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Abstract

The Standard Model of particle physics and the modern understanding of physics at small
length scales rests on the foundation of non-Abelian gauge theories. Mapping their behavior
at large energies is important in understanding the Standard Model and in extending it to
include a wider range of physical phenomena. There is a region in the parameter space
of these models where the interaction strength runs to a constant at high energies. These
conformal models are useful for explaining the masses of Standard Model particles trough
the extended technicolor mechanism.

In this thesis I present studies of the conformal window using lattice simulations. This
turns out to be a significant challenge in the study non-perturbative quantum physics. We
have studied the phase structure of the SU(2) gauge theory coupled to fermions that transform
in the fundamental or the adjoint representation of the symmetry group. We have found
evidence of large discretization errors and studied them by constructing a Symanzik improved
model. The running of the renormalized coupling is greatly affected by improvements in the
model.

Using the Symanzik improved model we have studied the running of the coupling in the
SU(2) gauge theory with fundamental fermions. The models behave as expected with 4 and
10 flavors of fermions. We were unable to distinguish between chirally broken and conformal
behavior in the model with 6 fermions. In order to push further into large energy scales we
have studied actions with NHYP and HEX smearing. This helps reduce the discretization
effects and reduce the corrections in the Symanzik improvement. Using the improved HEX
smeared action we have been able to run simulations at larger energy scales than before.
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Chapter 1

Introduction

For the past 60 years the Standard Model of particle physics has been very successful in
describing the behavior of the most fundamental parts of our universe. With just a few
particles and three basic interactions, it can describe the short scale behavior of almost
everything and to an amazing accuracy. Richard Feynman compared the accuracy of QED,
quantum electrodynamics, to measuring the width of North-America to a hairs width. On
the other had it certainly misses some key aspects of the universe, like gravity, dark matter,
the fact that there is more matter than antimatter, the expansion of the universe and so
on. So naturally the Standard Model is not the final word. Rather physicists are constantly
looking for possible corrections and additions to the model, that might explain the world a
bit better. And of course we are constantly running experiments to see how far the model
can be pushed, when will we see something that does not fit.

In this thesis I am especially interested in the masses of particles. In the Standard
Model they are created trough an interaction with the Higgs boson, which is taken to be a
fundamental particle. It is an odd particle in many ways. It has an interaction with itself that
allows it to have a nonzero density in the vacuum. It is a scalar particle and has spin zero,
unlike any other elementary particle. It’s existence has not yet been verified experimentally,
although the most recent results from the Large Hadron Collider seem to point to its existence
at a certain mass range. However it is needed to explain the masses of the gauge bosons while
keeping the theory mathematically well defined. In technicolor models it is suggested that
the Higgs particle is actually a bound state of techniquarks that interact much like normal
quarks with each other. There are some very specific requirements for an interaction that
could create a suitable particle as a bound state.

Lattice simulations are a tool that has been developed to probe the strong interaction at
relatively short length scales. Since its conception the lattice method has aspired to provide
data at the physical range of fermion masses and interaction strength. In the last few years
this has become possible thanks to improvements in the algorithms and the faster than
exponential growth of computing power. In principal this has never been impossible, just
very impractical. Simulating large enough lattices with strong enough interactions and small
enough quark masses is still very time consuming, but with modern simulation algorithms
and computers it can be done. This development has opened a way to study other possible
field theories, with different interactions and quark contents. It is so far the only way to
study these theories in their non-perturbative regions.

To understand how the Standard Model can be corrected it is important to understand
how quantum field theories actually work. Thanks to the success of lattice simulations we can
calculate prediction about measurable quantities, such as the masses of bound states, for many
different kinds of theories and even with quite strong interactions, where perturbation theory
does not work. The work that is presented in this thesis investigates two lattice gauge models
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with different interactions. These models belong to a special class field theories that might be
conformal or near conformal. Models like these could explain the masses of Standard Model
particles while being quite similar to QCD themselves. In chapter 2 I introduce the reader to
the relevant aspects of the Standard Model, the strong interaction and the Higgs mechanism
and the ideas of technicolor models and conformal field theories. Chapter 3 introduces lattice
simulations of field theories and way to make the standard algorithms more effective. Chapter
4 describes the methods of studying the conformality of a field theory and the models used
in these studies. The bulk of my research is also described in the articles included in this
thesis.



Chapter 2

The Standard Model

The Standard Model includes two fundamental interactions, governed by the strong and the
electroweak symmetries. The electromagnetic and the weak forces are created when the Higgs
boson breaks the electroweak symmetry. They are mediated by γ, W and Z bosons, the gauge
fields of the symmetry. The strong interaction is mediated by gluons and affects the particles
that have a color charge, quarks.

The strong interaction is described by QCD, quantum chromodynamics. It was first
developed to explain the wide spectrum of hadrons and mesons found in particle accelerators.
In addition to the protons, neutrons and pions that our everyday matter consists of, particle
accelerators have found dozens of heavy hadrons and mesons that live only for short periods
of time. In QCD, these particles are actually bound states of quarks and gluons and the
strong force confines them inside these color-neutral bound states. Protons and neutrons are
hadrons and the strong interactions bind them into nuclei. Since the force is so strong, the
behavior of quarks is mainly controlled by it, the correction from the electroweak interaction
are often too small to matter.

Leptons on the other hand are controlled only by the electroweak interaction. Since the
interaction is weaker a lot of its effects can be calculated analytically. This means that the
parameters of the electroweak sector are rather well known and provide the best tests for
new expansions of the Standard Model. The new theory has to be compatible with all the
precision measurements of the electroweak sector.

2.1 The strong interaction

The Standard Model theories are mathematically surprisingly simple. The essence of a quan-
tum field theory is in the Lagrangian function, all the dynamics can be calculated from it.
For QCD we can write it down as

LQCD = −1

4
F a
μνF

aμν +
∑
f

ψ̄f (iγ
μDμ −mf )ψf , (2.1)

Dμ = ∂μ − igAa
μλ

a, (2.2)

F a
μν = [Dμ,Dν ] = ∂μA

a
ν − ∂νA

a
μ + gfabcAbAc (2.3)

There are two fundamental fields here, the quark ψf and the gauge fields Aa
μ. In nature

there are six flavors of quarks, indexed with f . In addition each quark ψ is a vector of three
colors, the charges of the theory, and 4 Dirac components. The gauge connections Aa

μ are
vectors and are multiplied by the 3× 3 Gell-Mann matrices λa, the generators of the SU(3)
symmetry group. The fabc are the structure constants of SU(3). Note that I use the Einstein
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Figure 2.1: Particles in the Standard Model, with the Higgs boson still missing.

summation convention, repeated indexes are summed over. I will also often use the matrices
Aμ = Aa

μλ
a instead of Aa

μ.
The Lagrangian is constructed so that it is invariant under both Lorentz transformations

and the color transformation. Lorentz transformations are the coordinate transformations of
special relativity, the model has to be invariant with respect to them, or the laws of nature
would depend on the frame. The color transformation is given by

ψ̄(x) → ψ̄(x)G†(x),
ψ(x) → G(x)ψ(x),

Aμ(x) → G(x)Aμ(x)G
†(x)− 1

g
(∂μG(x))G†(x).

Here G(x) is an element of SU(3),

G(x) = eic
a(x)λa

, G(x)†G(x) = 1, det(G(x)) = 1.

The gauge symmetry encodes the interaction between the quarks and is naturally built into
the model.

From this Lagrangian one could in principle calculate all the dynamics of the theory. The
expectation value of a quantity Φ is given by

<Φ>=

∫
dψdψ̄dAΦ ei

∫
d3x dtL(ψ,ψ̄,A).

There is of course no known way to directly calculate the integral. The parts that are
quadratic in the fields are simple enough but the parts with more than two fields cannot be
integrated. In perturbation theory one expands the interaction parts in terms of g, but since
in QCD g is not very small and the expansion gets very complicated with higher orders of g,
there are many things in QCD that cannot be calculated reliably from perturbation theory.
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2.2 Symmetries of the QCD Lagrangian

The QCD Lagrangian is built so that it’s symmetric with respect to gauge and Lorentz
transformations. In addition it has some extra symmetries that affect the dynamics of the
theory. One of these is the symmetry with respect to the U(1) transformation

ψ̄ → ψ̄e−iφ,

ψ → eiφψ.

To include the electromagnetic interaction to the theory this could be turned into a local
gauge symmetry. Noethers theorem states any differentiable symmetry in the Lagrangian of
a theory corresponds to a conservation law. The quantity that is conserved due to the U(1)
symmetry is the total number of particles in the universe. All processes need to respect this
symmetry, and therefore need to have the same number of particles going in and coming out.
In QCD, all quark flavors respect the symmetry separately and the number of quarks of each
flavor is conserved. The electroweak sector mixes the flavors but the number of particles in
general is still conserved.

In addition, there is an even larger, approximate symmetry. The masses of the lightest
baryons and mesons are much larger than the masses of the two lightest quarks. The masses
of the quarks shouldn’t therefore make much of a difference to the spectrum of hadrons. We
may first take these quarks to have approximately the same mass. Bundling them together
in a vector

Ψ =

(
ψu

ψd

)
we can write the Lagrangian for the two lightest flavors as

Ψ̄ (iγμDμ −M)Ψ,

where M is the mass matrix

M =

(
mu 0
0 md

)
=

(
m 0
0 m

)
. (2.4)

Dμ is similarly a diagonal matrix of covariant derivatives.
In this form the Lagrangian is invariant under an SU(2) transformation

Ψ̄ → Ψ̄e−icaσa
,

Ψ → eic
aσa

Ψ,

where σa are the generators of SU(2) and act on the indexes in the flavor vector we just
introduced.

If this symmetry was exact protons and neutrons would have exactly the same mass.
There is however a small difference in their masses, due to the difference in the masses of up
and down quarks. Nevertheless we can see the effects of this approximate symmetry in the
spectrum of hadrons and mesons.

The chiral symmetry is a bit more puzzling. This is the approximate symmetry that
appears if we take the masses of the two lightest quarks to zero. This should be almost as
good an approximation as taking the masses to be equal. The Lagrangian becomes

Ψ̄ (iγμDμ)Ψ.
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In addition to the flavor symmetry above this is invariant under the transformation

Ψ̄ → Ψ̄eic
aσaγ5 ,

Ψ → eic
aσaγ5Ψ.

This is true since γ5 anti-commutes with all γμ. If this was an exact symmetry, left- and right
handed quarks would be completely decoupled. However we don’t seem to observe this effect
in nature. For example, if this symmetry held, pions and ρ mesons would have the same
mass, but in nature pions are nearly massless and ρ mesons are massive. The explanation
for this is that the chiral symmetry is spontaneously broken, the ground state of the system
does not have the same symmetry as the Lagrangian. This is actually very similar to the
spontaneous breaking the of electroweak symmetry by the Higgs particle.

In the case of QCD the breaking happens at such a large energy scale that it cannot
be described by perturbation theory. We do observe the effects of the broken symmetry,
however, in the spectrum of hadrons and mesons. It gives an expectation value to the chiral
condensate

<q̄q> �= 0.

Since three symmetries are broken, there are three generators, there should be three massless
Goldstone bosons. These are the pions, π0, π+ and π−, and they are indeed very light
compared to the other mesons. They are not exactly massless, though, since the symmetry
is not exact.

2.3 The Electroweak Sector

The electroweak sector includes particles that are charged with respect to the electromagnetic
and weak interactions, the gauge fields of these interactions and the Higgs boson. The
Lagrangian is a bit more complicated since there are two interactions, but still quite simple.

LEW = LG + LF + LH (2.5)

LG = −1

4
BμνB

μν − 1

4
W a

μνW
aμν (2.6)

LF =
∑
f

ψ̄f

(
iγμDf

μ −mf

)
ψf , (2.7)

LH = |Dμh|2 − λ
(
|h|2 − v2

)2
(2.8)

Df
μ = ∂μ − igfBμ − ig′W a

μλ
a, (2.9)

W a
μν = ∂μW

a
ν − ∂νW

a
μ + gfabcW bW c, (2.10)

Bμν = ∂μBν − ∂νBμ. (2.11)

There are now two gauge bosons instead of the one in QCD. Bμ is the mediates the
electromagnetic U(1) symmetry and Wμ the weak SU(2) symmetry. Bμ interacts with all
quarks with different couplings gf . The coupling to the SU(2) gauge boson Wμ is always the
same, since it appears in the gauge part of the Lagrangian. The SU(2) interaction is actually
not especially weak, but when the Higgs sector breaks the SU(2) symmetry, Wμ gets a large
mass, which weakens the interaction.

The quarks coupling to Wμ are left-handed SU(2) doublets, with two colors. There are
also right handed singlets that don’t couple to Wμ. Now, when the symmetry is broken,
both colors in the doublet become their own particles. This is why all the Standard Model
fermions seem to come in pairs, electrons and μ- and τ -leptons have their neutrinos and
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quarks have their own pairs, up and down, beauty and charm and top and bottom. This
symmetric structure is actually born because the electroweak symmetry is broken.

The most important effect of the symmetry breaking is that the weak gauge bosons acquire
a mass. The W a

μ and Bμ bosons turn into the W+
μ , W

−
μ and Zμ and the photon Aμ. This

allows us to describe weak interactions using a renormalizable quantum field theory. A model
with massive gauge bosons is not renormalizable, but since at high energies the electroweak
symmetry is not broken and the gauge bosons are massless, this is not a problem.

At the classical level, without including quantum mechanical effects, we can extract the
zero temperature potential of the Higgs field from the Lagrangian,

VH = λ
(
|h|2 − v2

)2
(2.12)

We see that the expectation value of the Higgs field is

|h|2 = v2.

The U(1) and SU(2) phases of the field remain undetermined. In fact, the model is symmetric
with respect to the phases. Yet the field will have some phase, the Higgs field gets a phase
randomly, and the vacuum is no longer symmetric. The symmetry in the Lagrangian is
spontaneously broken.

So how does this affect the gauge bosons? To understand the theory when the symmetry
is broken, we should expand the Lagrangian around the new vacuum. Let’s write the Higgs
doublet as

h = eiθ(x)
aλa/2v

(
0

χ+v

)
, (2.13)

where χ is a field of real numbers with the expectation value 0. The angles θa give the SU(2)
phases of the Higgs fields. There could also be a U(1) phase but it would just have the same
effect as θ0. The phases can be chosen any way we want by choosing the appropriate gauge
and setting them to zero will simplify things:

h → eiθ(x)
aλa/2vh,

⇒ θa = 0.

By separating the χ and v parts Higgs part of the Lagrangian becomes

LH = |Dμh|2 − λ
(
|h|2 − v2

)2
= DμχD

μχ− 2λv2χ2 + λv4

+
v2

2

(
g′W 0μ − gBμ

) (
g′W 0

μ − gBμ

)
+

v2

2
g′2
(
W 1μ −W 2μ

) (
W 1

μ −W 2
μ

)
.

Reading from the above, χ is a boson with the mass
√
2λv. Because we transformed

θa away, we don’t seem to have any Goldstone bosons, but the gauge bosons have gained
masslike terms. To get this to the normal Standard Model form, let’s redefine the gauge
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fields.

W+
μ = W 1

μ +W 2
μ ,

W+
μ = W 1

μ −W 2
μ ,

Zμ = cos(θW )W 0
μ − sin(θW )Bμ,

γμ = sin(θW )W 0
μ − cos(θW )Bμ,

cos(θW ) =
g′√

g2 + g′2
, sin(θW ) =

g√
g2 + g′2

.

The two W bosons have the mass
v

g√
2

′
,

the Z boson has the mass

v

√
g2 + g′2

2

and γ, the photon, is massless.
Now the weak gauge bosons appear to be massive. Thanks to the Higgs particle, we can

also understand how the structure of weak interactions is generated from an SU(2) gauge
theory. This means that all the interactions in the Standard Model are actually non-Abelian
gauge theories, theories with a gauged local symmetry. Weak interactions are cast into the
same model as electromagnetic and strong interactions, adding symmetry and elegance to
the Standard Model.

There is just one more detail. Using the spontaneous symmetry breaking, we got rid of
the gauge boson masses that would have caused the theory to fail at large energies. But
fermions also have a mass, and adding them into the Lagrangian would break the SU(2)
symmetry directly. Instead we can have the spontaneous symmetry breaking generate the
fermion masses as well. Before the symmetry is broken fermions form left-handed SU(2)
doublets and right-handed singlets. For example for up and down quarks we have

D =

(
uL
dL

)
, uR and dR.

Adding masses for u and d would couple them to the right-handed singlets and break the
SU(2) symmetry. Instead we couple the fermions to the Higgs doublet,

Lmu,d
= huD̄ · hCuR + hdD · hdR.

hC here is the charge conjugate of h. This is symmetric since we always take the product
of two doublets and the U(1) charges add up to zero. When the electroweak symmetry is
broken and h gets the expectation value 2.13, this becomes

(v − χ)
(
huūLuR + hdd̄LdR

)
= huvūLuR + hdvd̄LdR + . . . ,

so that the up and down masses are huv and hdv.
This way we can explain also the fermion masses without needing to add them to the

Lagrangian explicitly. Not all is perfect, however. The Higgs particle itself poses theoretical
problems, although not nearly as severe as the ones it fixes. Since the Higgs particle is not
a gauge boson but nevertheless couples to the fermions and the gauge bosons, its mass gets
corrections in renormalization that grow as the renormalization scale squared. If at some
large scale the Standard Model is replaced by some other, more fundamental model, that
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would set the renormalization scale. The mass would need to be tuned just right to cancel
the correction and produce the correct Higgs mass.

So if the scale of a grand unified theory, or GUT, is around 1016GeV , the correction to
the mass would be around 1032GeV . Since the observed Higgs mass seems to be around
125GeV , the right bare mass would have to be chosen extremely carefully. This is known as
the fine-tuning or unnaturalness problem. The model just seems a bit contrived, not natural.
This is at least one of the main reasons physicists expect there to be something beyond the
Standard Model, that should show up at higher energies. Of course there are some purely
empirical motivations as well, like dark energy and dark matter that the Standard Model
does not incorporate.

2.4 Technicolor

Technicolor is one of the many models designed as a more natural replacement for the Higgs
sector. Instead of adding the Higgs potential by hand and having it break a symmetry,
technicolor uses a similar mechanism to the chiral symmetry breaking in QCD. The QCD
chiral symmetry breaking actually already breaks the electroweak symmetry, the effect is
just too small to explain the experimental data. In technicolor models there is a new strong
interaction that breaks the electroweak symmetry at a larger scale, producing a bigger effect
[4, 5, 6].

As it is, the chiral symmetry breaking only breaks the electroweak symmetry. It doesn’t
give masses to the fermions. To explain the fermion masses we have to extend the technicolor
model to include four fermion interactions between the technicolor quarks and the Standard
Model fermions [7, 8]. Adding these while staying within experimental bounds is only possible
if the model belongs to a fairly restricted class of non-Abelian gauge theories, nearly conformal
theories.

The simplest realization of a technicolor theory would be just a scaled version of QCD.
It would have a chiral symmetry breaking around the electroweak scale, where the chiral
condensate would acquire a non-zero expectation value

<t̄LtR + t̄RtL> �= 0.

Here t is a technicolor quark. Since the left-handed quarks are SU(2) doublets and the
right-handed ones are SU(2) singlets, this clearly breaks the electroweak symmetry. If the
symmetry is exact and the Goldstone bosons truly massless, they can be absorbed to the
gauge bosons, just as in the Higgs model.

When the fermions are massless the pions can be described by the effective chiral La-
grangian

Lπ =
F 2
π

4
Tr
(
(DμU)†(DμU)

)
, (2.14)

U = eiπ
aλa/Fπ .

This is the same Lagrangian as in chiral perturbation theory for QCD, but in the case of
technicolor, there are no correction from fermion masses. Fπ is the pion decay constant, a
parameter of the chiral effective action, and needs to be determined from experimental data
or simulations. For QCD Fπ ≈ 93MeV .

The Lagrangian has a similar form to the Higgs Lagrangian in equation 2.8. The gauge
boson masses come from the kinetic part of the Higgs Lagrangian. If we expand it in terms
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of the phases θ, we have

|Dμh|2 =
∣∣∂μθ0∣∣2 + ∣∣∂μθ1∣∣2 + ∣∣∂μθ2∣∣2 (2.15)

+ v

(
g′

2
W 0

μ +
g

2
Bμ

)
∂μθ0 +

g′

2
vW 1

μ∂
μθ1 +

g′

2
vW 2

μ∂
μθ2 + · · · .

This shows in a clear form that the phases θa are massless Goldstone bosons. The chiral
Lagrangian in equation 2.14 can be expanded in the same way to get

F 2
π

4
Tr
(
(DμU)†(DμU)

)
=
∣∣∂μπ0

∣∣2 + ∣∣∂μπ1
∣∣2 + ∣∣∂μπ2

∣∣2 (2.16)

+ Fπ

(
g′

2
W 0

μ +
g

2
Bμ

)
∂μπ0 +

g′

2
FπW

1
μ∂

μπ1 +
g′

2
FπW

2
μ∂

μπ2 + · · · .

It is easy to see from this from that that the Goldstone bosons behave in a similar way. When
the chiral symmetry is broken, the weak symmetry is also broken, but instead of the Higgs
expectation value v, the gauge boson mass is determined by the pion decay constant Fπ.

The effect of the chiral symmetry breaking in QCD has on the gauge boson masses is

δMW =
1√
2
gFπ ≈ 29MeV,

δMZ =
1√
2

√
g2 + g′2Fπ =

δMW

cos(θW )
.

Compared to the actual W mass this is so small that it can often be neglected. But if we scale
the model so that the symmetry is broken at a larger energy scale, setting the pion decay
constant to 246GeV , we get the right masses for the weak gauge bosons. This simplest model
is ruled out by precision electroweak observables, but similar models can be constructed by
varying the number of colors and fermion flavors.

Just as with the Higgs symmetry breaking, the fermion masses combine a left-handed
doublet to a right-handed singlet and break the electroweak symmetry. They should therefore
be produced at the electroweak symmetry breaking. In extended technicolor fermions get
their masses trough a coupling to the technicolor chiral condensate, which gets a nonzero
expectation value when the chiral symmetry is broken.

The chiral condensate is a two fermion operator and the new mass terms include four
fermions,

Lm = huD̄uRT t̄R,

where T and tR are the new technicolor fermion doublet and singlet. A theory with four
fermion interactions is not actually renormalizable, but it can be an effective description of
a very high scale interaction, the extended technicolor or ETC interaction.

The ETC interaction could be a gauge force that couples to all the Standard Model
fermions and technicolor fermions. In low energies this would couple technicolor fermions
and Standard Model fermions to each other, but it would also, trough the same mechanism,
couple them to themselves,

Lm = αD̄uRDūR + βD̄uRT t̄R + γT̄ tRT t̄R. (2.17)

The couplings α, β and γ should all be of the same order. If β now is large enough to produce
the fermion masses, α should naively be just as large and produce visible flavor changing
neutral currents. Since these are not observed, the naive version of extended technicolor
doesn’t seem to work. There is a way to correct this problem, but to find it we need to look
at the dynamics of the technicolor model more carefully.
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When the chiral condensate acquires and expectation value, the second term in equation
2.17 generates a mass for the Standard Model fermions. Since the interaction between the
Standard Model fermion and the TC fermion is mediated by an ETC gauge boson, and
the interaction happens at the ETC scale, we should also calculate the value of the chiral
condensate at the ETC scale.

<t̄t>ETC= exp

(∫ ΛETC

ΛTC

dμ

μ
γm(μ)

)
<t̄t>TC . (2.18)

Here γm is the mass anomalous dimension for technicolor fermion. It describes how mass-like
quantities are renormalized when the scale changes. ΛETC and ΛTC are the ETC and TC
scales respectively.

If the difference between the scales is very large, or the mass anomalous dimension is large,
the renormalization to the ETC scale can boost the fermion masses while the flavor changing
neutral currents are not affected. For this to be the case, the coupling of the technicolor
gauge theory should evolve very slowly with the energy scale. This would allow the integral
over the anomalous dimension to accumulate considerably between the two scales.

In QCD the interaction evolves quite rapidly with the scale, but theories with different
numbers of flavors or colors can behave very differently. The challenge is to find a model that
evolves slowly enough and has an anomalous dimension large enough to produce the right
masses for the Standard Model particles without creating too large flavor changing neutral
currents.

2.5 Non-Abelian Gauge Theories

In QCD we have 3 colors and 6 quark flavors since that is what we see in particle accelerators.
But there is nothing in the structure of the universe that compels us to use exactly 6 flavors
and 3 colors. Actually the weak interaction seems to have 2 colors. We can expand these
models to a larger group of quantum field theories, non-Abelian gauge theories. Originally
these were a generalization of the U(1) electromagnetic model to non-Abelian SU(N) groups.
Together with a varying number of fermion flavors, non-Abelian gauge theories exhibit a
great variety of phenomenology and form the basis of the Standard Model.

The extension from U(1) to non-Abelian groups was actually formulated by Chen Ning
Yang and Robert Mills already in 1954 [9], but since it couldn’t include massive gauge bosons,
like the weak gauge bosons W and Z, it wasn’t initially successful. As the mechanism for
giving gauge bosons mass through a spontaneous symmetry breaking was discovered in 1960,
the models became more viable. The fundamental interactions in the Standard Model are
gauge theories with a SU(3) and SU(2)×U(1) symmetries for QCD and the electroweak sector.

A general non-Abelian gauge theory coupled to a number of fermions is defined by the
Lagrangian

LYM = −1

4

Ng∑
a=1

F a
μνF

aμν +

Nf∑
f=1

ψ̄f (iγ
μDμ −mf )ψf , (2.19)

Dμ = ∂μ − ig

Ng∑
a=1

Aa
μΛ

a, (2.20)

F a
μν = [Dμ,Dν ] = ∂μA

a
ν − ∂νA

a
μ + gfabcAbAc. (2.21)

Here Ng is the number of generators in the symmetry group. For SU(N), Ng = N2 − 1. I
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will often use the notation

Aμ =

Ng∑
a=1

Aa
μΛ

a. (2.22)

Generally speaking, the fermions interact with some representation of the symmetry group,
and Λa are the generators of this representation. The gauge part of the action does not
depend on the representation.

Depending on the symmetry group and the number and representation of the fermions,
non-Abelian gauge theories can have very different dynamics. The electromagnetic and the
strong interactions are both examples of gauge theories coupled to fermions. Nevertheless
they do share some important characteristics. They all have the chiral and flavor symmetries
discussed in the previous chapter, at least if the quarks have a small mass. The chiral sym-
metry is not always broken, however, and the parameter range where the breaking happens is
still being mapped. Some of the models are confining, like QCD, and some have free quarks,
like QED.

The parameters in 2.19 are not actually physically measurable. The values for the coupling
g and the massm need to be renormalized to get the measured values and quantum corrections
affect them. In both QCD and QED the coupling depends on the energy scale of the process
it is measured from, for example the energy of two colliding particles. In QED it increases
with energy and in QCD it decreases with energy.

Since the coupling runs to different directions in these two theories, we can imagine that
there could be a model, structured like QCD and QED, where the coupling actually stays
constant. A model like this would be called conformal and it would be completely independent
of the energy scale. In order to build a working technicolor theory we actually need a non-
Abelian gauge model that changes slowly with the scale, a nearly conformal model. This
would be a model just outside the parameter range for conformal theories but on the other
hand in the right parameter range for a chiral symmetry breaking.

The free parameters of the model are the interaction strength, codified by g, and the
fermion masses. Since a nonzero fermion mass would add an energy scale to the model,
so that it could not be scale independent, we should confine ourselves to models with zero
fermion masses. This seems like a sensible assumption since in the Standard Model all masses
are created when the electroweak symmetry is broken.

In a massless theory the only parameter that changes with the energy scale μ is the renor-
malized coupling constant g. It’s scale dependence is described by the β-function, defined
as

β(g) = −μ
dg

dμ
, (2.23)

where μ is the energy scale of the process being described. The value of the β function has
been worked out to four-loop order in perturbation theory for a general gauge theory [18].
The first two terms in the perturbative expansion are given by

β(g) = − β0
16π2

g3 − β1
16π2)3

g5, (2.24)

β0 =
11

3
N − 4

3
T (R)Nf , (2.25)

β1 =
34

3
N2 − 20

3
T (R)Nf − 4C2(R)T (R)Nf , (2.26)

where T (R) and C2(R) are the group theory factor and the quadratic Casimir coefficient
for the representation of the gauge group that fermions transform in. For example for the
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fundamental representation of SU(N) T (R) = T (F ) = 1/2 and C2(R) = C2(F ) = (N2 −
1)/(2N) and for the adjoint representation T (A) = N and C2(A) = N .

In a truly conformal model the value of the β-function would be zero everywhere. It seems
that such a non-Abelian gauge theory does not exist, either the first of the second term in
2.24 is non-zero. However it is possible to find a model with a nontrivial infrared fixed point,
a value of the coupling g = g∗ where the β-function is zero. In a model like this the coupling
would run to the fixed point at low energies and then stay virtually constant.

From equation 2.24 we can find a first order guess for a fixed point, where the value of
the β-function is zero,

g∗2 = −16π2β0
β1

.

When β0 is negative, the beta-function starts positive at small coupling and the model doesn’t
have asymptotic freedom. This gives a maximum number of fermions for a model with a
conformal fixed point,

β0 = 0 =
11

3
N − 4

3
T (R)Nf

⇒ Nf =
11

4
N/T (R).

For a model with fermions in the fundamental representation the upper limit increases with
the number of colors. With adjoint fermions the limit is constant, Nf ≤ 2.

The upper limit in fermion flavors is described well by perturbation theory, since the fixed
point moves towards g∗ = 0. Above it the β-function starts positive and the coupling runs to
higher values with the energy scale. This means that there is no confinement and no chiral
symmetry breaking. Models over the upper limit cannot be used as technicolor theories.
We wish to find a model near the lower limit in the number of fermion flavors, where the β
function is negative and the coupling runs to zero as the energy increases. These theories
can be confining and can have a chiral symmetry breaking. Unfortunately the lower limit is
much harder to identify, since the fixed point moves to larger couplings when the number of
fermions decreases.

One can of course use perturbation theory to calculate an approximation for the lower
limit. When the chiral symmetry is broken, the chiral condensate gets an expectation value
and creates mass-like scale for the model. This means that it cannot be scale invariant
anymore, and so cannot have a fixed point. An estimate for the critical coupling where this
happens can be calculated by building an effective action for the chiral condensate [10] and
minimizing it. The first order estimate for the critical coupling where the chiral symmetry is
broken is at

g2c =
4π2

3C2(R)
.

When the fixed point crosses the critical coupling the model is no longer conformal [11]. This
happens at

g∗ = gc

⇒ β0 =
β1

12C2(R)

This also gives an ascending line for a model with fundamental fermions and a constant for
a model with adjoint fermions.

Putting the lower and the upper limit together, we find that there is a conformal window in
the parameter space, an area where the non-Abelian gauge models have a nontrivial infrared
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Figure 2.2: The conformal window in colors and fermion flavors. The fundamental represen-
tation is labeled by F, the adjoint by Adj, the two-index symmetric by 2S and the two-index
anti-symmetric by 2A.

fixed point. In figure 2.2 we show the upper and the lower limit for the conformal window
in terms of colors and fermion flavors for SU(N) with fermions in the fundamental, adjoint,
two-index symmetric and two-index anti-symmetric representations.

The critical coupling for the chiral symmetry breaking tends to have a high value, so
high that perturbation theory no longer works. The chiral symmetry breaking itself is a
non-perturbative effect. The estimate for the lower limit is therefore only a guess and finding
the actual value requires some methods other than the perturbative expansion. Nevertheless
we do wish to find a theory below the lower limit, but close to it, and see whether it exhibits
a chiral symmetry breaking.

To study the models in the non-perturbative region, we turn to lattice field theory. We
simulate the full dynamics of the model from first principles and measure the behavior of the
coupling with respect to the energy scale to find whether the theory has a conformal fixed
point of not.



Chapter 3

Lattice Simulations

3.1 Fields on the lattice

Quantum field theories describe the behavior of fields that are continuous, like the height of
the oceans surface or the density of air. There are no separate particles as such, but waves
in these fields. In principle they can only be completely described by an infinite amount of
numbers, there is an infinite amount of points even in a finite volume. When simulating the
theory we of course can have only a finite number of points, and the system is usually divided
into a lattice, as in figure 3.1, in the hope that if one makes the distance between the points
small enough, the difference between the lattice and the real continuum theory is small.

The dynamics of a quantum field theory are calculated from its action S, the sum of its
Lagrangian at all points in space and time. The probability to find the field in a certain
configuration Ψ1 at a time t1 is given by

PΨ1 =

∣∣∣∣∣
∫
Ψ(t1)=Ψ1

dΨe−iS(Ψ)∫
dΨe−iS(Ψ)

∣∣∣∣∣
2

. (3.1)

This is the path integral formulation of quantum mechanics. The integral in the numerator
sums over all the possible configurations of fields, where at time t1 the fields are in the state
Ψ1. In the denominator we just sum over all possibilities whatsoever, so that the probability
that something happens is 1. The importance, or weight, of a certain configuration is then
given by the exp(−iS) part. Things are a little more complicated than they seem, though.

Figure 3.1: The fields are divided on a lattice. The fermion fields φ(x) exist on the nodes
and the gauge fields U(x, aμ̂), that describe the interaction, on the links between the nodes.
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The size of the weight is always one and it can be negative or even imaginary, so that the
configurations can cancel each other out. One really would need to sum over all possible
configurations to know the result and the possibilities are infinite.

The lattice simulation approach tackles these problems by creating an approximate effec-
tive model, which parallels the physical situation but is less complicated mathematically. We
can start from the general action of a non-Abelian gauge theory with fermions,

S =

∫
d3xdt

[
−1

4
Tr
(
F a
μνF

aμν
)
+ φ̄ (iγμDμ −m)φ

]
. (3.2)

The usual trick is to let the time evolve to the imaginary direction, in other words to do the
transformation t → iτ . The integral over time then transforms as dt → idτ . This also means
that the space-time becomes Euclidean, the metric tensor becomes just the identity matrix.
We can now write an Euclidean version of the action as

SE = −iS(t → iτ) (3.3)

=

∫
d3xdτ

[
1

2
Tr(aFμνF

aμν) + φ̄ (iγμDμ +m)φ

]
. (3.4)

And now probability from the path integral is

PΨ1 =

∣∣∣∣∣
∫
Ψ(t1)=Ψ1

dΨe−SE(Ψ)∫
dΨe−SE(Ψ)

∣∣∣∣∣
2

. (3.5)

The time evolution (in τ) of this new model does not correspond to the time evolution
(in t) of the physical system, but many physical observables can still be calculated from it.
The weight exp(−SE) from the path integral is now number that is larger than zero and the
configurations where it’s small are not as important in the integral as the ones where it’s
large. All the configurations are not needed to calculate this integral to a good accuracy, just
the ones where SE is small and exp(−SE) is large. We will use the Euclidean action from
now on and drop the label E.

The gauge field Aμ is really a part of the generalized covariant derivative Dμ. It describes
how a fermion field at a certain point changes when freely moving to another point. This is
called parallel transporting the vector, a term coming from geometry and gravitation. The
field φ(x) as seen from the point x − aμ̂, were μ̂ unit vector to direction μ and a is the
distance, is

U(x, aμ̂)φ(x) = e
∫ x+aμ̂
x dx iAμ(x)φ(x). (3.6)

On the lattice we use the matrix U to describe the gauge field. It is a matrix that belongs
to the group of special unitary Nc ×Nc matrices, SU(Nc). If we divide the world to a lattice
where the distance between the closest points is a, the whole gauge field is described by the
set of matrices Uμ(x) = U(x, aμ̂), for all the space-time points x on the lattice. Writing out
the definition of Aμ in equation 2.22, we see that the field Uμ(x) can be written in terms of
the generators of the group,

Uμ(x) = eU
a
μ(x)Λ

a
. (3.7)

The fermion fields are Grassman numbers and we cannot do operations directly with them
on a computer. Instead we can formally integrate over the fermion fields in the path integral,

Z =

∫
φ
dφdφ̄ e−

∫
d4xφ̄(x)(iγμDμ−m)φ(x) =

∫
φ
dφdφ̄e−

∫
d4x

∫
d4yφ̄(x)M(x,y)φ(y)

= det
x,y

(M(x, y)).
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The determinant of M is just as hard to evaluate as the integral itself, but the Grassman
fields have disappeared. To evaluate the determinant we can write it as an integral of a field
of complex numbers ψ and ψ̄,

Z = det
x,y

(M(x, y)) =

∫
ψ
dψdψ̄e−

∫
d4x

∫
d4yψ̄(x)M−1(x,y)ψ(y). (3.8)

The fermion field on the lattice is now described by vectors ψ and ψ̄ of NC complex elements.

3.2 Discretized action

After making the fields discrete, the action itself must be written in a discrete form. When we
take the continuum limit, meaning that a → 0 while the physical size of the system remains
the same, this discretized action should approach the original one. There are many ways to
do this and naively one would expect them to be equally valid. Unfortunately some problems
emerge when discretizing the fermion action and one must take some care in choosing it.

The field strength tensor Fμν in the gauge action essentially describes the change in a
vector when parallel transported around a small loop. In the discretized version we use a
plaquette Uμν , a parallel transport around the smallest squares on the lattice. The gauge
part is usually discretized as

−
∫

d4x
1

2
F a
μνF

aμν =
∑
x,μ>ν

β

[
1− 1

N
ReTr(Uμν(x))

]
,

Uμν(x)

= U(x, aμ̂)U(x+ aμ̂, aν̂)U(x+ aμ̂+ aν̂,−aμ̂)U(x+ aν̂,−aν̂)

= Uμ(x)Uν(x+ aμ̂)U †
μ(x+ aν̂)U †

ν (x),

β =
2N

g2
(3.9)

Notice that here

U(x,−aμ̂) = U †(x− aμ̂, aμ̂).

If we expand the lattice action around a → 0, we see that it approaches the original continuum
action.

The fermion part of the action is a little more complicated. We can start by doing it the
obvious way, replacing the covariant derivative with a parallel transported discrete derivative:

SF =
∑
x,y

φ̄(x)
(
/Dxy +mδxy

)
φ(y), (3.10)

/Dxy =
1

2
γμ(Δμ,xy −Δ∗

μ,xy), (3.11)

Δμ,xy =
1

a
(Uμ(x)δx,y−aμ̂ − δxy) , (3.12)

Δ∗
μ,xy =

1

a

(
δxy − U †

μ(x− aμ̂)δx,y+aμ̂

)
, (3.13)

where φ is again a Grassman field. If we add together the derivative parts and simplify we
have

/Dxy =
1

2a

∑
μ

γμ
(
Uμ(x)δx,y−aμ̂ − U †

μ(x− aμ̂)δx,y+aμ̂

)
(3.14)
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This is often called the naive fermion action and it does seem to be the simplest discrete
representation of the fermion action. Unfortunately, it does not reproduce the original action
in the continuum.

We can see the problem by considering the non-interacting case, where all the gauge fields
U are unity. Then the Naive action reads

SF =
∑
x,y

φ̄(x)

[
mφ(x) +

i

2a

∑
μ

γμ(φ(x+ aμ̂)− φ(x− aμ̂))

]
. (3.15)

In one dimension, every periodic field φ(x) can be presented as a Fourier series

φ(x) =
∑
n

cn exp

(
i
2πn

L
x

)
,

where L is the length of the lattice. Since the lattice is discrete, it suffices to include the terms
where n < L/a. This is referred to as the Brillouin zone. Since all that matters is the value
of φ(x) at the lattice points x = ma, the terms at the lower and the upper end of this zone
are identical, exp(0) = exp(i2πm). Both modes of φ behave like zeros of the derivative, and
describe physical particles. So the discrete fermion field φ(x) actually describes two fermion
fields in continuum. The extra fields are called doublers and in four dimension there are 15
of them.

There are several ways to remedy this problem and all of them lose something from the
original theory. The original proposal by Wilson eliminates the doublers by adding a term to
the fermion action that doesn’t affect the normal fermion, but gives the doublers an infinite
mass in the continuum limit. The added term directly breaks the chiral symmetry. Another
very popular approach, staggered fermions, uses some of the doublers to construct Dirac
components to the fermions, leaving only four doubler at the cost of flavor symmetry and a
part of the chiral symmetry. Then one either just simulates with four fermions or removes
some of them by adding a fourth root to the action. There is also a way to eliminate the
doublers and keep the chiral symmetry exactly, domain wall fermions, but these introduce
an extra fifth dimension and are therefore very expensive to simulate.

We will consider Wilson fermions here. The term added to the action resembles a second
derivative. We can write out the Wilson-Dirac operator as

/Dxy =
1

2
γμ(Δμ,xy −Δ∗

μ,xy −
a

2
Δμ,xzΔμ,zy),

=
1

2a

∑
μ

(
(γμ − 1)U(x, aμ̂)δx,y−aμ̂ − (γμ + 1)U †(x− aμ̂, aμ̂)δx,y+aμ̂ +

4

a
δxy

)
If we include the fermion mass we get what is called the fermion matrix

Mxy = /Dxy +mδxy

=
1

2a

∑
μ

(
(γμ − 1)U(x, aμ̂)δx,y−aμ̂ − (γμ + 1)U †(x− aμ̂, aμ̂)δx,y+aμ̂

)
+

(
4

a
+m

)
δxy.

Finally, we can simplify this by normalizing the fermion field and get

Mxy = δxy

+ κ
∑
μ

(
(γμ − 1)U(x, aμ̂)δx,y−aμ̂ − (γμ + 1)U †(x− aμ̂, aμ̂)δx,y+aμ̂

)
,

κ =
1

8 + 2ma
.
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The parameter κ is called the hopping parameter, since it describes the coupling between
fermions at different points on the lattice.

As we can see, there is now a term in the action that resembles a mass term, even if
the fermion is actually completely massless. This means that the chiral symmetry remains
explicitly broken even at zero mass. Adding the extra term also introduces errors of order
a to the measurements. The naive fermion action was accurate to order a2, except for the
fact that it included doublers. The term we added, however, carries an explicit factor of a.
It disappears in continuum, but more slowly than the error in the naive action.

The fermion fields here are still Grassman numbers and in the simulations we need to use
complex numbers. After the trick in equation 3.8 the fermion action becomes

SF =
∑
x,y

ψ̄(x)M−1
xy ψ(y). (3.16)

ψ is a field of complex vectors with Nc color degrees of freedom and 4 Dirac degrees of
freedom. This is finally a form that can be used in lattice simulations. The fermion matrix
has to be inverted every time the action is calculated and this is actually the most time
consuming part in simulations with modern algorithms.

Generating fermion configurations becomes significantly easier if we make the fermion
term Gaussian. The fermion matrix is not necessarily positive definite, but we can combine
two degenerate flavors of fermions in the action to get a positive matrix,

ZF = e
∑

x,y ψ̄1(x)M
−1
xy ψ1(y)+

∑
x,y ψ̄2(x)M

−1
xy ψ2(y) (3.17)

= det(M)2 = det(M2) = e
∑

x,y ψ̄(x)M−2
xy ψ(y). (3.18)

This version restricts us to use an even number of flavors but using approximations like the
rational hybrid Montecarlo it is also possible to simulate with an odd number of fermions.

Gathering together the gauge and fermion parts we can write down the entire lattice
action. We will write it in lattice units, which means that all values are scaled with an
appropriate power of a to make them dimensionless and a is then put to 1. This is the form
used in simulations, since in numerical work everything needs to be dimensionless. In lattice
units the action is

S =
∑
x,y

[∑
μ>ν

β

[
1− 1

N
ReTr(Uμν(x))

]
+ ψ̄(x)M−2

x,yψ(y)

]
, (3.19)

Mxy = δxy + κ /Dxy, (3.20)

/Dxy =
∑
μ

(
(1− γμ)U(x, μ̂)δx,y−μ̂ + (1 + γμ)U †(x− μ̂, μ̂)δx,y+μ̂

)
(3.21)

3.3 Generating Configurations

Now that theory is discretized and we have a consistent action, we need to generate config-
urations of fields from the correct distribution. This is at the heart of a lattice simulation
program. Basically the most straightforward way do generate the configurations would be to
draw random numbers for all the fields and calculate the measurements with the weight in
3.1. For most of the possible configurations the action would be very large and the weight ex-
tremely small so that we would end up doing an enormous amount of extra work. Fortunately
there are ways to generate just the relevant configurations.
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It’s fairly simple to generate random configurations of the fermion fields. Given a config-
uration of gauge fields we can write the distribution of the fermion fields as

Zψ =

∫
dψe−

∑
x,y ψ̄(x)M−2

xy ψ(y) =

∫
dψe−

∑
x χ̄(x)χ(x),

χ(x) =
∑
y

M−1
xy ψ(y).

The field χ has a Gaussian distribution. To generate a fermion configuration, one generates
a Gaussian field χ and then calculates ψ.

Unfortunately the gauge part of the action is not Gaussian and we cannot just draw
random numbers to fill it. Instead the configurations are generated using a Markov chain.
Starting from some more or less relevant configuration, one introduces random changes to the
gauge matrices. Each change needs to fulfill 3 criteria to to produce the correct distribution
of configurations. The first two are natural, it has to be possible to go from any one state to
any other in a finite number of steps and the propabitility of generating some configuration
has to be one. Here I denote any two states as i and i′ and the propability for going form
i to i′ in a n steps as Pn(i → i′). For just one step I use P1(i → i′) = P (i → i′). The first
condition translates into

∀i, i′, Pn(i → i′) > 0withsomen ∈ N , (3.22)

and the second condition into ∑
i′

P (i → i′) = 1. (3.23)

The third condition is known as the balance equation,∑
i′

P (i → i′)e−S(i) =
∑
i′

P (i′ → i)e−S(i′), (3.24)

that is, the sum of the probabilities of all possible endpoints weighed by the desired probability
is the same as the sum of the probabilities of coming back weighed by the probability of the
endpoint. This ensures that we eventually end up with a correctly distributed set of states.
Using eq. 3.23 we can write it in the form∑

i

P (i → i′)e−S(i) = e−S(i′). (3.25)

So the desired distribution, exp (−S(i)), is a fixed point of the update process. If we update a
correctly distributed set of configurations, the distribution will not change. Since we sample
trough the entire configuration space in a finite time, no matter the starting distribution, we
should in the end have the correct distribution.

In practice the simulation algorithms are designed to fulfill a more restricted form of the
balance equation, the detailed balance equation,

P (i′ → i)e−S(i′) = P (i → i′)e−S(i′). (3.26)

Here the balance equation holds for each possible new configuration separately. This require-
ment is more restrictive but if it holds, the balance equation certainly holds, and it is easier
to conceptualize.

Next we need a method for generating the next configuration from the previous one that
fulfills all the given requirements. One of the simplest possibilities would be the Metropolis
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algorithm. Starting from some configuration we randomly propose a new one and accept
it at a certain probability. If the probability of the proposing i′ is Q(i, i′), the acceptance
probability should be

P (i → i′) = max(1,
e−S(i′)Q(i′, i)
e−S(i)Q(i, i′)

).

The proposal probability has to be either symmetric, Q(i′, i) = Q(i, i′), or independent of the
origal distribution. In both cases the update fulfills all the properties above and samples just
the important configurations. It works very well when the action is local, there are interaction
only between neighboring points. Then we can change just one point at a time on calculate
the change in the action quickly. Unfortunately the fermion part of the action is not local,
since we have to calculate the inverse of the fermion matrix. Changing just one matrix on
the lattice will affect the action at all points.

The Hybrid algorithm is designed to update the entire configuration at once. To do this
we first need to add and extra field to the model. We can always multiply the distribution
with a constant, such as an integral over a new conjugate field Ω(x, μ),

Z(U,ψ,Ω) = Z(U,ψ)

∫
dΩe−

∑
x,μ

1
2
Tr (Ω(x,μ)Ω(x,μ))

=

∫
dΩdUdψe−

∑
x[Lψ+LU (x)+

∑
μ

1
2
Tr (Ω(x,μ)Ω(x,μ))].

Naturally any expectation values measured using this new action will be the same as the
ones using the old ones. The things we want to measure will not even depend on the new
field. The distribution of the new field is Gaussian, so that it’s simple to generate random
configurations of it.

To generate new gauge configurations we generate this conjugate field Ω and let the system
evolve along the classical equations of motion. Ω basically functions as the momentum of the
gauge field. As we see from equation 3.7, there are as many degrees of freedom in the gauge
fields as there are generators in the group that the gauge matrices U belong to. If we add a
momentum Ωa for each of the generators a, we can write them as a sum of the generators, a
traceless antihermitean matrix

Ω = ωaλa

Since the action is conserved in classical mechanics, we should end up with a new configuration
that has the same action as the previous one. The action does change when we generate new
fields for fermions and the conjugate fields, so that all possible configurations are covered.
This can be repeated to generate a chain of configurations.

The classical equations of motion are

dωa(x, μ)

dt
=

dS

dU(x, μ)

dU(x, μ)

dUa(x, μ)

and
dUa(x, μ)

dt
= dωa(x, μ).

These of course need to be integrated numerically. One of the simplest methods for doing the
integration is the leapfrog integrator. We evolve the configuration G in small discrete steps
given by

G(t+Δt) = UG(Δt/2)F (Δt)UG(Δt/2)G(t),

UG(Δt)G =
[∀a, x, μ, Ua

μ(x) → Ua
μ(x) + Δt ωa

μ(x)
]
,

F (Δt)G =

[
∀a, x, μ, ωa

μ(x) → ωa
μ(x) + Δt

dS

dUa
μ(x)

]
,
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where Δt is the step in simulation time. The gauge field is first updated only half way and
the momentum field leaps over it and is updated a full step. Then the gauge field catches up
and is updated the other half step.

After generating a fermion and a momentum configuration one integrates over a certain
amount of time steps, a trajectory. The step size Δt and the length of the trajectory are
tunable parameters. In the end one has, up to errors in the numerical integration, a new
gauge configuration in the Markov chain. Of course if one used just the Hybrid method, the
errors in the numerical integration would have to be very small.

The most used method for generating configurations, the Hybrid Montecarlo or HMC, is
a combination of the Hybrid- and the Metropolis methods. We can consider the new gauge
configuration generated by the Hybrid method trajectory as a proposal in the Metropolis
method. We calculate the change in the action and approve the new configuration at the
probability

P (i → i′) = max(1, e−S(i′)+S(i)).

If the new configuration is not accepted, we just use the old one. All measurements should of
course be done after every update, whether or not the new gauge configuration was accepted.

So far HMC is the most efficient method for generating gauge configurations. It can be
tweaked a bit by improving the integrator or dividing the fermion fields differently. Examples
of the second are the rational hybrid Montecarlo [15] that allows one to simulate with an odd
number of fermions and the Hasenbusch method [16] where the fermion field is divided into
a low and a high mass part. Generally the most expensive part of the simulation is updating
the momentum field, where one has to take the derivative of the fermion part of the action.

3.4 Improving the Algorithm

Since we want to probe the behavior of the lattice models at very strong coupling, where the
interaction between points are strong and the simulations tend to be heavy, improvements in
the simulation algorithms are welcome. A reduction in computation time allows for longer
simulations and greater statistical accuracy, or simulations on more values of the bare cou-
pling and reduced systematic uncertainty. Most algorithmic improvements do not reduce the
simulation time enough to allow using larger lattice sizes, but they do bring that possibility
closer as well.

The most obvious starting place is the integrator, the algorithm for evolving the gauge
configuration along the classical equations of motion in the HMC algorithm. Most of the
simulation time is spent in calculating the inverse of the fermion matrix, which is required
for the fermion part of the momentum step.

We can divide the force, the derivative of the momentum, into a gauge part and the
fermion part,

Fμ(x) = Fμ,U (x) + Fμ,F (x),

Fμ,U (x) =
dSU

dUa
μ(x)

,

Fμ,F (x) =
dSF

dUa
μ(x)

.

Compared to the fermion part, the gauge part is rather cheap to evaluate. Especially at
weaker couplings the gauge part is also larger than the fermion part and is responsible for a
larger part of the integration error. The fermion part doesn’t actually need to be updated as
often as the gauge part.
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A multiple time scale integrator could be something like a generalized leapfrog step, where
the gauge field and the gauge part of the force are updated more often than the fermion part
of the force. We can use the notation

FG(Δt) =

[
∀a, x, μ, ωa

μ(x) → ωa
μ(x) + Δt

dSG

dUa
μ(x)

]
,

FF (Δt) =

[
∀a, x, μ, ωa

μ(x) → ωa
μ(x) + Δt

dSF

dUa
μ(x)

]
for the gauge and the fermion parts of the force respectively. One possible multiple time scale
leapfrog step could be

G(t+Δt) = UG(
Δt

4
)FG(

Δt

2
)UG(

Δt

4
)FF (Δt)UG(

Δt

4
)FG(

Δt

2
)UG(

Δt

4
)G(t)

Shortening the time step for the gauge part reduces the integration error and allows increasing
the step size. Since we haven’t added any fermions steps, the computation time is almost the
same. Unfortunately this only works well if the gauge force is at least as large as the fermion
force, which is sometimes not true when the coupling is large.

Of course the leapfrog integrator is the just the simplest possibility and probably not the
most effective. It is the only possible first order integrator with just one force step. If we
allow a second fermion force update, there is a bit more freedom. Taking into account that
the integration should be symmetric in time, the general second order integrator is

G(t+Δt) = UG(ζΔt)F (
Δt

2
)UG([1− 2ζ]Δt)F (

Δt

2
)UG(ζΔt)G(t),

where F is a general force step.
Assuming that the two operations have about the same magnitude, the optimal value for

ζ is roughly 0.2 [12, 13]. The error of one of these Omelyan integrator steps is about 30% of
the error of a leapfrog step. This means that the step size can be more than doubled, but
the computation time is only doubled. Using the Omelyan integrator we have reduced the
computation time by about 50%. We have combined this with a multiple step size integrator
for a little further improvement.

Another good part of the algorithm to improve is the inversion of the fermion matrix.
For every fermion force step one needs to solve the equation

Mx = ψ. (3.27)

This is usually done using the conjugate gradient algorithm. The algorithm starts from some
initial guess and first takes the negative gradient of the guess with respect to the matrix.
Then it builds a basis of vectors that are conjugate to the gradient, hence the name, by
taking the part of the residual Mx− ψ that is conjugate to all the previous vectors.

If the initial guess is closer to the solution the algorithm naturally finds it faster, so it’s
useful to find as good an initial guess as possible. Since the gauge field is changed only a
small amount between force calculations, the previous solutions should be close to the next
one. The chronological initial guess [14] is constructed by solving equation 3.27 in the space
of a few earlier solutions. If the solutions from n previous time steps were ψn, the basis
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vectors are

v1 =
ψ1

|ψ1| ,

v2 =
v′2
|v′2|

, v′2 = ψ2 − v1 · ψ2

|v1|2 v1,

. . .

vn =
v′n
|v′n|

, v′n = ψn −
n−1∑
m=1

vm · ψn

|vm|2 vm.

In principle this will produce a set of orthogonal vectors that should be close to the next
solution. However, since we are removing larger and larger parts of the older solution vectors,
they will start to have numeric errors quite quickly. The basis vectors are constructed so that
the most recent solutions have the smallest error. The latest one is just normalized, the one
before that is made orthogonal to just the previous one and so on. This way we keep at least
the most important vectors.

Next we project the fermion matrix and the fermion field to this basis,

Gnm = vnM
†Mvm

bn = v†nχ.

Now we can solve equation 3.27,

Gnmam = bn.

And finally project back to the original basis,

ψ0 =
∑
m

amvm,

where ψ0 is the chronological initial guess for the full solution.
The initial guess is often surprisingly close to the correct solution and the number of

iterations in the conjugate gradient can be reduced significantly. The initial guess of course
works best when the time step is small. It can reduce the computation time of a single time
step by more than 90%. The downside is that the vectors the initial guess is constructed out
of contain information about the previous states and this affects the balance requirement of
a Markov chain. To ascertain detailed balance one can either demand greater accuracy from
the conjugate gradient or reduce the step size. Both of these measures of course increase
the computation time. Nevertheless we find the chronological initial guess often decreases
computation time greatly.

3.5 Spectrum of SU(2) with Two Adjoint Fermions

In article [1] we have studied the mass spectrum of a lattice gauge model with two fermions
interacting with the adjoint representation of an SU(2) gauge field. Since a conformal field
cannot have a mass scale, all bound states in it should be massless. By studying how the
masses run to zero with quark mass it should be possible to determine whether the model has
a conformal fixed point. In the article we have mapped the phase structure of the model and
measured the masses of several bound states and studied their running towards zero quark
mass.
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Since we are using Wilson-fermions and have broken the chiral symmetry explicitly, the
fermion masses can receive additive quantum corrections. To simulate models with massless
fermions we first need to find the critical hopping-parameter κc, where the true fermion mass
is zero. We can measure the mass using the partial conservation of the axial current, the
PCAC relation,

1

2
(∂∗

μ + ∂μ) <Aa
μ(x)O>= 2M <P a(x)O>, (3.28)

Aa
μ(x) = ψ̄(x)γμγ5

1

2
λaψ(x), (3.29)

P a(x) = ψ̄(x)γ5
1

2
λaψ(x) (3.30)

Aμ here is the axial current and P is the pseudo-axial current. The operator O can in principle
be anything. One possible choice is to add a source fermion field χ to the time slice x0 = 0,
and use the pseudo-axial current of the source field

Oa =
∑
y,z

χ̄(0,y)γ5
1

2
λaχ(0, z).

This should be strongly correlated to the pseudo-axial current in the bulk of the lattice,
providing good signal.

Measuring the masses of bound states like mesons is actually rather straightforward on
the lattice, even though it is very complicated in perturbation theory. The euclidean time
propagators decay with energy, and the lowest energy state, the mass, can be measured from
the long distance behavior. This can be seen simply by expanding the propagator in terms
of energy states,〈

Γ(τ)Γ†(0)
〉
=
〈
0
∣∣∣Γ(τ)Γ†(0)

∣∣∣0〉 =
〈
0
∣∣∣ eĤτΓ(0)e−ĤτΓ†(0)

∣∣∣0〉
=
∑
n

〈
0
∣∣∣ eĤτΓ(0)

∣∣∣En

〉〈
En

∣∣∣ e−ĤτΓ†(0)
∣∣∣0〉

=
∑
n

〈
0
∣∣∣Γ(0) ∣∣∣En

〉
e−Enτ

〈
En

∣∣∣Γ†(0)
∣∣∣0〉

=
∑
n

e−Enτ |〈0|Γ(0) |En〉|2

≈ Ae−mτ .

On the last line we have taken the time τ to be large compared to the lattice spacing and
1/m, but small compared to the size of the lattice. To measure the mass of a bound state we
need to construct an operator that overlaps with the state and fit the long distance behavior
to an exponentially decaying function. At large distance the leading behavior is given by the
smallest energy state of the operator, that is the mass of the lightest bound state it overlaps.

We found indications of a first order phase transition at large coupling. There is a sudden
jump in the expectation value of both the quark mass and the plaquette observable,

P =

〈
1− 1

NCV

∑
x,μ>ν

Tr(Uμν(x))

〉
,

where Uμν is the plaquette and V is the volume of the lattice. The plaquette is related to
the field strength tensor. At the transition it jumps to a significantly smaller value. The
phase transition is easily visible if we plot the plaquette as a function of κ, figure 3.2. The
measurements were performed on a lattice with the size L = 10 in all directions.
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Figure 3.2: Plaquette expectation values as measured in article [1] at several values of the
bare coupling. The values of the left panel were measured from SU(2) gauge theory with two
adjoint fermions and the ones in the right panel with two fundamental fermions.

As we see on the left hand side in figure 3.2, in the model with fermions in the adjoint
representation, the transition is abrupt when β < 2. The errors in measurements are large
close to the transition and it is difficult to actually map the transition exactly. When β > 2
and the coupling is weaker, the transition is smoother and simulations seem to be reliable
all the way trough it. The same change in the plaquette observable can be seen in the
fundamental theory as well, on the right side in the plot, but it is not as drastic and does not
limit simulations in the range of β that was studied.

The phase transition seems to be a lattice phenomenon. Since the quark mass in physical
units, m/a, should be kept constant while approaching continuum, the lattice mass m must
approach zero in the continuum limit. The mass however jumps at the transition and if it
jumps from positive to negative values, there is no point where the mass is zero and therefore
no continuum limit. There is a discontinuity between the continuum limit where the transition
happens at negative mass and the continuum limit where it happens at positive mass. These
two continuum models do not necessarily correspond to the same physical theory. To reach
reliable continuum results, we must therefore stay at large enough β where the transition
happens at negative quark mass.

Keeping this in mind we have studied the masses of the lightest pseudo scalar meson,
the pion π, and the lightest vector meson ρ. In figure 3.3 we have plotted the masses as
a function of the lattice quark mass m = mQa from the PCAC relation 3.28. At larger
couplings, β ≤ 1.9, the behavior is compatible with chiral symmetry breaking. The pion
mass approaches zero with like the square root of the quark mass. This is how the Goldstone
boson of a broken chiral symmetry should behave. The vector meson on the other hand seems
to tend to a finite mass, suggesting that there is a mass scale in the continuum model.

Below the expected critical coupling around β = 2, at values β ≥ 2.2, the behavior
changes. Both particles have almost degenerate masses and seem to be directly proportional
to the quark mass. This kind of behavior is compatible with a model close to a conformal
fixed point. With no other mass scale available the meson masses would be relative to the
quark mass and tend to zero. The chiral symmetry breaking observed at larger couplings
could well be a lattice artifact, since at these coupling we are above the bulk phase transition
and do not necessarily describe a continuum limit. The seemingly conformal behavior at
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Figure 3.3: On the left: Pseudo scalar meson π mass with respect to the quark massm = mQa.
The dotted line is a fit ∝ √

mQ to measurements at βL ≤ 1.9 and m = mQa ≤ 0.5. On the
right: Vector meson ρ mass with respect to the lattice quark mass mQa.

smaller coupling could be the physical behavior of the model.
There is another interpretation, however. Similar behavior is observed in models with

a true chiral symmetry breaking. At larger couplings the system is confined and the chiral
symmetry breaking is visible. At smaller couplings, however, the lattice size is too small
compared to the chiral condensate and the system seems to behave like a free, conformal
theory.

Similar studies have been performed by other groups, reported in [19, 20, 21, 22, 23, 24, 25],
with similar results. Even though the bulk transition and the chiral symmetry breaking seem
to be lattice effects, and conformal behavior is observed, there is some reason to doubt this
interpretation of our results. Similar effects can be observed in a model that certainly has
a chiral symmetry breaking. Based on article [1], the SU(2) gauge theory with two adjoint
fermions may well have a conformal fixed point, but there is no direct proof. To explore the
conformality of the model directly we have turned to measurements of the running coupling
and the β function.



Chapter 4

The Running Coupling and
Discretization Errors

4.1 The Schrödinger Functional

For measuring the the strength of the interaction from lattice simulations we have used the
Schrödinger Functional (SF) [26] method. It amounts to generating a background field in the
simulated system and finding the interaction strength by varying the field and measuring the
effect this has on the action of the system. Several other methods of measuring the coupling
are used by other groups, many of which are variations of the SF method with improvements,
such as the twisted Polyakov loop method [17], but some use different mechanisms, such as
Wilson loops that describes the potential between two quarks.

The main problem with the Schrödinger Functional method is that discretization effects
appear to first order in the lattice spacing. With for example the twisted Polyakov loop
approach these effects appear only to second order in the lattice spacing and disappear faster
in the continuum limit. The problem with the twisted Polyakov loop method is that the
number of quark flavors is by construction restricted to a multiple of 2 × Nc, Nc being the
number of colors in the model. The SF approach does not have this limitation, but one has
to take care of the discretization effects.

The SF background field is created by fixing the gauge field at the boundaries of the
lattice in time direction,

Ui(x0 = 0) = U0(η) = e−iηλ3/L, (4.1)

Ui(x0 = T ) = UT (η) = e−i(π−η)λ3/L. (4.2)

At classical level, where the system is described by the minimum of the action, the field
settles into a smooth interpolating field between the boundary values. For this classical
background field, the variation of the action with respect to η is inversely proportional to the
bare coupling,

dScl

dη
=

k

g20
.

The constant k depends on η and the size of the lattice.
Above two-loop level in perturbation theory there is no unique way to define the renor-

malized coupling. As long as other renormalized quantities are defined consistently, the only
restriction is that it should agree with the classical value when the bare coupling is small.
The SF coupling is defined analogously to the classical case, using the expectation value of
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the derivative of the action, 〈
∂Scl.

∂η

〉
=

k

g2
. (4.3)

Note that the classical coupling g0 is actually just a parameter of the lattice field theory that
appears in the action. It cannot be measured and has no direct physical interpretation. Any
coupling that is measured will be some version of a renormalized coupling.

We should also set fermion fields at the time boundary and the simplest choice is to
take ψ(x0 = 0) = ψ(x0 = T ) = 0. The fermion part of the action goes to zero at the
boundaries and does not depend on η. Only the gauge part contributes to the derivative and
it is straightforward to calculate.

In the spacial direction the normal periodic boundary condition can be used. This
amounts to wrapping the boundaries together into a cylinder, so that moving the distance L
to any direction brings you back to the starting point, x = x+Lμ̂. The tree-level gauge field
should be constant in the spacial direction, so the only periodic choice is

U(xi = L+ 1) = U(xi = 0).

The quark fields can have an extra phase,

ψ(xi = L+ 1) = eiθψ(xi = 0), ψ̄(xi = L+ 1) = e−iθψ̄(xi = 0). (4.4)

The effect of the phase on simulation time was investigated in [27] for SU(3). In this case,
choosing θ = π/5 seems to regulate the low-lying fermion modes and make inverting the
fermion matrix faster without affecting the coupling. Motivated by these studies we use
θ = π/5 when measuring the coupling and θ = 0 otherwise, even though we use different
models.

The SF coupling is intuitively related to the strength of the interaction, it has the correct
classical limit and can be related to the MS coupling often used in perturbation theory. It is
also directly connected to a distance scale, the distance between the time boundaries. This
is useful in studying the scale dependence of the coupling, the β-function.

The observable in 4.3 is generally noisy and suffers from long correlation times. To get
to a good accuracy, the simulations tend to be long and time-consuming, spanning typically
a couple hundred thousand HMC trajectories. As the computing cost increases rapidly with
the volume, the studies are limited to rather small lattice sizes, typically between L = 6 and
L = 16.

In [28] the running of the SF coupling was studied in the SU(2) model with two adjoint
fermions. The coupling was measured at several values of β with several lattice sizes. The
results can be seen in figure 4.1. We are interested in the direction the coupling runs with
the lattice size since change in the direction would indicate a fixed point. At small coupling
the β-function is negative and the coupling increases with lattice size. At larger couplings
the direction of the running changes and the β-function turns positive. There seems to be a
zero of the β-function there between g2 = 2 and g2 = 3.

The lattice model seems to be conformal. On the other hand the results in figure 4.1 have
large discretization errors. Even at smaller couplings, the results at L = 4 seem incompatible
with the larger lattice sizes. When the direction of the running flips, the coupling is still
running up at L = 6. Since the measurements at L = 20 have large errors and constrain the
results only weakly, the conclusion is actually based on just two points, L = 12 and L = 16.

The measurements in article [28] clearly hint to the existence of a fixed point, at least
one seems to exist in the lattice model, but the discretization errors prevent taking a reliable
continuum limit from the results. The next step is to find a method for controlling the
continuum limit and the discretization errors.
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Figure 4.1:

Figure 4.2: A diagrammatic representation of the clover term.

4.2 Symanzik Improvement

There are basically two approaches to improving a lattice model. Either one tries to find a
model that describes the physical system as well as the old one but is faster to simulate, or
a model that represents the physical continuum model more accurately already on smaller
lattices, that is, has smaller discretization errors. There is a lot of freedom in choosing a lattice
model, it only has to produce the correct continuum limit, and many possible improvements
have been suggested.

In the Symanzik improvement method [29, 30] the action, or any operator that needs
to be improved, is expanded in terms of the lattice spacing a. The leading terms are then
cancelled by adding equal and opposite terms to the model. At the first order there is only
one operators that can be added to the Wilson action without breaking any symmetries and
that cannot be removed by normalizing the fields [31]. This is the Sheikholeslami-Wohlert or
clover term

OSW = aψ̄σμνFμνψ

We are now using the physical units, where a is not set to 1.
The clover operator connects the fermion fields ψ to the field strength tensor of the gauge

field. The diagrammatic representation of the operator in figure 4.2 looks like a four leaf
clover, the fermion fields are parallel transported around all possible plaquettes, ending at
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the original position. σμν is an antisymmetric product of the gamma-matrices,

σμν =
i

2
[γμ, γν ].

Adding this to the action with an arbitrary coefficient csw we get the fermion action

SF = a4
Nf/2∑
α=1

∑
x

[
ψ̄α(x)(iD +m0)ψα(x) + acswψ̄α(x)

i

4
σμνFμν(x)ψα(x)

]
, (4.5)

where Nf is the number of fermion flavors. If we choose the coefficient csw properly as a
function of β and Nf , all the first order discretization effects should disappear.

In article [2] we find the coefficient csw nonperturbatively for SU(2) with 2 flavors of
fermions in the fundamental and adjoint representations and demonstrate that this removes a
large part of the discretization errors present in the fermion mass. The method for finding the
coefficient csw was used in reference [32] for studying QCD. To find the coefficient we measure
the fermion mass using the PCAC relation in two different ways. With the Schrödinger
functional boundary conditions, we measure the mass M with the source field at the lower
boundary, as in equation 3.28. We also measure the mass M ′ with the source at the upper
boundary, with the operator

Oa =
∑
y,z

χ̄(T,y)γ5
1

2
λaχ(T, z).

Both of these measurements should give the same renormalized fermion mass in the
continuum. The only difference is that in one the source field for the correlators is in the
lower boundary and in the other it is on the upper boundary. The discretization errors in
these measurements can be different, however, since the boundary condition are different. If
there are no discretization errors, the value for csw is correct, the difference

dM(x0) = M(x0)−M ′(x0) (4.6)

should disappear. We can measure dM at a few different values of csw and find the point
where dM(x0) = 0 at some x0.

For the model with fundamental fermions we used the same SF boundary condition as
when measuring the coupling, given in 4.1, with η = 0.25π. We call these boundary conditions
Abelian boundaries. With adjoint fermions, however, there is a complication. In the adjoint
representation the boundary matrices become

Ũ0(η) =

⎛⎝ cos
( aη
2L

) − sin
( aη
2L

)
0

sin
( aη
2L

)
cos
( aη
2L

)
0

0 0 1

⎞⎠ ,

ŨT (η) =

⎛⎜⎜⎝
cos
(
a(π−η)

2L

)
− sin

(
a(π−η)

2L

)
0

sin
(
a(π−η)

2L

)
cos
(
a(π−η)

2L

)
0

0 0 1

⎞⎟⎟⎠ .

The third fermion color is not affected by the boundaries and therefore doesn’t contribute to
dM . At long distances the third color starts to dominate and the dM goes to zero regardless
of the boundary matrices.

We see this figure 4.3. On the plot on the left we show the tree-level mass M(x0) in the
model with fundamental fermions at two different values of csw. There is a clear difference
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Figure 4.3: Left: Fermion masses m(x0) = aM(x0) measured from the classical configuration
with SF boundary conditions. The plot on the left side shows masses of fermions on the
fundamental representation measured with the boundary conditions in 4.1 (Abelian). The
plot on the right side shows masses of adjoint fermions measured using both the boundary
conditions 4.1 (Abelian) and 4.7 (Non-Abelian). The bare mass is 0.01, and any difference
from this is due to cutoff effects.

Figure 4.4: csw for two flavors of fundamental representation fermions. The solid line is the
interpolating fit and the dashed line is the 1-loop perturbative value
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Figure 4.5: csw for two flavors of adjoint representation fermions, with the interpolating fit.

between the two cases. In the plot of the right we show the same for the model with adjoint
fermions. There the difference in the mass between the two values of csw dissappears when
x0 is larger than 8.

We remedied the problem by using different, direction-dependent boundary conditions
when measuring csw with adjoint fermions. The boundary matrices where chosen to be

Ui(x0 = 0) = exp

(
−i

π

2

aλi

L

)
, (4.7)

Ui(x0 = T ) = I.

The new boundary conditions, dubbed Non-Abelian, produce a strong background field with
a magnetic component in addition to the electric one. We do not use them to measure the
coupling, but they are useful in measuring dM . In figure 4.3 we show also the fermion mass
measured from the classical configurations produced by these boundary conditions. The dif-
ference between the unimproved case, csw = 0, and the improved case, csw = 1, remains
visible also at larger distances.

Since the boundaries are fixed in the Schrödinger functional method and the Lorentz
symmetry is broken, there are two other terms that can be added at the boundary,

δSF = a(c̃t − 1)
∑
x

1

a
ψ̄(x)ψ(x)(δ(x0 − a) + δ(x0 − (L− a)) and

δSG = a(ct − 1)
βL
4

∑
x,μ,ν

tr(1− Uμ,ν(x))(δ(x0 − a) + δ(x0 − (L− a)).

These are basically corrections to the bare coupling and mass, but present only at the time
boundaries. They are controlled by the parameters c̃t and ct and these were calculated to
first order in perturbation theory in article [2].

Actually only the ct term has an effect on the SF coupling to the first order. The c̃t term
renormalizes the fermion mass and only affect the coupling in higher orders in perturbation
theory. We have included it for consistency, since we also measured the position of the
critical line κ = κc, where the fermion mass is zero. Similarly, for consistency, one should
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Figure 4.6: cA for two flavors of adjoint fermions. The solid line is the interpolating fit and
the dashed line is the 1-loop perturbative value

also improve the axial current Aμ used to measure the fermion mass. The improved version
is

Aa
I,μ = Aa

μ + a cA
1

2
(∂∗

μ + ∂μ)P
a.

We also measured the coefficient cA nonperturbatively, using the effect of the space-like
boundary condition in equation 4.4 on the fermion mass.

We measured the coefficient csw at few values of β. For use in simulations at different
values of β, we found an interpolating function for the results. The interpolating function for
csw shown in figures 4.4 and 4.5. The results and the interpolating function for cA is shown
in figure 4.6.

We found that the non-perturbative values for the improvement coefficients seem to di-
verge around β = 2. It seems that beyond this point the discretization effects start to
dominate and simulations of the improved model become impossible. This gives validity
to our earlier result, that the discretization errors grow large at smaller β. With adjoint
fermions this happens before the fixed point, making it impossible to verify its existence
using the purely Symanzik improved action.

4.3 The Continuum Limit

In order to take the continuum limit we have to quantify the running independently at several
lattice sizes. The continuum limit is taken by taking the lattice size to infinity while keeping
physical quantities, such as the measured coupling, constant. The running of the coupling
can be quantified by measuring it with two different lattice sizes, for example L4 and (2L)4.
The change is then encoded in the step-scaling function [33], which describes the change of
the coupling when the physical size of the system is doubled,

Σ(u, L) = g2(g0, 2L)
∣∣
g2(g0,L)=u

, (4.8)

σ(u) = lim
L→∞

Σ(u, L). (4.9)

Σ is the lattice version and σ the continuum limit.
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The continuum step scaling function is calculated from the values of Σ at several lattice
sizes, keeping the coupling g2 constant, and taking the limit a → 0. Since the simulations
are very time-consuming it is not practical to find bare couplings so that g2 is constant at
all lattice sizes. Instead the measured values of g2 can be fitted to an interpolating function,
which is then used to calculate Σ at different lattice sizes.

In the previous sections we quantified the running using the β-function, which is a more
natural choice in perturbation theory. The step-scaling function and the β-function are of
course related. The β-function describes the change of the coupling with an infinitesimal
change of the energy scale and the step-scaling function with the doubling of the distance
scale. By letting the coupling run from a distance scale to double the scale we get∫ σ(g2)

g2

dx

2
√
xβ(

√
x)

= −
∫ 2L

L

dL

L
= − ln(2) (4.10)

Generally speaking the relation is a bit complicated, but we are mostly interested in
finding a fixed point, where the coupling doesn’t run and the β-function has a zero. Close to
a fixed point, where β(g) is small, we can expand the integral in 4.10 to get

β(g) ≈ β∗(g) =
g

log(2)

(
1− σ(g2)

g2

)
. (4.11)

As one might expect, the zero of the β-function corresponds to σ(u) = u, where the coupling
does not change with the length scale. The approximation is exact only when β = 0, but is
generally quite good in the vicinity of a fixed point.

This method was used in [34, 35, 36, 37] to study SU(2)-models with adjoint or funda-
mental fermions with unimproved Wilson fermions. A fixed point is seen in the lattice results
in both cases, but in the continuum limit the systematic errors are too large to make rigor-
ous conclusions. We have used the method to find the continuum limit of the step scaling
function in [3] using Symanzik improved Wilson fermions with perturbative values for the
improvement coefficients.

For the model to be conformal we must simulate with massless fermions. To find the value
of κ where the fermion mass is zero, we have measured the mass from the PCAC relation in
equation 3.28 using a few values of κ for each bare coupling. Using the largest lattice size,
L = 16, we have measured the correlation functions at the middle time slice, x0 = L/2 and
interpolated to find κ = κc where the mass is zero. The simulations needed to find the mass
are relatively short and usually have around 500 trajectories.

We have used the jackknife blocking method in our analysis, since it allows to perform
complicated operations on the data and find the statistical error of the results in a straightfor-
ward way. The whole data set is divided into around 80 jackknife blocks, the whole analysis is
done to each block separately, and the error is calculated from the distribution of the results.
We go trough the whole process including the continuum limit for each jackknife block.

4.4 SU(2) with 4, 6 and 10 fermions

In article [3] we have studied the behavior of SU(2) with 4, 6 and 10 fermions using the
perturbative value of csw. In the model with 10 fermions this seems to be a surprisingly good
choice for csw. We noticed that at large coupling the discretization effect dM is actually rather
small. At large coupling the non-perturbative value for csw seems depend on the number of
fermion flavors rather strongly.

The most interesting case in the article is the one with 6 fermions, since it is close to the
lower limit of the conformal window. The cases with 4 and 10 fermions are good benchmarks
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Figure 4.7: The measured values of g2 against a/L with 6 flavours of fermions. The black
dashed line gives an example of the running in 2-loop perturbation theory.

for the method, since the 4 fermion model is clearly below the conformal window and the 10
fermion model is clearly inside it. In both cases the results of the simulations are as expected,
as we can see in figures 4.8 and 4.10.

In the four fermion model the step scaling function becomes clearly larger than one
already at rather small couplings. The measured value follows the perturbative one at smaller
coupling and seems to be slightly larger at large coupling. In the ten fermion model the step
scaling function becomes clearly negative around g2 = 2.5. Since it is positive at very small
couplings, where it follows perturbation theory, there has to be a fixed point. The exact
location of the fixed point remains hard to discern as the running is extremely slow at all
values of the coupling below g2 = 2.5. In this case the step scaling function seems to have a
smaller value than the perturbative expansion already at rather small coupling.

The main conclusion that can be drawn from our measurements of the six fermion model is
that the fixed point observed in [35] at around g2 = 4 is either moved to much larger coupling
or not present. The continuum extrapolation seems to follow the perturbative line quite well
to large coupling and diverges from it abruptly at g2 = 8. The continuum extrapolation is of
course highly questionable already at g2 = 6, where it clearly diverges from the L = 8 result.
The drastic change the behavior around g2 = 8 is caused by one measurement, the value of
g2 measured with L = 6 and β = 1.39 is clearly different from the other measurements at the
same β. It seems that even though the results are good to a large coupling, the fixed point,
if one exists, is still hidden by discretization errors.

4.5 Hypercubic Smearing

To remedy the problem of discretization errors diverging with large coupling we have im-
plemented smearing of the fermion part of the action. The general idea of smearing is to
reduce the fluctuations of the gauge field to bring it closer to the tree-level field. This is done
by replacing gauge matrices in the action with an average of a group of paths. There are
several ways to take the average and to choose the paths taken. In NHYP smearing, used
in similar calculation in [38], the idea is to stay within a hypercube and use a differentiable
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Figure 4.8: The normalized step scaling function σ(g2)/g2 with 4 fermions as in article [3].
The red line corresponds to the continuum extrapolation and the hashed band to the statisti-
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Figure 4.9: The normalized continuum step scaling function σ(g2)/g2 with 6 fermions as in
article [3].
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Figure 4.11: The link and the staples summed together in a two-dimensional lattice.

normalization of the sum of the paths that projects it into a U(NC) matrix.
Smearing takes the model closer to the tree-level model and should remove a part of the

discretization effects. In [38] it was found that replacing gauge links in the fermion action
with NHYP smeared links enables simulations at larger bare coupling. Discretization errors
remain small at larger couplings, which is evident from the fact that the clover coefficient
stays close to the tree-level value csw = 1. We have found similar results with adjoint SU(2)
and are studying both adjoint SU(2) and SU(3) using perturbative order a improvement in
addition to hypercubic smearing.

A general hypercubic smearing consists of three consecutive smearing steps. First we add
together all possible staples, paths of three links connected to the endpoints of the smeared
link, as shown in figure 4.11. The product is then normalized and the steps are repeated
three times, taking only staples that are orthogonal to the staples that are already included.
This ensures that the effect of the smearing stays withing a single hypercube and therefore
within a clearly restricted physical volume.
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The steps in a general hypercubic smearing are given by

Vx,μ = Proj (Λx,μ,Ux,μ)

Λx,μ =
α1

6

∑
±ν �=μ

Ṽx,ν;μṼx+ν̂,μ;ν Ṽ
†
x+μ̂,ν;μ (4.12)

Ṽx,μ;ν = Proj (Λx,μ;ν ,Ux,μ)

Λ̃x,μ;ν =
α2

4

∑
±ρ�=μ,ν

V x,ρ;ν,μV x+ρ̂,μ;ν,ρV
†
x+μ̂,ρ;μ,ν

V x,μ;ν,ρ = Proj
(
Λx,μ;ν,ρ,Ux,μ

)
Λx,μ;ν,ρ =

α3

2

∑
±η �=μ,ν,ρ

Ux,ηUx+η̂,μU
†
x+μ̂,η. (4.13)

For our implementation of NHYP smearing we have chosen the coefficients to be α1 = 2.333,
α2 = 1.5 and α3 = .4285. The value for α1 was found in [39] by minimizing the plaquette
observable. The other two are tree-level values [40]. The normalization operator used in
NHYP smearing is defined as

Proj(Λ,U) =
M√
M†M

, M = U+ Λ.

The square root could be defined to be any matrix S =
√
M that has the property

S · S = M , but since we need to calculate the derivative of the smeared link for the fermion
force in the HMC algorithm, we should work out a differentiable definition. If D is a matrix
that diagonalizes M , that is

D†MD =

⎛⎜⎝ g1 0 · · ·
0 g2 · · ·
...

...
. . .

⎞⎟⎠ ,

we define the square root to be

√
M = D

⎛⎜⎝
√
g1 0 · · ·
0

√
g2 · · ·

...
...

. . .

⎞⎟⎠D†

We first project the matrix to a space where it’s diagonal, then take the square root and
project it back. This square root can be expanded in terms of traces of the matrix,

1√
M

= f0 + f1M + · · ·+ fNC
∗MNC , (4.14)

The coefficients f are functions of the traces of powers of M and are found by solving the
equation

D† 1√
M

D =⎛⎜⎝
√
g1 0 · · ·
0

√
g2 · · ·

...
...

. . .

⎞⎟⎠ = f0 + f1

⎛⎜⎝ g1 0 · · ·
0 g2 · · ·
...

...
. . .

⎞⎟⎠+ f2

⎛⎜⎝ g21 0 · · ·
0 g22 · · ·
...

...
. . .

⎞⎟⎠+ · · ·

and noticing that Tr (Mn) = gn1 + gn2 + · · · . The derivative of this form can be worked out
for NC = 2 and 3.
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Figure 4.12: The change in action after each HMC trajectory, on the left using NHYP links
for fermions and on the right using HEX links. The HMC parameters were chosen so that
both simulations have the acceptance rate of approximately 90%.

While the NHYP smearing smooths the gauge field very effectively, we have noticed that
it has a negative effect on the stability of the HMC trajectory when the coupling is large.
The gauge matrices have large fluctuations and the sum of staples can sometimes be close to
zero. Small fluctuation around zero then become large differences in the normalized matrix,
producing large numerical errors in the derivative of the smeared link. This translates into
large errors in the force term in the HMC trajectory.

The errors are seen as spikes in the change of the action δS during the HMC trajectory, as
seen in a simulation history of δS on the left side of figure 4.12. When the spikes happen only
occasionally they do not affect the acceptance rate of the HMC algorithm, but the detailed
balance condition may holds. It is restored when the step size of the trajectory is very small,
but this would make long simulations unfeasible.

This problem does not exist in exponential or stout smearing, where the smearing is done
in the algebra of the SU(N) group. One calculates the sum of plaquettes that include a
particular link and takes the traceless antihermitean part. This is interpreted as a matrix in
the algebra of the SU group, and exponentiating it produces an SU(N) matrix. The smeared
link is the product of this exponent and the original link.

The hypercubic stout or exponential smearing, HEX, has been studied in [41, 39] as an
aid in simulating QCD with physical parameters. Our implementation of the HEX smearing
consists of the three steps in the hypercubic smearing 4.13 with the parameters α1 = 0.78,
α2 = 0.61 and α3 = 0.35. The projection is given by

Proj(Λ,U) = e−MU,

M = Ω− Ω† − Tr [Ω− Ω†], Ω = ΛU †.

The exponentiation can be written in a differentiable form similar to that in equation 4.14,

e−M = f0 + f1M + · · ·+ fNC
∗MNC , (4.15)

where the coefficients f can be worked out as function of traces, just as with the square root
in NHYP smearing.

When the sum of the staples is close to zero, the exponentiation gives the unit matrix.
The projection is analytic and continuous close to zero and there is no problem arising from
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the differentiation at large coupling. The extreme spikes in the integration error are not
present in the simulation history for with HEX smearing, on the right-hand side of figure
4.12. Both simulations are of the SU(2) gauge theory with 6 fundamental fermions. The
lattice size is L = 8 and the bare coupling is chosen so that the renormalized couplings are
close to each other. In the NHYP simulation we have used β = 1.5 and the SF coupling is
g−2 = 0.17(2). In the HEX simulation β = 1.4 and the SF coupling g−2 = 0.13(3). The
renormalized mass is tuned to zero and the size of the HMC integration step is chosen so
that the acceptance rate is close to 93%.

Otherwise HEX smearing behaves similarly to NHYP smearing. The SF coupling seems
to be slightly closer to the tree-level value and the plaquette expectation value slightly fur-
ther away from it. In the discussed simulation the smeared space-like plaquette has the
value 0.07677(7) in the NHYP case and 0.1096(2) in the HEX case. Most importantly the
improvement parameter csw remains at its tree-level value csw = 1. We have measured the
discretization error dM in equation 4.6 in fundamental and adjoint SU(2) and it seems to
have a zero close to csw = 1, even at rather large couplings. The maximum value of csw we
have measured in these models is csw = 1.1.

The downside is that we do not have perturbative results with fermions beyond tree-
level. In continuum, the effect of the smearing dissappears and the results are the same,
but the discretization effects are different. We can, nevertheless, use Symanzik improvement
to the first order in a and g2, but only for the SF-coupling. The first order perturbative
value of ct is calculated from the interaction between fermions and the tree-level gague field,
which remains unchanged. The other improvement coefficients can be kept at their tree-level
values. Extending the improvement to other measurable quantities would require us to extend
perturbation theory to the smeared links.

4.6 Smearing in the Gauge Action

In models with Wilson fermions there is a nonphysical phase transition when the fermion mass
is large. The transition is characterized by a sudden change in both the plaquette expectation
value and fermion mass. In the unphysical phase both are significantly larger than in the
physical phase. We have found examples of the transition, for example, in unimproved SU(2)
and in improved SU(2) and SU(3) with two adjoint fermions. The unphysical phase could be
related to the Aoki phase in QCD where the flavor symmetry is spontaneously broken.

We show this transition for example in figure 3.2. At small coupling the transition is
smooth and takes place at large bare mass, or small κ. As the coupling is increased it moves
toward larger κ. When the transition line is close to the critical line κc, where the fermion
mass is zero, simulations with massless fermions are no longer possible. If this happens before
the conformal fixed point, the conformality of the model cannot be established.

The problem was studied in [42] in models with fermions the sextet representations of
SU(3). It was alleviated by using a mixed gauge action, where a part of the gauge action
uses the same smeared links as the fermions, in the sextet representation. I have studied
the problem using adjoint SU(2) with a mixed gauge action, but using smeared links in the
fundamental representation. The action is given by

SG = (1− cg)
βL
4

∑
x,μ�=ν

Tr (1− Uμν(x)) + cg
βL
4

∑
x,μ �=ν

Tr (1− Vμν(x)).

Here Uμν is a plaquette constructed out of normal thin links and Vμν is one constructed out
of NHYP or HEX smeared links. In continuum the plaquettes are the same and the action is
reduced to the normal plaquette action. The improvement coefficient cg can in principle be
chosen arbitrarily, as it does not change the action at the first order in a.
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Figure 4.13: The coupling measured with and without smearing in the gauge action in SU(2)
with 2 adjoint fermions. The highest value I was able to reach without the smearing is at
g2 = 4.0(2). With smearing in the gauge action I was able to reach at least g2 = 6.4(3). The
gray line represents the tree-level value g2 = g20.

In figure 4.13 I show the SF-couplings measured from a lattice with L = 6 in the SU(2)
model with two adjoint fermions, both with HYPN mixed gauge action and without it.
Without the gauge improvement the phase transition line crosses the critical line between
β = 1.5 and β = 1.1. The highest value for the coupling I was able to reach was g2 = 4.0(2).
With the gauge improvement the transition was not visible at the studied parameter range
and I was able to reach at least g2 = 6.4(3).

As with NHYP smearing, using a mixed gauge action with HEX smearing seems to push
the point where the critical line and the unphysical phase transition meet to a larger bare
coupling and allow zero mass simulations at larger couplings. In figure 4.14 we see the phase
transition in the model without the mixed action. With the gauge mixing parameter cg = 0.25
the transition is not visible. Both simulations were performed with β = 1.1 with tree-level
improvement and HEX smearing in the fermion action.

It seems evident that Symanzik improvement with HEX smeared fermion action and
mixed gauge action enable simulations at much larger coupling than before, while keeping
the discretization effects small. Tree-level improvement seems adequate to a rather large
coupling and in the region we have studied the non-perturbative value of csw remains under
control, growing only to around csw = 1.1. Since HEX smearing is stable at large coupling it
seems to be the practical choice for mapping the lower limit of the conformal window.
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Figure 4.14: The expectation value of the plaquette observable in HEX smeared SU(2) with
6 fermions in the fundamental representation. The red data points were obtained without
the mixed gauge action and the black ones with it. There is a clear transition in the values
of the plaquette in the first case and the zero fermion mass within the transition, between
κ = 0.137 and κ = 0.138. In the second case the phase transition is not clearly visible and
the zero fermion mass is found between κ = 0.133 and κ = 0.134.



Chapter 5

Conclusions and Outlook

Non-Abelian gauge theories form the basis of our current understanding of the world at
small length scales. Knowledge of the phase structure and strong coupling dynamics of these
models is important in understanding and extending the Standard Model of particle physics.
Conformal field theories, where the coupling runs to a constant at large energies, could be
useful in explaining the masses of Standard Model particles trough the technicolor mechanism.
This, however, requires us to understand the non-perturbative dynamics of these models.

Mapping the lower limit of the conformal window has turned out to be a significant
challenge to the non-perturbative methods of studying these models. In some of the simplest
models close to the lower limit the noisiness of the observables and the large dependence of the
results on discretization effects has so far made it impossible to unambiguously distinguish
between conformal and chirally broken behavior in the infrared part of the energy spectrum.

We have studied the phase structure of SU(2) models with fermions in fundamental and
adjoint representations. In our first unimproved results we saw possible evidence of a confor-
mal fixed point, but found that the discretization effects were too large to take an accurate
continuum limit. Other groups have studied several models and come to similar conclusions.
Close to the lower limit of the conformal window, where the fixed point is at a very large cou-
pling, the discretization effects start to dominate the results before the fixed point is reached,
making it impossible to find a continuum limit for the results.

To ameliorate the discretization effects we have studied methods of improving the lattice
model and the effects of the improvement on the coupling defined trough the Schrödinger
Functional method. We saw from the non-perturbative behavior of the improvement coeffi-
cient csw that the discretization effects grow large before the critical coupling is reached. We
have found that the results from the improved models were different from the unimproved
ones, showing that the discretization errors affected the results strongly. In the case of SU(2)
with six fundamental fermions, we were unable to establish whether models is conformal or
not, as the simulations became extremely slow at large coupling and the discretization errors
started to affect the results.

The problem can be alleviated using smeared links in the fermion and gauge parts of the
action. I have studied these improvements and their effect on the running coupling in both
SU(2) with adjoint and fundamental fermions. Using HEX smearing it is possible to measure
significantly larger values of the running coupling than with pure Symanzik improvement. We
can now proceed to use this optimized, HEX smeared and Symanzik improved, action to map
the β-functions and phase structures of these models and possibly establish the conformality
of SU(2) with 6 fermion flavors.
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