniSat. SAT Race solver descriptions, 2010.

Licensed Materials - Property of IBM
Satisfiability Solver Selector (3S) family of solvers
(C) Copyright IBM Corporation 2011-2012
All Rights Reserved

42

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

PeneLoPe, a parallel clause-freezer solver
Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, Jean-Marie Lagniez, Cédric Piette

Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{audemard,hoessen,jabbour,lagniez,piette}@cril.fr

Abstract—This paper provides a short system description
of our new portfolio-based solver called PeneLoPe, based
on ManySat. Particularly, this solver focuses on collaboration
between threads, providing different policies for exporting and
importing learnt clauses between CDCL searches. Moreover,
different restart strategies are also available, together with a
deterministic mode.

I. OVERVIEW

PeneLoPe is a portfolio parallel SAT solver that uses the
most effective techniques proposed in the sequential frame-
work: unit propagation, lazy data structures, activity-based
heuristics, progress saving for polarities, clause learning, etc.
As for most of existing solvers, a first preprocessing step is
achieved. For this step -which is typically sequential- we have
chosen to make use of SatElite [3].

In addition, PeneLoPe includes a recent technique for
its learnt clause database management. Roughly, this new
approach follows this schema: each learnt clause c is peri-
odically evaluated with a so-called psm measure [1], which
is equal to the size of the set-theoretical intersection of the
current interpretation and c. Clauses that exhibit a low psm
are considered relevant. Indeed, the lower is a psm value, the
more likely the related clause is about to unit-propagate some
literal, or to be falsified. On the opposite, a clause with a large
psm value has a lot of chance to be satisfied by many literals,
making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected
and currently used by the solver, the other clauses being
frozen. When a clause is frozen, it is removed from the list
of the watched literals of the solver, in order to avoid the
computational over-cost of maintaining the data structure of
the solver for this useless clause. Nevertheless, a frozen clause
is not erased but it is kept in memory, since this clause may
be useful in the next future of the search. As the current
interpretation evolves, the set of learnt clauses actually used
by the solver evolves, too. In this respect, the psm value
is computed periodically, and sets of clauses are frozen or
unfrozen with respect to their freshly computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 =
Pi+500+100× i. A function ”updateDB” is called each time
the number of conflict reaches Pi conflicts (where i ∈ [0..∞]).
This function computes new psm values for every learnt
clauses (frozen or activated). A clause that has a psm value
less than a given limit l is activated in the next part of the
search. If its psm does not hold this condition, then it is frozen.

Moreover, a clause that is not activated after k (equal to 7 by
default) time steps is deleted. Similarly, a clause remaining
active more than k steps without participating to the search is
also permanently deleted (see [1] for more details).

Besides the psm technique, PeneLoPe also makes use of
the lbd value defined in [2]. lbd is used to estimate the quality
of a learnt clause. This new measure is based on the number
of different decision levels appearing in a learnt clause and is
computed when the clause is generated. Extensive experiments
demonstrates that clauses with small lbd values are used more
often than those with higher lbd ones. Note also that lbd
of clauses can be recomputed when they are used for unit
propagations, and updated if the it becomes smaller. This
update process is important to get many good clauses.

Given these recently defined heuristic values, we present in
the next Section several strategies implemented in PeneLoPe.

II. DETAILLED FEATURES

PeneLoPe proposes a certain number of strategies regard-
ing importation and exportation of learnt clauses, restarts, and
the possibility of activating a deterministic mode.

Importing clause policy: When a clause is imported, we can
consider different cases, depending on the moment the clause
is attached for participating to the search.
• no-freeze: each imported clause is actually stored with the

current learnt database of the thread, and will be evaluated
(and possibly frozen) during the next call to updateDB.

• freeze-all: each imported clause is frozen by default, and
is only used later by the solver if it is evaluated relevant
w.r.t. unfreezing conditions.

• freeze: each imported clause is evaluated as it would
have been if locally generated. If the clause is considered
relevant, it is added to the learnt clauses, otherwise it is
frozen.

Exporting clause policy: Since PeneLoPe can freeze
clauses, each thread can import more clauses than it would
with a classical management of clauses, where all of them are
attached. Then, we propose different strategies, more or less
restrictive, to select which clauses have to be shared:
• unlimited: any generated clause is exported towards the

different threads.
• size limit: only clauses whose size is less than a given

value (8 in our experiments) are exported [5].
• lbd limit: a given clause c is exported to other threads if

its lbd value lbd(c) is less than a given limit value d (8

43

by default). Let us also note that the lbd value can vary
over time, since it is computed with respect to the current
interpretation. Therefore, as soon as lbd(c) is less than d,
the clause is exported.

Restarts policy: Beside exchange policies, we define two
restart strategies.
• Luby: Let li be the ith term of the Luby serie. The ith

restart is achieved after li × α conflicts (α is set to 100
by default).

• LBD [2]: Let LBDg be the average value of the LBD of
each learnt clause since the beginning. Let LBD100 be
the same value computed only for the last 100 generated
learnt clause. With this policy, a restart is achieved as
soon as LBD100×α > LBDg (α is set to 0.7 by default).
In addition, the VSIDS score of variables that are unit-
propagated thank for a learnt clause whose lbd is equal
to 2 are increased, as detailled in [2].

Furthermore, we have implemented in PeneLoPe a deter-
ministic mode which ensures full reproducibility of the results
for both runtime and reported solutions (model or refutation
proof). Large experiments show that such mecanism does not
affect significantly the solving process of portfolio solvers
[4]. Quite obviously, this mode can also be unactivated in
PeneLoPe.

III. FINE TUNING PARAMETERS OF PENELOPE

PeneLoPe is designed to be fine-tuned in an easy way,
namely without having to modify its source code. To this
end, a configuration file (called configuration.ini, an
example is provided in Figure 1) is proposed to describe the
default behavior of each thread. This file actually contains
numerous parameters that can be modified by the user before
running the solver. For instance, besides export, import and
restart strategies, one can choose the number of threads that
the solver uses, the α factor if the Luby techniques is activated
for the restart strategy, etc. Each policy and/or value can
obviouly differ from one thread to the other, in order to ensure
diversification. In the next Section, we present the actual
configuration file submitted at the SAT challenge.

ACKNOWLEDGMENT

PeneLoPe has been partially developped thank to the
financial support of CNRS and OSEO, under the ISI project
“Pajero”.

REFERENCES

[1] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar
Saı̈s. On freezeing and reactivating learnt clauses. In proceedings of
SAT, pages 147–160, 2011.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In proceedings of IJCAI, pages 399–404, 2009.

[3] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. In proceedings of SAT, pages 61–75, 2005.

[4] Youssef Hamadi, Said Jabbour, Cédric Piette, and Lakhdar Saı̈s. Deter-
ministic parallel DPLL. Journal on Satisfiability, Boolean Modeling and
Computation, 7(4):127–132, 2011.

[5] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Control-based clause
sharing in parallel SAT solving. In proceedings of IJCAI, pages 499–504,
2009.

1 ncores = 8
2 d e t e r m i n i s t i c = f a l s e
3 ; t h i s i s t h e d e f a u l t b e h a v i o r o f each
4 ; t h r e a d , can be m o d i f i e d o r s p e c i f i e d
5 ; a f t e r each [s o l v e r X] i t em
6 [d e f a u l t]
7 ; i f s e t t o t r u e , t h e n psm i s used
8 usePsm = t r u e
9 ; a l l o w e d v a l u e s : avgLBD , luby

10 r e s t a r t P o l i c y = avgLBD
11 ; a l l o w e d v a l u e s : lbd , u n l i m i t e d , s i z e
12 e x p o r t P o l i c y = l b d
13 ; a l l o w e d v a l u e s :
14 ; f r e e z e , no−f r e e z e , f r e e z e −a l l
15 i m p o r t P o l i c y = f r e e z e
16 ; number o f f r e e z e b e f o r e t h e c l a u s e
17 ; i s d e l e t e d
18 maxFreeze = 7
19 ; i n i t i a l # c o n f l i c t b e f o r e t h e f i r s t
20 ; updateDB
21 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 500
22 ; i n c r e m e n t a l f a c t o r f o r updateDB
23 nbConf l ic tBeforeReduceIncrement = 100
24 ; maximum l b d v a l u e f o r exchanged c l a u s e s
25 maxLBDExchange = 8
26 [s o l v e r 0]
27 i m p o r t P o l i c y = no−f r e e z e
28 [s o l v e r 1]
29 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 5000
30 nbConf l ic tBeforeReduceIncrement = 1000
31 [s o l v e r 2]
32 maxFreeze = 8
33 ; s o l v e r 3 i s t h e d e f a u l t s o l v e r
34 [s o l v e r 3]
35 [s o l v e r 4]
36 r e s t a r t P o l i c y = l uby
37 lubyFactor = 100
38 [s o l v e r 5]
39 e x p o r t P o l i c y = s i z e
40 [s o l v e r 6]
41 maxFreeze = 4
42 [s o l v e r 7]
43 i m p o r t P o l i c y = f r e e z e −a l l

Fig. 1. Configuration.ini file

44

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

pfolioUZK: Solver Description
Andreas Wotzlaw∗, Alexander van der Grinten∗, Ewald Speckenmeyer∗, Stefan Porschen†

∗Institut für Informatik
Universität zu Köln, Pohligstr. 1, D-50969 Köln, Germany
Email: {vandergrinten,wotzlaw,esp}informatik.uni-koeln.de

†Fachgruppe Mathematik, FB4
HTW-Berlin, Treskowallee 8, D-10318 Berlin, Germany

Email: porschen@htw-berlin.de

SOLVER DESCRIPTION

pfolioUZK is a portfolio SAT solver based on the portfolio
SAT solver ppfolio developed by Olivier Roussel [1]. It can
be used either as a parallel portfolio SAT solver on multicore
systems, or as a sequential portfolio SAT solver. Here, the
number of cores that may be used by pfolioUZK can be selected
on the command line with the parameter -c <number of

cores>. Like ppfolio, it is a simple computer program that
starts SAT solvers from the available portfolio in parallel,
among others an instance of our new complete SAT solver
satUZK [2].

Currently, to the portfolio belong the following SAT solvers:
• satUZKs: a version of the complete SAT solver satUZK

developed by Alexander van der Grinten and Andreas
Wotzlaw, see [2] for a detailed description,

• glucose 2.0: a complete SAT solver by Gilles Audemard
and Laurant Simon [3],

• lingeling 587 and plingeling 587: two complete SAT
solvers by Armin Biere [4],

• contrasat: a complete SAT solver by Allen van Gelder,
• march hi 2009: a complete SAT solver by Marijn Heule

and Hans Van Maaren,
• TNM 2009: an incomplete SAT solver by Wanxia Wei and

Chu Min Li [5],
• MPhaseSAT M: a complete SAT solver by Jingchao

Chen [6], and
• sparrow2011: an incomplete SAT solver developed by

Dave Tompkins using the sparrow algorithm of Adrian
Balint and Andreas Fröhlich [7].

The solvers have been chosen on the basis of their per-
formance on the SAT Competition 2011. The type and the
number of solvers that are started depend on the number of
allocated cores and on the uniformity of the input instance.
A CNF formula is uniform if all its clauses have exactly the
same length. In case the input instance is uniform we start
parallel only march hi 2009, TNM 2009, MPhaseSAT M, and
sparrow2011, when possible each on a separate core. For all
other instances, we use the following predefined configura-
tions:
• 1 core or -c 1: satUZK, lingeling 587, TNM 2009, and

MPhaseSAT M are started on the same core (this config-
uration constitutes a sequential version of pfolioUZK),

• 2 cores or -c 2: satUZK and TNM 2009 on the first core,
and glucose 2.0 and MPhaseSAT M on the second core,

• 4 cores or -c 4: satUZK, glucose 2.0, contrasat, and
lingeling 587, all on separate cores,

• 8 cores or -c 8: satUZK, glucose 2.0, contrasat, and four
instances of plingeling 587 are started for CNF formulas
with up to 12 millions clauses, all on their own cores.
For larger formulas, satUZK is not used due to memory
limitations.

For the SAT Challenge 2012 in tracks ”Parallel Solvers -
Application SAT+UNSAT” and ”Sequential Portfolio Solvers”
we have submitted both precompiled (with gcc 4.4.3 and -O3)
and statically linked binaries (32- and 64-bit) as well as all
sources (C/C++ programs and shell scripts). We consider to
make the source code available online.

REFERENCES

[1] O. Roussel, “Description of ppfolio,” SAT Competition 2011, 2011.
[2] A. van der Grinten, A. Wotzlaw, E. Speckenmeyer, and S. Porschen,

“satUZK: Solver description,” SAT Challenge 2012, 2012.
[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern

SAT solver,” in Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI’09), 2009, pp. 399–404.

[4] A. Biere, “Lingeling, plingeling, picoSAT and precoSAT at SAT Race
2010,” Institute for Formal Models and Verification, Johannes Kepler
University, Linz, Austria, FMV Reports Series 10/1, August 2010.

[5] W. Wei and C. M. Li, “Switching between two adaptive noise mechanisms
in local search for SAT,” SAT Competition 2009, 2009.

[6] J. Chen, “Phase selection heuristics for satisfiability solvers,” CoRR,
2011. [Online]. Available: http://arxiv.org/abs/1106.1372

[7] A. Balint and A. Fröhlich, “Improving stochastic local search for SAT
with a new probability distribution,” in Proceedings of the 13th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT’10), ser. Lecture Notes in Computer Science, vol. 6175, 2010, pp.
10–15.

45

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Description of ppfolio 2012
Olivier Roussel

CRIL - CNRS UMR 8188
olivier.roussel@cril.univ-artois.fr

ppfolio (Pico Portfolio or also Parallel Portfolio) is a naive
parallel portfolio. It is meant to identify a lower bound of what
can be achieved either with portfolios, or with parallel solvers.

ppfolio by itself is just a program that starts SAT solvers
in parallel. It only involves system programmation and knows
nothing about the SAT problem. The number of cores that may
be used can be selected on the command line.

ppfolio does not try to be clever in any way. Its role is
just to run solvers in parallel. Several obvious improvements
are possible (detecting the type of SAT instance and choosing
the appropriate solver, improving the scheduling of the solvers,
sharing of the formula,...) but were not considered because the
goal of this solver is uniquely to identify a lower bound of the
performances that can be achieved using a few lines of plain
system programmation. It is of course expected that access
to main memory will be a bottleneck that will significantly
impact each individual solver performances.

The submitted version uses the following solvers

• glueminisat 2.2.5 (Hidetomo NABESHIMA)
• MPhaseSAT M 2011-02-16 (Jingchao chen)
• sparrow2011 sparrow2011 ubcsat1.2 2011-03-02

(Adrian Balint, Andreas Froehlich, Dave Tompkins, Hol-
ger Hoos)

• CryptoMiniSat Strange-Night-2-mt (Mate Soos)
• Plingeling 587f (Armin Biere)

These solvers have been chosen on the basis of their results
on the 2011 competition benchmark, taking into account the
reduced timeout of the SAT Challenge. For the sequential
portfolio track, one solver per category of benchmarks was
selected (the non portfolio solver giving the largest number
of answers within 300 seconds). For the parallel track, two
different configurations were considered: one where solvers
could use up to 2 cores (hence a 900 second WC limit and
a 1800 s CPU limit) and another one where solvers could
use up to 4 cores (hence a 900 second WC limit and a 3600 s
CPU limit). In each configuration, the solver answering on the
largest number of instances was initially added to the selection.
Whenever another solver was able to solve several instances
that the solvers in the current selection didn’t solve, it was
added to the selection. In the end, 4 solvers were selected
in the first configuration, and only 2 in the second one. As
the number of instances solved in the two configuration was
almost equal, the configuration with only 2 solvers running on
4 cores was chosen.

The solvers that are started in this version of ppfolio only
depend on the number of allocated cores :

• 1 core: glueminisat, MPhaseSAT M and sparrow2011 are
started, but since there is only one core, the solver is
essentially sequential.

• >1 core: CryptoMiniSat and Plingeling are started, each
on one half of the cores

More information on ppfolio can be found on
http://www.cril.univ-artois.fr/∼roussel/ppfolio.

46

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Relback: Relevant Backtracking in CDCL Solvers
Djamal Habet

LSIS, UMR CNRS 7296
Université Aix-Marseille

Av. Escadrille Normandie Niemen
13397 Marseille Cedex 20 (France)

Djamal.Habet@lsis.org

Chu Min Li
MIS

Université de Picardie Jules Verne
Rue de l’Orée du Bois
80000 Amiens (France)
chu-min.li@u-picardie.fr

I. MAJOR SOLVING TECHNIQUES

The following description concerns the two submitted
solvers: relback and relback m. These two solvers are based
on existing implementations of a CDLC like solver. Indeed,
relback is implemented under the glucose solver (without
SatElite formula simplification [1]) and relback m is based
on minisat 2.2 .

In glucose [2] and minisat 2.2 [3], when a conflict is
reached, during the propagation phase of the enqueued literals,
the First Implication Point [4] is used in order to learn a clause
and define a backjumping level.

The main purpose of our solvers is to modify, under some
conditions, this backjumping mechanism. Indeed, we define
a new backtracking scheme based on the distance between
the current empty clause and the decisions involved by this
conflict. Accordingly, the nearest one is selected and the
corresponding level is defined as a backjumping one.

II. PARAMETER DESCRIPTION

We give here the use of the new backtracking scheme in
the two submitted solvers:

1) relback: backtracking according the to nearest decision
variable is applied twice at each luby restart achieved
by the solver. Moreover, each time the weight of the
variables is initialized, the solver authorizes a new
(twice) application of our backtracking scheme.

2) relback m: the application of our backtracking scheme
is more restrictive. Indeed, it is applied only once at the
first conflict reached during each luby restart.

Moreover, we apply the progress saving for polarity variable
selection.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

In both solvers, there is no preprocessing step. The data
structures are strictly similar to the existing ones in minisat
with additional ones to deal with our backtracking scheme.

IV. IMPLEMENTATION DETAIL

1) The programming language used is C++
2) The solvers are based on glucose 2 and minisat 2.2 with

the additional features explained above.

V. SAT CHALLENGE 2012 SPECIFICS

1) The two solvers are submitted in ”Solver Testing
Track” including : Random SAT, Hard Combinatorial
SAT+UNSAT and Application SAT+UNSAT.

2) The used compiler is g++
3) The optimization flag used is ”-O3”. The compilation

options are the same as the used existing solvers.

VI. AVAILABILITY

Our solvers are not yet publicly available.

ACKNOWLEDGMENT

We would like to thank the authors of minisat 2.21 and
glucose2 for making available the source code of their solvers.

REFERENCES

[1] N. E. en and A. Biere, “Effective preprocessing in sat through variable and
clause elimination,” in In proc. SAT?05, volume 3569 of LNCS. Springer,
2005, pp. 61–75.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st international joint conference on
Artificial intelligence, ser. IJCAI’09. Morgan Kaufmann Publishers Inc.,
2009, pp. 399–404.

[3] N. E. en and N. Sörensson, “An extensible sat-solver,” in SAT, 2003, pp.
502–518.

[4] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient
conflict driven learning in a boolean satisfiability solver,” in Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided
design, ser. ICCAD ’01. IEEE Press, 2001, pp. 279–285.

1Available on http://minisat.se/
2Available on http://www.lri.fr/∼simon/

47

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Solver Description of RISS 2.0 and PRISS 2.0
Norbert Manthey

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract—The SAT solver RISS 2.0 and its concurrent paral-
lelization PRISS 2.0 are described in the configuration they have
been submitted to the SAT Challenge 2012.

I. THE SEQUENTIAL SAT SOLVER RISS 2.0

Based on the CDCL procedure, this solver has been im-
plemented as a module based system. The routines for the
decision procedure, the learned clause management, unit prop-
agation, preprocessor and the event heuristics for restart and
removal can be exchanged easily. This style of implementation
comes to a cost, namely the communication overhead among
the components. Whereas plain SAT solver implementations
can alter for example the watched list of the unit propagation
immediately when a clause should be removed, RISS 2.0
has to store this data first, pass it to the unit propagation
module and afterwards this module can execute the wanted
operation. Based on this overhead, the implementation is a
trade-off between providing as many features as possible and
having a good performance on application instances. To still
achieve a high performance, RISS 2.0 is equipped with a strong
preprocessor COPROCESSOR 2.1 [13], which is also be used
during search to simplify the formula and the set of learned
clauses.1

A. Features of RISS 2.0

The main goal if RISS 2.0 is to solve formulas in CNF.
Furthermore, the solver is used as research platform and thus
provides many parameters to enable further techniques. These
techniques are not present in general SAT solvers:
• Enumeration of all solutions of the input formula
• Loading and storing learned clauses of a run
• Searching for a solution with a set of assumed literals
• Passing an initial model to the solver that should be tested

first
Additionally to the named features, RISS 2.0 implements

many deduction techniques on top of CDCL that can be
enabled. Among them there are On-the-fly Self-Subsumption
(OTFSS) [7], Lazy Hyper-Binary-Resolution(LHBR) [3] and
Dominator Analysis [6]. To speed up search, most of the tech-
niques that are available in COPROCESSOR 2.1 can be used
for simplifying the formula during search. The implementation
and handling of data structures and memory accesses is based
on the insights that have been published in [10]. The solver
furthermore uses Blocking Literals introduced in [16] and

1Both the solver and its preprocessor as well as descriptions are available
at tools.computational-logic.org.

Implicit Binary Clauses(e.g. [15]) to speed up unit propagation
and conflict analysis.

The submitted configuration uses the Luby series with a
factor 32 as a restart strategy and a geometric series starting
with 3000 and an increment factor of 1.1 as removal schedule.
The removal is mainly based on the LBD measure [2], but also
short clauses are kept. Both OTFSS and LHBR are enabled.

We started to implemented RISS from scratch in 2009 as a
teaching system in C++. The binary of the tool we provided for
the SAT Challenge has been compiled with the GNU compiler
and the optimization -O3. Although plenty of parameters are
implemented in both RISS 2.0 and its preprocessor automated
parameter setting has not been done yet. This is considered
the next step, because parameter setup is not considered
to be trivial but has high potential to improve the solvers
performance.

B. Features of Coprocessor

The internal preprocessor of RISS 2.0 implements many
simplification techniques, that are executed in the specified
order. Whenever a technique can reduce the formula, the
process is started from the top.

1) Unit propagation
2) Pure literal detection
3) Self-subsuming resolution
4) Equivalence elimination [5]
5) Unhiding [9]
6) Hidden tautology elimination [8]
7) Blocked clause elimination [11]
8) Variable elimination [4]
9) An algorithm based on extended resolution

10) Failed literal probing [12]
11) Clause vivification [14]

Equivalent literal detection is done based on binary clauses and
on output literals of gates in the formula. The algorithm based
on extended resolution to simplify the formula is unpublished,
but submitted for publication. Each technique can be limited
so that the consumed run time remains reasonable. After
preprocessing, COPROCESSOR allows to shrink the formula
so that all assigned or eliminated variables are removed and
the resulting formula contains consecutive variables again.

II. THE PARALLEL SAT SOLVER PRISS 2.0

The SAT solver PRISS 2.0 is a portfolio SAT solver based on
RISS 2.0 and supports up to 64 parallel solver incarnations. Af-
ter using COPROCESSOR on the input formula, n incarnations

48

CP2 MASTER

SOLVER 1

SOLVER 2

CP2 1

CP2 2

F

J

F ′

J ′

J ′1F ′1 L1, E1

J ′2F ′2 L2, E2

F ′, L1, J1

F ′, L2, J2

Fig. 1. Components in the PRISS 2.0 framework

of RISS are started concurrently, where each of the incarnations
uses its own preprocessor to simplify the formula during
search. Learned clauses are shared among the incarnations.
The exchange is filtered both on the sender and the receivers
side. Submitting clauses is based on the length of the clause
and its activity. Whenever the length of a candidate clause is
shorter than the average length since the last restart, the clause
is a candidate to be submitted to the shared storage. Another
criterion is the activity based on the LBD. The reception
of clauses from the storage is based on the same criteria
again. Furthermore, the PSM [1] is used to reject not useful
clauses. In addition to clauses, the RISS incarnations share
informations about equivalent literals, which are found during
search by the simplification methods. Since the simplification
might also add or remove variables from the formula of a
certain thread, only information about common variables is
shared – a clause that contains an eliminated variable will be
rejected by the receiving thread. Based on the current portfolio
implementation, this problem cannot be fixed easily. For the
future it is wanted to integrate the common preprocessor also
as common simplifier, so that all clauses can be shared again.

Figure 1 shows the a pictogram of the components and
their communication. After the input formula F is processed
by the preprocessor, each solver incarnations is started in a
thread with a physical copy of the formula (F ′1 and F ′2).
For inprocessing each solver has its private preprocessor.
Learned clauses and equivalent literals are shared with the
master (e.g. L1 and E1). When a solver finds a solution,
its preprocessor reconstructs eliminated variables, equivalent
variables and literals from blocked clauses. The processed
model is passed back to the master, which stops all other solver
incarnation and also reconstructs the final assignment.

The submitted configuration of the solver uses only 5 cores
out of the 8 available cores. Each incarnation has a slightly
different configuration. The first incarnation uses the default
configuration. The next solver uses permuted trail restarts [17].
The third incarnation keeps 50 % of its learned clause data
based instead of 25 %. The fourth solver uses the PSM value
for removing clauses and bumps variables twice, if they are
used during conflict analysis, are assigned at the conflict

level and if the activity of their reason clause is comparably
high. Finally, the fifth configuration exchanges the VSIDS
heuristic by the VMTF heuristic for variable activities. If
more cores should be used, the next configuration alters the
implementation of the unit propagation by preferring satisfied
literals in clauses to be watched. All further configurations
are similar to the default configuration except the fact that
one percent of their decisions is done randomly to not result
in the same search.

REFERENCES

[1] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar
Saı̈s. On freezing and reactivating learnt clauses. In Proceedings of the
14th international conference on Theory and application of satisfiability
testing, SAT’11, pages 188–200, Berlin, Heidelberg, 2011. Springer-
Verlag.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern sat solvers. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 399–404, San
Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[3] Armin Biere. Lazy hyper binary resolution. In Algorithms and
Applications for Next Generation SAT Solvers, number 09461, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany.

[4] Niklas Eén and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. In In proc. SAT’05, volume 3569 of
LNCS, pages 61–75. Springer, 2005.

[5] Allen Van Gelder. Toward leaner binary-clause reasoning in a satisfia-
bility solver. Ann. Math. Artif. Intell., 43(1):239–253, 2005.

[6] HyoJung Han, HoonSang Jin, and Fabio Somenzi. Clause simplification
through dominator analysis. In DATE, pages 143–148. IEEE, 2011.

[7] Hyojung Han and Fabio Somenzi. On-the-fly clause improvement.
In Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing, SAT ’09, pages 209–222, Berlin,
Heidelberg, 2009. Springer-Verlag.

[8] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause Elimination
Procedures for CNF Formulas. In Christian Fermüller and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, volume 6397 of LNCS, pages 357–371. Springer, 2010.

[9] Marijn Heule, Matti Järvisalo, and Armin Biere. Efficient CNF Sim-
plification based on Binary Implication Graphs. In K.A. Sakallah and
L. Simon, editors, SAT 2011, volume 6695 of LNCS, page 201–215.
Springer, 2011.

[10] Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving
resource-unaware sat solvers. In Christian G. Fermüller and Andrei
Voronkov, editors, LPAR (Yogyakarta), volume 6397 of Lecture Notes
in Computer Science, pages 519–534. Springer, 2010.

[11] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked Clause
Elimination. In Javier Esparza and Rupak Majumdar, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume
6015 of LNCS, pages 129–144. Springer, 2010.

[12] Inês Lynce and João Marques-Silva. Probing-Based Preprocessing
Techniques for Propositional Satisfiability. In Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence,
ICTAI ’03, pages 105–. IEEE Computer Society, 2003.

[13] Norbert Manthey. Coprocessor 2.0 – A flexible CNF Simplifier (Tool
Presentation), 2012. Submitted to SAT 2012.

[14] Cédric Piette, Youssef Hamadi, and Lakhdar Saı̈s. Vivifying propo-
sitional clausal formulae. In 18th European Conference on Artificial
Intelligence(ECAI’08), pages 525–529, Patras (Greece), jul 2008.

[15] Mate Soos. Cryptominisat 2.5.0. In SAT Race competitive event booklet,
July 2010.

[16] Niklas Sörensson and Niklas Eén. MiniSat 2.1 and MiniSat++ 1.0 —
SAT Race 2008 Editions. Technical report, 2008.

[17] Peter van der Tak, Antonio Ramos, and Marijn J.H. Heule. Reusing
the assignment trail in cdcl solvers. Journal on Satisfiability, Boolean
Modeling and Computation, 7:133–138, 2011. system description.

49

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Satisfiability Solver Selector (3S)
Yuri Malitsky∗, Ashish Sabharwal†, Horst Samulowitz†, and Meinolf Sellmann†

∗Brown University, Dept. of Computer Science, Providence, RI 02912, USA
Email: ynm@cs.brown.edu

†IBM Watson Research Center, Yorktown Heights, NY 10598, USA
Email: {ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

The Satisfiability Solver Selector (3S) is a portfolio solver
that dynamically selects and schedules various baseline solvers
depending on the input instance. 3S version 2.1 participated in
the Sequential Portfolio Solvers track of SAT Challenge 2012,
and is built upon a variety of conflict directed clause learning
SAT solvers, lookahead based solvers, and local search solvers.

I. SOLVING TECHNIQUES

3S works in two phases, an offline learning phase, and an
online execution phase.

At Runtime: In the execution phase, as all dynamic solver
portfolios, 3S first computes features of the given problem
instance. In particular, 3S uses a subset of the 48 base features
introduced by Xu et al. [4]. Then, 3S selects k ∈ N instances
that are most “similar” to the given instance in a training
set of SAT instances for which 3S knows all runtimes of all
its constituent solvers. Similarity in 3S is determined by the
Euclidean distance of the (normalized) feature vectors of the
given instance and the training instances. 3S selects the solver
that can solve most of these k instances within the given time
limit (ties are broken by shorter runtime). Finally, 3S first runs
a fixed schedule of solvers for 10% of the time limit and then
runs the selected solver for the remaining 90% of the available
time (cf. [2] for details).

Offline: In the learning phase, which takes place during
the development of the portfolio solver, 3S considers three
tasks:

1) Computation of features and simulation of solvers on
all instances to determine their runtime on all training
instances.

2) Computation of a desirable size k of the local neigh-
borhood of a given instance. To this end, 3S employs
a cross validation by random subsampling. That is,
3S repeatedly splits the training set into a base and a
validation set and determines which size of k results in
the best average validation set performance when using
only the base set training instances to determine the long
running solver.

3) Lastly, 3S computes the fixed schedule of solvers that
are run for roughly 10% of the competition runtime. The
objective when producing this schedule is to maximize
the number of instances that can be solved within this
reduced time limit. Among schedules that can solve the
same maximum number of instances, 3S selects one that
minimizes the runtime of the schedule and then scales

this shorter schedule back to the 10% time limit by
increasing the runtime of each solver in the schedule
proportionally

For more detailed information on the internals of 3S, please
refer to [2].

II. IMPLEMENTATION DETAILS

The main launcher script of 3S is written in Python 2.6.
This script orchestrates launching of solvers and preprocessors,
forwarding of clauses (if turned on), conversion of solutions of
the simplified formulae back to the solutions of the original
formulas, etc. The solver selector/scheduler program, called
‘coach’, is written in C++ and compiled with GNU g++
4.4.5 with options “-O3 -fexpensive-optimizations -static” for
the x86-64 architecture. The preprocessor SatELite [1] was
modified to not map variables numbers and to explicitly
append unit clauses, when possible, for variables it would
have eliminated otherwise. The individual baseline solvers
scheduled by 3S were themselves written mainly in C/C++,
and are listed below.

Baseline Solvers: The portfolio 3S is composed of the
following 38 baseline solvers (proper references omitted due
to lack of space):

1) adaptg2wsat2009
2) adaptg2wsat2009++
3) clasp (ver: 1.3.6-x86-linux)
4) CryptoMinisat (ver: 2.9.0)
5) EagleUP (ver: 1.565.350)
6) ebminisat static (ver: SAT Comp 2011)
7) Glucose static (ver: 2.0)
8) gnovelty+2 (ver: 2.0)
9) gnovelty+2-H (ver: 2.0)

10) hybridGM3
11) kcnfs04SAT07
12) lingeling (ver: 587f)
13) LySATc
14) LySATi (ver: 0.1)
15) march dl2004
16) march hi
17) march nn
18) minisat (ver: 2.2.0)
19) minisat20SAT07 (ver: 2.0 from SAT Comp 2007)
20) mxc-sat09 (ver: SAT Comp 2009)
21) mxc-sr08 (ver: SAT Race 2010)
22) picomus

50

23) picosat (ver: 846)
24) picosat (ver: 936)
25) precosat (ver: 570)
26) SatELite (ver: 2005, modified to not map variables)
27) TNM
28) tts-4-0
29) vallst (ver: 0.9.258)
30) zchaff rand (ver: SAT 2005)
31) zchaff07
32) saps (ver: 1.2.0b)
33) SATensteinAshiFact (ver: 1.1.0tt2)
34) SATensteinAshiCbmc (ver: 1.1.0tt2)
35) SATensteinAshiR3fix (ver: 1.1.0tt2)
36) SATensteinAshiHgen (ver: 1.1.0tt2)
37) SATensteinAshiSwgcp (ver: 1.1.0tt2)
38) SATensteinAshiQcp (ver: 1.1.0tt2)

All training instances are preprocessed with SatELite, ver-
sion 1.0, with default option “+pre” [1], which results in a
total of 76 solvers in our portfolio.

Training Instances: We selected 6, 667 instances from
all SAT Competitions and Races during 2002 and 2010 [3],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 2, 000
seconds (on the hardware used for training).

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The command line used to launch 3S in SAT Challenge
2012 was:

python 3S-2.1.py –scale 1.3 –tmpdir TEMPDIR INSTANCE

The scaling parameter was used to adjust for the difference
in the speed of the Challenge machines and the machines on
which 3S was developed. When used on other machines, this
scaling factor would need to be adjusted.

Fixed Preschedule: As mentioned earlier, 3S runs a fixed
preschedule of solvers for roughly 10% of the total runtime.
The specific preschedule used in SAT Challenge 2012 was:
EagleUP (14 sec), march hi (22 sec), picosat936 (2 sec),
precosat570 (31 sec), TNM (3 sec), tts-4-0 (2 sec), AshiFact
(2 sec), AshiR3fix (2 sec), AshiHgen (2 sec), AshiQcp (2 sec),
and gnovelty+2-H (2 sec).

Note that this pre-schedule is optimized for the competition
timeout of 900 seconds on the competition machines. Execu-
tion with different timeouts or on other machines will likely
result in reduced performance.

After these solvers have run, the ‘coach’ selector schedules
a single long-running solver (in rare cases two such solvers)
for the remainder of the runtime based on the dynamically
computed features of the given instance.

ACKNOWLEDGMENT

The solver presented is a portfolio of existing SAT solvers.
We merely added a front-end that selects and schedules these
solvers intelligently, based on the features of the given SAT
instance. The solver that competes here is thus heavily based
on existing work on “pure” SAT solvers. The authors of these

solvers have invested countless hours into their implemen-
tations. It is their dedication that transforms original ideas
on efficient data structures and very sophisticated algorithmic
methods into practice. These authors have effectively driven
the tremendous advancements that could be achieved over the
past two decades in our ability to solve SAT formulae in
practice. We hereby express our sincere thanks and honest
admiration for their work.

REFERENCES

[1] N. Een, A. Biere. Effective Preprocessing in SAT Through Variable and
Clause Elimination. SAT, pp. 61-75, 2005.

[2] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann.
Algorithm Selection and Scheduling. CP, pp. 454-469, 2011.

[3] SAT Competition 2011. http://www.satcomptition.org.
[4] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown. SATzilla: Portfolio-

based Algorithm Selection for SAT. JAIR, 32(1):565–606, 2008.

Licensed Materials - Property of IBM
Satisfiability Solver Selector (3S) family of solvers
(C) Copyright IBM Corporation 2011-2012
All Rights Reserved

51

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Sat4j 2.3.2-SNAPSHOT SAT solver
Daniel Le Berre

Université Lille - Nord de France, CRIL-CNRS UMR 8188
Université d’Artois, Lens,France

Email: leberre@cril.fr

I. ABOUT THE SAT4J LIBRARY

Sat4j (http://www.sat4j.org/) is an open source library of
boolean satisfaction and optimization engines which aims at
allowing Java programmers to access cross-platform SAT tech-
nology. The Sat4j library started in 2004 as an implementation
in Java of the Minisat specification[1]. It has been developed
since then with the spirit to allow testing various combinations
of features developed in new SAT solvers while keeping the
technology easily accessible to a newcomer. For instance, it
allows the Java programmer to express constraints on objects
and hides all the mapping to the various research community
input formats from the user. Sat4j is more than a solver, it is
a whole library dedicated to SAT technology: it contains SAT,
Pseudo-Boolean, MAXSAT and MUS solvers and many utility
classes to simplify the creation of constraints and provide
efficient CNF translations for some non clausal constraints.
Sat4j is developed using both Java and open source standards:
the project is supported by the OW2 consortium infrastructure
and is released under both the EPL and the GNU LGPL
licenses.

II. ABOUT THE SOLVER SUBMITTED TO THE CHALLENGE

The generic and flexible SAT engine available in Sat4j is
based on the original Minisat 1.x implementation [1]: the
generic conflict driven clause learning engine and the variable
activity scheme have not changed. Most of the key components
of the solver have been made configurable. See [2] for details.
Here are the settings used in the solver submitted to the SAT
challenge 2012.

The rapid restarts strategy used is the in/out one proposed
by Armin Biere in Picosat[3]. We have been using that default
setting in Sat4j since 2007 (Sat4j 1.7).

The conflict clause minimization of Minisat 1.14 (so called
Expensive Simplification)[4] is used at the end of the conflict
analysis. Note that our implementation is a generalized version
of the original minimization procedure from minisat: it works
for other data structures than clauses with watched literals. As
such, it is slightly less efficient than the original one.

When the solver selects a variable to branch on, it uses a
phase selection strategy implementing the lightweight caching
scheme of RSAT[5]. We have been using that default setting
in Sat4j since 2007 (Sat4j 1.7) too. However, a bug has been

Part of this work was supported by Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council and FEDER through the
’Contrat de Projets Etat Region (CPER) 2007-2013’.

introduced in Sat4j 2.0 while refactoring the implementation
of that feature, that ended up forcing the solver to always
branch first on negative literals. We discovered that bug only
a few months ago, because it does not impact the correctness
of the solver. Sat4j 2.3.2 will be the first release of Sat4j 2.x
that fixes such bug.

Finally, the solver keeps derived clause with literals from
few different decision levels as proposed in 2009 award winner
Glucose [6] using the settings “start cleanup at 5000 conflicts
and increase that bound by 1000 conflicts when reached”
provided by Armin Biere.

Note that unlike most other SAT solvers, Sat4j does not use
any preprocessor, because none is currently available in the
library.

III. CONCLUSION

In 2011, a fully equivalent Java implementation of Minisat
2.2 by Carsten Sinz allowed us to compute that a SAT solver
in Java is roughly 3.25 times slower than its counterpart in
C/C++ on the SAT 2009 competition application benchmarks.
Furthermore, Sat4j works on generic constraints, not only
clauses: for that reason, the library makes an heavy use of
polymorphism (late binding). As such, we do not expect Sat4j
to compete with the best solvers. We submitted Sat4j to the
SAT challenge both to allow Sat4j users to have an idea of
the efficiency of Sat4j compared to the state-of-the-art and to
allow us to study the behavior of our solver on new hardware
and benchmarks.

REFERENCES

[1] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Proc.
of SAT’03, 2003, pp. 502–518. [Online]. Available: http://www.math.
chalmers.se/%7Eeen/Satzoo/An Extensible SAT-solver.ps.gz

[2] D. Le Berre and A. Parrain, “The sat4j library, release 2.2 system de-
scription,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 7, pp. 59–64, 2010.

[3] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[4] N. Sörensson and A. Biere, “Minimizing learned clauses,” in Proc. of

SAT’09, 2009, pp. 237–243.
[5] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching

scheme for satisfiability solvers,” in Proc. of SAT’07, 2007, pp. 294–299.
[6] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern

sat solver,” in Proc. of IJCAI’09, jul 2009, pp. 399–404.

52

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Description of Sattime2012
Chu Min LI & Yu LI

MIS, Université de Picardie Jules Verne, France, {chu-min.li, yu.li}@u-picardie.fr

Abstract—This document describes the SAT solver “Sat-
time2012”, a stochastic local search algorithm for SAT exploiting
the satisfying history of the unsatisfied clauses during search to
select the next variable to flip in each step.

I. MAJOR SOLVING TECHNIQUES IN SATTIME2012

Sattime2012 is a SLS solver using a preprocessing to
simplify the input formula by propagating all unit clauses and
detecting all failed literals in the input formula.

II. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

Sattime2012 is the new version of Sattime [1]. It is based
on Novelty+ [2], while Sattime is based on Novelty++ [3].
In addition, we have made some code optimization in Sat-
time2012. Given a SAT instance φ to solve, it first generates a
random assignment and while the assignment does not satisfy
φ, it modifies the assignment as follows:

1) If there are promising decreasing variables, flip the
oldest one;

2) Otherwise, randomly pick an unsatisfied clause c;
3) With probability wp, flip randomly a variable in c;

With probability 1-wp, sort the variables in c according
to their score and consider the best and second best
variables in c (breaking tie in favor of the least recently
flipped one). If the best variable is not the most recent
satisfying variable of c, then flip it. Otherwise, with
probability p, flip the second best variable, and with
probability 1-p, flip the best variable.

The score of a variable is the decrease of the number of
unsatisfied clauses in φ if the variable is flipped. A satisfying
variable of a clause is the variable whose flipping made the
clause from unsatisfied to satisfied. The promising decreasing
variable was defined in [3]. Probability p is adapted according
to the improvement in the number of unsatisfied clauses during
search according to [4], and wp=p/10.

In Novelty [5], Novelty+ and Novelty++, when the best
variable is not the most recently flipped in c, it is flipped.
Otherwise the second best variable in c is flipped with prob-
ability p and the best variable is flipped with probability 1-p.
Since c is unsatisfied, the most recently flipped variable in c
is necessarily the last falsifying variable whose flipping made
c from satisfied to unsatisfied. Sattime2012 is different from
Novelty, Novelty+ and Novelty++ in that it considers the last
satisfying variable instead of the last falsifying one in c. Note
that the last satisfying variable in c is not necessarily the most
recently flipped in c. The intuition of Sattime2012 is to avoid
repeatedly satisfying c using the same variable.

III. PARAMETER DESCRIPTION

There are two parameters used in Hoo’s adaptive noise
mechanism in Sattime2012, Φ and Θ, used to specify the
noise variation in each noise adapting and the maximum
length of a period in which the noise is not adapted. In
Sattime2012 submitted for the challenge, Φ=10 and Θ=5.
The two parameters do not depend on instance properties.
The performance of Sattime2012 is not very sensitive to the
variation in the value of these parameters.

Other parameters include: -cutoff a, -tries b, -seed c, allow-
ing to run b times Sattime2012 for at most a steps each time,
the random seed of the first run being c.

IV. IMPLEMENTATION DETAIL

Sattime2012 is implemented in C and is based on g2wsat
[3].

V. SAT CHALLENGE 2012 SPECIFICS

Sattime2012 is submitted to three tracks in the challenge:
satisfiable random SAT, SAT+UNSAT hard combinatorial and
SAT+UNSAT industrial. Because of the preprocessing, Sat-
time2012 may prove the unsatisfiability of an instance.

Two binaries of Sattime2012 were submitted to the chal-
lenge.
sattime2012 is a 64 bit binary obtained using

gcc -O3 -DNDEBUG -fno-strict-aliasing -m64
sattime2012.c -o sattime2012

sattime2012b32 is a 32 bit binary obtained using

gcc -O3 -DNDEBUG -fno-strict-aliasing -m32
sattime2012.c -o sattime2012b32

Sattime2012 should be called in the challenge using

sattime2012 input-instance -seed RANDOMSEED

In the challenge, Sattime2012 will run until a contradiction
is found (by the preprocessing), or a solution is found, or the
cutoff time is reached. The code source of Sattime2012 is not
yet available, but it will be.

REFERENCES

[1] C. M. LI and Y. LI, “Satisfying versus falsifying in local search for
satisfiability,” in Proceedings of SAT-2012, to appear. Springer, 2012.

[2] H. Hoos, “On the run-time behavior of stochastic local search algorithms
for sat,” in Proceedings of AAAI-99, 1999, pp. 661–666.

[3] C. M. Li and W. Q. Huang, “Diversification and Determinism in Local
Search for Satisfiability,” in Proceedings of SAT2005, 2005, pp. 158–172.

[4] H. Hoos, “An adaptive noise mechanism for walksat,” in Proceedings of
AAAI-02. AAAI Press / The MIT Press, 2002, pp. 655–660.

[5] D. McAllester, B. Selman, and H. Kautz, “Evidence for invariant in local
search,” in Proceedings of AAAI-97, 1997, pp. 321–326.

53

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

satUZK: Solver Description
Alexander van der Grinten∗, Andreas Wotzlaw∗, Ewald Speckenmeyer∗, Stefan Porschen†

∗Institut für Informatik
Universität zu Köln, Pohligstr. 1, D-50969 Köln, Germany
Email: {vandergrinten,wotzlaw,esp}informatik.uni-koeln.de

†Fachgruppe Mathematik, FB4
HTW-Berlin, Treskowallee 8, D-10318 Berlin, Germany

Email: porschen@htw-berlin.de

I. SOLVER DESCRIPTION

satUZK is a conflict-driven clause learning solver for the
boolean satisfiability problem (SAT). It is written in C++ from
scratch and aims to be flexible and easily extendable.

In addition to the standard DPLL [1] algorithm with clause
learning the solver is able to perform various preprocessing
and inprocessing techniques.

A. Preprocessing

We implemented SatELite-like variable elimination and self-
subsumption [2], unhiding [3], a distillation technique similar
to the one presented in [4], blocked clause elimination [5], and
variable probing to detect failed literals, equivalent literals, and
literals that must be true in every model.

The preprocessing starts with unhiding, followed by self-
subsumption and variable probing in order to fix some vari-
ables and increase the number of literals that can be propagated
by binary constraint propagation (BCP).

After that the size of the formula is reduced by blocked
clause elimination and SatELite-like variable elimination.
These techniques can reduce the reasoning power of BCP and
that is why they are scheduled after the previous preprocessing
steps.

Preprocessing generally tries to eliminate 0.5% of the re-
maining variables in 1% of the available time. All preprocess-
ing techniques are repeated until the number of variables that
are affected by each simplification pass becomes too low or a
limit of 10% of the time budget is reached. The available time
must be specified to the solver with a command-line parameter
-budget <time in sec>.

By default, the preprocessing phase is disabled
and can be activated with a command-line parameter
-preproc-adaptive.

B. Search

The data structures required for BCP are implemented in
the same way as in MiniSAT 2.2 [6]. Binary clauses are stored
in a separate watch list.

We are using the standard 1-UIP [1] learning scheme
together with conflict clause minimization and the VSIDS
decision heuristic with phase saving.

For learned clause deletion the solver can use a MiniSAT-like
learned clause deletion strategy or a more aggressive literal

blocks distance based deletion strategy [7]. The first strategy
is the default one, whereas the latter one can be enabled
with command-line parameters -clause-red-agile

-restart-glucose -learn-minimize-glucose

-learn-bump-glue-twice.
Both Luby restarts and glucose-like dynamic restarts are

implemented [7].

C. Inprocessing

The DPLL procedure is interleaved with inprocessing steps
that perform unhiding, variable probing and distillation. These
techniques do not require literal occurrence lists and thus they
can be integrated into the search without great performance
overheads.

Variable probing and distillation is only applied to the most
active variables and clauses.

At most 10% of the available time is used for inprocessing.

II. SAT CHALLENGE 2012 SPECIFICS

For the challenge in tracks ”Hard Combinatorial
SAT+UNSAT” and ”Application SAT+UNSAT” we have
submitted three parametrized versions of our solver, started
with the following commands:
• satUZK: satUZK -budget 900 -preproc-adaptive

-show-model <cnf instance>

• satUZKg: satUZK -budget 900 -show-model

-preproc-adaptive -clause-red-agile

-restart-glucose -learn-minimize-glucose

-learn-bump-glue-twice <cnf instance>

• satUZKs: satUZK_wrapper satUZK -budget 900

-preproc-adaptive <cnf instance>

The last solver uses first SatELite [2] for preprocessing of the
input instance before the satUZK solver is called.

All three solvers have been submitted both as precompiled
(with gcc 4.4.3 and -O3) and statically linked 64-bit binaries
as well as sources written in C++.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and Applications,
2009.

[2] N. Eén and A. Biere, “Effective preprocessing in sat through variable and
clause elimination,” in Proceedings of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2005), ser. Lecture
Notes in Computer Science, vol. 3569, 2005, pp. 61–75.

54

[3] M. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification based
on binary implication graphs,” in Proceedings to the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2011), ser. Lecture Notes in Computer Science, vol. 6695, 2011, pp.
201–215.

[4] H. Han and F. Somenzi, “Alembic: An efficient algorithm for cnf
preprocessing,” in Proceedings of the 44th Design Automation Conference
(DAC 2007), 2007, pp. 582–587.

[5] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2010),
ser. Lecture Notes in Computer Science, vol. 6015, 2010, pp. 129–144.

[6] N. Eén and N. Sörensson, “Minisat 2.2.” [Online]. Available:
http://minisat.se/downloads/minisat-2.2.0.tar.gz

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 2009, pp. 399–404.

55

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Parallel SAT Solver SatX10-EbMiMiGlCiCo 1.0
Bard Bloom, David Grove, Benjamin Herta, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat

IBM Watson Research Center, NY, USA
Email: {bardb,groved,bherta,ashish.sabharwal,samulowitz,vsaraswa}@us.ibm.com

SatX10-EbMiMiGlCiCo is the first instantiation of a par-
allel SAT solver built using the SatX10 framework [2].
The SatX10 framework is based on the X10 programming
language designed specifically for programming on multi-core
and clustered systems easily [8]. The framework provides
various facilities to conveniently run algorithms (here SAT
solvers) in parallel, along with a communication infrastructure.

Version 1.0 of this solver participated in the Parallel Solvers
track of SAT Challenge 2012.

I. SOLVING TECHNIQUES

SatX10-EbMiMiGlCiCo, as its long name suggests, is
composed of 6 distinct MiniSat-based conflict directed clause
learning SAT solvers:

1) EB MiniSat [5]
2) Circuit MiniSat [3]
3) Contra MiniSat [4]
4) Glucose 2.0 [1]
5) Minisat 2.0 [7]
6) Minisat 2.2.0 [6]
The X10 framework is used to both launch multiple solvers

and to enable communication of information between them.
In the current configuration, every solver sends all learned
clauses of a fixed maximum length to all other solvers, which
incorporate these clauses either during their search or at restart
points. Thus, information is shared using an implicit clique
topology. Note that in general the communication amount,
frequency, as well as network structure can take arbitrary form
in SatX10.

As a large number of solvers running in parallel can
sometimes take up prohibitive amounts of memory, the number
of solvers launched is decided following a simple static rule
based on the number of clauses of the input formula and can
vary anywhere from 1 to 8.

II. IMPLEMENTATION DETAILS

The solver SatX10-EbMiMiGlCiCo is built using the
SatX10 framework [2], heavily utilizing the mechanisms it
provides for incorporating new solvers and sharing infor-
mation amongst solvers. The version of the X10 language
used was 2.2.2 and information sharing performed using
TCP/IP sockets backend of X10. Each individual SAT solver
is embedded in the parallel solver at the source code level,
which was modified appropriately to adhere to the require-
ments of the SatX10 framework. The solvers themselves
were compiled into object files using GNU g++ 4.4.5 us-
ing option “-O3” and then linked into the C++ backend

of X10. The flags used for the compiler x10c++ were “-
STATIC CHECKS -NO CHECKS -O”. The resulting single
binary executable is then launched with environment variable
X10 NTHREADS set to 1, X10 STATIC THREADS set to
true, and X10 NPLACES set to the desired number of solvers
to launch. (The same executable can be used to run the
solver on multiple machines as well, by specifying a list of
hostnames.) The amount of clause sharing is controlled with a
parameter specifying the maximum length upto which clauses
are shared with other solvers.

III. SAT CHALLENGE 2012 SPECIFIC DETAILS

The parallel solver is launched in SAT Challenge 2012 using
a Bash wrapper script called runSatX10.sh. The script decides
whether to launch 8, 7, 6, 5, 4, 3, 2, or 1 solver(s) based on
whether the CNF header in the formula reports at most 8M,
12M, 16M, 20M, 24M, 29M, 33M, or more clauses, resp. All
solvers are launched with the parameter -verb=0. Solvers
Glucose 2.0 and EB MiniSat are also deployed with a
second configuration for each, namely, -phase-saving=1
-no-luby and -rcheck, resp. Clauses of maximum length
10 are shared with other solvers.

ACKNOWLEDGMENT

We express sincere thanks to the developers of the various
SAT solvers whose source code served as the baseline for
integration into SatX10.

REFERENCES

[1] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
SAT solvers. IJCAI, 399–404, 2009.

[2] B. Bloom and D. Grove and B. Herta and A. Sabharwal and H. Samu-
lowitz and V. Saraswat. SatX10: A Scalable Plug&Play Parallel Solver
(Tool paper). SAT, 2012.

[3] Circuit Minisat Solver Description. SAT Competition 2011.
[4] Contrasat Solver Description. SAT Competition 2011.
[5] EBMinisat Solver Description. SAT Competition 2011.
[6] N. Een and N. Sorensson An Extensible SAT-solver [ver 2.0]

http://www.minisat.se.
[7] N. Een and N. Sorensson An Extensible SAT-solver [ver 2.2.0]

http://www.minisat.se.
[8] Saraswat, Vijay and Bloom, Bard and Peshansky, Igor and Tardieu,

Olivier and Grove, David Report on the Experimental Language, X10.
Technical Report,http://x10-lang.org/, 2011.

Licensed Materials - Property of IBM
SatX10
(C) Copyright IBM Corporation 2011-2012
All Rights Reserved

56

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

SATzilla2012: Improved Algorithm Selection Based on
Cost-sensitive Classification Models

Lin Xu, Frank Hutter, Jonathan Shen, Holger H. Hoos and Kevin Leyton-Brown
Computer Science Dept., University of British Columbia

Vancouver, BC, Canada
{xulin730, hutter, jonshen, hoos, kevinlb}@cs.ubc.ca

1 Introduction

Empirical studies often observe that the performance of
different algorithms across problem instance distribu-
tions can be quite uncorrelated. When this occurs, there
is an incentive to investigate the use of portfolio-based
approaches that draw on the strengths of multiple algo-
rithms. SATzilla is such a portfolio-based approach for
SAT; it was first deployed in the 2003 and 2004 SAT
competitions [5], and later versions won a number of
prizes in the 2007 and 2009 SAT competitions [10, 8, 11],
including gold medals in the random, crafted and appli-
cation categories in 2009.

Different from previous versions of SATzilla, which
utilized empirical hardness models [4, 6] for estimating
each candidate algorithm’s performance on a given SAT
instance, SATzilla2012 is based on cost-sensitive clas-
sification models [7]. We also introduced a new proce-
dure that generates a stand-alone SATzilla executable
based on models learned within Matlab. Finally, we used
new component algorithms and training instances.

Overall, SATzilla2012 makes use of the same
methodology as described in [9].

Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.
2. Select a set of candidate solvers that are known or

expected to perform well on at least a subset of the
instances in the target distribution.

3. Use domain knowledge to identify features that
characterize problem instances. To be usable effec-
tively for automated algorithm selection, these fea-
tures must be related to instance hardness and rela-
tively cheap to compute.

4. On a training set of problem instances, compute
these features and run each solver to determine its
running times. We use the term performance score
to refer to the quantity we aim to optimize.

5. Automatically determine the best-scoring combina-
tion of pre-solvers and their corresponding perfor-
mance score. Pre-solvers will later be run for a short
amount of time before features are computed (Step
2 below), in order to ensure good performance on

very easy instances and to allow the predictive mod-
els to focus exclusively on harder instances.

6. Using a validation data set, determine which solver
achieves the best performance for all instances that
are not solved by the pre-solvers and on which the
feature computation times out. We refer to this
solver as the backup solver.

7. New: Construct a classification model (decision
forest, DF) for predicting whether the cost of com-
puting feature is too expensive, given the number of
variables and clauses in an instance.

8. New: Construct a cost-sensitive classification
model (DF) for every pair of solvers in the portfolio,
predicting which solver performs better on a given
instance based on instance features.

9. Automatically choose the best-scoring subset of
solvers to use in the final portfolio.

Then, online, to solve a given problem instance, the
following steps are performed:

1. Predict whether the feature computation time is
above 90 CPU seconds. If the feature computa-
tion is too costly, run the backup solver identified in
Step 6 above; otherwise continue with the following
steps.

2. Run the presolvers in the predetermined order for
up to their predetermined fixed cutoff times.

3. Compute feature values. If feature computation can-
not be completed due to an error, select the backup
solver identified in Step 6 above; otherwise continue
with the following steps.

4. For every pair of solvers, predict which solver per-
forms better using the DF trained in Step 8 above,
and cast a vote for it.

5. Run the solver that received the highest number of
votes. If a solver fails to complete its run (e.g.,
it crashes), run the solver with the second-highest
number of votes. If that solver also fails, run the
backup solver.

1

57

2 SATzilla2012 vs SATzilla2009
SATzilla2012 implements a number of improvements
over SATzilla2009.

New algorithm selector. Our new selection procedure
uses an explicit cost-sensitive loss function—punishing
misclassifications in direct proportion to their impact on
portfolio performance—without predicting runtime. We
introduced this approach in [12, 9]. To the best of our
knowledge, this is the first time this approach is applied
to algorithm selection: all other existing classification ap-
proaches use a simple 0–1 loss function that penalizes
all misclassifications equally, whereas previous versions
of SATzilla used regression-based runtime predictions.
We construct cost-sensitive DFs as collections of 99 cost-
sensitive decision trees [7], following standard random
forest methodology [2].

New SATzilla executable. Our SATzilla version
used in [9] was based on classification models built in
Matlab, and its execution required the installation of
the free Matlab runtime environment (MRE). In order
to avoid the need for installing MRE, we now con-
verted our Matlab-built models to Java and provide Java
code to make predictions using them. Thus, running
SATzilla2012 now only requires the scripting lan-
guage Ruby (which is used for running the SATzilla

pipeline).

New component algorithms and training in-
stances. We updated the component solvers used
in SATzilla2009 with the 31 newest publicly-available
SAT solvers. These include 28 solvers from [9], the
two versions of Spear optimized for software and
hardware verification in [3], and MXC 0.99 [1] (the list
of solvers can also be found in the execution script of
SATzilla2012).

Our training set is based on a collection of SAT
instances that includes all instances from all three
SAT competitions and three SAT Races since 2006:
1362 instances for Random SAT, 767 instances for
Crafted SAT+UNSAT, and 1167 instances for Applica-
tion SAT+UNSAT. We droppped instances that could not
be solved by any of our 31 solvers within 900 CPU sec-
onds. For training a general version of SATzilla2012
that works well across categories, we used 1614 in-
stances: 538 randomly sampled instances from each of
Crafted, Application, and Random (SAT+UNSAT).

3 Running SATzilla2012
We submit a package containing one main executable for
SATzilla2012 that can be customized for each of the
four categories in the 2012 SAT challenge by an input

parameter. The callstring for SATzilla2012 is:
ruby SATzilla12.rb <type> <cnf file>,
where <type> should be chosen as INDU for
target category Application SAT+UNSAT, HAND
for Hard Combinatorial SAT+UNSAT, RAND for
Random SAT, and ALL for the Special Track for
Sequential Portfolio Solvers. The source code
of SATzilla2012 is available online at http:

//www.cs.ubc.ca/labs/beta/Projects/SATzilla.
In order to run properly, subdirectory bin should
contain all binaries for SATzilla’s component solvers
and its feature computation; subdirectory models

should contain all models for algorithm selection and
predicting the cost of feature computation. We note that
SATzilla2012 has an optional 3rd input parameter
<seed> that will be forwarded to any randomized
component solver it runs; by default, that seed is set to
1234.

References
[1] D. R. Bregman. The SAT solver MXC, version 0.99. Solver

description, SAT competition 2009, 2009.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[3] F. Hutter, D. Babić, H. H. Hoos, and A. J. Hu. Boosting Verifi-
cation by Automatic Tuning of Decision Procedures. In Proc. of
FMCAD’07, pages 27–34, 2007.

[4] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of combi-
natorial auctions. In Proc. of CP-02, pages 556–572, 2002.

[5] E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-Brown, and
H. Hoos. SATzilla: An algorithm portfolio for SAT, 2004.

[6] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and
Y. Shoham. Understanding random SAT: Beyond the clauses-
to-variables ratio. In Proc. of CP-04, pages 438–452, 2004.

[7] K. M. Ting. An instance-weighting method to induce cost-
sensitive trees. IEEE Trans. Knowl. Data Eng., 14(3):659–665,
2002.

[8] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla2009:
an Automatic Algorithm Portfolio for SAT. Solver description,
SAT competition 2009, 2009.

[9] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Evaluating
component solver contributions to algorithm selectors. In Proc. of
SAT 2012, 2012. Under review.

[10] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla2007:
a new & improved algorithm portfolio for SAT. Solver descrip-
tion, SAT competition 2007, 2004.

[11] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla:
portfolio-based algorithm selection for SAT. Journal of Artificial
Intelligence Research, 32:565–606, June 2008.

[12] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Hydra-
MIP: Automated algorithm configuration and selection for mixed
integer programming. In RCRA workshop on Experimental Eval-
uation of Algorithms for Solving Problems with Combinatorial
Explosion at the International Joint Conference on Artificial In-
telligence (IJCAI), 2011.

2

58

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

SimpSat 1.0 for SAT Challenge 2012
Cheng-Shen Han and Jie-Hong R. Jiang

Department of Electrical Engineering / Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan

{hankf4@gmail.com, jhjiang@cc.ee.ntu.edu.tw}

I. INTRODUCTION

Recent research on Boolean satisfiability (SAT) reveals
modern solvers’ inability to handle formulae in the abundance
of parity (XOR) constraints. To overcome this limitation,
SIMPSAT [1] integrates SAT solving tightly with Gaussian
elimination in the style of Dnatzing’s simplex method. SIMP-
SAT aims to achieve fast and complete detection of XOR-
inferred implications and conflicts. It was implemented in the
C++ language based on CRYPTOMINISAT 2.9.2 [2], [3], which
is a successful CDCL SAT solver equipped with state-of-the-
art solving techniques. A C++ compiler and GNU make are
applied to build and compile the codes for 64-bit machines.

II. SATISFIABILITY SOLVING UNDER XOR CONSTRAINTS

Similar to other modern SAT solvers, SIMPSAT adopts the
conflict-driven clause learning (CDCL) mechanism. Figure 1
sketches the pseudo code, where lines 2 and 13-16 are inserted
for special XOR-handling. SIMPSAT extracts XOR-clauses from
a set of regular clauses, similar to CRYPTOMINISAT. A set
of m XOR-clauses over n variables ~x = {x1, . . . , xn} can be
considered as a system of m linear equations over n unknowns.
Hence the XOR-constraints can be represented in a matrix form
as A~x = ~b, where A is an m × n matrix and ~b is an m × 1
constant vector of values in {0, 1}.

In line 2, XOR-clauses are extracted from the input formula
φ. Let A~x = ~b be a system of linearly independent equations
derived from these XOR-clauses. Then M = [A|~b]. If M is
empty, lines 13-16 take no effect and the pseudo code works
same as the standard CDCL procedure. On the other hand,
when M contains a non-empty set of linear equations, the
procedure Xorplex in line 13 deduces implications or conflicts
whenever exist from M with respect to a given variable
assignment α. In the process, matrix M may be changed along
the computation. When implication (or propagation) happens,
α is expanded to include newly implied variables. If any
implication or conflict results from Xorplex, in line 15 essential
information is added to φ in the form of learnt clauses, which
not only reduces search space but also facilitates future conflict
analysis.

III. XOR REASONING

The efficacy of XOR-handling in the pseudo code of Figure 1
is mainly determined by the procedure Xorplex. In essence,
two factors, deductive power and computational efficiency,
need to be considered in realizing Xorplex.

SimpSat
input: Boolean formula φ
output: SAT or UNSAT
begin
01 α := ∅;
02 M := ObtainXorMatrix(φ);
03 repeat
04 (status, α) := PropagateUnitImplication(φ, α);
05 if status = conflict
06 if conflict at top decision level
07 return UNSAT;
08 φ := AnalyzeConflict&AddLearntClause(φ, α);
09 α := Backtrack(φ, α);
10 else
11 if all variables assigned
12 return SAT;
13 (status, α) := Xorplex(M , α);
14 if status = propagation or conflict
15 φ := AddXorImplicationConflictClause(φ, M , α);
16 continue;
17 α := Decide(φ, α);
end

Fig. 1. Algorithm: SIMPSAT

The following example motivates SIMPSAT’s adoption of
Gauss-Jordan elimination, rather than Gaussian elimination as
used in CRYPTOMINISAT.

Example 1: Consider the following matrix triangularized by
Gaussian elimination.

[A|~b] =




1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1




No implication can be deduced from it. With Gauss-Jordan
elimination, however, it is reduced to the following diagonal
matrix.

[A′|~b′] =




1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 1 1




The values of the first three variables can be determined
from the four equations. Therefore Gaussian elimination is
strictly weaker than Gauss-Jordan elimination in detecting
implications and conflicts.

We extend the two-literal watching scheme in unit propaga-
tion to incremental Gauss-Jordan elimination in a way similar

59

to the simplex method to support lazy update. Consequently,
Xorplex can be implemented efficiently and has complete
power deducing implications and conflicts whenever exist.

In the simplex method, the variables of the linear equations
A~x = ~b are partitioned into m basic variables and (n −m)
nonbasic variables assuming that the m×(n+1) matrix [A|~b]
is of full rank and m < n. Matrix [A|~b] is diagonalized to
[I|A′|~b′], where I is an m ×m identity matrix and A′ is an
m × (n −m) matrix, by Gauss-Jordan elimination such that
the m basic and (n−m) nonbasic variables correspond to the
columns of I and A′, respectively. Note that diagonalizing
[A|~b] to [I|A′|~b′] may incur column permutation, which is
purely for the ease of visualization to make the columns
indexed by the basic variables adjacent to form the identity
matrix. In practice, such permutation is unnecessary and not
performed. By the simplex method, a basic variable and a non-
basic variable may be interchanged in the process of searching
for a feasible solution optimal with respect to some linear
objective function. The basic variable to become nonbasic
is called the leaving variable, and the nonbasic variable to
become basic is called the entering variable. Although the
simplex method was proposed for linear optimization over
the reals, the matrix operation mechanism works for our
considered XOR-constraints, i.e., linear equations over GF(2).

To equip complete power in deducing implications and
conflicts, procedure Xorplex of Figure 1 maintains M |α, the
induced matrix M of linear equations subject to some truth
assignment α on variables, in a reduced row echelon form.
Since Xorplex is repeatedly applied under various assignments
α during SAT solving, Gauss-Jordan elimination needs to be
made fast. A two-literal watching scheme is proposed to make
incremental update on M in a lazy fashion, thus avoiding
wasteful computation. Essentially, the following invariant is
maintained for M at all time.

Invariant:
For each row r of M = [A|~b], two non-assigned
variables are watched. Particularly, the first watched
variable (denoted w1(r)) must be a basic variable and
the second watched variable (denoted w2(r)) must be
a nonbasic variable.

When the two watched variables of some row in M are
non-assigned, no action needs to be taken on this row for
Gauss-Jordan elimination. On the other hand, actions need
to be taken to maintain the invariant for the following two
cases. Firstly, when variable w2(r) is assigned, another non-
assigned nonbasic variable in row r is selected as the new
second watched variable. No other rows are affected by this
action. Secondly, when w1(r) is assigned and thus becomes
the leaving variable, a non-assigned nonbasic variable in row
r needs to be selected as the entering variable. The column
c of the entering variable then undergoes the pivot operation,
which performs row operations (additions) forcing all entries
of c to be 0 except for the only 1-entry appearing at row r.
Note that the pivot operation may possibly cause the vanishing
of variable w2(r

′) from another row r′. In this circumstance

a new non-assigned nonbasic variable needs to be selected for
the second watched variable in row r′, similar to the required
action when w2(r

′) is assigned.
When the invariant can no longer be maintained on some

row r of M under α, either of the following two cases
happens. Firstly, all variables of r are assigned. In this case
the linear equation of r is either satisfied or unsatisfied. For
the former, no further action needs to be applied on r; for
the latter, Xorplex returns the detected conflict. Secondly, only
variable w1(r) (respectively variable w2(r)) is non-assigned.
In this case, the value of w1(r) (respectively w2(r)) is implied.
Accordingly, α is expanded with w1(r) (respectively w2(r))
assigned to its implied value.

Upon termination, procedure Xorplex leads to one of the
four results: 1) propagation, 2) conflict, 3) satisfaction, and 4)
indetermination. Only the first two cases yield useful infor-
mation for CDCL SAT solving. The information is provided
by procedure AddXorImplicationConflictClause in line 15 of
the pseudo code in Figure 1. In the propagation case, the
corresponding rows in M that implications occur are converted
to learnt clauses. In the conflict case, the conflicting row in
M is converted to a learnt clause.

IV. CONCLUSIONS

Boolean satisfiability solving integrated with Gauss-Jordan
elimination can be powerful in solving hard real-world in-
stances involving XOR-constraints. With two-variable watching
and simplex-style matrix update, Gauss-Jordan elimination
can be made fast for complete detection of XOR-inferred
implications and conflicts.

REFERENCES

[1] C.-S. Han and J.-H. R. Jiang. When Boolean Satisfiability Meets Gaussian
Elimination in a Simplex Way. To appear in Proc. Int’l Conf. on Computer
Aided Verification (CAV), 2012.

[2] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to
cryptographic problems. In Proc. Int’l Conf. on Theory and Applications
of Satisfiability Testing (SAT), 2009.

[3] M. Soos. Enhanced Gaussian elimination in DPLL-based SAT solvers. In
Proc. Pragmatics of SAT, 2010.

60

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

SINN
Takeru Yasumoto

Kyushu University, Japan
yasumoto.kyushu@gmail.com

I. I NTRODUCTION

SINN is based on MiniSat2.2[1]. The SINN system employs
Phase Shift that integrates different search methods, SAFE
LBD for keeping better learnt clauses, TLBD which is a kind
of LBD and two restart strategies: Luby Restart and freqRST
Restart.

II. PHASE SHIFT

Phase Shift integrates different search methods. The solver
goes through two or more phases in its search. Each phase
has a limited duration and the solver changes phases when
the number of restarts reaches the limit. SINN has two phases
called Luby Phase and freqRST Phase. Luby Phase uses Luby
restart as its restart strategy and RHPolicy for determining the
number of learnt clauses that will be deleted. freqRST Phase
uses a frequent restart strategy and RQPolicy as a method to
delete learnt clauses.

A. Luby Phase

1) Luby Restart:Luby Restart in SINN is the same as that
in MiniSat2.2.

2) RHPolicy: The solver deletes the first half of learnt
clauses at deletion time. This policy is based on MiniSat2.2
but SINN will not delete more than half of learnt clauses like
MiniSat.

B. freqRST Phase

1) freqRST Restart:freqRST Restart is a static restart
strategy. The solver restarts every 50 conflicts.

2) RQPolicy: The solver deletes 3 quarters of learnt clauses
at deletion time. This policy is based on GlueMiniSat2.2.5[3].

III. TLBD

True LBD, TLBD for short, is a kind of LBD[2]. TLBD
is different from LBD in the manner of updating its value.
TLBD ignores literals assigned at level 0.

A. NTLBD

Newest TLBD, NTLBD for short, is a kind of TLBD.
NTLBD takes the latest TLBD of a learnt clause.

B. LTLBD

Lowest TLBD, LTLBD for short, is also a kind of TLBD.
LTLBD takes the best NTLBD of a learnt clause so far.

IV. SAFE LBD

Safe LBD is a criterion for freezing learnt clauses. When
a learnt clause is about to be deleted, if its LTLBD is lower
than SAFE LBD, it will not be deleted but be detached and
kept for possible activation in the future.

ACKNOWLEDGMENT

I wish to express my gratitude to Mr. Hasegawa, Mr. Fujita,
Mr. Koshimura for valuable advices and comments. And I wish
to thank Mr. Okugawa for his assistant.

REFERENCES

[1] N. Eén and N. S̈orensson. An extensible SAT-solver. In proceedings of
SAT, pages 502-518, 2003.

[2] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In proceedings of IJCAI, 2009.

[3] Hidetomo NABESHIMA, Koji IWANUMA, KAtsumi INOUE. GLUEM-
INISAT2.2.5 , SAT 2011 competition System Description.

61

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Splitter – a Scalable Parallel SAT Solver Based on
Iterative Partitioning

Antti E. J. Hyvärinen
Aalto University

Department of Information and Computer Science
PO Box 15400, FI-00076 AALTO, Finland

antti.hyvarinen@aalto.fi

Norbert Manthey
Knowledge Representation and Reasoning Group

Technische Universität Dresden, 01062 Dresden, Germany
norbert@janeway.inf.tu-dresden.de

Abstract—This document briefly describes the SAT solver
SPLITTER in the configuration it has been submitted to the SAT
Challenge 2012. SPLITTER is a search space splitting solver based
on iterative partitioning.

I. THE BASIC DESIGN OF SPLITTER

The implementation of SPLITTER [3] is based on
MINISAT 2.2 [6], [5]. MINISAT 2.2 has been extended with
a component that takes care of handling multiple incarnations
of the solver in the multi-core environment. This component,
called master, furthermore maintains a tree with the initial
formula as root. Each node of this tree represents a sub
formula that has been created by splitting the parent node.
To create child nodes, a thread is created to split the formula
into sub formulas. Depending on the available nodes that need
to be solved, the master assigns available resources either for
splitting another node or to solve a sub formula. For both of
these tasks time limits are set, so that a working thread might
be aborted if its current formula seems to be too hard to be
solved. The splitting timeout is multiplied with the numbers
of sub formulas that should be created during splitting a node.
Thus, the time to create a single node is the same for each
node. When a working thread has finished its task, learned
unit clauses are attached to the currently handled node. These
unit clauses can be used by threads that solve nodes in the
sub tree of that node to prune their search space further.

II. SPLITTING A FORMULA

A formula is split into sub formula by iterative parti-
tioning [2]. The Iterative Partitioning Approach is based on
solving a hierarchical partition tree in a breadth-first order.
Given a formula φ, iteratively constructed derived formulas
can be presented by a partition tree Tφ. Each node νi is
labeled with a set of clauses Co(νi) so that the root ν0
is labeled with Co(ν0) = φ, and given a node νk and a
rooted path ν0, . . . , νk−1 to its parent, the label of νk is
Co(νk) = κi, where κi is one of the constraints given
by P (

∧k−1
j=0 Co(νj), n). Each node νk with a rooted path

ν0, . . . , νk represents the formula φνk =
∧k
i=0 Co(νi). For

creating new nodes we use the scattering approach as in [2].
Solving is attempted for each φνk in the tree in a breadth-first
order. The approach terminates if a satisfying assignment is

found, or all rooted paths to the leaves contain a node νj such
that φνj is shown unsatisfiable.

III. THE SOLVER CONFIGURATION

Since the implementation of MINISAT 2.2 is very close
to GLUCOSE 2 [1], but GLUCOSE 2 performed better during
recent competitions, we decided to adapt the modifications of
GLUCOSE 2 into our solver. We set the time limit for solving
is set to 15 seconds, and the time limit for creating a single sub
formula is set to two seconds. These values are quite small,
but we want to ensure that a large part of the search tree is
visited within the 900 seconds timeout. The number of used
threads is set to 8.

Before the parallel solver is started, the formula is given
to the preprocessor COPROCESSOR 2.1 [4] with its default
configuration.

The solver is implemented in C++and compiled with the gnu
compiler as 64 bit binary by using the -O3 flag1.

REFERENCES

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern sat solvers. In Proceedings of the 21st international jont confer-
ence on Artifical intelligence, IJCAI’09, pages 399–404, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[2] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning
SAT instances for distributed solving. In Proc. LPAR-17, volume 6397,
pages 372–386, 2010.

[3] Antti E. J. Hyvärinen and Norbert Manthey. Designing scalable parallel
sat solvers, 2012. Submitted to SAT 2012.

[4] Norbert Manthey. Coprocessor 2.0 – A flexible CNF Simplifier (Tool
Presentation), 2012. Submitted to SAT 2012.

[5] Niklas Sörensson. Minisat 2.2 and minisat++ 1.1. http://baldur.iti.uka.de/
sat-race-2010/descriptions/solver 25+26.pdf, 2010.

[6] Niklas Sörensson and Niklas Eén. MiniSAT 2.1 and MiniSAT++ 1.0 -
SAT race 2008 editions. SAT 2009 Competitive Event Booklet, http:
//www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf, 2009.

1The solver is available at http://tools.computational-logic.org.

62

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

The Stochastic Local Search Solver: SSA

Robert Stelzmann
Knowledge Representation and Reasoning Group

Technische Universitt Dresden, 01062 Dresden, Germany

Abstract—This document briefly describes the SLS solver SSA
in the configuration it has been submitted to the SAT Challenge
2012.

I. MAJOR SOLVING TECHNIQUES

The solver SSA is an implementation of the SPARROW [1]
algorithm with some minor enhancements.

II. PARAMETER DESCRIPTION

We basically took the whole parameter setup from the
reference SPARROW implementation [2]. Further we slightly
adapted the parameter c3 on 3-SAT instances to 200000, since
it seems that the original setting of 100000 is not optimal on
large 3-SAT instances.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

We replaced the list data structure used by UBCSAT SPAR-
ROW [3] to maintain the promising variables by a more
efficient heap. Consequently we got a performance boost on
large 3-SAT instances regarding to the number of flips per
second.

IV. IMPLEMENTATION DETAIL

The complete solver is completely written from scratch. The
primary goal was the development of an easy applicable and
robust framework to investigate new procedures and explore
different configurations and parameter setups in the future.
The solver is highly modularized and allows an easy exchange
and extension of single components like the variable selection
heuristic or the clause weighting strategy. Still, solving perfor-
mance is a design criterion - the solver should be competitive
with state-of-the-art SLS solver. As an implementation of
SPARROW , the solver is capable of the follow state-of-the-
art SLS techniques:
• G2WSAT -like [4] greedy search
• PAWS -like [5] clause weighting
• SPARROW -like [1] selection heuristic

V. SAT CHALLENGE 2012 SPECIFICS

Our solver is written in C++11 and was built as a static -O3
64-bit binary by gcc 4.6.2 on a linux machine, running kernel
2.6.32. We submitted our solver to the random track.

VI. AVAILABILITY

The SSA framework together with some documentation can
be found at: http://tools.computational-logic.org.

ACKNOWLEDGMENT

The authors would like to thank Norbert Manthey for his
advice.

REFERENCES

[1] A. Balint and A. Fröhlich, “Improving Stochastic Local Search for
SAT with a New Probability Distribution,” in Theory and Applications
of Satisfiability Testing - SAT 2010, ser. Lecture Notes in Computer
Science, O. Strichman and S. Szeider, Eds. Springer Berlin / Heidelberg,
2010, vol. 6175, pp. 10–15, 10.1007/978-3-642-14186-7 3. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-14186-7 3

[2] A. Balint, A. Fröhlich, D. A. D. Tompkins, and H. H. Hoos, “Spar-
row2011,” Solver Description, SAT 2011 Competition Booklet, 2011.

[3] D. A. D. Tompkins and H. H. Hoos, “UBCSAT: An Implementation
and Experimentation Environment for SLS Algorithms for SAT and
MAX-SAT,” in Revised Selected Papers from the Seventh International
Conference on Theory and Applications of Satisfiability Testing (SAT
2004), ser. Lecture Notes in Computer Science, H. Hoos and D. Mitchell,
Eds., vol. 3542. Springer Berlin / Heidelberg, 2005, pp. 306–320.

[4] C. M. Li and W. Q. Huang, “Diversification and Determinism in
Local Search for Satisfiability,” in Proceedings of the 8th international
conference on Theory and Applications of Satisfiability Testing, ser.
SAT’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 158–172.
[Online]. Available: http://dx.doi.org/10.1007/11499107 12

[5] J. Thornton, D. N. Pham, S. Bain, and V. Ferreira, “Additive
versus multiplicative clause weighting for SAT,” in Proceedings
of the 19th national conference on Artifical intelligence, ser.
AAAI’04. AAAI Press, 2004, pp. 191–196. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1597148.1597181

63

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

TENN
Takeru Yasumoto

Kyushu University, Japan
yasumoto.kyushu@gmail.com

I. I NTRODUCTION

TENN is based on MiniSat2.2[1]. The TENN system em-
ploys a double BTLV MA Restart strategy, a strategy for
aggressively keeping learnt clauses, FIRM LBD and evalu-
ation values of learnt clause, NTLBD, LTLBD, HTLBD and
LBDSUM.

II. TLBD

True LBD, TLBD for short, is a kind of LBD[2]. TLBD
is different from LBD in the manner of updating its value.
TLBD ignores literals assigned at level 0. And TENN utilizes
three kinds of TLBD and use TLBDSUM which is the sum
of them.

A. NTLBD

Newest TLBD, NTLBD for short, is a kind of TLBD.
NTLBD takes the latest TLBD of a learnt clause.

B. LTLBD

Lowest TLBD, LTLBD for short, is also a kind of TLBD.
LTLBD takes the best NTLBD of a learnt clause so far.

C. HTLBD

Highest TLBD, HTLBD for short, takes the worst NTLBD
of a learnt clause so far.

III. FIRM LBD

FIRM LBD is a strategy for keeping good clauses. If
the TLBDs for a learnt clause satisfy one of the following
conditions, it will not be deleted.

1) NTLBD is lower than 3.
2) LTLBD is lower than 3 and HTLBD is lower than 11.
3) TLBDSUM is lower than 11.

IV. DOUBLE BTLV MA R ESTART

double BTLV MA Restart is a dynamic restart strategy. If
one of the following conditions is satisfied, then a restart is
forced.

1) an average of backtrack levels in the last 50 conflicts is
greater than an average of backtrack levels over the last
1000 conflicts.

2) an average of backtrack levels in the last 50 conflicts is
greater than the global average× 1.05.

ACKNOWLEDGMENT

I wish to express my gratitude to Mr. Hasegawa, Mr. Fujita,
Mr. Koshimura for valuable advices and comments. And I wish
to thank Mr. Okugawa for his assistant.

REFERENCES

[1] N. Eén and N. S̈orensson. An extensible SAT-solver. In proceedings of
SAT, pages 502-518, 2003.

[2] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In proceedings of IJCAI, 2009.

64

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

ZENN
Takeru Yasumoto

Kyushu University, Japan
yasumoto.kyushu@gmail.com

I. I NTRODUCTION

ZENN is based on MiniSat2.2[1]. The ZENN system em-
ploys Phase Shift that integrates different search methods,
SAFE LBD for keeping better learnt clauses, TLBD which
is a kind of LBD and two restart strategies: Luby SE Restart
and LBD+CDLV Restart.

II. PHASE SHIFT

Phase Shift integrates different search methods. The solver
goes through two or more phases in its search. Each phase
has a limited duration and the solver changes phases when
the number of restarts reaches the limit. ZENN has two
phases called Luby SE Phase and LBD+CDLV Phase. Luby
SE Phase uses Luby SE restart as its restart strategy and
RHPolicy for determining the number of learnt clauses that
will be deleted. LBD+CDLV Phase uses LBD+CDLV restart
for restart strategy and RQPolicy as a method to delete learnt
clauses.

A. Luby SE Phase

1) Luby SE Restart:Luby SE Restart is a restart strategy
based on Luby Restart. Luby Restart use a sequence that has
cycles. Luby SE Restart shortens the length of each cycle,
that is, skipping the initial segments of a sequence, and let the
solver search more deeply.

2) RHPolicy: The solver deletes the first half of learnt
clauses at deletion time. This policy is based on MiniSat2.2
but SINN will not delete more than half of learnt clauses like
MiniSat.

B. LBD+CDLV Phase

1) LBD+CDLV Restart:LBD+CDLV restart is a dynamic
restart strategy used by GlueMiniSat2.2.5[3]: if one of the
following conditions is satisfied, then a restart is forced.

(a) an average of decision levels in the last 50 conflicts is
greater than the global average.

(b) an average of NTLBDs (explained later) in the last 50
conflicts is greater than the global average× 0.8.

2) RQPolicy: The solver deletes 3 quarters of learnt clauses
at deletion time. This policy is based on GlueMiniSat2.2.5.

III. TLBD

True LBD, TLBD for short, is a kind of LBD[2]. TLBD
is different from LBD in the manner of updating its value.
TLBD ignores literals assigned at level 0.

A. NTLBD

Newest TLBD, NTLBD for short, is a kind of TLBD.
NTLBD takes the latest TLBD of a learnt clause.

B. LTLBD

Lowest TLBD, LTLBD for short, is also a kind of TLBD.
LTLBD takes the best NTLBD of a learnt clause so far.

IV. SAFE LBD

Safe LBD is a criterion for freezing learnt clauses. When
a learnt clause is about to be deleted, if its LTLBD is lower
than SAFE LBD, it will not be deleted but be detached and
kept for possible activation in the future.

ACKNOWLEDGMENT

I wish to express my gratitude to Mr. Hasegawa, Mr. Fujita,
Mr. Koshimura for valuable advices and comments. And I wish
to thank Mr. Okugawa for his assistant.

REFERENCES

[1] N. Eén and N. S̈orensson. An extensible SAT-solver. In proceedings of
SAT, pages 502-518, 2003.

[2] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In proceedings of IJCAI, 2009.

[3] Hidetomo NABESHIMA, Koji IWANUMA, KAtsumi INOUE. GLUEM-
INISAT2.2.5 , SAT 2011 competition System Description.

65

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

ZENNfork
Yuko Akashi

Kyushu University, Japan
2ie11001y@s.kyushu-u.ac.jp

Takeru Yasumoto
Kyushu University, Japan

yasumoto.kyushu@gmail.com

I. I NTRODUCTION

ZENNfork is a parallel SAT Solver based on ZENN (This
is based on MiniSat2.2.0[1].). Parallelization is performed by
‘ fork ’which is a UNIX system call. After fork, the parent

process deals with a case where a variable is assigned‘ 1’
while the child process deals with a case where the variable is
assigned‘0’. The parent process and the child process can run
independently. No synchronization occurs until the processes
finish their jobs in principles. The parent process waits until
the all the child processes terminate in order to prevent them
from becoming zombie processes.

II. T IMING OF FORK

Initially a SAT process is invoked. After ten restarts, we
execute fork. Just before fork, we choose a desicion variable
by pickBranchLit(). Before fork the parent process solves the
case where the variable is assigned‘1’while the child process
solves the case where the variable is assigned‘0’. The child
process has a copy of learned clauses which may reduce search
space afterward.

After the first fork, at every restart we execute fork if
the number of current SAT process is less than the number
of the cores. Therefore the number of SAT processes is
always less than or equal the number of the cores. This
needs synchronization of SAT processes. The synchronization
is realized by using semaphore. The number of the current
processes is memorized in memory. The number is increased
when fork succeeds while it is decreased when a SAT process
is finished.

III. T ERMINATION

If a sat process find a model, other processes do not need to
continue. In order to let the processes know that the model is
found, we use semaphore. When a process find a model, the
process write a big number, which indicates SATISFIABLE, to
the memory instead of decrement. Other processes notice the
fact at the next restart. Thus every process does not terminate
immediately.

IV. FEATURES OFZENN

A. Phase Shift

Phase Shift integrates different search methods. The solver
goes through two or more phases in its search. Each phase
has a limited duration and the solver changes phases when
the number of restarts reaches the limit. ZENN has two
phases called Luby SE Phase and LBD+CDLV Phase. Luby

SE Phase uses Luby SE restart as its restart strategy and
RHPolicy for determining the amount of learnt clauses dele-
tion. LBD+CDLV Phase uses LBD+CDLV restart for restart
strategy and RQPolicy as deletion learnt clause management.

B. Luy SE Phase

1) Luby SE Phase:Luby SE Restart is a restart strategy
based on Luby Restart. Luby Restart use a sequence that has
cycles. Luby SE Restart shorten length of every cycle and let
solver search more deeply.

2) RHPolicy: The solver deletes half learnt clauses at
deletion time. This policy is based on MiniSat2.2 but SINN
will not delete more than half learnt clauses like MiniSat.

C. LBD+CDLV Phase

1) LBD+CDLV Restart:LBD+CDLV restart is a dynamic
restart strategy used by GlueMiniSat[3]: if one of the following
conditions is satisfied, then a restart is forced.

(a) an average of decision levels over the last 50 conflicts
is greater than the global average.

(b) an average of LBDs over the last 50 conflicts is greater
than the global average× 0.8.

2) RQPolicy: The solver deletes 3 quarters of learnt clauses
at deletion time. This policy is based on glueminisat2.2.

D. TLBD

TLBD is a kind of LBD[2]. TLBD is different from LBD
in the manner of updating its value. TLBD ignores literals
assigned at level 0.

1) NTLBD: NTLBD is a kind of TLBD. NTLBD takes the
latest TLBD of a learnt clause.

2) LTLBD: LTLBD is also a kind of TLBD. LTLBD takes
the best NTLBD of a learnt clause so far.

E. SAFE LBD

Safe LBD is a criterion for freezing learnt clause. When
learnt clauses are about to being deleted, if its LTLBD is lower
than SAFE LBD, it will not be deleted but be detached and
kept for possible activation in the future.

ACKNOWLEDGMENT

Our deepest appreciation goes to Prof.Hasegawa whose
enormous support and insightful comments were invaluable
during the course of my study. We are also indebt to Associate
Prof.Fujita and Assistant Prof.Koshimura whose comments
made enormous contribution to our work.

66

REFERENCES

[1] Niklas Éen and Niklas S̈orensson. An extensible SAT-solver. In SAT 2003,
2003.

[2] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
sat solvers. In proceedings of IJCAI, 2009.

[3] Hidetomo NABESHIMA, Koji IWANUMA, KAtsumi INOUE. GLUEM-
INISAT2.2.5 , SAT 2011 competition System Description.

67

BENCHMARK DESCRIPTIONS

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Application and Hard Combinatorial Benchmarks in
SAT Challenge 2012

Adrian Balint
Ulm University

Germany

Anton Belov
University College Dublin

Ireland

Matti Järvisalo
HIIT & Dept. Comp. Sci.

University of Helsinki
Finland

Carsten Sinz
Karlsruhe Institute of Technology

Germany

Abstract—We outline the selection process of application
and hard combinatorial benchmarks for SAT Challenge 2012,
and present a description of the benchmark sets. The 600
selected benchmarks in each category were used in Application
SAT+UNSAT, Hard Combinatorial SAT+UNSAT, Parallel Appli-
cation SAT+UNSAT, and Sequential Portfolio tracks of the event.

I. SELECTION PROCESS OUTLINE

The two sets of benchmarks were selected using the process
described in this section. Specific details for the individual sets
are provided in the subsequent sections.

The selection process was driven by the following (some-
times conflicting) requirements:
(i) The selected set of benchmarks should contain as few

as possible benchmarks that would not be solved by any
submitted solver. At the same time, the set should contain
as few as possible benchmarks that would be solved
by all—including the weakest—submitted solvers. This
requirement is due to the fact the SAT solvers in SAT
Challenge 2012 are ranked using the the solution count
ranking.

(ii) The selected set should contain as many benchmarks
as possible that were not used in the previous SAT
competitions — we refer to these benchmarks as unused
from now on.

(iii) The selected set should not contain a dominating number
of benchmarks from the same source (domain, benchmark
submitter).

The benchmarks were drawn from a pool containing bench-
marks that either (i) were used in the past five competitive SAT
events (SAT Competitions 2007, 2009, 2011 and SAT Races
2008, 2010); (ii) were submitted to these 5 events but not used
(unused benchmarks); (iii) new benchmarks submitted to SAT
Challenge 2012 (for which separate individual descriptions are
provided in these proceedings).

The empirical hardness of the benchmarks (the benchmark
rating) was evaluated using a selection of well-performing
SAT solvers from SAT Competition 2011. Our first attempt
to select the state-of-the-art (SOTA) contributors [1] from
the second phase of the competition failed due to the fact
that all solvers from the second phase turned out to be
SOTA contributors (using the definition in [1]). Driven by
the restrictions on computational resources, we ultimately

selected five SAT solvers among the best performing solvers
from both the application and crafted tracks of the 2011 SAT
competition. Preference was given to solvers that solved one
or more benchmarks uniquely. The selected solvers for each
track (application based on the 2011 application track solvers,
hard combinatorial based on the 2011 crafted track solvers)
are listed in the subsequent sections.

The benchmarks were rated using the same execution envi-
ronment as the one used for SAT Challenge 2012. The rating
was done according to difficulty as follows:
easy — benchmarks that were solved by all 5 solvers in

under 90 seconds. These benchmarks are extremely unlikely to
contribute to the (solution-count) ranking of SAT solvers in the
Challenge, as all reasonably efficient solvers are expected to
solve these instances within the 900 seconds timeout enforced
in the Challenge.
medium — benchmarks that were solved by all 5 solvers

in under 900 seconds. Though these benchmarks are expected
to be solved by the top-performers in the Challenge, they can
help to rank the weaker solvers.
too-hard — benchmarks that were not solved by any

solver within 2700 seconds (3 times the timeout used in the
Challenge). These benchmarks are expected to be unsolved by
all solvers in the Challenge, and as such are also useless for
the solution-count ranking, and any other ranking that takes
into account the execution time of the solvers, e.g. the careful
ranking [2].
hard — the remaining benchmarks, i.e. the benchmarks

that were solved by at least one solver within 2700 seconds,
and were not solved by at least one solver within 900 seconds.
These benchmarks are expected to be the most useful for
ranking the top-performing solvers submitted to the Challenge.

This rating of the benchmarks is similar to the used in SAT
Competition 2009 and 2011 1, except that by singling out and
disregarding the benchmarks that would almost certainly not
be solved by any submitted solver (these are the too-hard
benchmarks), we intended to increase the effectiveness of the
selected sets for the ranking the solvers.

Once the hardness of the benchmarks in the pool was
established, 600 benchmarks were selected from the pool.
During the selection we attempted to keep the 50-50 ratio

1http://www.satcompetition.org/2009/BenchmarksSelection.html

69

TABLE I
PROPERTIES OF THE SELECTED 600 “APPLICATION” BENCHMARKS

Rating Satisfiability Status
easy medium hard too-hard SAT UNSAT UNKNOWN used unused

Num. instances 57 246 291 6 264 333 3 289 311

TABLE II
PROPERTIES OF THE SELECTED 600 “HARD COMBINATORIAL” BENCHMARKS

Rating Satisfiability Status
easy medium hard too-hard SAT UNSAT UNKNOWN used unused

Num. instances 52 39 503 6 368 226 6 284 316

between the medium and hard benchmarks, and, at the same
time, to make sure that no benchmarks from the same source
are over-represented (> 10% of the selected set). This latter
requirement has forced us to select about 10% of easy and
a number of too-hard benchmarks as well. The details for
each selected set differ, and are provided in the following.

II. APPLICATION INSTANCES

The five SAT solvers used to evaluate the hardness of
the application instances are: CryptoMiniSat (ver. Strange-
Night2-st), Lingeling (ver. 587f), glucose (ver. 2), QuteRSat
(ver. 2011-05-12), RestartSAT (ver. B95). All solvers were
obtained from SAT Competition 2011 website 2. The set of
application benchmarks was drawn from the pool of 5472
instances. Some of the statistics on the set of 600 selected
instances are presented in Table I. The distribution of the
selected benchmarks among the various sources is presented
in the table below.

Source Count
2D strip packing 10
Bioinformatics 28
Diagnosis 59
FPGA routing 2
Hardware verification: BMC 11
Hardware verification: BMC, IBM benchmarks 60
Hardware verification: CEC 20
Hardware verification: pipelined machines (P. Manolios) 60
Hardware verification: pipelined machines (M. Velev) 54
Planning 46
Scheduling3 9
Software verification: bit verification 60
Software verification: BMC 14
Termination 33
Crypto: AES3 11
Crypto: DES 10
Crypto: MD5 14
Crypto: SHA 10
Crypto: VMPC 13
Miscellaneous/unknown 76

Overall, we achieved fairly balanced mix between medium
and hard benchmarks, SAT and UNSAT benchmarks, and
among the various sources. The proportion of previously used
benchmarks is, despite our best efforts, too high — we take

2http://www.satcompetition.org/2011
3Includes new benchmarks submitted to SAT Challenge 2012. Separate

descriptions of the benchmarks are provided in these proceedings.

this opportunity to encourage the community to contribute new
application benchmarks.

III. HARD COMBINATORIAL INSTANCES

The five SAT solvers used to evaluate the hardness of
the application instances are: clasp 2.0 (ver. R4092-crafted),
SArTagnan (ver. 2011-05-15), MPhaseSAT (ver. 2011-02-15),
sattime (ver. 2011-03-02), Sparrow UBC (ver. SATComp11).
Note that we added the SLS-based solver Sparrow UBC to the
set — this is due to the fact that some of the benchmarks in
the hard combinatorial category are random-like. All solvers
were obtained from SAT Competition 2011 website2. The set
of hard combinatorial benchmarks was drawn from the pool of
1743 instances. Table II presents some of the statistics on the
set of 600 selected instances. The distribution of the selected
benchmarks among the various sources is presented in the
following table.

Source Count
Automata synchronization 8
Edge matching 32
Ensemble computation3 12
Factoring 43
Fixed-shape forced satisfiable3 29
Games: Battleship 28
Games: Hidoku3 3
Parity games 26
Pebbling games 13
Horn backdoor detection via vertex cover3 59
MOD circuits 35
Parity (MDP) 7
Quasigroup 40
Ramsey cube 8
rbsat 53
sgen3 47
Social golfer problem 2
Sub-graph isomorphism 46
Van der Waerden numbers 41
XOR chains 2
Miscellaneous 66

Note that while the selected benchmarks are balanced well
among various sources, the proportion of hard benchmarks is
very high. This is due to the fact, among the 1743 benchmarks
in the pool, there are only 39 instances of medium difficulty.
Approximately 1/3 of the pool consists of easy instances, 1/3
of hard, and 1/3 of too-hard. Thus, we expect the selected
set to be more difficult for the solvers in the Challenge than
the set of application instances. The dis-balance between SAT

70

and UNSAT instances is explained by the fact that a large
proportion of the hard instances are satisfiable.

ACKNOWLEDGMENTS

The authors would like to thank the bwGRID [3] for
providing the computational resources to evaluate the in-
stances. The first author acknowledges funding from the
Deutsche Forschungsgemeinschaft (DFG) under the number
SCHO 302/9-1, the second author from Science Foundation of
Ireland (grant BEACON 09/IN.1/I2618), and the third author
from Academy of Finland (grants 132812 and 251170).

REFERENCES

[1] G. Sutcliffe and C. B. Suttner, “Evaluating general purpose automated
theorem proving systems,” Artif. Intell., vol. 131, no. 1-2, pp. 39–54,
2001.

[2] A. Van Gelder, “Careful ranking of multiple solvers with timeouts and
ties,” in Proceedings of the 14th international conference on Theory and
application of satisfiability testing, ser. SAT’11, 2011, pp. 317–328.

[3] bwGRiD (http://www.bw-grid.de/), “Member of the German D-Grid ini-
tiative, funded by the Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung) and the Ministry for Science, Research
and Arts Baden-Wuerttemberg (Ministerium für Wissenschaft, Forschung
und Kunst Baden-Württemberg),” Universities of Baden-Württemberg,
Tech. Rep., 2007-2010.

71

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

SAT Challenge 2012 Random SAT Track:
Description of Benchmark Generation

Adrian Balint
Ulm University

Germany

Anton Belov
University College Dublin

Ireland

Matti Järvisalo
HIIT & Dept. Comp. Sci.

University of Helsinki
Finland

Carsten Sinz
Karlsruhe Institute of Technology

Germany

Abstract—The SAT Challenge 2012 random SAT track bench-
mark set contains 600 instances, generated according to the
uniform random generation model. The instances were divided in
five major classes: k-SAT for k = 4, 5, 6, 7. Each class contains ten
subclasses with varying clauses-to-variables ratios and numbers
of variables. Each subclass contains 12 instances. Within this
description we provide insights about the generation algorithm,
the model according to which the size and properties of instances
were chosen, and also about the filtering process.

I. UNIFORM RANDOM K-SAT

The (uniform) random k-SAT problem is arguably the most
studied class of random SAT instances. A random k-SAT
generator takes the following inputs.

1) n, the number of variables
2) m, the number of clauses, or the ratio α = m

n
3) k, the number of literals in each clause

A generation procedure for uniform random k-SAT instances
is described as Algorithm 1.

Algorithm 1: Uniform k-SAT generator
Input : n, m, k
Output: uniform random k-SAT instance
F = ∅ ;1

i = 0;2

while i < m do3

Ci = ∅;4

j = 0 ;5

while j < k do6

v = variable index chosen uniformly at random7

from {1 . . . n};
l = literal chosen uniformula at random from8

{v, v};
if (l, (l /∈ Ci) then9

Ci = Ci ∨ l ;10

j++;11

if (Ci /∈ F) then12

F = F ∧ Ci;13

i++;14

return F ;15

A random k-SAT instance can be characterized by its size n
and by the clauses-to-variables ratio α. The satisfiability status
of such an instance is not know a priori, although for each k
there exists a threshold value αt for the clauses-to-variables
ratio such that all instances generated with an α < αt are with
high probability satisfiable, and for all instances generated with
an α > αt are with high probability unsatisfiable.

II. THE RANDOM CATEGORY IN THE SAT COMPETITIONS
2007-2011

The random instances generated and used in the last three
SAT Competitions [1] mainly follow the uniform random
generation model described before (with a small exception:
the 2 + p instances used in 2007). The range of number of
variables and clauses-to-variable ratios of the instances used
in the competitions have been as follows.

1) 3-SAT
a) α = 4.26 on threshold and 200 < n < 800
b) α = 4.2 near threshold and 2000 < n < 50000

2) 5-SAT
a) α = 21.3 on threshold and 90 < n < 175
b) α = 20 near threshold and 600 < n < 2000

3) 7-SAT
a) α = 89 on threshold and 50 < n < 90
b) α = 85 near threshold and 140 < n < 400

Note that only k-SAT instances for k = 3, 5, 7 were used in
these competitions, and for each class only two different ratios
were considered (one also containing unsatisfiable instances).
For further background, we refer to [2] for details on the
random instances used in the 2005 SAT Competition.

III. SIZE AND RATIOS OF THE SC2012 INSTANCES

For SAT Challenge 2012, we generated k-SAT instances for
k = 3, 4, 5, 6, 7.

Instances generated at the threshold ratios or near them are
the most challenging instances for complete and local search
methods. For large n, the best approximations of the threshold
ratios are given in [3] and listed in Table I.

TABLE I: Threshold values αk for different k
k 3 4 5 6 7
αk 4.267 9.931 21.117 43.37 87.79

72

Starting from these values, we applied the following gen-
eration model: For each k, two extreme points (αk, nk) and
(αnt, nnt) were defined:
• nk is the largest number of variables a formula generated

at the threshold αk is allowed to have (estimated based
on e.g. the performance of the best solvers for the random
category in the latest SAT Competition).

• αnt is the largest clauses-to-variables ratio for the number
of variables nnt (again based on our estimate of the
behaviour of best known solvers).

We ended up using the following values for the different
k’s:

k αk nk αnt nnt

3 4.267 2000 4.2 40000
4 9.931 800 9.0 10000
5 21.117 300 20 1600
6 43.37 200 40 400
7 87.79 100 85 200

For each k, the following 10 (α, n) combinations were
chosen from on the line between (αk, nk) and (αnt, nnt),
totalling at 50 combinations.

Set k = 3 k = 4 k = 5 k = 6 k = 7

1 4.2 9 20 40 85
40000 10000 1600 400 200

2 4.208 9.121 20.155 40.674 85.558
35600 8800 1420 360 180

3 4.215 9.223 20.275 41.011 85.837
31400 7800 1280 340 170

4 4.223 9.324 20.395 41.348 86.116
27200 6800 1140 320 160

5 4.23 9.425 20.516 41.685 86.395
23000 5800 1000 300 150

6 4.237 9.526 20.636 42.022 86.674
18800 4800 860 280 140

7 4.245 9.627 20.756 42.359 86.953
14600 3800 720 260 130

8 4.252 9.729 20.876 42.696 87.232
10400 2800 580 240 120

9 4.26 9.83 20.997 43.033 87.511
6200 1800 440 220 110

10 4.267 9.931 21.117 43.37 87.79
2000 800 300 200 100

For each (α, n) combination, we generated 100 instances,
resulting in a total of 1000 instances per k value, and thus
a total of 5000 instances. For the generation process we used
the pseudo random number generator SHA1PRNG part of Sun
Java implementation.

IV. THE FILTERING PROCEDURE

For filtering out unsatisfiable instances within the generated
5000 instances just described, we used the best perform-
ing solvers from the SAT Competition 20111 random track:
Sparrow2011, sattime2011, EagleUP and adaptG2WSAT2011.
Additionally, we used survey propagation [4], adaptive Walk-
SAT [5], adaptive probSAT [5] and adaptnovelty+ from UBC-
SAT [6]. Each solver was run only once on each instance using

1http://www.satcompetition.org

a cutoff of 2700 seconds (3 times more than the SAT Challenge
timeout). If a instance was solved by at least one solver, it is
considered satisfiable, and otherwise the satisfiability status of
the instance is marked as unknown.

V. THE FINAL BENCHMARK SET

From each of the 50 sets of instances generated for each
(α, n) combination, we randomly chose 12 instances that were
determined as satisfiable in the filtering phase. Notice that this
random selection was done independently of the running times
of the solvers used in filtering on the instances. The resulting
set of a total of 600 instances constitutes the benchmark set
used in the Random SAT Track of SAT Challenge 2012.

The complete set of instances before and after filtering are
available at http://baldur.iti.kit.edu/SAT-Challenge-2012/.

ACKNOWLEDGMENTS

The authors would like to thank the bwGRID [7] for
providing the computational resources to filter the instances.
The first author acknowledges funding from the Deutsche
Forschungsgemeinschaft (DFG) (grant SCHO 302/9-1), the
second author from Science Foundation of Ireland (grant
BEACON 09/IN.1/I2618), and the third author from Academy
of Finland (grants 132812 and 251170).

REFERENCES

[1] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon, “The international
SAT solver competitions,” AI Magazine, vol. 33, no. 1, pp. 89–92, 2012.

[2] O. Kullmann, “The sat 2005 solver competition on random instances,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 2, no.
1-4, pp. 61–102, 2006.

[3] S. Mertens, M. Mézard, and R. Zecchina, “Threshold values of random
k-sat from the cavity method,” Random Struct. Algorithms, vol. 28, no. 3,
pp. 340–373, 2006.

[4] A. Braunstein, M. Mézard, and R. Zecchina, “Survey propagation: An
algorithm for satisfiability,” Random Struct. Algorithms, vol. 27, no. 2,
pp. 201–226, 2005.

[5] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” in Proc. SAT,
ser. LNCS. Springer, 2012, to appear.

[6] D. A. Tompkins and H. H. Hoos, “UBCSAT: An implementation and
experimentation environment for SLS algorithms for SAT & MAX-SAT,”
in Proc. SAT, 2004.

[7] bwGRiD (http://www.bw-grid.de/), “Member of the German D-Grid ini-
tiative, funded by the Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung) and the Ministry for Science, Research
and Arts Baden-Wuerttemberg (Ministerium für Wissenschaft, Forschung
und Kunst Baden-Württemberg),” Universities of Baden-Württemberg,
Tech. Rep., 2007-2010.

73

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Advanced Encryption Standard II benchmarks
Matthew Gwynne

Computer Science Department
College of Science, Swansea University

Swansea, SA2 8PP, UK
email: csmg@swansea.ac.uk

Oliver Kullmann
Computer Science Department

College of Science, Swansea University
Swansea, SA2 8PP, UK
http://cs.swan.ac.uk/∼csoliver

I. BACKGROUND

The Advanced Encryption Standard (AES), described in
[1], is a popular encryption cipher used in a variety of areas
including wireless, disk, and network encryption. AES was
designed to replace the Data Encryption Standard (DES),
which is now vulnerable to brute force attacks, and to provide
an alternative to the computationally expensive Triple-DES.
Small-scale variants of the AES were introduced in [2]. Such
small-scale variations allow the scaling of the AES block and
key sizes while maintaining the cryptographic properties of the
cipher. They were designed to offer instances which were more
easily analysed, due to their smaller size, but which shared the
same fundamental structure and features as the AES.

We present benchmarks which are translations of small-
scale AES into SAT. These benchmarks are generated via
a general translation framework within the OKlibrary1).
Small-scale variants are used, instead of the standard AES,
to provide instances which are likely to be solvable by SAT
solvers within the time-frame of the SAT Challenge 2012.

All work presented is available within the OKlibrary (see
[3]), a research platform for hard problems; preliminary results
were presented in [4], and a full exploration will be available
in [5] (forthcoming).

II. SMALL-SCALE AES

A small-scale AES cipher aes(m, r, c, e) for m, r, c, e ∈ N,
encrypts, by a series of m rounds. a plaintext P to cipher-
text C using key K, where P , K and C are b-bit inputs
and b := r · c · e. Standard 128-bit AES corresponds to
aes(10, 4, 4, 8) (with a small irrelevant change; see below).
The b-bit inputs (P , K and C) constitute a matrix with r

rows and c columns, and with elements in the byte field, a
finite field of order 2e with base-set {0, 1}e (so “bytes” have
length e). These matrices are formed in column-major order,
that is, column-by-column, top-to-bottom, and left-to-right.
For example, the binary string 0000 0001 0010 1111 for

1)http://ok-sat-library.org/

the aes(m, 2, 2, 4) ciphers corresponds to the matrix
(
0 2
1 F

)

where the elements are given in hexadecimal. The cipher
aes(m, r, c, e) has the following structure:

1) The inputs are the b-bit plaintext P and key K.
2) The key schedule generates m + 1 b-bit round-keys

K0, . . . ,Km from K, where K0 := K. Ki+1 is gen-
erated via applications of the S-box and XOR from Ki.

3) The following round function is iterated m times. The
i-th round, i = 1, . . . ,m, consists of:

a) Addition (XOR) of Ki−1 to the input.
b) Applying a permutation over {0, 1}e (the S-box) to

each byte in the matrix(-representation).
c) Permutation of bytes in the rows of the matrix.
d) Multiplication of each column by a fixed (invert-

ible) r × r-matrix of bytes.
The input to the first round is P , and then each round
output becomes the input of the next round.

4) The output of the last round is additionally XORed with
Km to generate the ciphertext C.

The third step of a round, the row-permutation (ShiftRows),
is suppressed in our system, as it is directly applied to the
variable-indices.

As mentioned, there is a small deviation for standard AES:
The final round of the standard AES omits the multiplication
by the fixed matrix (MixColumns), however for simplicity
this is not the case in the small-scale AES. Within the
OKlibrary we say the 10-round standard AES has 9+ 2

3+
1
3

rounds, denoting that it has 9 full rounds, then the addition and
S-box application (two thirds of a round), and a final addition
(one third of a round). As we only consider the small-scale
AES here, we just speak of “m rounds” in this document,
meaning actually m + 1

3 rounds (as specified above). We
remark that the “+ 1

3” step, the final addition of the last round
key, has considerable effect on the hardness, while sometimes
“m rounds” in the literature exclude this final addition.

In the following, we will treat the S-box and finite field
operations as boolean functions to be translated directly to

74

SAT, not further broken down. The specification for each of
these operations can be found in [2].

III. CNF TRANSLATION

The instances are generated by decomposing the small-
scale AES ciphers based on the standard definition from [2]
into small constituent boolean functions: S-boxes, XORs and
field multiplications. These small boolean functions are then
translated to CNFs (without new variables) with the minimum
number of clauses. This differs from the approaches taken in
[2], [6], which apply global algebraic methods and completely
“rewrite” the AES system.

Our translation produces a template-CNF for which the first
3 · b variables correspond to the plaintext, key and ciphertext
bits respectively (in this order). That CNF is satisfied by
a total assignment iff that assignment corresponds to plain-
text, key and ciphertext binary-strings P,K and C such that
aes(m, r, c, e)(P,K) = C, while the auxiliary variables for
the encryption steps are set according to their definitions.

IV. BENCHMARKS

We provide key-discovery instances for a subset of the
small-scale AES parameter space, yielding benchmarks with a
range of difficulties. A key-discovery instance is obtained from
the template-CNF by applying the partial assignment given
by the plaintext and ciphertext. The SAT solver has then to
compute the (or a) key. We provide benchmarks (see Fig 1)
based on 5 randomly generated plaintext-key pairs for each of
the following small-scale ciphers:

1) 16-bit: aes(m, 2, 1, 8) for m ∈ {3, 4, 5, 6, 10};
2) 20-bit: aes(m, 1, 5, 4) for m = 20;
3) 24-bit: aes(m, 1, 3, 8) for m ∈ {3, 4};
4) 32-bit: aes(m, 2, 2, 8) for m ∈ {1, 2}.
Calculating the number of variables in each instance:

1) 3 · b input variables (P,K,C);
2) m · b round-key variables (b per round);
3) m · b round output variables (b per round);
4) m · b variables for the S-box outputs (b per round);
5) m · b variables for MixColumns output (b per round);
6) e ·m variables for round constants in the key-schedule

(e per round);
7) S-box output variables in key-schedule:

a) if c > 1 then r · e ·m (r · e per round);
b) otherwise e ·m (e per round);

8) if r ≥ 2 then r · r · e · c · m variables for the output
of multiplication boxes in MixColumns (r · r · e · c per
round).2)

2)Note that in general, if r = 4, the number of variables due to the
MixColumns is more complicated, but such examples do not occur here and
so we avoid the issue

Benchmark n c Difficulty
aes 16 3 keyfind *.cnf 384 4,464 easy
aes 16 4 keyfind *.cnf 496 5,920 medium-easy
aes 16 5 keyfind *.cnf 608 7,376 medium
aes 16 6 keyfind *.cnf 720 8,832 medium-hard

aes 16 10 keyfind *.cnf 1,168 14,656 hard
aes 20 20 keyfind *.cnf 1,820 7,160 medium-easy
aes 24 3 keyfind *.cnf 408 4,512 medium
aes 24 4 keyfind *.cnf 520 5,968 medium-hard
aes 32 1 keyfind *.cnf 312 2,604 medium
aes 32 2 keyfind *.cnf 528 5,016 medium-hard

Fig. 1. Small-scale AES benchmarks, statistics for benchmarks, and estimate
of difficulty (time) to solve; all are satisfiable. “n” and “c” denote the number
of variables and number of clauses respectively for each instance. Difficulty:
easy = < 1 minute, medium-easy = > 5 but < 15 minutes, medium = > 15
but < 60 minutes, medium-hard = between 1 and 3 hours, hard = > 3 hours.
To determine the difficulty, all instances were solved using minisat-2.2.0
on a machine with a 3.0Ghz Core2Duo and 4GB of RAM.

Calculating the number of clauses in each instance:

1) (r · c ·m+ r ·m) ·X clauses from the S-boxes3).
2) If r = 2 then

a) r · c ·m ·M2 clauses from multiplications by 02.
b) r · c ·m ·M3 clauses from multiplications by 03.

3) r · c · e ·m · 2r clauses from matrix additions.
4) (m+ 1) · r · c · e · 4 clauses from key additions.
5) Clauses from additions in the key-schedule:

a) if c = 1 then e ·m · 4,
b) otherwise e·m·8+e·(r−1)·c·m·4+e·(c−1)·m·4,

6) e ·m clauses encoding the round constants.
7) 2 · r · c · e clauses for the plaintext-ciphertext pair.

where X,M2 and M3 are the sizes of the e-bit S-box,
multiplication by 02 and 03 respectively.

So, for example, aes(2, 2, 2, 8) has:

1) 3 · 32 + 4 · 2 · 32 + 8 · 2 + 2 · 8 · 2 + 2 · 2 · 8 · 2 · 2 = 528

variables;
2) (2·2·2+2·2)·294+2·2·2·20+2·2·2·36+2·2·8·2·22+3·2·

2·8·4+8·2·8+8·1·2·2·4+8·1·2·4+8·2+2·2·2·8 = 5016

clauses.

These benchmark instances, called
aes_b_m_keyfind_s.cnf (“s” for “seed”), are found in
the Benchmarks/b/ directory.

V. GENERATING BENCHMARKS

For each benchmark

Benchmarks/b/aes_b_m_keyfind_*.cnf,

3)from round + key schedule

75

Boolean function n |DNF| |prc0(f)| |CNF| (min)
4-bit S-box 8 16 147 22
4-bit ×02 8 16 14 9
4-bit ×03 8 16 120 16
8-bit S-box 16 256 136,253 ≤ 294

8-bit ×02 16 256 58 20
8-bit ×03 16 256 5,048 ≤ 36

Fig. 2. Statistics for small-scale AES boxes. n is the number of variables;
other columns list the number of clauses in the (unique) DNF, set of prime
implicates (prc0(f)) and minimum CNF (used in the translation) for each
box. In the case that a CNF being minimum is only conjectured we denote
this by ≤.

the corresponding uninstantiated template-CNF for m rounds
is provided in Formulas/b/aes_b_m.cnf. The associ-
ated plaintext-ciphertext assignment, given as clause-sets with
2 · b unit clauses, is provided in

Assignments/b/aes_ass_b_m_keyfind_s.cnf

The provided AppendDimacs tool can be used to combine
the instance file and the assignment to generate the benchmark.
The hexadecimal representations of the plaintext, key and
ciphertext are given in the first comment line of the assignment
files.

More detailed information on the generation of all
instances can be found in the documentation of the
OKlibrary4). The Git-ID of the state of the OKlibrary is
e3896a3b8e00cf8c46739fded03a6835117c01cb (15.4.2012).

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin: Springer,
2001, iSBN 3-540-42580-2; QA76.9.A25 D32 2001.

[2] C. Cid, S. Murphy, and M. Robshaw, Algebraic Aspects of the Advanced
Encryption Standard. Springer, 2006, iSBN-10 0-387-24363-1.

[3] O. Kullmann, “The OKlibrary: Introducing a ”holistic” research plat-
form for (generalised) SAT solving,” Studies in Logic, vol. 2, no. 1, pp.
20–53, 2009.

[4] M. Gwynne and O. Kullmann, “Towards a better understanding of SAT
translations,” in Logic and Computational Complexity (LCC’11), as part
of LICS 2011, U. Berger and D. Therien, Eds., June 2011, 10 pages,
available at http://www.cs.swansea.ac.uk/lcc2011/.

[5] ——, “Attacking DES + AES via SAT: Applying better box representa-
tions,” arXiv, Tech. Rep. arXiv:??? [cs.DM], 2012, in preparation.

[6] P. Jovanovic and M. Kreuzer, “Algebraic attacks using SAT-solvers,”
Groups-Complexity-Cryptology, vol. 2, no. 2, pp. 247–259, December
2010.

4)Available at http://cs.swan.ac.uk/∼csoliver/ok-sat-library/internet html/
doc/doxygen html/dc/d1e/OKlib 2Experimentation 2Benchmarks 2docus
2general 8hpp.html

76

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Horn backdoor detection via Vertex Cover:
Benchmark Description

Marco Gario
Fondazione Bruno Kessler, Trento, Italy

Abstract—In this document we describe the benchmark sub-
mitted to the SAT’12 competition. The benchmark is constituted
by hard instances of vertex cover, that originate from the problem
of Horn backdoor detection.

INTRODUCTION

The notion of a backdoor was first introduced in [10]
and refers to a set of variables that, once it is assigned a
value, leaves the rest of the problem in some polynomial-
time solvable class. Among the possible classes for which
we can study backdoors, our interest in Horn backdoors is
mainly given by the simplicity of the decision procedure for
Horn formulas and the existence of an elegant reduction of the
detection problem to the well-known vertex cover problem [7].

The benchmark presented here originates from experiments
done on Horn backdoor detection by means of the reduction
to Vertex Cover. In particular, we encode the problem of Horn
backdoor detection into a vertex cover problem, and afterwards
we encode this problem into SAT.

We provide a short theoretical background concerning back-
doors and the reduction in Section I. In Section II we provide
more detailed informations on the benchmark, including ex-
perimental results.

I. BACKGROUND

In this section we present some background knowledge
necessary to understand the benchmark domain. This includes
a short introduction on backdoors1, the reduction to vertex
cover, and the reduction from vertex cover to SAT.

A. Definitions

Let F be a propositional formula in conjunctive normal form
and J a (partial or total) interpretation from the set of variables
occurring in F to the set {>,⊥} of truth values. We use F |J
to denote the reduct of F w.r.t. J .

We can group formulas together into a class depending on
some characteristic they posses. For example, we say that a
formula is Horn iff each of its clauses is Horn; in turn, we
say that a clause is Horn iff it has at most one positive literal.

Backdoors are defined with respect to a class of problems
for which there exists a subsolver that, roughly, is an algorithm
that can decide any instance of the class in polynomial time
or reject it as not being part of the class. Here we consider
Horn backdoors. For Horn formulas, suitable subsolvers exist

1A more detailed introduction to the topic is available in Chapter 13 of [2]

(see e.g., [6]). In the sequel, Horn shall denote a subsolver
for Horn formulas.

A non-empty subset B of the variables occurring in F is a
strong Horn-backdoor2 for F iff for all total interpretations
J from B to {>,⊥} the subsolver Horn returns a satisfying
assignment or concludes unsatisfiability of F |J ; in other
words, F |J is a Horn formula. For the same instance there
might be several Horn-backdoors, possibly of different size.
We call a Horn-backdoor minimal iff no proper subset is a
Horn-backdoor; we call it smallest iff it is minimal and there
is no other Horn-backdoor of smaller cardinality.

Given F and a set of variables V , we denote with F−V the
formula obtained from F by replacing each occurrence of the
literals x and ¬x in F by ⊥ for all x ∈ V , and simplifying the
formula. A non-empty subset B of the variables occurring in
F is a deletion Horn-backdoor for F iff F −B ∈ Horn. For
Horn formulas the concepts of deletion and strong backdoors
are equivalent [5]. This result is important because it is easier
to verify whether a backdoor B is a deletion backdoor rather
than a strong backdoor: we just need to verify the membership
in Horn of F−B, and not of all the possible 2|B| assignments
of B.

We are particularly interested in the (strong/deletion) Horn-
backdoor detection problem. It consists of a SAT instance
F and an integer k ≥ 0, and is the question whether there
exists a (strong/deletion) Horn-backdoor for F of size at most
k. The backdoor detection problem is NP-hard. This follows
immediately from the fact that, once a backdoor is known, the
problem can be solved in polynomial time.

Let G = (V,E) be a graph and R ⊆ V . R is a vertex cover
of G iff for all e ∈ E there exists a v ∈ R such that v ∈ e.
Let |R| be the size of R. The vertex cover problem consists of
a graph G and an integer k, and is the question whether there
exits a vertex cover of G of size at most k. The minimum
vertex cover is the optimization version of the problem, in
which the goal is to minimize the value of k.

B. From Horn backdoor detection to Vertex Cover

In [7] the Horn backdoor detection problem is reduced
to the vertex cover problem as follows: Let F be a SAT
instance and GF = (V,E), where V is the set of variables
occurring in F and E = {{u, v} | there exists a clause C ∈
F such that u, v ∈ C}. As stated in [7], B is a strong Horn
backdoor for F iff B is a vertex cover of GF .

2We provide definitions w.r.t. Horn formulas, but this definitions extend to
any other class for which a subsolver exists.

77

As an example consider F = (x∨y∨z)∧(x∨z∨w)∧(y∨w).
The corresponding graph GF and a vertex cover for GF is
shown in Fig. 1. The set {y, z} is a vertex cover and we obtain
F −{y, z} = x∧ (x∨w)∧w. Thus, {y, z} is a deletion Horn
backdoor and, hence, a strong Horn backdoor for F . Moreover,
solving the minimum vertex cover problem for GF leads to a
smallest strong Horn backdoor.

x

y

z

w

x

y

z

w

Fig. 1. The graph GF corresponding to F (left) and a vertex cover for GF

consisting of the filled vertices (right).

The existence of this reduction allows existing theories and
algorithms from the vertex cover problem to be applied for
solving the strong Horn backdoor detection problem.

In particular, in this work we consider the reduction of the
vertex cover problem to SAT. The encoding is quite straightfor-
ward: we build binary clauses representing the existence of an
edge among two vertices and a cardinality constraint, saying
that we can select at most k vertices. In order to encode the
at most constraint we use the encoding suggested in [8] using
O(kn) clauses and O(kn) new variables, where n is the total
number of vertices.3

II. DETAILS OF THE BENCHMARK

The SAT benchmark presented here originates from the
Horn backdoor detection problem of some instances from
SATLib, SATCompetition and Car Configuration [3], [1], [4].
In particular, we computed a Horn backdoor of these instances
by other means (i.e., local search) and we were interested to
show minimality of the result. Minimality of the backdoor
is equivalent to minimality of the vertex cover. In particular,
if the smallest solution for an instance has size k, then we
need to test whether there is any solution of size k − 1. If
this is not the case, then the solution of size k is minimal.
The instances presented here are a subset of the ones we
used in our experiments; these instances seem to be hard for
other types of algorithms for vertex cover4. By construction
we expect the instances to be unsatisfiable, however we were
not able to confirm this. We tried to solve the instances with
Cryptominisat 2.9.2 [9], with a time-out of 2 hours on a Intel
i7 2.93 GHz with 8GB Ram. The complete benchmark is
composed of 61 instances, only 9 were solved (as unsatisfiable)
while the majority timed-out. Information on the runtime of
the solved instances is presented in Fig. 2. The name of the
instances in the benchmark includes the original name (e.g.,
3blocks.cnf) and the target cover size (mis-137 for k = 137).

3Robert Stelzmann kindly provided us with an implementation of this
algorithm.

4In particular, fixed-parameter tractable algorithms

Name Time (seconds)
3blocks.cnf.mis-137.cnf 33.71
ais8.cnf.mis-97.cnf 20.56
C171 FR.cnf.mis-128.cnf 75.23
C250 FV.cnf.mis-138.cnf 61.46
C250 FW.cnf.mis-138.cnf 55.38
hole10.cnf.mis-98.cnf 7.77
sgen1-unsat-103-100.cnf.mis-78.cnf 4259.75
sgen1-unsat-85-100.cnf.mis-63.cnf 695.25
sgen1-unsat-97-100.cnf.mis-72.cnf 30.50

Fig. 2. Runtime information of the solved instances

REFERENCES

[1] SAT’11 Competition. http://www.satcompetition.org/, 2011.
[2] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of

Satisfiability. IOS Press, 2009.
[3] Holger Hoos and Thomas Stützle. SATLIB: An Online Resource for

Research on SAT. In I.P Gent, H.v. Maaren, and T. Walsh, editors, SAT
2000, pages 283–292. IOS Press, 2000.

[4] W. Küchlin and Carsten Sinz. Proving consistency assertions for
automotive product data management. Journal of Automated Reasoning,
24(1):145–163, 2000.

[5] Naomi Nishimura and Prabhakar Ragde. Solving #SAT using vertex
covers. Acta Informatica, 44(7):509–523, 2007.

[6] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting
backdoor sets with respect to Horn and binary clauses. Seventh
International Conference on Theory and Applications of Satisfiability
Testing (SAT 2004), 2004.

[7] Marko Samer and Stefan Szeider. Backdoor trees. Proceedings of the
23rd Conference on Artificial, pages 363–368, 2008.

[8] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. Theory and Practice of Constraint Programming-CP 2005,
pages 1–5, 2005.

[9] M. Soos. CryptoMiniSat 2.5. 0. SAT Race competitive event booklet,
2010.

[10] Ryan Williams, C.P. Gomes, and Bart Selman. Backdoors to typical case
complexity. In Proceeding of IJCAI-03, volume 18, pages 1173–1178,
2003.

78

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Finding Circuits for Ensemble Computation via
Boolean Satisfiability

Matti Järvisalo∗, Petteri Kaski†, Mikko Koivisto∗, and Janne H. Korhonen∗
∗HIIT & Department of Computer Science, University of Helsinki, Finland

†HIIT & Department of Information and Computer Science, Aalto University, Finland

Abstract—This note describes a family of moderately difficult
Boolean satisfiability instances based on the NP-complete Ensem-
ble Computation problem.

I. INTRODUCTION

In the study of exact exponential algorithms, one often
encounters situations where one could obtain an improved
algorithm for a problem if certain sums can be computed with
sufficiently few addition operations. This kind of summation
problems can be, for fixed parameters, encoded as Boolean
satisfiability, resulting in large structured SAT instances. In this
note, we describe one such construction giving SAT instances
that can serve as benchmarks for SAT solvers. For further
background, details, and results, please refer to Järvisalo et
al. [1].

Our starting point is the NP-complete Ensemble Computation
problem [2]:

(SUM-)Ensemble Computation. Given as input a
collection Q of nonempty subsets of a finite set P
and a nonnegative integer b, decide (yes/no) whether
there is a sequence

Z1 ← L1∪R1, Z2 ← L2∪R2, . . . , Zb ← Lb∪Rb

of union operations, where
(a) for all 1 ≤ j ≤ b the sets Lj and Rj belong to
{{x} : x ∈ P} ∪ {Z1, Z2, . . . , Zj−1},

(b) for all 1 ≤ j ≤ b the sets Lj and Rj are disjoint,
and

(c) the collection {Z1, Z2, . . . , Zb} contains Q.
It is also known that SUM-Ensemble Computation remains
NP-complete even if the requirement (b) is removed, that is,
the unions need not be disjoint [2]; we call this variant OR-
Ensemble Computation. Stated in different but equivalent terms,
each set A in Q in an instance of SUM-Ensemble Computation
specifies a subset of the variables in P whose sum must be
computed. The question is to decide whether b arithmetic gates
suffice to evaluate all the sums in the ensemble. An instance
of OR-Ensemble Computation asks the same question but with
sums replaced by ORs of Boolean variables, and with SUM-
gates replaced by OR-gates.

In the rest of this note, we describe how Ensemble Computa-
tion instances can be encoded as Boolean satisfiability instances,
and present certain interesting hand-picked instances that can
be used as satisfiability solver benchmarks. In Section II, we
give necessary basic definitions, and in Section III we present a

SAT encoding for the Ensemble Computation problem. Finally
in Section IV, we describe the benchmark instances.

II. DEFINITIONS

A circuit is a directed acyclic graph C whose every node has
in-degree either 0 or 2. Each node of C is a gate. The gates of
C are partitioned into two sets: each gate with in-degree 0 is
an input gate, and each gate with in-degree 2 is an arithmetic
gate. The size of C is the number g = g(C) of gates in C.
We write p = p(C) for the number of input gates in C.

The support of a gate z in C is the set of all input gates x
such that there is a directed path in C from x to z. The weight
of a gate z is the size of its support. All gates have weight at
least one, with equality if and only if a gate is an input gate.

In what follows we study two classes of circuits, where
the second class is properly contained within the first class.
First, every circuit is an OR-circuit. Second, a circuit C is a
SUM-circuit if for every gate z and for every input gate x it
holds that there is at most one directed path in C from x to z.

Let (P,Q) be an instance of ensemble computation, that is,
let P be a finite set and let Q be a set of nonempty subsets
of P . We adopt the convention that for a SUM-ensemble all
circuits considered are SUM-circuits, and for an OR-ensemble
all circuits considered are OR-circuits. We say that a circuit
C solves the instance (P,Q) if (a) the set of input gates of
C is P ; and (b) for each A ∈ Q, there exists a gate in C
whose support is A. The size of the solution is the size of C.
A solution to (P,Q) is optimal if it has the minimum size over
all possible solutions.

III. SAT ENCODING

We next develop a SAT encoding for deciding whether a
given ensemble has a circuit of a given size.

A. Basic Encoding

We start by giving a representation of an OR- or SUM-
circuit as a binary matrix. This representation then gives us a
straightforward way to encode the circuit existence problem
as a propositional formula.

Let (P,Q) be an OR- or SUM-ensemble and let C be
a circuit of size g that solves (P,Q). For convenience, let
us assume that |P | = p, |Q| = q and P = {1, 2, . . . , p}.
Furthermore, we note that outputs corresponding to sets of
size 1 are directly provided by the input gates, and we may
thus assume that Q does not contain sets of size 1. The circuit

79

C can be represented as a g × p binary matrix M as follows.
Fix a topological ordering z1, z2, . . . , zg of the gates of C
such that zi = i for all i with 1 ≤ i ≤ p (we identify the
input gates with elements of P). Each row i of the matrix M
now corresponds to the support of the gate zi so that for all
1 ≤ j ≤ p we have Mi,j = 1 if j is in the support of zi and
Mi,j = 0 otherwise. In particular, for all 1 ≤ i ≤ p we have
Mi,i = 1 and Mi,j = 0 for all j 6= i.

We now have that C (viewed as an OR-circuit) solves (P,Q)
if and only if the matrix M satisfies

(a) for all i with 1 ≤ i ≤ p it holds that Mi,i = 1 and
Mi,j = 0 for all j 6= i,

(b) for all i with p+ 1 ≤ i ≤ g there exist k and ` such that
1 ≤ k < ` < i and for all j with 1 ≤ j ≤ p it holds that
Mi,j = 1 if and only if Mk,j = 1 or M`,j = 1, and

(c) for every set A in Q there exists an i with 1 ≤ i ≤ g
such that for all j with 1 ≤ j ≤ p it holds that Mi,j = 1
if j ∈ A and Mi,j = 0 otherwise.

Similarly, we have that C (viewed as a SUM-circuit) solves
(P,Q) if and only if the matrix M satisfies conditions (a), (c),
and

(b’) for all i with p+1 ≤ i ≤ g there exist k and ` such that
1 ≤ k < ` < i and for all j with 1 ≤ j ≤ p it holds that
Mi,j = 1 if and only if Mk,j = 1 or M`,j = 1 and that
Mk,j = 0 or M`,j = 0.

Based on the above observations, we encode an ensemble
computation instance as SAT instance as follows. Given an
OR-ensemble (P,Q) and integer g as input, we construct
a propositional logic formula ϕ over variables Mi,j , where
1 ≤ i ≤ g and 1 ≤ j ≤ p, so that any assignment into variables
Mi,j satisfying ϕ gives us a matrix that satisfies conditions
(a)–(c). We encode condition (a) as

α =

p∧

i=1

(
Mi,i ∧

∧

j 6=i

¬Mi,j

)
.

Similarly, we encode the condition (b) as

β =

g∧

i=p+1

i−2∨

k=1

i−1∨

`=k+1

p∧

j=1

(
(Mk,j ∨M`,j)↔Mi,j

)
,

and condition (c) as

γ =
∧

A∈Q

g∨

i=p+1

[(∧

j∈A
Mi,j

)
∧
(∧

j /∈A
¬Mi,j

)]
.

The desired formula ϕ is then ϕ = α ∧ β ∧ γ. For a SUM-
ensemble, we replace β with

β′ =
g∧

i=p+1

i−2∨

k=1

i−1∨

`=k+1

p∧

j=1

(
((Mk,j ∨M`,j)↔Mi,j)

∧ (¬Mk,j ∨ ¬M`,j)
)
.

B. Practical Considerations

There are several optimisations that can be used to tune
this encoding to speed up SAT solving. The resulting SAT
instances have a high number of symmetries, as any circuit
can be represented as a matrix using any topological ordering
of the gates. This makes especially the unsatisfiable instances
difficult to tackle with SAT solver. To alleviate this problem, we
constrain the rows i for p+1 ≤ i ≤ g appear in lexicographic
order, so that any circuit that solves (P,Q) has a unique valid
matrix representation. Indeed, we note that the lexicographic
ordering of the gate supports (viewed as binary strings) is
a topological ordering. We insert this constraint to the SAT
encoding as the formula

g∧

i=p+2

i−1∧

k=p+1

[
(Mi,1 ∨ ¬Mk,1)

∧
p∧

j1=2

((j1−1∧

j2=1

(Mi,j2 ↔Mk,j2)
)
→ (Mi,j1 ∨ ¬Mk,j1)

)]
.

We obtain further speedup by constraining the first t
arithmetic gates to have small supports. Indeed, starting from
input gates, the ith arithmetic gate in any topological order
has weight at most i + 1. Towards this end, we fix t = 6 in
the experiments and insert the formula

t∧

i=1

∧

S⊆P
|S|=i+2

¬
(∧

j∈S
Mp+i,j

)
.

Further tuning is possible if Q is an antichain, that is, if there
are no distinct A,B ∈ Q with A ⊆ B. In this case an optimal
circuit C has the property that every gate whose support is in
Q has out-degree 0. Thus, provided that we do not use the
lexicographical ordering of gates as above, we may assume
that the gates corresponding to sets in Q are the last gates in
the circuit, and moreover, their respective order is any fixed
order. This means that if we know that Q = {A1, A2, . . . , Aq}
is an antichain, we can replace γ with

q∧

i=1

[(∧

j∈Ai

Mg−q+i,j

)
∧
(∧

j /∈Ai

¬Mg−q+i,j

)]

to obtain a smaller formula. Finally, we note that we can be
combine this with the lexicographic ordering by requiring that
only rows i for p+ 1 ≤ i ≤ g − q are in lexicographic order.

IV. INSTANCES

In this section, we describe our benchmark instances. These
instances were selected so that most of them should be solvable
with modern SAT solvers in 500–2000 seconds, though some
are more challenging.

Our instances were obtained from a given ensemble (P,Q)
and a target number of gates g by first generating a Boolean
circuit based on the encoding of Section III. This circuit was
then transformed into CNF using the bc2cnf encoder (http:

80

//users.ics.tkk.fi/tjunttil/circuits/), which implements the standard
Tseitin encoding [3].

The benchmark instance families themselves are described
in detail below.

1) jkkk-random: This family was obtained by generating
random ensembles (P,Q) by setting P = {1, 2, . . . , p}
and drawing uniformly at random a Q consisting of
q subsets of P of size at least 2. We generated 1,000
ensembles for p = q = 10 and generated SAT instances
for both OR- and SUM-circuits and varying values of
g. Finally, we hand-picked instances that matched our
criteria.

2) jkkk-one-one: This family was generated from an
ensemble family parameterised by the number of inputs
p, with P = {1, 2, . . . , p} and Q = {P \ {i} : i ∈ P}.
The CNFs are generated using the SUM-encoding and
the antichain optimisation. The selected instances have
p = 10 or p = 11, and g was again chosen so that the
instances were solvable in about 500–2000 seconds.

3) jkkk-challenge: These very large instances are
based on a generalisation of the construction used in
the jkkk-one-one instances; we omit the details. We
note that we were not able to solve them in our own
experiments.

ACKNOWLEDGMENTS

Work supported in part by Academy of Finland (grants
132812 and 251170 (MJ), 252083 and 256287 (PK), and 125637
(MK)), and by Helsinki Doctoral Programme in Computer
Science - Advanced Computing and Intelligent Systems (JK).

REFERENCES

[1] M. Järvisalo, P. Kaski, M. Koivisto, and J. H. Korhonen, “Finding
efficient circuits for ensemble computation,” in Proceedings of the 15th
International Conference on Theory and Applications of Satisfiability
Testing (SAT 2012), ser. Lecture Notes in Computer Science, A. Cimatti
and R. Sebastiani, Eds., vol. 7317. Springer, 2012, pp. 369–382.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[3] G. S. Tseitin, “On the complexity of derivation in propositional calculus,”
in Automation of Reasoning 2: Classical Papers on Computational Logic
1967-1970. Springer, 1983, pp. 466–483.

81

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Fixed-shape Forced Satisfiable CNF Benchmarks
Anton Belov

Complex and Adaptive Systems Laboratory
University College Dublin, Ireland

Abstract—This note describes the fixed-shape-forced
benchmark class submitted to the Hard Combinatorial track of
SAT Challenge 2012.

I. INTRODUCTION

The class of fixed-shape random formulas was introduced
in [1] as a generalization of uniform random CNF formulas
to the domain of non-clausal propositional formulas in the
Negation Normal Form (NNF). The structure of the formulas
is determined by the following parameters: the number of
variables n, the number of hyper-clauses m, and the shape of
hyper-clauses given by a tuple of positive integers 〈s1, . . . , sk〉.
Each hyper-clause of shape 〈s1, . . . , sk〉 can be viewed as a
k-level balanced tree with alternating levels of disjunctions
and conjunctions, where the i-th level is a si-child disjunction
if i is odd (i = 1 is the root of the tree), and si-child
conjunction if i is even. The leafs of the tree a drawn uniformly
from the set of 2n literals on the n variables, avoiding the
complimentary literals that share the same parent. The final
formula is constructed by taking m such hyper-clauses.

In [1], authors performed a detailed empirical study of fixed-
shape random formulas of certain shapes, and conjectured
phase transitions at particular ratios of hyper-clauses to vari-
ables, similar to that of uniform random CNF formulas. The
formulas with n = 200, m = 560, and shape 〈3, 3, 2〉, as well
as n = 300, m = 354, and shape 〈2, 2, 3, 2〉 were used in [2]
to evaluate the performance of non-clausal SLS-based solver
polSAT.

II. SUBMITTED INSTANCES

The set of 110 fixed-shape-forced CNF benchmarks
submitted to SAT Challenge 2012 was generated by applying
Plaisted-Greenbaum CNF transformation [3] to a set of fixed-
shape non-clausal formulas with n = 300, m = 354, and
shape 〈2, 2, 3, 2〉. The CNF transformation was optimized
to avoid the introduction of the unnecessary variables, as
described in [1]. In addition, the generated formulas were
forced to be satisfiable by seeding them with two complimen-
tary assignments — this technique was suggested in [4] to
produce forced satisfiable formulas that are difficult for local-
search methods. Thus, while the generated CNF formulas do
exhibit a lot of “randomness”, at the same time they possess
certain circuit-like structure. The tool used for generation
of formulas — forgen — is available for download at
http://anton.belov-mcdowell.com. The tool can also be used to
generate other classes of non-clausal, and the corresponding
CNF, formulas.

REFERENCES

[1] J. Navarro and A. Voronkov, “Generation of hard non-clausal random
satisfiability problems,” in Proceedings of the 20th National Conference
on Artificial Intelligence (AAAI 2005), 2005, pp. 436–442.

[2] Z. Stachniak and A. Belov, “Speeding-up non-clausal local search for
propositional satisfiability with clause learning,” in Proceedings of the
11th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2008), 2008, pp. 257–270.

[3] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” Journal of Symbolic Computation, vol. 2, no. 3, pp. 293–
304, 1986.

[4] D. Achlioptas, H. Jia, and C. Moore, “Hiding satisfying assignments: Two
are better than one,” Artificial Intelligence Research, vol. 24, no. 1, pp.
623–639, 2005.

82

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

Solving Logic Puzzles with SAT
Norbert Manthey and Van Hau Nguyen

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract—This description explains how the submitted SU-
DOKU and HIDOKU puzzles have been generated.

I. MOTIVATION

Brain jogging has received attention recently by the popular
puzzle SUDOKU(see Figure 1). The puzzles are based on very
simple constraints. A SUDOKU of size n is a square with
n times n fields. In each field there needs to be a number
between 1 and n, where for each column, row and block no
number appears twice. With a few simple deduction rules those
puzzles can be solved. Most often, there exists only a single
solution, so that there even is no need to guess the value of
certain fields.

A very familiar looking puzzles are HIDOKUs (see Fig-
ure III). Again, there is a square of n time n fields. The
numbers from 1 to n2 have to be assigned to the fields such
that each number appears exactly once. Furthermore, if a field
contains number i, then one of its eight neighboring fields
needs to contain the number i + 1. Differently to SUDOKUs,
HIDOKUs are directly related to the Hamilton path, which
also requires to visit each node in a graph exactly once. The
neighborhood relation is defined by the edges in the graph.
Thus, HIDOKUs can be seen as a special case of the Hamilton
path problem.

Encoding HIDOKU to SAT has been done for generating
solvable puzzles. A formula describing an empty HIDOKU is
generated and afterwards solved by a SAT solver. The solution
is then shrinked so that a partially puzzle remains. During
that task it has been noticed that by increasing the size of the
puzzle, the solving time does not increases linear.

II. ENCODING SUDOKUS

Solving Sudokus using SAT solvers is a well known tech-
nique [1]. The direct encoding was chosen to encode the
SUDOKUs to SAT [4]. To encode all rules of the puzzle,
for each cell the at-least-one constraint and the at-most-one
constraint have been encoded. For each column, row and block
only the at-most-one constraint has been encoded.

Based on this encoding, the generation of the SUDOKUs has
been done according to the following steps: (1) generating
a random Sudoku of size 9, (ii) remove values from fields
randomly and (iii) measure the time to solve the partially filled
SUDOKU. If this solving time is below a certain threshold,
more cells are erased, otherwise the SUDOKU is kept.

The given instances encodes a Sudoku, where the size of
a small square is 9 × 9. The overall Sudoku has a size 81 ×

1

1

1

1
1

1

2

2

9
5

6

8
7

4
3

Fig. 1. SUDOKU with size 9 times 9

81. Surprisingly, the given Sudoku is very hard to solve for
CDCL solvers, although similar puzzles with a similar size
can be solved quite easily. The submitted instance has been
preprocessed with COPROCESSOR 2 by using only equivalence
preserving techniques [2].

III. ENCODING HIDOKUS

Based on the hamilton path encoding from [3], a formula
F can be generated that represents an empty HIDOKUof
size n. The encoding uses additional variables that indicate
possible successors and predecessors in the Hamiltonian cy-
cle. The following Boolean variables are used: the variable
index(x, y, z) = 1 is assigned true whenever the cell (x, y) is
assigned a value v. If the cell (x2, y2) is the successor of cell
(x1, y1), then the variable next(x1, y1, x2, y2) = 1. Therefore,
we specify the set of cell neighbors M . For each cell (x, y),
the set M(x,y) contains all the neighboring cells in the grid.

Similar as for SUDOKU, each cell can contain only a single
value (between 1 and n2), because it can have only a single
position in the path. This fact is encoded by using the at-most-
k constraint. Usually, as also used in [3], for m elements the
naive encoding uses a quadratic amount of clauses (m(m−1)

2).
We replaced this encoding by a nested encoding of the at-
most-k constraint by introducing new variables. By doing so,
the number of clauses is reduced to 3m.

To encode the neighborhood relationship of cells, the fol-
lowing implication is generated for each neighboring cell pair
and value:

index(x1, y1, z) ∧ next(x1, y1, x2, y2) =⇒
index(x2, y2, z + 1),

which is equivalent to

83

n∧

x1=1,
y1=1

∧

(x2,y2)∈
M(x1,y1)

n2−1∧

z=1

(¬index(x1, y1, z) ∨

¬next(x1, y1, x2, y2) ∨ index(x2, y2, z + 1)).

Likewise, the backward adjacency constraints are encoded:

n∧

x1=1,
y1=1

∧

(x2,y2)∈
M(x1,y1)

n2∧

z=2

(¬index(x1, y1, z) ∨

¬next(x1, y1, x2, y2) ∨ index(x2, y2, z − 1)).

Encoding an HIDOKU of size n with the usual at-most-k
encoding requires n4 +8n2 variables and 1

2n
6 +8n4 clauses.

A model for this formula F contains the position of each
cell in the HIDOKU, which can be extracted by the variables
index(x, y, z). Thus, encoding a partially filled HIDOKU can
be done by adding these values as unit clauses to the formula
as well.

The submitted HIDOKU-instances encode empty HIDOKUs
of various sizes. From the authors experience, the solving time
for these puzzles (or Hamilton path problems) does not scale
polynomial with their size, although there exist many solutions
per instance and from humans there are obvious ways how to
solve these empty puzzles.

REFERENCES

[1] Inês Lynce and Joël Ouaknine. Sudoku as a sat problem. In ISAIM, 2006.
[2] Norbert Manthey. Coprocessor 2.0 – A flexible CNF Simplifier (Tool

Presentation), 2012. Submitted to SAT 2012.
[3] Miroslav N. Velev and Ping Gao. Efficient sat techniques for absolute

encoding of permutation problems: Application to hamiltonian cycles. In
Eighth Symposium on Abstraction, Reformulation, and Approximation,
SARA 2009, Lake Arrowhead, California, USA, 8-10 August 2009. AAAI,
2009.

[4] Toby Walsh. Sat v csp. In in Proc. CP-2000, pages 441–456. Springer-
Verlag, 2000.

24

17 20 15 22 25

10 29

28 30

49 44

48 40 43 32

47 34 1

(a) HIDOKU

(b) Hamilton Path Problem

Fig. 2. The human solvable HIDOKU (a) and its representation as Hamilton
path (b)

84

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

sgen4: A generator for small but difficult
satisfiability instances

Ivor Spence
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
i.spence@qub.ac.uk

I. INTRODUCTION

This is a development of the previous generators sgen1 [1]
and sgen2 [2] and generates both satisfiable and unsatisfiable
instances. The instances are not derived solving any particular
problem but are crafted to be as difficult as possible to solve. In
all cases the variables in the generated instance are partitioned
into small groups and for each group there are clauses to define
relationships among the group. This is repeated for two or
more partitions.

II. UNSATISFIABLE INSTANCES

Generating small yet difficult unsatisfiable instances re-
quires a balance between the following constraints:
• To keep the instance short, each clause should eliminate

a large number of possibilities.
• To make the instance hard to solve, the variables in each

clause should not be “related”, that is occur together in
other clauses.

Unfortunately, these constraints conflict. Having unrelated
variables tends to preclude a clause eliminating a large number
of possible assignments. In the spirit of Hirsch’s hgen8 pro-
gram the compromise used here is to partition the variables
into groups of size four and five (in two different partitions)
and have multiple clauses re-use the variables in each group.

The basic technique here is identical to previous versions
of the generator. In each partition one group contains five
variables and the remaining groups each contain four. Thus
the number of variables must be of the form 4g + 1 where
g ∈ N. If the number of variables requested is not of this
form the generator will use the next larger possibility - thus the
generated instance will contain at least the requested number
of variables, but may contain up to three more.

Within each group of four variables the idea is to permit at
most two variables to be false For each group of size four,
generate all possible 3-clauses of positive literals, i.e.

(a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

This permits at most two variables from the set {a, b, c, d}
to be false. For the group of size five again generate all
possible 3-clauses of positive literals (10 clauses), meaning
that again only two variable from this group can be false.
In total therefore, only 2(g−1)+2 = 2g = (n−1)/2 variables
can be false.

Now partition the variables into a different collection of (g−
1) groups of size four and one of size five and again for each
group of variables generate all possible 3-clauses except this
time use all negative literals. Thus now only (n−1)/2 variables
can be true. Taking these two sets of clauses together it can
be seen that it is not possible to assign a value to every variable
since at most (n−1)/2 can be true and also at most (n−1)/2
can be false. Thus the generated instance is unsatisfiable.

If the number of variables is 4g + 1 then the number of
groups is g and the total number of clauses is 8g + 12. Each
clause has three literals, so if the number of variables is n,
then as n increases the number of clauses is approximately 2n
and the number of literals is approximately 6n.

III. SATISFIABLE INSTANCES

To generate difficult satisfiable instances we use three
partitions of the variables, all in groups of size five. Clauses
generated from the first partition permit at most one variable
from each group to be positive and clauses from the second
and third partitions both require at least one variable per group
to be positive. In principle therefore the instance may be
satisfiable.

If the number of groups is g (so that n = 5g) then
the instance will contain 10g binary clauses (from the first
partition) and 2g 5-clauses (g from each of the second and
third paritions), giving a total of 12g = 12n/5 clauses and 6n
literals (see Table I).

For each group in the first partition, we generate all possible
binary clauses of negative literals (10 clauses for each group).
This permits at most one true variable per group, that is a
maximum of g = n/5 true variables overall.

For each group in the second and third partitions, we
generate one 5-clause of all the positive literals. The n/5 true
variable permitted by the first set of clauses might be enough
to satisfy these subsequent clauses if they can be allocated as
one per group.

If more and more collections of 5-clauses of positive literals
are added it is less and less likely that the formula will remain
satisfiable. Empirical results indicate that two collections give
the most difficult instances for their size.

IV. PARTITIONING

For both satisfiable and unsatisfiable cases, to create difficult
instances we need to ensure that there is as little connection as

85

possible between the different partitions. For the first partition
natural ordering is used, e.g. {1, 2, 3, 4}, {5, 6, 7, 8}, Sec-
ond and subsequent partitions are obtained by using simulated
annealing, with a weight function which tries to minimise the
extent to which the original partition is reflected in the second
one. The difference between sgen4 and earlier versions lies
in this function, which now tries to minimise the correlation
between the second and third partitions as well as between
first and second and between first and third. It is anticipated
that this may make instances even harder to solve, but there
is not yet sufficient empirical evidence to confirm this.

To ensure that satisfiable instances are created when re-
quested, i.e. that it is possible to choose the g positive variables
so that there is one per group in each of the three partitions,
the technique used is to make an initial choice of the n/5
true variables and restrict the partitioning process to keep
these variables in different groups. If the option -m model-file
is chosen when generating a satisfiable instance, a satisfying
model will be written to model-file.

Different partitions can be forced by using -s to specify the
seed for the random number generation. If -s is omitted a value
of 1 is used.

V. PARAMETERS

The possible parameters are:
sat Requests that a satisfiable instance be generated.
unsat Requests that an unsatisfiable instance must be gen-

erated. Exactly one of sat and unsat must be
specified.

reorder
Having generated the clauses as described up, a ran-
dom permutation of variables and clauses is applied.
This option is enabled by default.

n Specify the minimum number of variables to be
generated. Mandatory.

s Specify a seed for random number generation. De-
faults to 1.

m Specify a filename for a satisfying model to be
written to. Requires sat to be specified.

For example, typical invocations might be:

sgen4 -unsat -n 49 >u49.cnf
sgen4 -sat -n 120 -m s120.cnf >s120.cnf

VI. RESULTS

Table I gives an example of a 9-variable unsatisfiable
formula and a 10-variable satisfiable one.

REFERENCES

[1] I. Spence, “sgen1: A generator of small but difficult satisfiability
benchmarks,” J. Exp. Algorithmics, vol. 15, pp. 1.2:1.1–1.2:1.15, mar
2010. [Online]. Available: http://doi.acm.org/10.1145/1671970.1671972

[2] A. V. Gelder and I. Spence, “Zero-one designs produce small hard sat
instances,” in SAT, ser. Lecture Notes in Computer Science, O. Strichman
and S. Szeider, Eds., vol. 6175. Springer, 2010, pp. 388–397.

Unsatisfiable (9 variables) Satisfiable (10 variables)
p cnf 9 28
-2 -3 -4 0
-1 -3 -4 0
-1 -2 -4 0
-1 -2 -3 0
-5 -6 -7 0
-5 -6 -8 0
-5 -6 -9 0
-5 -7 -8 0
-5 -7 -9 0
-5 -8 -9 0
-6 -7 -8 0
-6 -7 -9 0
-6 -8 -9 0
-7 -8 -9 0
4 2 6 0
7 2 6 0
7 4 6 0
7 4 2 0
3 8 5 0
3 8 9 0
3 8 1 0
3 5 9 0
3 5 1 0
3 9 1 0
8 5 9 0
8 5 1 0
8 9 1 0
5 9 1 0

p cnf 10 24
-1 -2 0
-1 -3 0
-1 -4 0
-1 -5 0
-2 -3 0
-2 -4 0
-2 -5 0
-3 -4 0
-3 -5 0
-4 -5 0
-6 -7 0
-6 -8 0
-6 -9 0
-6 -10 0
-7 -8 0
-7 -9 0
-7 -10 0
-8 -9 0
-8 -10 0
-9 -10 0
9 6 3 5 1 0
4 2 8 10 7 0
7 5 3 9 2 0
10 4 8 1 6 0

TABLE I
EXAMPLE INSTANCES

86

Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

SAT Instances for Traffic Network Scheduling
Problems

Peter Großmann
Faculty of Transport and Traffic Science

Technische Universität Dresden, 01062 Dresden, Germany
pg@janeway.inf.tu-dresden.de

Norbert Manthey
Knowledge Representation and Reasoning Group

Technische Universität Dresden, 01062 Dresden, Germany
norbert@janeway.inf.tu-dresden.de

I. MOTIVATION

Many real-world applications like computing a time table
for a given railway network or setting up a traffic light systems
are based on periodic events and constraints imposed on these
events. Events and their constraints can be modeled by so-
called periodic event networks. The periodic event scheduling
problem (PESP) consists of such a network and is the question,
whether all the events can be scheduled such that a set of
constraints – specified by the network – is satisfied. The prob-
lem is NP-complete [5] and the currently best solutions are
obtained by constraint-based solvers notably PESPSOLVE [4],
[6] or by LP solvers, which solve linearized PESP instances
by introducing modulo parameters [3]. However, these solvers
are still quite limited in the size of the problem which they can
tackle. For example, PESPSOLVE is able to schedule the inter
city express trains, but cannot schedule all passenger trains in
Germany.

II. ENCODING PESP

Encoding a PESP instance into SAT requires to encode
all its constraints, namely the departure of a vehicle from
a certain node in the network. Furthermore, time consuming
constraint have to be considered. These constraints state the
time a vehicle needs to travel between two nodes, which has
to be traveled conflict free and with a correct route. Thus, a
constraints includes for each node the departure times for all
vehicles, which have to be found, such that all the conditions
concerning the network are met. The encoding is described in
more details in [2], [1].

An encoded SAT instance is satisfiable if a valid periodic
departure time schedule for all the nodes in the network exist.
In that case an instance can have multiple solutions. If no
conflict free departure time schedule exists, the SAT instance
is unsatisfiable and vice versa.

III. SOLVING PESP

To the best knowledge of the authors, PESP is typically
solved with classical search strategies, e.g. CSP and decision
trees or mixed integer problems. Empirical studies showed that
the SAT encoded problem can be solved orders of magnitudes
faster. Still, there exist traffic networks that are very challeng-
ing for SAT solvers.

The submitted instances encode parts of the railway network
of Germany, following [2]. The suffixes of the instances can
be divided in the following categories:
• Small hard subnetworks (SHN)
• Large complex networks (LCN).
For SHN, the number of nodes ranges from 23 to 76 and the

number of arcs is about 13 times larger. The LCN instances
have many more nodes, ranging from 500 to 7000 with a
number of arcs between 7000 and 50000. Out of the available
scheduling problems we selected a subset that is harder to
solve than the average of the instances.

REFERENCES

[1] Peter Großmann. Polynomial Reduction from PESP to SAT. Technical
Report 4, Knowledge Representation and Reasoning Group, Technische
Universität Dresden, 01062 Dresden, Germany, October 2011.

[2] Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall,
Jens Opitz, and Peter Steinke. Solving Periodic Event Scheduling
Problems with SAT. In IEA AIE, accepted, 2012.

[3] Christian Liebchen and Rolf H. Möhring. The modeling power of the
periodic event scheduling problem: railway timetables-and beyond. In
Proceedings of the 4th international Dagstuhl, ATMOS conference on
Algorithmic approaches for transportation modeling, optimization, and
systems, ATMOS’04, pages 3–40. Springer-Verlag, 2007.

[4] Karl Nachtigall. Periodic Network Optimization and Fixed Interval
Timetable. Habilitation thesis, University Hildesheim, 1998.

[5] Michiel A. Odijk. Construction of periodic timetables, Part 1: A cutting
plane algorithm. 1994.

[6] Jens Opitz. Automatische Erzeugung und Optimierung von Takt-
fahrplänen in Schienenverkehrsnetzen. Reihe: Logistik, Mobilität und
Verkehr. Gabler Verlag — GWV Fachverlage GmbH, 2009.

87

88

Solver Index

3S, 50

aspeed, 17

BossLS, 10

CaGlue, 12

CCASat, 13

CCC, 15

CCCeq, 15

CCCneq, 15

Cellulose, 23

clasp, 17

claspfolio, 17

Clingeling, 33

Contrasat12, 20

Flegel, 33

Glucans, 23

Glucose, 21

Glucose++, 22

Glucose_IL, 22

glue_dyphase, 28

Glycogen, 23

gNovelty+PCL, 25

interactSAT, 28

interactSAT_c, 28

ISS, 27

Linge_dyphase, 31

Lingeling, 33

march_nh, 35

Minifork, 37

p3S-semistat, 39

p3S-stat, 41

ParaCIRMiniSAT, 38

PeneLoPe, 43

pfolioUZK, 45

Plingeling, 33

ppfolio, 46

PRISS, 48

relback, 47

relback_m, 47

RISS, 48

Sat4j, 52

Sattime2012, 53

satUZK, 54

SatX10, 56

Satzilla2012, 57

SimpSat, 59

SINN, 61

sparrow2011-PCL, 25

Splitter, 62

SSA, 63

Sucrose, 23

TENN, 64

Treengeling, 33

ZENN, 65

ZENNfork, 66

89

Benchmark Index

Advanced Encryption Standard

(AES), 74

Application Track, 69

Finding circuits for ensemble com-

putation, 79

Fixed-shape forced satisfiable in-

stances, 82

Hard Combinatorial Track, 69

Hidoku, 83

Horn backdoor detection, 77

Random SAT Track, 72

sgen, 85

Sudoku, 83

Traffic network scheduling, 87

90

Author Index

Akashi, Yuko, 37, 66

Audemard, Gilles, 21, 43

Balint, Adrian, 69, 72

Belov, Anton, 69, 72, 82

Biere, Armin, 15, 33

Bloom, Bard, 56

Cai, Shaowei, 13

Chen, Jingchao, 28, 31

Duong, Thach-Thao, 25

Gableske, Oliver, 10

Gario, Marco, 77

Grove, David, 56

Großmann, Peter, 87

Gwynne, Matthew, 74

Habet, Djamat, 12, 47

Han, Cheng-Shen, 59

Herta, Benjamin, 56

Heule, Marijn J.H., 15, 35

Hoessen, Benoît, 43

Hoos, Holger H., 57

Hutter, Frank, 57

Hyvärinen, Antti E.J., 62

Järvisalo, Matti, 69, 72, 79

Jiang, Jie-Hong R., 59

Kaski, Petteri, 79

Kaufmann, Benjamin, 17

Koivisto, Mikko, 79

Korhonen, Janne H., 79

Kullmann, Oliver, 74

Lagniez, Jean-Marie, 43

Le Berre, Daniel, 52

Leyton-Brown, Kevin, 57

Li, Chu Min, 47, 53

Li, Yu, 53

Luo, Chuan, 13

Malitsky, Yuri, 27, 39, 41, 50

Manthey, Norbert, 48, 83, 87

Matsliah, Arie, 22

Nguyen, Van Hau, 83

Pham, Duc-Nghia, 25

Piette, Cédric, 43

Proschen, Stefan, 45, 54

Roussel, Olivier, 46

Saïd, Jabbour, 43

Sabharwal, Ashish, 22, 27, 39,

41, 50, 56

Samulowitz, Horst, 22, 27, 39,

41, 50, 56

Saraswat, Vijay, 56

Schaub, Torsten, 17

Schneider, Marius, 17

Sellmann, Meinolf, 27, 39, 41, 50

Shen, Jonathan, 57

Simon, Laurent, 21

Sinz, Carsten, 69, 72

Sonobe, Tomohiro, 38

Speckenmeyer, Ewald, 45, 54

Spence, Ivor, 85

Stelzmann, Robert, 63

Su, Kaile, 13

Toumi, Donia, 12

Ueda, Kazunori, 23

van der Grinten, Alexander, 45,

54

91

van der Tak, Peter, 15

Van Gelder, Allen, 20

Wotzlaw, Andreas, 45, 54

Xu, Lin, 57

Xu, Xiaojuan, 23

Yasumoto, Takeru, 61, 64–66

92

