

 Date of acceptance Grade

 Instructor

Recovery Management of Long Running eBusiness
Transactions

Minna Ulmala

Helsinki April 9, 2012

UNIVERSITY OF HELSINKI

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14924772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto Fakultet/Sektion – Faculty/Section
 Faculty of Science

 Laitos Institution Department
 Department of Computer Science

Tekijä Författare Author
 Minna Ulmala
Työn nimi Arbetets titel Title
 Recovery Management of Long Running eBusiness Transactions
Oppiaine Läroämne Subject
 Computer Science
Työn laji Arbetets art Level
 Pro Gradu

 Aika Datum Month and year
 April 2012

 Sivumäärä Sidoantal Number of pages
 79

Tiivistelmä Referat Abstract
eBusiness collaboration and an eBusiness process are introduced as a context of a long
running eBusiness transaction. The nature of the eBusiness collaboration sets requirements
for the long running transactions. The ACID properties of the classical database transaction
must be relaxed for the eBusiness transaction. Many techniques have been developed to
take care of the execution of the long running business transactions such as the classical
Saga and a business transaction model (BTM) of the business transaction framework. Those
classic techniques cannot adequately take into account the recovery needs of the long running
eBusiness transactions and they need to be further improved and developed.

The expectations for a new service composition and recovery model are defined and
described. The DeltaGrid service composition and recovery model (DGM) and the Constraint
rules-based recovery mechanism (CM) are introduced as examples of the new model. The
classic models and the new models are compared to each other and it is analysed how the
models answer to the expectations.

Neither new model uses the unaccustomed classification of atomicity even if the BTM includes
the unaccustomed classifying of atomicity. A recovery model of the new models has improved
the ability to take into account the data and control dependencies in the backward recovery.
The new models present two different kinds of strategies to recover a failed service. The
strategy of the CM increases the flexibility and
the efficiency compared to the Saga or the BTF. The DGM defines characteristics that the CM
does not have: a Delta-Enabled rollback, mechanisms for a pre-commit recoverability and for
a post-commit recoverability and extends the concepts of a shallow compensation and a deep
compensation. The use of them guarantees that an eBusiness process recovers always in a
consistent state which is something the Saga, the BTM and the CM could not proof. The DGM
offers also the algorithms of the important mechanisms.

ACM Computing Classification System (CCS):
C.2.4 [Distributed Systems]: Distributed applications

Avainsanat – Nyckelord Keywords
recovery, data dependencies, service composition
Säilytyspaikka Förvaringställe Where deposited
 Helsingin yliopiston kirjasto Kumpulan kampuskirjasto
Muita tietoja Övriga uppgifter Additional information

 i

Contents

1 Introduction .. 1
2 eBusiness Transactions – Features and Execution Requirements ... 2

2.1 eBusiness Collaboration and an Example of an eBusiness Process 3
2.2 Management of a Database Transaction Compared to Management of an eBusiness
Process ... 5
2.3 ACID-properties, Features and Execution Requirements of eBusiness Transactions 7

2.3.1 ACID-properties ... 7
2.3.2 Features and Execution Requirements of eBusiness Transactions 8
2.3.3 Relaxed ACID Properties ... 10

2.4 Classic Techniques to Take Care of Long Running Business Transactions 11
2.4.1 Saga – A Technique to Take Care of the Long Running Business Transactions 11

2.4.1.1 Recovery Management of a Saga ... 12
2.4.1.2 A Parallel Saga ... 13

2.4.2 Business Transaction Framework and a Business Transaction Model 15
2.4.2.1 A Business Transaction Model (BTM) ... 16
2.4.2.2 Atomicity Types and the Phases of the eBusiness Transaction 18
2.4.2.3 Implementing Business Transaction Framework (BTF) 20

2.5 Relaxing of the ACID Properties – Examples and Comparisons 21
2.6 Expectations for New Techniques to Take Care of Long Running eBusiness Transactions
 24

3 The DeltaGrid Service Composition and Recovery Model .. 27
3.1 The DeltaGrid Environment ... 27
3.2 The Service Composition and Recovery Model ... 29
3.3 Execution Semantics and Recoverability of an Operation ... 33

3.3.1 Execution Semantic of a DEGS Operation ... 33
3.3.1.1 Pre-commit Recoverability .. 35
3.3.1.2 Post-commit Recoverability .. 37

3.3.2 Execution Semantic of an Atomic Group .. 38
3.3.3 Execution Semantic of a Composite Group .. 40
3.3.4 Backward Recovery of an Atomic Group and a Composite Group 42

3.4 Recovery Algorithms ... 46
3.4.1 Post-commit Recovery Algorithm of an Atomic Group .. 46
3.4.2 A Deep Compensation Algorithm of a Composite Group ... 48
3.4.3 A Recovery Algorithm of an Operation Execution Failure ... 51

4 Constraint Condition and Logic Rule Based Recovery Mechanism .. 55
4.1 Scopes and Participants ... 55
4.2 Constraint Condition ... 56
4.3 Logic Rule ... 58
4.4 Constraint Rules-Based Recovery Mechanism ... 59

5 Analysis ... 64
6 Conclusions ... 75

 1

1 Introduction
Organizations purchase services from their partners because they want to focus

themselves on their core business. eBusiness methods enable an organization to link the

purchased services to its business processes and data processing systems enabling the

company to reach its business goals. An eBusiness process of an organization usually

consists of several services of which some may be implemented as Web services.

An eBusiness process utilizes database transaction concepts [SH05] for safeguarding.

However many features differentiate an eBusiness transaction from a classical database

transaction. Those features as well the additional requirements of an execution of an

eBusiness transaction set expectations for an eBusiness transaction. The ACID properties

of the classical database transaction must be relaxed for an eBusiness transaction.

Many techniques have been developed to take care of the execution of the long running

business transactions such as the classical Saga [GS87] model and a business

transaction model of the business transaction framework [PAP03]. Those classic

techniques cannot adequately take into account the recovery needs of the long running

eBusiness transactions and they need to be further improved and developed

[PAP03][SH05]. The research question of this paper is: how to secure a long running

eBusiness transaction to a consistent state through recovery during an eBusiness

transaction.

To be able to define how the classic techniques should be improved to better take into

account the recovery needs of a long running eBusiness transaction to reach a consistent

state the expectations for a new service composition and recovery model are defined. The

DeltaGrid service composition and recovery model [UX09] and the Constraint rules-based

recovery mechanism [CZM10] are introduced as examples of the new service composition

and recovery model. The classic models and the new models are compared to each other

and it is analysed how the models answer to the expectations.

In the following, Section 2 introduces two classic techniques to take care of the recovery of

the long running eBusiness transactions and defines and describes the expectations for a

service composition and recovery model. Section 3 explores the DeltaGrid service

composition and recovery model and Section 4 explores the Constraint rules-based

recovery mechanism. Section 5 compares the classic models and the new models to each

other and analyses how the models answer to the expectations.

 2

2 eBusiness Transactions – Features and Execution
Requirements

eBusiness collaboration and an eBusiness process are introduced as a context of the long

running eBusiness transaction (subsection 2.1). An eBusiness process is compared to a

database transaction and compensation, contingency and an eBusiness transaction are

defined (subsection 2.2). ACID-properties are rehearsed (subsection 2.3.1). The features

that differentiate an eBusiness transaction from a classical database transaction are

introduced as well the additional requirements they set to an execution of an eBusiness

transaction compared to the classical database transaction (subsection 2.3.2). The relaxed

ACID properties are defined (subsection 2.3.3). As an example of the classic techniques to

take care of long running business transactions a Saga (subsection 2.4.1) and a business

transaction model of the business transaction framework are introduced (subsection

2.4.2). Examples how the ACID properties are relaxed are given (subsection 2.5). The

expectations for new techniques to take care of long running eBusiness transactions are

listed (subsection 2.6).

Many techniques have been developed to take care of the execution of the long running

business transactions e.g., Saga and a business transaction framework. They will be

introduced as well as their recovery management. The states and the transitions of the

long running transaction of the business transaction model will be described. Atomicity

types and the phases of the eBusiness transaction will be presented. The implementation

of the business transaction framework will be handled briefly. The ways how the Saga and

a long running transaction of the business transaction model relax ACID-properties will be

described and they will also be compared.

A technique to take care of the recovery of the long running eBusiness transactions can be

improved compared to a Saga or a long running transaction of the business transaction

model. The things an improved recovery model should take into account will be listed as

well as the expectations that some aspects of the execution requirements of an eBusiness

transaction set to the service composition model and its recovery model including the

demands of relaxed ACID properties. The expectations will be grouped by an aspect of

execution requirements of an eBusiness transaction and in some cases further explanation

will be provided.

 3

2.1 eBusiness Collaboration and an Example of an eBusiness Process

eBusiness collaboration carries the features automated, cross-organizational, complex and

long-running. eBusiness collaboration is expressed using an eBusiness process which

consists of services. An example of an eBusiness process is presented below.

Organizations want to focus on their core business and that is why they buy some services

from their partners. By combining bought services to its core business processes the

organization will reach its business goals [GLA02]. E.g., selling mobile phones is a core

business for a telecommunication operator but delivering them is not. So the

telecommunication operator will buy a delivery service from a logistics provider. Electronic

business, eBusiness methods enable an organization to link its internal data processing

systems to the partners’ external data processing systems. In order to gain efficiency

selecting a partner and linking to its data processing system should be done automatically.

Partner services must fit into an organization’s core business process so that it will be one

automated process [PAP03]. E.g., a selling and delivering process of a mobile phone is

depicted in Figure 1A [GLA02]. A telecommunication operator sells a mobile phone to a

customer, handles the sale e.g., connects the mobile phone to the network and finalizes

the sale after getting a confirmation of the delivery to the customer. Logistics providers

offer a mobile phone delivery service to the operator. So selling and delivering a mobile

phone to the customer is an automated process for telecommunication operator.

Figure 1A. A selling and delivering process of a mobile phone [GLA02].

 4

To better satisfy the needs and the expectations of its customers, the organization wants

to decide as late as possible whose service is the best thinking of e.g., effectiveness,

quality and price of the service. The organization determines dynamically the service it

utilizes. So there are several organizations which offer the same needed service and a

service buyer can collaborate with all of them. In Figure 1A, the operator selects and buys

a suitable service based on its shipping requirements and current offers from the logistics

providers [GLA02]. So the operator collaborates with a selected provider, which can vary

each time the delivery service is needed. In order to dynamically choose the best service

the provided logistics services must be documented and available whenever requested by

a telecommunication operator. That is why the logistics providers publish their services as

Web services. E.g., a delivery of a mobile phone can be a Web service which belongs to

the selling and delivering process of the telecommunication operator.

An eBusiness process of an organization consists of several services and some of them

may be implemented as Web services. A service is meaningful business functionality and

can be bought from different business partner organizations [PAP03]. The service can

consist of several Web services [PAP03]. E.g. in Figure 1B above a white line is described

a “send GSM” –service of logistics provider (Figure 1A). The “send GSM” -service consists

of three services: planning transport, collecting GSM and delivering GSM [GLA02]. Some

of the services can be bought from the third business partner organization. The logistics

provider’s services: collecting GSM and actual delivery of it can be bought from a post

office, UPS, DHL or FedEx etc. A service can be divided into several sub services which

can be further divided into several services and additionally there can be many

organizations enacting with this wide net of services. This can result to a very complex net

of services [PAP03]. A service is executed by performing its functions and it terminates

even if the other services of the process may or may not terminate successfully. It may

take several days to finish a Web service of an eBusiness process. E.g., in Figure 1A the

service “send GSM”, which sends a mobile phone to an end customer, can take one to

three days depending on how the mobile phone is delivered: by mail or using a courier

service. So the service of the eBusiness process is long-running if compared to saving one

piece of data into a data base.

 5

Figure 1B. A selling and delivering process of a mobile phone specified in an abstract

technique at the conceptual level [GLA02].

2.2 Management of a Database Transaction Compared to Management
of an eBusiness Process

An eBusiness process comprises features of a database transaction. If an operation of the

database transaction fails, the transaction needs to be recovered to a consistent state. In a

similar way, if a service of the eBusiness process fails while running the eBusiness

process, the eBusiness process needs to be restored to a consistent state by performing a

backward recovery or a forward recovery. The examples of those two recovery types will

be given and their relationship to compensation and to contingency will be introduced. A

term eBusiness transaction will be defined in this subsection.

An eBusiness process will be run by activating its services. If an error occurs while

executing a service, the service fails. If one of the services fails, the whole process fails. In

that case the process needs to either be restored to a consistent state which means either

to do a backward recovery [PAP03] or the critical values must be corrected and then

continue running which is called a forward recovery [UX09]. Those two options can be

compared to the database operations: the backward recovery is a rollback operation and

the forward recovery is like manually correcting the wrong data values and after continuing

to run the operations.

Examples of the backward recovery and the forward recovery are given here as follows. In

the Figure 1B, above a white line is described a send GSM –service of logistics provider:

 6

planning transport, collecting GSM and delivering GSM [GLA02]. If the planning transport

–service notices that a number of the stock of the mobile phone to be collected is zero

then there are two options. The first option is to cancel the services planning transport and

all other services run before it. So the services sell GSM and prepare GSM should be

cancelled as well. That is an example of the backward recovery. The second option is to

make a phone call to an end customer to ask if she or he can wait so long that there is an

ordered mobile phone in the stock. If the customer answers positively the delivery date will

be changed to a date when the mobile phone is expected to arrive to stock. When the

stock quantity of that mobile phone is one or more, the planning transport service can be

finished and the service collecting GSM can be run. That is an example of the forward

recovery.

The first option is also an example of the compensation in a case when a cancelling of a

service is done by running a procedure which will “logically undo” the influence of the

partially and/or fully executed functions of the service [UX09] [CZM10]. So the

compensation is a form of a backward recovery. The second option can be seen as an

example of the contingency because the planning transport –service is handled in an

alternative way rather than not just making a plan. Instead of it the customer’s opinion will

be asked for and in case of a positive answer the delivery date will be changed. Therefore

a contingency provides the process an alternative way for continuing to run [UX09]

[CZM10] and is a form of a forward recovery [UX09].

Because many Web services use databases, it looks like it is possible to manage

eBusiness processes using a classical database transaction concept [SH05]. There are

some similarities between eBusiness processes and database transactions, e.g., both

manipulate data, consist of operations, maintain continuous records of their activations of

operations and have dependencies to other ones. But it has been noticed that for the

nature of eBusiness, e.g., long-running and complexity, which were described using the

example of the selling and delivering process of a mobile phone the classical database

transaction concept is not suitable for eBusiness processes as such [HA02, SH05,UX09].

An idea of a transaction is that it is a model of a set of operations that are executed in a

certain order and it is not possible to separate an operation from it because it is one logical

operation [SH05,PAP03]. The influence of the transaction will become visible to other

transactions when all the operations of that logical operation have been executed

 7

successfully. In case one of the operations of that logical operation fails the situation is

comparable to one where nothing has been executed. The idea of the transaction has

been taken and the fact that these operations are run by several business partners have

been added to it. An eBusiness transaction is an interaction between several business

partners that are aimed towards achieving a predefined goal [HA02] which is the target of

one logical operation [PAP03].

2.3 ACID-properties, Features and Execution Requirements of
eBusiness Transactions

A classical database transaction conforms to ACID-properties which are rehearsed

(subsection 2.3.1). The features that differentiate an eBusiness transaction from a

classical database transaction are introduced as well the additional requirements they set

to an execution of an eBusiness transaction compared to the classical database

transaction (subsection 2.3.2). The relaxed ACID properties are defined (subsection 2.3.3).

2.3.1 ACID-properties

When the classical data base transaction is executed it obeys ACID-properties: atomicity,

consistency, isolation and durability. The ACID-properties are listed in Table 1 [SH05] and

further discussed below.

Property Meaning Example

Atomicity All or nothing If we transfer money within a bank from

a source account to a target account

then either the money moves from

source target or stays where it is.

Consistency Integrity preserving If the deposit and withdrawal programs

are individually correct then so are all

the concurrent executions of them.

Isolation Hidden partial

results

No one can see a state of the database

where the money has been withdrawn

but no yet deposited.

 8

Durability Permanent

committed results

Once the money has been transferred

the state of the accounts is exposed to

all.

Table 1. The ACID-properties for traditional transactions [SH05].

Atomicity guarantees that all or none of the operations of the transaction will be run.

Consistency takes care of that all the operations of the transaction have been executed

without affecting harmfully each other. Isolation defines when data, which the operations of

the transaction handle, will become visible for other concurrent operations. When

maintaining the highest level of isolation, usually data is locked until the transaction has

been committed or a multiversion concurrency control is implemented. Durability

guarantees that the results of the transaction are permanent.

2.3.2 Features and Execution Requirements of eBusiness Transactions

An eBusiness transaction has many features which a classical database transaction does

not have, e.g., complex, loosely coupled and long-running just to name a couple of them.

They set additional requirements for the execution of the eBusiness transaction. The

following paragraphs will explain what those features are and what kind of additional

requirements they set to an execution of an eBusiness transaction compared to the

classical database transaction.

An execution of an eBusiness transaction is performed in several steps and distributed in

many systems that make the eBusiness transaction complex [HA02] [PAP03]. It causes

that conversation between systems must been controlled, a capacity of recourses must

been planned and data messages between systems have to be compatible [HA02]. The

eBusiness transaction is loosely coupled [PAP03] which means that there is a limited

number of data and control dependencies between transactions [HA02]. This makes a

requirement that a service buyer must be able to use a service without knowing its

implementation, internal structure or implementation environment [HA02] [PAP03].The

eBusiness transaction is long-running, because it often contains long-running services

[HA02] [PAP03]. The finishing time of the transaction is difficult to predict. Therefore, a

protocol used in execution of the eBusiness transaction must pay attention to duration of

execution and business deadlines [HA02].

 9

It is not possible to use a simple rollback to reverse the eBusiness transaction. So it is

possible to say that the eBusiness transaction is difficult to reverse [HA02]. A protocol

used in execution of the eBusiness transaction must have a mechanism for compensation

and a contingency plan [HA02]. A result of an eBusiness step, sub-transaction, should be

saved on the change that another sub-transaction or even the whole transaction fails,

because the result may be valuable in a sense of a complexity, duration or reusability of

computation of the result [HA02]. The eBusiness transaction is recoverable if logging,

save points and context security mechanisms are available [HA02]. The eBusiness

transaction is reliable if an execution time of each sub-transaction is kept in the promised

timeframe [HA02]. So a mechanism for it and for a compensation of each sub-transaction

are needed [HA02].

Because there can be many concurrent implementations of the same service and also it

can be a sub-transaction of another service, the concurrency of the eBusiness transaction

is much higher than the concurrency of the traditional data base transaction [HA02].

Therefore, isolation has to be extended [PAP03] to selected isolation, which allows that

some data elements are not locked during the execution of the eBusiness transaction

[HA02]. The selected isolation is later referred to with the name relaxed isolation. Many

partner organizations may participate an eBusiness transaction by offering and executing

a sub-transaction, e.g., Web service [PAP03] using their own systems. It causes that it is

not possible to synchronize these systems [HA02]. Although some protocols require

confirmation of every message, the eBusiness transaction is assumed to be asynchronous

[HA02]. The eBusiness transaction is reusable when the requirements of loosely coupling

are fulfilled so that each sub-transaction of the eBusiness transaction is encapsulated as a

service [HA02]. The reusability of the eBusiness transaction can be improved by defining

the cohesive, reusable and transactional constructs [HA02] using unaccustomed

classifying of atomicity [CO08]. The unaccustomed classifying of atomicity is described in

the atomicity types of the business transaction model which are introduced in Subsection

2.4.2. .

The additional requirements of the execution of an eBusiness transaction introduced

above can be put into categories, which describe an aspect of a group of additional

requirements [HA02]. The features of an eBusiness transaction and the matched aspects

have been listed in Table 2.

 10

A feature of an

eBusiness

transaction

An aspect of additional

execution requirements of an

eBusiness transaction

complex granularity, cohesion

loosely coupled coupling

long-running duration, longevity

difficult to reverse reversibility

recoverable recoverability

reliable reliability

concurrent concurrency

asynchronous synchronization

reusable reusability

Table 2. The features of an eBusiness transaction and the matched aspects of the

additional execution requirements of it.

2.3.3 Relaxed ACID Properties

The features of an eBusiness transaction demand that the ACID properties must be

relaxed for the eBusiness transaction [PAP03][SH05][UX09][CZM10]. The definitions of

the relaxed ACID properties are given, to be able to describe how they are relaxed in a

Saga and a long running transaction of the business transaction framework when

introducing the Saga and the long running transaction of the business transaction

framework as classics. Relaxed atomicity means that an eBusiness transaction must

produce one of the agreeable results defined for that specific eBusiness transaction

[UX09] [CZM10]. Relaxed isolation demands that the eBusiness transaction does not lock

the resources it needs for the whole execution time of the transaction [PAP03] [CZM10].

Relaxed consistency means that the state of the eBusiness transaction must satisfy a

predefined rule concerning business logic [UX09][CZM10].

 11

2.4 Classic Techniques to Take Care of Long Running Business
Transactions

Many techniques have been developed to take care of the execution of the long running

business transactions, e.g., Saga [GS87] and a business transaction framework [PAP03].

The concept of the Saga (subsection 2.4.1) and its form to manage concurrently running

transactions called a parallel Saga (subsection 2.4.1.2) are introduced. The recovery

management of the Saga (subsection 2.4.1.1) and the parallel Saga (subsection 2.4.1.2)

are described as well. The business transaction framework and its component a business

transaction model are introduced (subsection 2.4.2). A recovery management of the long

running transaction of the business transaction model is discussed (subsection 2.4.2.1).

The states and the transitions of the long running transaction of the business transaction

model are also described (subsection 2.4.2.1). Atomicity types and the phases of the

eBusiness transaction are presented (subsection 2.4.2.2). The implementation of the

business transaction framework is handled briefly (subsection 2.4.2.3).

2.4.1 Saga – A Technique to Take Care of the Long Running Business Transactions

A Saga is a long lived (lasts hours or days) transaction which is composed of sequential

transactions that can interleave with other transactions [GS87]. The Saga has only two

nesting levels: a Saga which consists of simple transactions and a simple transaction

consist of actions [GS87]. The simple transaction (later a transaction) is an atomic unit.

The actions and the data handling of a transaction and the Saga will be recorded to a log

[GS87].

The Saga does not allow partial execution [GS87]. It means that all the transactions of a

Saga must be performed successfully or the compensation transactions of the Saga will be

run to cancel all the performed transactions of the Saga. So the Saga relaxes the atomicity

by defining simple transactions which can be committed or compensated but if a

transaction of the Saga fails then the entire Saga must be compensated. A compensation

transaction C which undoes the semantic meaning of a transaction will be defined for each

saga transaction T, but the state of data which the transaction T started to handle may not

be returned after running the compensation transaction [GS87]. After the Saga T1, T2, …

,Tn has got the compensation transactions C1, C2,…,Cn-1 either a series T1, T2, … ,Tn or a

series T1, T2, … , Tj, Cj, ..., C2, C1 for some 0 <= j < n will be performed [GS87]. In the latter

case it is possible that other transactions will see the result of T2, but while performing the

 12

compensation transaction C2 there will not be any attempt to inform or abort them [GS87].

The Saga may show also its partial results for other Sagas [GS87]. So the Saga relaxes

isolation by letting a transaction commit without taking into account has the other

transactions of the same Saga committed [SHH05] and letting other Sagas to use the

result of that committed transaction. The Saga also relaxes the consistency by defining a

compensation transaction for each transaction of a Saga, but the Saga does not solve the

inconsistency problem which is resulted from the relaxation of the isolation of the Saga

[SHH05].

A user can start an abort-saga command which will terminate the current transaction and

the whole Saga by performing the compensation transactions or the user can abort only

the current transaction with abort-transaction command [GS87]. Between executions of the

transactions of the Saga the user can save the state of data by giving a save-point

command and that state , save-point, can be used as a starting point of the compensation

transactions in case of the need to restart the Saga [GS87].

2.4.1.1 Recovery Management of a Saga
If a failure happens in the execution of a Saga there are three choices for recovery. The

first choice is to do a backward recovery by running the compensation transactions.

Nevertheless, it may cause an inconsistency problem, because other Sagas may have

used the result of a committed transaction of the failed Saga before it will be compensated.

The second choice is to do a pure forward recovery by starting performing the missing

transactions from the most recent save-point of the Saga if the save-point command is run

automatically at the beginning of each transaction [GS87]. So the pure forward recovery

does not use the compensating transactions and that is why it is a better recovery option

than the first option. There might be situations that the forward recovery is not possible

[GS87]. The third choice is to do so-called backward-forward recovery [GS87] where the

after the save-point successfully performed transactions must first be compensated and

then start running the transactions again from the save-point. Eg., a Saga is composed of

four transactions T1, T2, … ,T4 and it has the compensation transactions C1, C2, C3. The

Saga is executed by running T1, T2, giving a save-point command and running T3 and T4

[GS87]. While running the transaction T4 there occurs a failure. A recovery will be done by

aborting T4 and running C3 that is a backward recovery to the save-point and then running

T3 and T4 again that is a forward recovery. The backward-forward recovery is also better

solution than backward recovery because it starts from a save-point which is a consistent

 13

state of data. If the save-point command is run automatically at the beginning of each

transaction and abort-saga command is not allowed then backward recovery is never

needed [GS87]. It is useful in the situations that it is difficult to define a compensation

transaction [GS87].

If there is severe malfunction in the system, the backward recovery is done as follows

[GS87]. The pending transactions are either aborted or committed. If all the transactions of

a Saga are committed then the Saga is committed. Otherwise the Saga will be aborted:

the last successfully performed transaction will be compensated as well as all the

preceeding ones [GS87].

If a failure happens in the execution of a compensation transaction or in the pure forward

recovery there are three options. The first option is to reset the system to the state it was

before the execution of a compensation transaction or the pure forward recovery were

started and after that retry the failed transaction [GS87]. The second option is to run an

alternate transaction which will produce the same result than the original transaction

however using a different algorithm or a technique. The third option is a manual

intervention, which means that the failed transaction is aborted, the implementation of the

transaction is changed based on the description of the failure and the transaction is rerun

[GS87]. During the manual intervention the Saga is pending until the rerun has been

started [GS87]. It must be noticed that the Saga will not hold any data resources while the

implementation of the transaction is changed [GS87]. This is not good because while

repairing the implementation of the failed transaction other Sagas may have affected to the

same data resources. When the rerun of the failed transaction will be started the

transaction may return different result than it would have returned without the failure. So

this third option of the forward recovery of the Saga is not very successful way to relax the

isolation, because it may cause a consistency problem.

2.4.1.2 A Parallel Saga
A parallel Saga is a Saga having transactions which can be performed concurrently

[GS87]. While running a parallel Saga it (the parent Saga) will create a new Saga, a child

Saga [GS87]. If there is a crash in the system the backward recovery is done quite similar

way than in the sequential Saga but the compensations of the child Saga are run before

any of the transactions of the parent Saga which were performed before the child Saga

was created [GS87]. Otherwise, the running order of the compensations follow only the

 14

original performance order of transactions and create child Saga actions within one Saga

[GS87]. E.g., there is a parallel Saga T1,T2, T3 and a child Saga of it Ta, Tb has been

created after T1 has been performed. Ta has been run after T2 and red the data written by

T2. If they must be compensated Ta compensation is done regardless of when the

compensation of T2 is done.

A backward recovery of a parallel Saga is more challenging than a backward recovery of a

Saga with sequential transactions, because there can be many child Sagas which must be

handled as well [GS87]. The backward recovery of a parallel Saga starts so that a child

Saga sends an abort-saga command. Then all other child Sagas and the parent Saga will

be terminated, the pending transactions will be aborted and all committed transactions will

be compensated [GS87].

A forward recovery of a parallel Saga is more difficult than the backward recovery,

because the save-points of the child Sagas and parent Saga may not be analogous

[GS87] and that way not suitable for to restart each child Saga from the save-point. Figure

2A [GS87] depicts that kind of situation. A parent Saga is composed of the transactions T0,

T1, T2, T3 and a save-point command have been run before the transaction T1. A child

Saga has been created after the successful execution of T1. The child Saga is composed

of the transactions T4, T5 and a save-point command have been run before the transaction

T5. A failure occurs during the execution of the transactions T3 and T5. A forward recovery

of the parent Saga can be started from its save-point but there is no use for the save-point

of the child Saga. This problem is called cascading rollback [HV82]. The parallel Saga

solves the problem by keeping a log of the order of execution of the transactions, creation

of child Sagas and run save-point commands [GS87]. The log is used to find the latest

save-points of the child Sagas and the parent Saga which no earlier transaction of another

Saga has to be compensated after it [GS87]. Such a save-point is the save-point of the

parent Saga in the Figure 2A. If that kind of save point does not exist all the transactions of

the parent Saga and all the child Sagas must be compensated [GS87]. If such save-points

are found then the backward recoveries are done up to them and after that the rerunning

of them is started [GS87].

 15

Figure 2A. A parallel Saga. [GS87]

2.4.2 Business Transaction Framework and a Business Transaction Model

A consistency and reliability of a business process which consist of web services will be

raised by defining long running business transactions between web services [PAP03]. A

web service consists of several operations which have transactional properties [PAP03]

and should be handled as a logical part of the long running business transaction. The

transactional properties of a web service affects to the transactional behavior of the entire

business process [PAP03]. A business transaction framework (BTF) has been developed

to support the transactional behavior of a business process [PAP03]. The usage of the

BTF makes possible to orchestrate the loosely coupled Web services so that they are

executed in a single business transaction [PAP03]. That supports the coordination of the

Web services of a business process and ensures the co-operation of the business

partners of the process.

The BTF consist of three components: a business transaction model, coordination

protocols and business protocols [PAP03]. The business transaction model (BTM)

describes long running eBusiness transactions, ordinary transactions, exception handling

mechanisms, compensating actions and atomicity criteria for business [PAP03]. The

coordination protocols coordinate the operations of Web services across distributes

systems using transactional mechanisms [PAP03]. A system should also be able to spread

out an operation to other services and to register for coordination protocols [PAP03]. The

heterogeneity of protocols of the partners’ own workflow and transaction management

systems to coordinate the operations and interoperation of business transactions are

hidden [PAP03]. The business protocols qualify content, a purpose and an order of the

business messages to be sent between partners concerning actual eBusiness [PAP03].

 16

2.4.2.1 A Business Transaction Model (BTM)
There are two kinds of transactions in the BTM: atomic and long running [PAP03]. An

atomic transaction is that way similar to a Saga that they are both atomic: either the effect

of the transaction is committed or rolled back. If a failure occurs during the execution of the

atomic transaction the operations of the atomic transaction are compensated as in the first

recovery option of the Saga. The backward recovery of the atomic transaction is done

automatically [PAP03]. The atomic transaction differs from Saga so that it can have a

nested structure using a close nesting model [PAP03] (all transactions are performed or

none) [CO08] but the Saga can have only two nesting levels. An atomic transaction uses

the two phase commit protocol [PAP03].

A long running transaction is composed of the atomic transactions and allows a partial

execution which is not possible in Saga. The partial execution is done using an open

nested transaction model [CO08] which means that some of the atomic transactions of the

long running transaction are committed and some although they could commit are

cancelled by doing a roll back [PAP03]. The decision to commit or to roll back an atomic

transaction is made individually by participants of the long running transaction [PAP03]

[CO08]. The participants do not get a similar result of the atomic transaction. So the

nested transaction model of long running transaction relaxes the atomicity.

If a long running transaction fails, it runs a backward recovery by starting some

compensating activities [PAP03] which will reverse the effects of the failed transaction.

The backward recovery returns the entire process to the consistent state including the

possible child transactions of the failed transaction [PAP03]. The participants do not know

the eventual outcome of the long running transaction when they confirm or cancel an

atomic transaction of it which means that the results of the atomic transactions are not

isolated [CO08]. So the partial results of the long running transaction relax isolation.

Furthermore, the atomic transactions may have used the partial results of each other or

other long running transactions may have used them [CO08] and a recovery is needed to

return a long running transaction to a consistent state [PAP03] [CO08]. A backward

recovery by compensating the atomic transactions is not a suitable option, because the

atomic transactions of long running transaction may have caused the side effects which

are not reversible [PAP03]. That is why business logic of the long running transaction

must be qualified to execute the backward recovery of the long running transaction

 17

[PAP03]. If a system failure occurs during the execution of the long running transaction the

atomic transactions are guaranteed a successful forward recovery and the long running

transaction performs a forward recovery by returning a consistent state and continuing

catering for the occurred failure [PAP03]. So the backward recovery together with

compensation and definition of the business logic of the long running transaction and also

the forward recovery are successful ways to relax consistency. Both of them guarantee a

consistent state for the long running transaction [PAP03].

Each instance of the long running transaction of the BTM has its own transaction context

[PAP03]. It describes a nesting structure (parent – child relationships), a type (atomic or

long running) and all executed activities (including child contexts) of the instance [PAP03].

The child contexts are included for the possible compensation of the transaction after the

transaction has completed [PAP03]. The instance can be in different states, which are

changed by doing a transition. The states and the transitions of the instance are illustrated

in the Figure 2B [PAP03] and described below.

Figure 2B. The states and the transitions of a long running transaction of the business

transaction model of the BTM [PAP03].

The first state of the instance is active. Then it performs activities of its transaction context

[PAP03]. After the instance have been performed all its activities it becomes to the state

preparing to complete. In that state the data changes may be marked persistent, a two-

phase commit executed for an atomic transaction and the nesting structure coordinated for

a long running transaction [PAP03]. After everything is done to be able to complete the

instance successfully the instance moves to the completed state. If an exception has

occurred while performing activities the instance will move from the active state to a

 18

preparing to abort. In that state the compensation transactions may be run, the result of

the atomic transaction told to the participants and an abortion of the nested long running

transaction coordinated [PAP03]. After everything is done to abort the instance the

instance moves to the aborted state. If the compensation of the instance is asked the

instance will move from the completed state to the state preparing to compensate. In that

state the compensation activities are executed. When all of them are run successfully the

instance becomes compensated. The final states of the instance are aborted and

compensated. Even though Figure 2B does not show it, completed can be a final state of

the instance because if the compensation is not required the instance will stay in the state

completed.

2.4.2.2 Atomicity Types and the Phases of the eBusiness Transaction
Atomicity types [PAP03] [CO08] also called unaccustomed classifying of atomicity [HA02]

can be used to define the cohesive, reusable and transactional constructs which improve

the reusability of the eBusiness transaction [HA02]. The idea is to guide the eBusiness

transaction taking into account the systems which use it [PAP03]. There is a service

request atomicity which guarantees for a service buyer that the eBusiness transaction is

an atomic work flow [HA02] [PAP03]. The conversation atomicity defines who structures,

monitors and controls the conversation between a service buyer and a provider [HA02]

[CO08]. The non-repudiation atomicity specifies the non-repudiation provisions [HA02]

using digitally signing in the content of a transaction [CO08] which helps a service provider

to handle disputes [PAP03]. The contract atomicity takes care of that a service buyer and

a provider have made a contract [HA02] [CO08] and agreed legal terms and conditions

and technical specifications of their collaboration [PAP03]. If a transaction is a contract

atomic one then it is automatically a conversation atomic [PAP03]. There is no context

atomicity type in the BTM. The context atomicity confirms that there is an implemented

mechanism to ensure correctness of context of the eBusiness transaction during the

execution [HA02].

The payment atomicity indicates for a service buyer to pay for the service [HA02] and has

an influence to money transfer [PAP03] [CO08] . The goods delivery atomicity demands

that goods or services are identifiable [HA02] and can be delivered as agreed beforehand

[PAP03] [CO08]. The certified delivery atomicity guarantees a delivery of correct goods

[PAP03] [CO08]. It is possible to reach if a document of the delivery can be send to the all

involved parties of eBusiness transaction [HA02]. The introduced atomicity types can be

 19

used to convey the semantics of the business system and can be defined using XML

constructs [PAP03]. The atomicity types make it possible to use abstract terms to reach

the compliance goals and to make them concrete [CO08]. For that a framework which

maps the atomicity types of a transaction onto basic transactions has been brought

forward [PK06].

Figure 2C. The phases of an eBusiness transaction and the atomicity types used during

them. [PAP03]

All atomicity types are not relevant in all transaction phases [HA02] [PAP03]. That’s why

an eBusiness transaction is organized in three phases: pre-transaction, main-transaction

and post-transaction phase [PAP03][HA02]. The pre-transaction phase is the time before

the execution of the eBusiness transaction, post-transaction phase is the time after the

execution and the main-transaction phase is between them [HA02] [PAP03]. The phases

of an eBusiness transaction and the atomicity types used during each phase are depicted

in the Figure 2C [PAP03]. During the pre-transaction phase the information needed to

execute the business transaction is changed between the trading participants e.g. order

 20

information, prices and delivery conditions [PAP03]. The operations run during the pre-

transaction phase can implement non-repudiation, conversation and contract atomicity. A

business process and its transactions are mainly run during the main-transaction phase.

They use those parts of the BTF which offers the protocols and infrastructure which

coordinates the execution of Web services [PAP03]. The operations run during the main-

transaction phase can implement non-repudiation, conversation, payment, goods and

certified delivery atomicity. The fulfillment of the contracts and terms and conditions

defined during the execution of the eBusiness transaction will be monitored in the post-

transaction phase [PAP03]. The operations run during the post-transaction phase can

implement non-repudiation, conversation and contract atomicity.

2.4.2.3 Implementing Business Transaction Framework (BTF)
The BTF needs a Web service orchestration infrastructure which allows dynamic service

compositions of Web services in a business process, data flow coordination and the usage

of the exception and error handling mechanisms [PAP03]. Those functionalities belong to

the BTM of BTF. The Web service orchestration infrastructure must also support the

business transaction and coordination mechanisms and business protocols [PAP03] which

are described in the coordination protocols component and the business protocols

component of the BTF.

The three components of BTF can be implemented on the Web service orchestration

infrastructure which can be described using the standard Business Process Execution

Language for Web Services (BPEL4WS) [PAP03]. BPEL4WS is a language to define

business processes and business interaction protocols [CUR03]. BPEL4WS offers all the

functions that the BTM needs [PAP03]. BPEL4WS have been developed further and

nowadays it is known as Web Services Business Process Execution Language (WS-

BPEL) [AL07].

The group of three standards can be used to implement the coordination protocols

component and the business protocols component of the BTF. The group of three

standards describes mechanisms for Web services domains to take care of their

transactional interoperability and offers for a service the way to comprise transactional

qualities into Web services applications [CAC05]. WS-Coordination standard represents

an extensible coordination framework [CAC05] which uses two different coordination

types: WS-AtomicTransaction for short duration, ACID transactions and WS-

 21

BusinessActivity for long running business transactions. WS-AtomicTransaction standard

defines three specific agreement coordination protocols: completion, volatile two-phase

commit and durable two-phase commit [CAA05]. Any or all of these protocols can be used

in applications that need to have consistent agreement of the result of the short duration

distributed operations having atomicity property [CAA05]. WS-BusinessActivity standard

defines two specific agreement coordination protocols:

BusinessAgreementWithParticipantCompletion and

BusinessAgreementWithCoordinatorCompletion [CAB05]. One or both of these protocols

can be used in applications that need to have consistent agreement of the result of the

long running distributed operations [CAB05].

2.5 Relaxing of the ACID Properties – Examples and Comparisons

An eBusiness transaction has a relaxed form of atomicity, consistency and isolation. To

give examples, the ways how they are implemented in Saga and in a long running

transaction of BTM are described and they are also compared in this subsection.

Relaxed atomicity means that the eBusiness transaction must produce one of the

agreeable results defined for that specific eBusiness transaction, because there might be a

situation that an operation of a transaction fails but it is still not necessary to cancel the

entire transaction [PAP03]. A Saga relaxes atomicity by defining simple transactions which

can be committed or compensated. If the transaction of the Saga fails then, however, all

the transactions of the Saga must be compensated. That is why the Saga does not

properly relax atomicity. A long running transaction of the BTM implements the relaxed

atomicity [CO08] using open nested transactions. It means that the participants of the long

running transaction decide individually either to commit or to roll back an atomic

transaction of the long running transaction [PAP03].

Relaxed isolation demands that the eBusiness transaction does not lock the resources it

needs for the whole execution time of the transaction, because no other business partners

can take a part in the transaction [PAP03] if the recourses are locked for only one partner

for the whole time of the execution of the transaction. A transaction of a Saga can commit

without taking account has the other transactions of the same Saga committed. That is

how the Saga relaxes isolation. The isolation can be relaxed by allowing partial results of

an eBusiness transaction. The long running transaction of the BTM implements the

relaxed isolation [CO08] using a partial execution of long running transaction [PAP03].

 22

Relaxed consistency is reached if the state of an eBusiness transaction satisfies a

predefined rule concerning business logic. It can be implemented if the transaction can be

returned to a consistent state when preparing a forward recovery after a failure a long

running eBusiness transaction [PAP03]. The Saga can do the implementation if the save-

point command is run automatically at the beginning of each transaction. The consistent

state can also be returned in the backward situation by using compensation and defining

business logic of the long running transaction [PAP03]. The Saga relaxes consistency by

defining a compensation transaction for each transaction, but the Saga does not solve the

inconsistency problem caused by simultaneous relaxation of isolation. So the consistency

can be relaxed using a forward recovery or the backward recovery together with

compensation and definition of the business logic of the long running transaction. Those

two ways are implemented in the long running transaction of the BTM. The ways how a

Saga and a long running transaction of the BTM relax atomicity, isolation and consistency

are collected in Table 2B and they will be compared below.

Although each transaction of the Saga is atomic, the Saga allows a transaction to access

to the shared recourses [CB97] which means that the Saga relaxes atomicity. But the

Saga does not relax an atomicity very well, because if a transaction of the Saga fails then

all the transactions of the Saga must be compensated. The long running transaction of the

Business transaction model of BTF relaxes atomicity better, because the participants of

the long running transaction can individually decide either to commit or to roll back an

atomic transaction of the long running transaction.

The Saga relaxes isolation by letting a transaction of a Saga commit without taking into

account has the other transactions of the same Saga committed. If other Sagas use the

result of the committed transaction before another transaction of the same Saga fails and

the entire Saga will be compensated it causes an inconsistency problem which the Saga

cannot solve. The long running transaction of the Business transaction model of BTF

relaxes isolation basically similar way by allowing the participants of a long running

transaction to confirm or cancel an atomic transaction of it without knowing the eventual

outcome of the long running transaction. But a difference is that a long running transaction

can handle the fail of a transaction. It is handled using a forward recovery or the backward

recovery together with compensation and definition of the business logic of the long

running transaction.

 23

 Saga Business transaction model

Relaxes

atomicity

Yes but if a transaction of the Saga

fails then all the transactions of the

Saga must be compensated.

Yes by an open nested

transaction of a long running

transaction.

Relaxes

isolation

Yes by letting a transaction commit

without taking into account has the

other transactions of the same Saga

committed and letting other Sagas to

use the result of that committed

transaction. That may cause an

inconsistency problem which the

Saga cannot solve!

Yes by allowing the participants

of a long running transaction to

confirm or cancel an atomic

transaction of it without knowing

the eventual outcome of the long

running transaction.

Relaxes

consistency

Alternatively: Yes by defining a

compensation transaction for each

transaction of a Saga, but the Saga

does not solve the inconsistency

problem caused by simultaneous

relaxation of isolation. or Yes by

using a pure forward recovery if the

save-point command is run

automatically at the beginning of each

transaction.

Yes by using a forward recovery

which returns a long running

transaction to a consistent state

and continues the performance

taking into account the occurred

failure or by doing the backward

recovery together with

compensation and definition of

the business logic of the long

running transaction.

Table 2B. A comparison of the ways to relax atomicity, isolation and consistency between

a Saga and a long running transaction of the BTM.

The Saga relaxes consistency by returning the Saga to a consistent state when preparing

a forward recovery after a failure if the save-point command is run automatically at the

beginning of each transaction of the Saga. If that kind of automation is not in use then the

Saga tries to reach the consistent state by defining a compensation transaction for each

transaction and by running them to do a backward recovery. Because it does not undo the

possible side-effects the starting state of Saga will not be fully reached. The long running

transaction of the BTM relaxes consistency better, because when doing the backward

 24

recovery using compensation the definition of the business logic of the long running

transaction is used too. Then the state of the long running transaction is closer to the

starting state of the long running transaction. In a case of forward recovery the long

running transaction of the BTM will reach a more consistent state than the Saga because it

takes into account the occurred failure when it continues running the forward recovery.

2.6 Expectations for New Techniques to Take Care of Long Running
eBusiness Transactions

The things an improved recovery model should take into account are listed as well as the

expectations that chosen aspects of the execution requirements of an eBusiness

transaction set to the service composition model and its recovery model including the

demands of relaxed ACID properties. The expectations are grouped by an aspect of

execution requirements of an eBusiness transaction and in some cases further explanation

is provided.

A technique to take care of the recovery of the long running eBusiness transactions can be

improved compared to a Saga or a long running transaction of BTM. An improved recovery

model should take into account the following things. A recovery management has to be

built on the top of a service composition model which is robust but flexible. It means that

the service composition model has to be hierarchical and well defined starting from a

service up to the expression of the entire eBusiness process. Flexible meaning that a

transaction model of the process follows open nested transaction. A transaction has to

also relax ACID properties. A recovery mechanism should be more detailed described and

it has to restore a transaction to a consistent state regardless of when a service fails. A

service should have compensation and contingency and the forward recovery should be

maximized. The chosen aspects of the execution requirements of an eBusiness

transaction set the expectations for the service composition model and its recovery model.

These expectations are listed in Table 2C including the demands of relaxed ACID

properties and all other things described in this paragraph. The expectations are grouped

by an aspect of execution requirements of an eBusiness transaction and further explained

below when needed. Even if the Saga and the LRT of the BTM both fulfill an expectation,

the expectation is taken to the list as a minimum requirement.

 25

An aspect of
execution
requirements of
an eBusiness
transaction

Expectations for a service composition and recovery model

granularity,
cohesion

Granularity levels from process to a service allowing a flexible
hierarchical composition structure.

A transaction has relaxed atomicity.

coupling Transactions have a limited number of data and control
dependencies which can be taken into account in the backward
recovery.

reversibility A service has a mechanism for compensation and a contingency
plan.

A forward recovery is maximized.

reliability A mechanism for a compensation of each sub-transaction is
needed.

concurrency Isolation is relaxed which allows that data elements are not locked
during the execution of the transaction.

recoverability A transaction has relaxed consistency.

There have to be logging, save points and context security
mechanisms available so that a transaction reaches a consistent
state if a service fails.

A recovery mechanism is described in detailed.

reusability Unaccustomed classifying of atomicity is used.

Table 2C. The expectations for the service composition model and its recovery model

grouped by the aspects of the execution requirements of an eBusiness transaction.

An expectation for a service composition and recovery model is written first cursive and

after it in some cases also further explanation is provided. Granularity levels from process

to a service allowing a flexible hierarchical composition structure. A recovery model is

founded on a service composition model which should be hierarchical and well defined

starting from a service up to the expression of the entire eBusiness process. It should

 26

allow a nested composition structure which has a needed number of nesting levels to

describe an entire process using services. A transaction has relaxed atomicity. This

means that the atomicity of the transaction has to be relaxed. Transactions have a limited

number of data and control dependencies which can be taken into account in the

backward recovery. The data and control dependencies are needed in order to take into

account the backward recovery of a transaction. A service has a mechanism for

compensation and a contingency plan. A forward recovery is maximized. A forward

recovery should be maximized and it is explained in Section 5. An explanation is not

needed for the next expectations. A mechanism for a compensation of each sub-
transaction is needed. Isolation is relaxed, which allows that data elements are not

locked during the execution of the transaction. A transaction has relaxed consistency.

There have to be logging, save points and context security mechanisms available so that a

transaction reaches a consistent state if a service fails. A recovery mechanism is

described in detailed. Unaccustomed classifying of atomicity is used. The new techniques

take care of recovery of long running eBusiness transactions and the way how they

answer to the above expectations is handled in Section 5. As new techniques the

DeltaGrid composition and recovery model is introduced in Section 3 and Constraint

condition and logic rule based recovery mechanism is introduced in Section 4.

 27

3 The DeltaGrid Service Composition and Recovery Model

A DeltaGrid environment is introduced by defining the essential terms of it and a Delta-

Enabled rollback is defined (subsection 3.1). DeltaGrid service composition model is

described and an example of an eBusiness process using atomic and composite groups is

given (subsection 3.2). An ACID DEGS operation and a multilevel DEGS operation are

defined and their execution is described (subsection 3.3). A pre-commit recoverability

mechanism (subsection 3.3.1.1) and a post-commit recoverability mechanism (subsection

3.3.1.2) of a DEGS operation are introduced. An execution of an atomic group (subsection

3.3.2) and a composite group (subsection 3.3.3) are explained as well. A criticality attribute

is defined (subsection 3.3.2) and the terms a shallow compensation and a deep

compensation are extended (subsection 3.3.3). A backward recovery of the atomic group

and the composite group are explained (subsection 3.3.4).

The following algorithms are presented and explained: to make a choice between DE-

rollback or service reset for an operation (subsection 3.4), a post-commit recovery for an

atomic group (subsection 3.4.1), deep compensation for a composite group(subsection

3.4.2), a recovery of an operation from a failure in the context of a running process

(subsection 3.4.3) and also for the atomic group to propagate a failure (subsection 3.4.3).

The conditions for the applicability of the different recovery options are defined and the

failure recovery algorithm of the operation is demonstrated using an example (subsection

3.4.3).

3.1 The DeltaGrid Environment

A DeltaGrid environment is introduced by defining the essential terms of it, e.g., Delta-

Enabled Grid Service, a delta and a delta schedule. An action called Delta-Enabled

rollback is introduced and an example of it is given in this subsection.

DeltaGrid environment has a foundational concept called a Delta-Enabled Grid Service

(DEGS) [UXB09]. It is a Grid Service which has been enlarged with an interface which

allows access to the incremental data changes called deltas linked to an execution of a

service of a process [UX09]. The DEGS produces the deltas and sends them to a process

history capture system (PHCS) which maintains the execution context of every running

 28

process and creates a time-ordered schedule of data changes [UXB09] for concurrently

running processes in the system. A delta schedule is a global log file to analyze data

dependencies of concurrently running processes [UX09]. Many processes may have

interleaved access to the same data recourse, because of relaxed isolation. When a

process fails the log file is used to decide how the failure and the recovery of the failed

process influence the other processes which have used the same data [UX09].

The delta schedule supports an action called Delta-Enabled rollback (DE-rollback) which

restores the results of the execution of a service as they were before the execution of the

service even if the execution has already been terminated [UX09]. An example of the DE-

rollback is depicted in the Figure 2 [UX09]. There are two processes p1 and p2 which have

two services. The process p1 has services op11 and op12 and p2 has op21 and op22. Both

processes access data X and Y. The schedule of data changes of X are marked x1, x2, x3

and for Y y1 and y2 [UX09]. When the service op21 performs DE-rollback the value of X will

be changes from x3 to x2. Also when the service op22 performs DE-rollback the value of Y

will be changes from y2 to y1. Because the data values are restored in the opposite order

that the changes were made DE-rollback can only be run if it fulfills the semantic

conditions of the traditional recovery [UX09] later referred as semantic recovery condition.

The delta schedule takes care of that no dirty writes or reads happen [UX09]. While doing

so, op22 cannot perform DE-rollback if another service has read the value y2 of Y. In case it

is not possible to use DE-rollback, compensation is needed [UX09].

Figure 2. Delta-Enabled rollback (DE-rollback) [UX09].

 29

3.2 The Service Composition and Recovery Model

The execution entities of a service composition model are defined and DeltaGrid service

composition structure is described. An example of an eBusiness process using atomic and

composite groups is given in this subsection. Also an example is given on how the

subscripts of groups show their nesting level within the process.

An eBusiness process consists of different kind of execution entities in the DeltaGrid

environment. The execution entities describe a service composition model which will

express the eBusiness process as a hierarchical structure. There are altogether seven

execution entities. The definitions and the denotations of them are described in Table 3

[UX09].

The name of the execution

entity

Definition Denotation

Process A top level composite group pi

Operation A DEGS service invocation opij

Compensation An operation that is used to

undo the effect of a

committed operation

copij

Contingency An operation that is used as

an alternative of a failed

operation opij

topij

Atomic group An execution entity that is

composed of a primary

operation (opij), an optional

compensation (copij) and an

optional contingency

operation (topij)

agij=<opij [,copij] [,topij]>

Composite group An execution entity that is

composed of multiple atomic

cgik= <(agi,k,m | cgi,k,n)+

[,copik] [,topik]>

 30

groups or other composite

groups. the composite group

can also have an optional

compensation and an optional

contingency

DE-rollback An action to undo the effect of

an operation by restoring the

data values as they were

before the operation

dopij

Table 3. The definitions and denotations of seven execution entities of a service

composition model [UX09].

On the highest level of the service composition model there is an execution entity process

which is a composite group which consists of other execution entities. A denotation of the

process is pi where p is the process and the subscript i is used to identify the process. A

single activation of a service of a process is called an operation. Its denotation is opij

where op is the operation, the subscript i is used to refer to the surrounding process pi and

the subscript j is used to identify the operation within the process pi.

A compensation is an operation, which will undo the effect of a committed operation. It is

presented copij where opij is a committed operation of the process pi. A contingency is an

alternative operation which can be run instead of a failed operation. It is expressed as topij

where opij is the failed operation of the process pi. So the compensation is a backward

recovery and the contingency is a forward recovery in the service composition model. A

relationship between a process, an operation, a compensation, a contingency and other

execution entities is depicted in an UML diagram of the DeltaGrid service composition

structure in the Figure 3 [UX09].

The service composition model makes it possible to define a complex control structure for

an eBusiness process by adding scopes in the context of the process execution [UX09]. It

is handled by dividing the process into logical execution parts using an atomic group and a

composite group. The atomic group consists of an operation, an optional compensation

and an optional contingency which are shown in Table 3. The composite group consists of

 31

many atomic groups or other composite groups which will be run sequentially or in parallel.

The composite group also has an optional compensation and an optional contingency.

Both the atomic group and the composite group having optional compensation and

optional contingency, which makes it easy to recover them from a service execution

failure. A denotation of an atomic group is agij and for a composite group it is cgik. The

subscripts show the nesting levels within the process pi. There is a picture of a sample

process using atomic and composite groups in an eBusiness process in the Figure 4

[UX09]. It also gives an example how the subscripts of groups show their nesting level

within the process.

Figure 3. An UML diagram of the DeltaGrid service composition structure [UX09].

A graph of a process p is shown in the Figure 4. As per the definition of a process, a

process p is a top level composite group and can then be marked p1 = cg1. The process

p1 consists of two composite groups cg1,1 and cg1,2 and an atomic group ag1,3. The

composite groups cg1,1 and cg1,2 are composed of atomic groups as follows cg1,1: ag1,1,1,

ag1,1,2, ag1,1,3 and cg1,2: ag1,2,1, ag1,2,2. So the third subscript of ag1,1,2 shows that the

atomic group ag1,1,2 is on the third nesting level and it is the second group on that level.

The atomic group ag1,1,2 has a operation op1,2 and an optional compensation cop1,2 but it

 32

does not have a contingency. The atomic group ag1,1,1 and the composite group cg1,1 both

have an optional compensation and an optional contingency. Please note that in case of

the composite group the optional compensation has been marked cg1,1.cop instead of

cop1,1 the denotation of a compensation defined in Table 3.

DE-rollback is an execution entity. It is a system-initiated action to undo the effect of an

operation by restoring the data values as they were before the operation. To reverse the

execution of the operation, DE-rollback uses the deltas of the PHCS. It is the only

execution entity that does not exist in Figure 3. The idea of the service composition model

is that by defining atomic and composite groups of an eBusiness process and using

compensation, a contingency and a DE-rollback at those groups an execution failure of the

eBusiness process can be automatically recovered at any composition level.

Figure 4. An abstract view of a sample process using the DeltaGrid service composition

structure [UX09].

 33

3.3 Execution Semantics and Recoverability of an Operation

The definitions for an ACID DEGS operation and a multilevel DEGS operation are given

and their execution and its influence to an operation are described. A pre-commit

recoverability mechanism (subsection 3.3.1.1) and a post-commit recoverability

mechanism (subsection 3.3.1.2) of a DEGS operation are introduced. An execution of an

atomic group (subsection 3.3.2) and a composite group (subsection 3.3.3) are explained

as well. A criticality attribute is defined (subsection 3.3.2) and the terms a shallow

compensation and a deep compensation are extended compared to their original definition

(subsection 3.3.3). A backward recovery of the atomic group and the composite group are

explained (subsection 3.3.4).

 An operation was defined as a single activation of a service of a process. In the DeltaGrid

environment the operation is an activation of a DEGS service which is an autonomous

entity taking care of its local correctness using a concurrency control mechanism [UX09].

In the service composition model, the operation is a part of an atomic or a composite

group. In practice, it means that DEGS service affects to their state in case of the

backward recovery because the failure of the operation or because another operation’s

failure in the composite group execution. A functionality and an implementation of the

DEGS service varies depending on the provider of the DEGS service, which is why an

operation can be an ACID DEGS operation or a multilevel DEGS operation [UX09]. An

ACID DEGS operation has a transaction, which can automatically do rollback by

underlying data base if the operation fails. A multilevel DEGS operation has several sub-

transactions which are like the transaction of the ACID DEGS operation and which can

commit unilaterally. If one of the sub-transactions fails, the rollback could not be done

because some other sub-transactions might have been committed. Then a local

compensating transaction will be run for that the operation will reach a consistent state.

The local compensating transaction is atomic.

3.3.1 Execution Semantic of a DEGS Operation

 An operation can be an ACID DEGS operation or a multilevel DEGS operation that affects

to the execution of it. The differences between those operation types are the number of the

termination states, the ACID DEGS operation never terminates in the failed state and a

multilevel DEGS operation can execute a compensation to be able to commit the operation

after the execution of the operation have at first failed. Figure 5 shows the semantics of a

 34

transaction of a DEGS operation [UX09]: the states and the actions between the states of

a) an ACID DEGS operation and b) a multilevel DEGS operation. When a DEGS operation

has been invoked it enters to the active state. If the execution of the DEGS operation

succeeds the state of the DEGS operation changes to the successful but if the execution

fails the state of the DEGS operation will become failed. An underlying database system of

the ACID DEGS operation supports a rollback and it is run automatically. The rollback is

supposed to finish successfully every time [UX09]. After that the state of the ACID DEGS

operation is aborted. So the termination states of the ACID DEGS operation are successful

and aborted.

Figure 5. Transaction semantics of a DEGS operation [UX09].

After a multilevel DEGS operation has failed, a local compensating transaction is activated

automatically by DEGS service and not by the DeltaGrid recovery capability [UX09].

Because the multilevel DEGS operation may have several sub-transactions, there might

be a need to run many compensation steps. The compensating transaction is run before

committing the whole DEGS operation as a multi-level transaction [UX09]. It is referred to

as pre-commit-compensation which leads to a state compensated if it is run successfully. If

the pre-commit-compensation fails a pre-commit recoverability mechanism cleans the

consequences of the tried pre-commit-compensation and the situation is as before starting

to run the pre-commit-compensation, because the pre-commit-compensation is an atomic

transaction [UX09]. The state of the multilevel DEGS operation remains failed. The

termination states of the multilevel DEGS operation are successful, failed and

 35

compensated. So the multi-level DEGS offers a failure recovery mechanism called pre-

commit-compensation.

3.3.1.1 Pre-commit Recoverability
A pre-commit recoverability mechanism of a DEGS operation is needed to clean up the

consequences of the tried pre-commit-compensation to revert to the situation as before

starting to run the pre-commit-compensation. There are four options to do the cleaning and

they are listed in Table 4 [UX09]. When a DEGS operation performs pre-commit

recoverability one of the following subsequent is selected: an automatic rollback, a pre-

commit compensation, a DE-rollback or a service reset function.

Option Meaning

Automatic rollback The failed service execution can be

automatically rolled back by a service

provider.

Pre-commit-compensation A pre-commit-compensation is invoked by a

service provider to backward recover a

failed operation.

DE-rollback A failed operation can be reversed by

executing DE-rollback.

Service reset The service provider offers a service reset

function to clean up the service execution

environment.

Table 4. Pre-commit recoverability options of a DEGS operation [UX09].

An ACID DEGS operation will run automatic rollback, which means that a service provider

runs a rollback for the failed service [UX09]. In case of a multi-level DEGS, the service

provider runs a pre-commit-compensation [UX09]. If the pre-commit-compensation fails

and the semantic recovery condition is fulfilled, a DE-rollback will be run [UX09]. If the

semantic recovery condition is not satisfied, service reset will be performed [UX09]. Then

the service provider offers a function that cleans up the execution environment of the failed

 36

service. To execute the service reset, usually a special program or a human agent is

required [UX09].

The state diagram of the DEGS operation taking into account the pre-commit-

compensation options is illustrated in Figure 6 [UX09]. If an ACID or a multi-level DEGS

operation succeeds to run it, moves from active state to successful. If the ACID DEGS

operation fails, the state will be aborted. In case of the multi-level DEGS operation fails,

the state will be failed. Then the pre-commit-compensation will be performed. If it

succeeds, the state becomes compensated and if it fails, the state stays failed. The

DeltaGrid system will check the semantic recovery conditions and based on them, it

initiates either DE-rollback or service-reset [UX09]. If they are fulfilled, a DE-rollback will be

run and the state moves to DE-rollback. If the semantic recovery conditions are not

satisfied, service reset will be performed and the state moves to service-reset. The

execution of a pre-commit recoverability option: automatic rollback, pre-commit-

compensation, DE-rollback or service reset moves a failed execution of DEGS operation to

the state pre-commit recovered which represents one of the states: aborted, compensated,

DE-rollback and service-reset. The final states of the DEGS operation are successful or

pre-commit recovered. That is, one state less compared to the transaction semantics of a

multi-level DEGS operation in Figure 5. The state failed is missing. So the pre-commit

recoverability options increase the level of the consistency of the multi-level DEGS

operation as all pre-commit recoverability options clean up the service execution

environment of the failed multi-level DEGS operation.

 37

Figure 6. A DEGS operation taking into account the pre-commit-compensation options

[UX09].

3.3.1.2 Post-commit Recoverability
A post-commit recoverability mechanism of a DEGS operation is needed to semantically

undo a successfully terminated operation because there has been a failure in the

execution of another operation [UX09]. There are three options to undo the effects of the

successfully terminated operation and they are listed in Table 5 [UX09]. Reversible means

that the data values, which the successfully completed operation has changed will be

reversed. Compensatable option runs an operation called post-execution compensation to

semantically undo the successfully completed operation. Dismissible means that there is

no need to do any data cleaning up after a successfully terminated operation in the post-

commit recovery situation.

 38

Option Meaning

Reversible (DE-rollback) A completed operation can be undone by

reversing the data values that have been

modified by the operation execution.

Compensatable A completed operation can be semantically

undone by executing another operation,

referred to as post-execution

compensation.

Dismissible A completed operation does not need any

cleanup activities.

Table 5. Post-commit recoverability options of a DEGS operation [UX09].

The condition to start the post-commit recovery later referred as post-commit recovery

condition is introduced in Subsection 3.3.3 . It takes effect only when a component of the

composite group is a successfully terminated operation which needs to be semantically

undone [UX09].

3.3.2 Execution Semantic of an Atomic Group

An atomic group has an optional compensation operation and on the top of that it may

have a contingency operation as well which improves the ability of the atomic group to

execute an operation successfully. Due to the relaxed atomicity, it is not necessary that all

the operations of the composite group must have run successfully to be able to terminate

the process successfully. For that, there is a criticality attribute of an atomic group, which

is critical if an atomic group must be executed successfully to be able to continue the

execution of the composite group, which the atomic group belongs to [UX09]. If the

composite group can continue execution regardless of the failure of its atomic group, the

atomic group is marked non-critical [UX09]. A default option is that an atomic group is

critical [UX09]. If the critical atomic group fails, a contingency of the atomic group will be

run [UX09]. If the atomic group is non-critical, the contingency is not needed. E.g., an

atomic group ag113 is critical in Figure 4. If an operation op13 of the atomic group ag113 fails

then a contingency top13 will be run. An atomic group ag121 is non-critical. If the operation

 39

of it op14 fails then the composite group cg12 can continue by running an atomic group

ag122.

The execution semantics of an atomic group ag is depicted in Figure 7 [UX09]. When the

primary operation is started, the ag becomes active. If the primary operation succeeds, the

ag moves to the state successful. If the primary operation fails, ag moves to the state pre-

commit recovered as described in Figure 6. If the atomic group is critical, the DeltaGrid

system will start a contingency of the atomic group. If it is runs successfully, ag move to

the state ag successful. The contingency is an atomic transaction of the DEGS operation

similar to a pre-commit-compensation [UX09]. If the contingency fails, ag moves to ag

aborted state. If the atomic group is non-critical, the ag moves from the state pre-commit

recovered to the state ag aborted without performing contingency. The termination states

of the atomic group are ag successful or ag aborted.

Figure 7. Execution semantics of an atomic group [UX09].

 40

3.3.3 Execution Semantic of a Composite Group

Before introducing the execution semantic of a composite group, two terms shallow

compensation and deep compensation will be extended compared to their original

definition [LA95]. A composite group cgik is defined cgik= <(agi,k,m | cgi,k,n)+ [,copik] [,topik]> in

Table 3 [UX09]. A shallow compensation of the composite group cgik is the activation of

the compensation operation copik [UX09]. A composite group cgik can be composed of

subgroups which is an atomic group agijm=<opij [,copij] [,topij]> or a composite group cgikn=

<(agi,k,n,x | cgi,k,n,y)+ [,copikn] [,topikn]> [UX09]. A deep compensation of the composite group

cgik is the activation of the post-commit recovery either compensation or DE-rollback for

each executed subgroup of the composite group: copij for an atomic group and copikn for a

nested composite group [UX09]. But there is a case according to the post-commit recovery

condition when a pre-commit recovery is run instead of the post-commit recovery. A post-

commit recovery condition defines that if the failed subgroup is the first subgroup of the

enclosing composite group, the subgroup will run a pre-commit-recovery. In all other cases

all preceding subgroups will run a post-commit recovery. A shallow compensation is

needed when a composite group has terminated successfully but its effects need to

semantically undo because another operation has failed [UX09]. The deep compensation

is needed when a failure of the subgroup causes the composite group to fail [UX09]. Then

post-commit recovery needs to be started for all performed subgroups [UX09]. The deep

compensation is also needed when a composite group terminates successfully and a

compensation is needed, but the composite group does not have a shallow compensation

[UX09].

An execution semantic of a composite group cgi, which is composed of atomic groups cgi=

<agi,k
+ [,copi] [,topi]> is depicted in Figure 8a [UX09]. The composite group cgi is in a state

active as long as its subgroups are performed. If all the subgroups succeed, cgi moves to

a state cgi successful. If a subgroup agik fails, it tries to run contingency topi but if it also

fails then cgi moves to agik aborted. If agik is the first subgroup of cgi, pre-commit recovery

of agik moves cgi to a state cgi aborted. In all other cases the executed subgroups (agi,1, …,

k-1) will perform post-commit recovery successfully moving cgi to a state cgi deep

compensated. The post-commit recovery techniques of the atomic group of the composite

group are DE-rollback and compensation [UX09]. A state cgi extended abort represents

one of the states: cgi aborted or cgi deep compensated. The state cgi extended abort

means that the partial results of the execution of the composite group cgi have been

 41

cleaned up and the composite group cgi is ready for a contingency [UX09] topi. If the

contingency of the composite group succeeds, the cgi moves to the state cgi successful. If

the contingency fails it will be rolled back as an atomic transaction and the cgi stays in the

state cgi extended abort [UX09]. When the deep compensation is performed by

compensating all the executed subgroups agi,1, …, k-1 of the cgi, all of them must succeed to

move cgi to the state cgi deep compensated. If a compensation of a subgroup fails, a DE-

rollback or a service reset function will be performed in a similar way as the failure of the

pre-commit-compensation is handled. The first recovery option is DE-rollback and it is

performed if the semantic recovery condition holds [UX09]. If not then the second option is

the service reset function [UX09].

Figure 8. Execution semantics of a composite group [UX09].

An execution semantic of a composite group cgi, which is composed of subgroups sgi,k is

depicted in Figure 8b [UX09]. A subgroup sgi,k can be an atomic group or a composite

group cgi= <sgi,k
+ [,copi] [,topi]> [UX09]. The execution of the composite group, which is

composed of subgroups, resembles the execution of the composite group composed of

atomic groups [UX09]. The composite group cgi is in a state active during the execution of

 42

its subgroups. If all the subgroups succeed, cgi moves to a state cgi successful. If an

atomic subgroup fails, it tries to run contingency topi but if the latter also fails then cgi

moves to sgik extended abort as described in Figure 8a. If the composite subgroup fails, it

runs contingency topij but if it also fails then cgi moves to sgik extended abort as described

in Figure 8b. If sgik is the first subgroup of cgi pre-commit recovery of sgik is preformed and

cgi moves to a state cgi aborted. In all other cases, the executed subgroups (sgi,1, …, k-1) will

perform post-commit recovery successfully moving cgi to a state cgi deep compensated. If

the contingency of the composite group topi succeeds, the cgi moves to the state cgi

successful as happened in Figure 8a. If the contingency fails it will be rolled back and the

cgi stays in the state cgi extended abort as happened in Figure 8a. When the deep

compensation is performed by compensating all the executed subgroups sgi,1, …, k-1 of the

cgi, all of the subgroups must succeed to move cgi to the state cgi deep compensated

[UX09] as happened to the composite group, which is composed of atomic groups in

Figure 8a . In both cases the composite group consisting of the atomic groups or the

subgroups, the termination states are cgi successful or cgi extended abort. So the final

state of the composite group is cgi successful or cgi extended abort, which means that the

execution of the composite group is never left to an inconsistent state.

3.3.4 Backward Recovery of an Atomic Group and a Composite Group

A successfully terminated atomic group may need to backward recover due to the failure

of another entity of the process [UX09]. The backward recovery cleans up all the effects of

the successfully terminated atomic group ag. The successfully terminated atomic group is

depicted in Figure 7 in a final state ag successful. Figure 9 [UX09] continues the state

diagram of the atomic group in the case the atomic group needs to backward recover. The

backward recovery of the atomic group starts in the state ag successful in Figure 9. When

the backward recovery is needed, a recovery option of the atomic group is activated based

on post-commit recoverability of the primary operation [UX09]. The post-commit

recoverability of the primary operation is depicted in Figure 6, where a multi-level operation

fails and pre-commit compensation is tried by compensation, DE-rollback or service-reset.

The backward recovery options of the atomic group are compensation, DE-rollback and

service-reset. The listing order of the options is also the performance order of the

backward recovery options of the atomic group when trying to run different recovery

options. If the primary operation (DEGS) of the atomic group is compensatable (defined in

Table 5) the compensation copij will be performed. If it succeeds, the atomic group moves

 43

to the state ag compensated. If the compensation fails, the atomic group stays in the state

ag successful until the effect of the tried compensation have been cleaned up by DEGS

execution environment. Then the DE-rollback will be performed if the atomic group is DE-

rollback applicable. It means that the primary operation of the atomic group (DEGS) is

reversible (defined in Table 5). After the DE-rollback, the atomic group move to the state

ag DE-rollback. If the atomic group is not reversible, the service reset (defined in Table 4)

will be run and the atomic group moves to the state ag service-reset. There is an error in

Figure 9: the guard condition of the service reset transition should be not DE-rollback

applicable instead of DE-rollback applicable, because the backward recovery option

service reset is tried after the DE-rollback option. All the three states: ag compensated, ag

DE-rollback and ag service-reset move the atomic group to the state ag post-commit

recovered, which represents one of them.

Figure 9. Backward recovery semantics of an atomic group [UX09] Note: The guard

condition of the service reset transition should be not DE-rollback applicable instead of

DE-rollback applicable.

 44

A successfully terminated composite group may need to backward recover due to the

failure of another entity of the process. The backward recovery cleans up all the effects of

the successfully terminated composite group cgi. In a backward recovery of a successfully

terminated composite group, a shallow compensation is preferred to a deep compensation

[UX09]. E.g., when a critical subgroup ag13 of the composite group cg1 in Figure 4 has

failed both op16 and top16, the successfully performed composite groups cg11 and cg12 will

be compensated. Because cg11 has a shallow compensation cg11.cop it will be performed

but because cg12 does not have a shallow compensation a deep compensation cg12.top

will be performed. The successfully terminated composite group is depicted in Figure 8 in

a final state cgi successful. Figure 10 [UX09] continues the state diagram of the composite

group in the case the composite group needs to backward recover.

The backward recovery of the composite group cgi, which is composed of atomic groups

starts in the state cgi successful in Figure 10 a [UX09]. The composite group cgi runs the

shallow compensation by activating the compensation operation copi if the shallow

compensation is available. If the shallow compensation succeeds, the composite group

moves to the state cgi shallow compensated. If the shallow compensation fails, the

composite group stays in the state cgi successful and starts the deep compensation. If the

shallow compensation is not available meaning the composite group does not have a

shallow compensation, the composite group starts straight away a deep compensation.

The deep compensation is performed by running a backward recovery for every atomic

group agik of the composite group cgi [UX09]. The only termination state of the backward

recovery of the atomic group ag is ag post-commit recovered as shown in Figure 9. It

ensures that when all the atomic groups agik have executed the post-commit recovery, the

cgi moves to the state agik posti-commit recovered. It causes that cgi becomes cgi deep

compensated.

A backward recovery of a composite group cgi, which is composed of subgroups sgi,k,

starts in the state cgi successful in Figure 10 b [UX09]. A subgroup sgi,k can be an atomic

group or a composite group. The backward recovery of the composite group, which is

composed of subgroups, resembles the backward recovery of the composite group, which

is composed of atomic groups. The composite group cgi runs the shallow compensation if

the shallow compensation is available. If the shallow compensation succeeds, the

composite group moves to the state cgi shallow compensated. If the shallow compensation

fails the composite group stays in the state cgi successful and starts the deep

 45

compensation. If the shallow compensation of the cgi does not exist the composite group

starts straight away a deep compensation. The deep compensation is performed by

running a backward recovery for every subgroup sgik of the composite group cgi [UX09].

Depending on the subgroup sgik the backward recovery is done in different ways. If the

subgroup sgik is an atomic group the post-commit recovery is performed and the subgroup

sgik terminates in the state sgik post-commit recovered. If the subgroup sgik is a composite

group of the subgroups, it terminates either in the state sgik shallow compensated (if the

shallow compensation is available and succeeded) or sgik deep compensated (if the

shallow compensation not available or did not succeed) as shown in Figure 10 b according

to the shallow and deep compensation rules of the composite group. Then all the

subgroups sgik of the composition group are backward recovered and the composite group

cgi becomes cgi deep compensated. So all the states: sgik post-commit recovered, sgik

shallow compensated and sgik deep compensated move the composite group to the state

cgi deep compensated, which represents one of the states. So the final state of the

backward recovery of the composite group is cgi shallow compensated or cgi deep

compensated, which means that the backward recovery of the composite group is never

left to an inconsistent state.

Figure 10. Backward recovery semantics of a composite group [UX09].

 46

3.4 Recovery Algorithms

The following algorithms are presented and explained: to make a choice between DE-

rollback or service reset for an operation (subsection 3.4), a post-commit recovery for an

atomic group (subsection 3.4.1), deep compensation for a composite group(subsection

3.4.2), a recovery of an operation from a failure in the context of a running process

(subsection 3.4.3) and also for the atomic group to propagate a failure (subsection 3.4.3).

The conditions for the applicability of the different recovery options are defined and the

failure recovery algorithm of the operation is demonstrated using an example (subsection

3.4.3).

3.4.1 Post-commit Recovery Algorithm of an Atomic Group

An atomic group ag is complete if it has required compensation and contingency plans for

the primary operation of the atomic group [UX09]. The need of the compensation and the

contingency plan depends on the post-commit recoverability of the primary operation and

the value of the criticality attribute of the atomic group [UX09]. A complete critical atomic

group has a contingency plan where as a complete non-critical atomic group has only the

primary operation. The post-commit recoverability defines if a complete critical atomic

group must have a compensation plan [UX09]. If the primary operation is compensatable,

the atomic group must have a compensation plan whereas a reversible or a dismissible

primary operation does not need it. In practice, there is a risk that a specification of the

service provider of the atomic group does not include the compensation plan even if the

definition of the process requires compensation [UX09]. In this circumstance, the algorithm

called DE-rollbackOrServiceReset(Operation opij) decides either to activate DE-rollback or

service reset on the operation [UX09]. The decision depends on if the semantic recovery

condition of the DE-rollback is satisfied or not. The algorithm of DE-

rollbackOrServiceReset(Operation opij) is shown in Figure 11 [UX09]. It describes how the

primary operation opij recovers through DE-rollback or service reset. The input of the

algorithm is a failed operation, which should backward recover [UX09]. The result of the

algorithm is that the effects of the failed operation have been cleaned up in the service

execution environment. The algorithm checks if the semantic recovery condition holds. If

yes then the DE-rollback will be activated. If not then the DEGS operation activates service

reset. An algorithm called post-commitRecoverAtomicGroup(AtomicGroup agij) uses this

algorithm when compensation is not available or when compensation fails [UX09].

 47

Figure 11. Procedure to invoke DE-rollback or service reset on an operation [UX09].

The atomic group post-commit recovery algorithm called post-

commitRecoverAtomicGroup(AtomicGroup agij) is written in Figure 12 [UX09]. It defines a

backward recovery of an atomic group after the atomic group has terminated successfully

based on the value of the criticality attribute of the atomic group and on the post-commit

recoverability of the primary operation. The input of the algorithm is an atomic group,

which should post-commit recover. The result of the algorithm is that the atomic group has

post-commit recovered using compensation, DE-rollback or service rest.

The algorithm describes more in detail a backward recovery semantics of the atomic group

depicted in Figure 9. The algorithm starts in the state agij successful. The successful

compensation (case 1.1.1) moves agij to the state agij compensated. If the compensation

fails (case 1.1.2), compensation not defined (case 1.2) or compensation not necessary

(case2), DE-rollback or service rest is activated which moves agij to the state agij DE-

rollback or agij service-rest. If the agij does not need to backward recover (case 3), it is

dismissible as defined in Table 5. The algorithm ensures that agij will be in the state agij

post-commit recovery if a backward recovery is needed. The algorithm checks the post-

commit recoverability of the primary operation opij of the given atomic group agij. Based on

it, a case is chosen:

1. opij is compensatable. If agij has compensation copij, copij will be activated. If it

succeeds, agij is compensated and the algorithm returns. If copij fails, the algorithm

will start DE-rollbackOrServiceReset(opij) written in Figure 11.

 48

2. opij is reversible, which means that agij does not have copij. The algorithm will start

DE-rollbackOrServiceReset(opij).

3. opij is dismissible, which means that agij does not need to backward recover. So no

action is needed.

Figure 12. Atomic group post-commit recovery algorithm [UX09].

3.4.2 A Deep Compensation Algorithm of a Composite Group

A deep compensation of a composite group will be executed if a) a critical subgroup of it

fails before the composite group completes or b) the composite group completes

 49

successfully, but does not have a shallow compensation although it needs to backward

recover because another operation outside of the composite group has failed. In both

cases a) and b) the deep compensation includes the post-commit recovery of the executed

critical subgroups. E.g., if the atomic group ag112 fails in Figure 4 [UX09], the atomic group

ag111 must be compensated which is the deep compensation of the enclosing composite

group cg11 before cg11 completes. If the atomic group ag13 fails, the composite groups cg12

and cg11 will be compensated which is the deep compensation of cg1 before cg1

completes. The composite group cg12 must be deep compensated by running ag122

because cg12 does not have a shallow compensation. cg11 will be shallow compensated by

running cg11.cop.

An algorithm of the deep compensation of the composite group called

deepCompensate(CompositeGroup cgi) is written in Figure 13 [UX09]. It recursively

activates the deep compensation of the enclosing composite group of a subgroup if the

contingency of the subgroup fails. The input of the algorithm is the composite group, which

needs to deep compensate [UX09]. The result of the algorithm is that the effects of the

composite group have been semantically undone by running post-commit recovery of the

completed subgroups in the reversed order, if a subgroup is critical for the composite

group [UX09]. At first the algorithm gets a list of executed critical subgroups sgik of the

composite group cgi in the reversed execution order. Then the algorithm iterates through

every subgroup sgik of cgi. If sgik is an atomic group post-

commitRecoverAtomicGroup(sgik) will be started. If sgik is a composite group and has

shallow compensation csgik , it will be run. If sgik does not have shallow compensation or

the shallow compensation fails, the deep compensation of sgik will be started recursively.

The algorithm describes more in detail a deep compensation of a composite group if it has

completes successfully before the compensation depicted in Figure 10 b. The algorithm

starts in the state cgi successful. If a subgroup sgik is an atomic group (case 1), sgik moves

to the state sgik post-commit recovered, by running the post-commit recovery algorithm for

sgik. If sgik is a composite group and it has shallow compensation (case 2.1.1), a

successfully terminated shallow compensation moves sgik to the state sgik shallow

compensated. It the shallow compensation fails (case 2.1.2) or sgik does not have shallow

compensation (case 2.2) the deep compensation of sgik will be run. It moves sgik to the

state sgik deep compensated.

 50

The algorithm describes also more in detail a deep compensation of a composite group if a

critical subgroup of it fails before the composite group completes. It is depicted in Figure 8

b. The algorithm starts in the state sgik extended abort. Then all the executed subgroups

will be backward recovered and the cgi moves to the state cgi extended abort. So the

algorithm confirms that composite group cgi reaches the state cgi extended abort if a

critical subgroup of cgi fails during the execution of the cgi as shown in Figure 8 b and the

state cgi deep compensated is reached, when cgi has completed successfully before the

compensation and a deep compensation is needed for the composite group cgi as shown

in Figure 10 b.

Figure 13. Composite group deep compensation algorithm [UX09].

 51

3.4.3 A Recovery Algorithm of an Operation Execution Failure

A recovery algorithm for an execution failure of an operation in the context of a running

process is called recover(Operation opij) and written in Figure 14 [UX09]. The input of the

algorithm is a failed operation opij. The result of the algorithm is a Boolean value

depending on if the process of the failed operation opij can forward recover or not [UX09].

If the process can carry on the next execution entity it has been recovered and the

algorithm returns the value true [UX09]. If the whole process have been backward

recovered the algorithm returns the value false [UX09].

Figure 14. Operation failure recovery algorithm [UX09].

At first the algorithm gets an enclosing atomic group agij of the failed operation opij. After

checking that agij is non-critical, the algorithm returns the value true. If the agij is critical

and it has a contingency topij the contingency will be started. When it has succeeded the

algorithm returns the value true. If the contingency fails or agij does not have the

 52

contingency, the algorithm propagateFailure(agij) will be started. The fault of the operation

opij will be passed to the enclosing atomic group agij by running propagateFailure(agij),

which will recover the failed atomic group in the context of enclosed nested composite

group execution [UX09].

Figure 15. Atomic group failure propagation algorithm [UX09].

The algorithm propagateFailure(agij) is written in Figure 15 [UX09]. The input of the

algorithm is a failed atomic group agij. The result of the algorithm is a Boolean value

depending on if the process of the failed operation agij can forward recover or not [UX09].

If the process has been recovered the algorithm returns the value true [UX09]. If the whole

process have been backward recovered the algorithm returns the value false [UX09]. At

first, the algorithm gets an enclosing composite group cgij of the failed atomic group agij.

 53

After checking that cgij is non-critical the algorithm returns the value true. If the cgij is

critical the deep compensation is started. If cgij has a contingency topij it will be started.

When it has succeeded the algorithm returns the value true. If the contingency fails or cgij

does not have the contingency, the algorithm propagateFailure(cgij) will be started again

[UX09]. The algorithm propagateFailure(cgij) will be called recursively. It will continue until

either a) the contingency of the composite group succeeds or b) the composite group of

the highest level (in practice the process) is reached [UX09]. In the case a), the process

has successfully forward recovered and can carry on the next execution entity. In the case

b), the whole process has backward recovered.

The recovery algorithm (recover(Operation opij)) for an execution failure of an operation in

the context of a running process, which is written in Figure 14 describes more in detail a

failure recovery of an operation depicted in Figure 7. The algorithm starts in the state pre-

commit recovered for operation opij [UX09]. If the enclosing atomic group agij of the failed

operation opij is non-critical (case 1), no contingency is needed and agij moves to the state

ag aborted. If the agij is critical and contingency succeeds (case 2.1.1.) agij moves to the

state ag successful. In both cases, the value true is returned and the enclosing process

carries on the next execution entity. If the contingency fails (case 2.1.2) or agij does not

have the contingency (case 2.2), the algorithm propagateFailure(agij) will be started. The

fault of agij will be passed to the enclosing composite group cgij by running the algorithm

propagateFailure(AtomicGroup agij), which will recover the failed atomic group agij. The

algorithm starts at the state ag aborted in Figure 8 a. If an enclosing composite group cgij

of agij is non-critical (case 1), the algorithm returns the value true and the process will carry

on the next execution operation. If the cgij is critical, the deep compensation is started and

cgi moves to the state cgi extended abort. If cgij has a contingency topij, it will be started.

When it has succeeded (case 2.1.1), cgi moves to the state cgi successful. The algorithm

returns the value true and the enclosing process carries on the next execution operation. If

the contingency fails (case 2.1.2) or cgij does not have the contingency (case 2.2), cgi

stays in the state cgi extended abort. It is the state sgij extended abort in Figure 8 b. In that

state the algorithm propagateFailure(cgij) will start the recursive call [UX09]. The failure of

sgij starts the deep compensation of the enclosing composite group cgij. If cgij has a

contingency topij it will be started. When it has succeeded (case 2.1.1), cg i moves to the

state cgi successful. The algorithm returns the value true and the enclosing process

carries on the next execution operation. If the contingency fails (case 2.1.2) or cgij does not

 54

have the contingency (case 2.2) the algorithm will be started recursively again. It will

continue until cgij reaches the composite group of the highest level (in practice the

process). If the highest level composite group has a contingency and it succeeds, the

process moves to the state cgi successful [UX09] which means that the process has

successfully forward recovered and it can carry on to the next operation. In all other cases,

the process moves on the state cgi deep compensated and terminates [UX09], which

means that the whole process has backward recovered. So the algorithm

recover(Operation opij)) combines the state transitions of the Figures 7, 8 and 10 [UX09]

and fulfils them.

 55

4 Constraint Condition and Logic Rule Based Recovery
Mechanism

The essential terms e.g. a scope and a participant are defined and their relationship to an

atomic service and a composite service are explained. An example of an eBusiness

transaction using scopes is given (subsection 4.1). A completion constraint condition, an

ignorable compensation constraint condition (subsection 4.2) and a logic rule (subsection

4.3) are explained and examples of their implementation are described. Possibility to

combine constraint conditions and logic rules and use them together is explained. A

management of the constraint rules is described briefly (subsection4.3).

A Constraint rules-based recovery mechanism is presented and explained (subsection

4.4). It makes use of four techniques: an atomic service retrying, a minimum range

recovery, a synchronized compensation and a customer interaction. They are introduced

and a phase when they are used in the Constraint rules-based recovery mechanism is

depicted and described (subsection 4.4).

4.1 Scopes and Participants

The terms: a scope, a coordinator, a participant are defined and their relationship to an

atomic service and a composite service are explained. An example of an eBusiness

transaction using scopes is depicted and described in this subsection.

An eBusiness process can be managed with an eBusiness transaction which has a

hierarchical structure described using scopes. A scope executes a certain sub task of the

eBusiness transaction and it has a coordinator to manage its participants [CZM10]. A

participant is a service provider or a consumer [CZM10]. The coordinator is a special

participant which interacts with the participants of the scope. A sample eBusiness

transaction workflow using scopes is pictured in Figure 4A. The rectangle is a symbol of

atomic service in Figure 4A with exceptions of rectangles with Service request and End. A

service provider is used to identify a service. Pa is an atomic service provided by service

provider a in Figure 4A. A scope defines a composite service [CZM10] which is marked

with a dashed rectangle in Figure 4A. SC1 is a coordinator of the scope 1 in it. There are

two atomic services and six scopes in Figure 4A . One of the scopes has two atomic

 56

services and the others have three atomic services. A participant of the scope can be a

sub coordinator as well [CZM10]. This way a scope offers a nested structure.

Figure 4A. A sample eBusiness transaction workflow using scopes.

4.2 Constraint Condition

Two kinds of constraint conditions exist: a completion constraint condition and an

ignorable compensation constraint condition. Their usage is explained and examples of

their implementation are given in this subsection.

The structure of an eBusiness process creates a structure for its transaction, which

consists of the composite services, atomic services and relationships between them. Two

types of constraint rules can be used to represent those relationships: constraint condition

Pe

Pc

Pd

Pf

Pg
Pi

Pj

Pr

Ps

Po

Pp

Pm

Pn

Pk

Pq

Pt

Ph

Pa

Pb

Receive
Request

End

SC1

SC3

SC2

SC4

SC5 SC6

 57

and logic rule [CZM10]. Constraint condition determines if a service has been performed in

an acceptable way in a transaction of a certain application [CZM10]. There are two kind

constraint conditions: a completion constraint condition and an ignorable compensation

constraint condition. The idea of the completion constraint condition (CCC) is that if a

service of a transaction will not be performed 100% correct, it does not mean that the

whole transaction must fail [CZM10]. A user can define a completion constraint condition

for a service, which expresses a kind of a situation where the service can be regarded as

successfully performed taking into account the task of the transaction and the role of the

service in it. The situation is expressed by writing a truth-value statement. The statement,

which is the actual completion constraint condition, will be tested if the service fails

[CZM10]. If the completion constraint condition will return the value true, the particular

service can be ignored [CZM10]. This means that the fail of the particular service of the

transaction does not harm the task of the whole transaction.

A completion constraint condition of a service is written using an expression of XPath 1.0

[CD99] which returns a Boolean value [CZM10]. If the return value is false the service

could not been ignored [CZM10]. E.g. an atomic service named Contact airlines can have

a completion constraint condition $sucConnection >= 1 [CZM10]. It means that the

service has performed successfully when it has been able to contact at least one airline

company. In that case it returns the value true. The service can try to contact several

airline companies but in order to return true, one succeeded contact is enough. If it cannot

contact any airline company then the service has failed and the completion constraint

condition will be false.

For a compensation service there is another kind of constraint condition: an ignorable

compensation constraint condition (ICCC). It is also a truth-value statement, which will be

true if a compensation service in the backward recovery situation can be ignored [CZM10].

If the semantics or the relationships of the compensation service causes that the

compensation service must be performed in the backward recovery situation, the ignorable

compensation constraint condition will get the value false [CZM10]. Many ignorable

compensation constraint conditions can be defined for a compensation service. In that

case all of them must be true before the compensation service can be left not performed

[CZM10]. So the usage of ignorable compensation constraint conditions makes it possible

to leave some successfully performed services without compensation in the backward

recovery situation.

 58

An expression of XPath 1.0, which returns a Boolean value is used to write an ignorable

compensation constraint condition [CZM10]. E.g., a compensation service (of the service

SendChargenote) SendChargeinfo can have an ignorable compensation constraint

condition $noteHtPrice=$htPrice [CZM10]. It means that if the price of the suggested hotel

is same than the price of another hotel which a customer wants to have, instead the

ignorable compensation constraint condition of the compensation service SendChargeinfo

will be true, because there is no need to at first run the compensation service and after

that the service SendChargenote with the same price. So in this case the compensation

service can be ignored.

4.3 Logic Rule

A constraint rule called logic rule is defined, its usage is explained and its implementation

is described. Possibility to combine constraint conditions and logic rules and use them

together is explained. The management of the constraint rules is described briefly in this

subsection.

It is not always sensible or effective to run the compensation services in the opposite order

of the executed services [CZM10], which need to be compensated in the backward

recovery situation. E.g., delivery of goods and receiving payment services of the online

shopping transaction are usually performed simultaneously. Although in the backward

situation, the compensation services are better to be run so that the compensation of

receiving payment will be run first, because the delivery company wants to charge before

they want to take care of returning of the goods [CZM10]. Logic rules will be used to

determine a running order and a schedule of the compensation services in the backward

recovery situation [CZM10]. Normally, every service has a compensation service which will

clean up the effects of the executed service partly or totally [CZM10]. A logic rule of a

composite service will be created during the workflow of creating the composite service

[CZM10].

Logic rules can be written using BPEL [CZM10], which is an XML-based language used to

determine the interaction of the web services. There can be a label

<compensationHandler> [CUR03] in the BPEL labels <scope> and <process>. In the

label <compensationHandler> there can be the labels <sequence> and <flow> which are

used to describe the logic rules. Earlier mentioned completion constraint condition and

ignorable compensation constraint condition which are written using XPath 1.0 can be

 59

used in BPEL to cause conditional occurrence [CZM10]. So constraint conditions and logic

rules can be used together.

As a scope executes a certain sub task of the eBusiness transaction and the scope has a

coordinator to manage its participants, a coordinator is also an owner of a constraint rule.

It means that the coordinator is aware of the constraint rule and the duty of the coordinator

is to maintain and evaluate it [CZM10]. Constraint rules do not affect to the sub

coordinators [CZM10] or to the services of the scopes of sub coordinators. A coordinator

having several scopes which constraint rules affecting to the services of other scopes of

the same coordinator is an exception [CZM10].

4.4 Constraint Rules-Based Recovery Mechanism

A Constraint rules-based recovery mechanism is presented and explained. It makes use of

four techniques: an atomic service retrying, a minimum range recovery, a synchronized

compensation and a customer interaction. These are introduced and a phase when they

are used in the Constraint rules-based recovery mechanism is depicted and described in

this subsection.

The idea of the Constraint rules-based recovery mechanism is that when a failure or an

exception in the execution of a scope happens, it tries to recover it by doing forward

recovery and in case it was not successful, it tries to recover by doing a backward

recovery [CZM10]. The process of the Constraint rules-based recovery mechanism

[CZM10] is depicted in Figure 4B. When an exception occurs in a service of a scope, a

forward recovery will be started and the value of a completion constraint condition of the

service is evaluated. If the value of the completion constraint condition is true, the

execution of the scope can continue with the consecutive services. If the value of the

completion constraint condition of the service is false then it is checked only in case the

exception happened in an atomic service. If the atomic service caused the exception then

the coordinator of the scope tries to run that service again.

 60

Figure 4B. A process of the recovery using a Constraint rules-based recovery mechanism.

Four key techniques used in the recovery are A. an atomic service retrying, B. a minimum

range recovery, C. a synchronized compensation and D. a customer interaction.

 61

If the exception happened in a composite service of the scope then the provider of the

failed service will negotiate with a customer. The negotiation is described in Figure 4C

[CZM10]. The provider will suggest a substitute service or ask permission to cancel the

service. If the customer chooses one of these options the constraint conditions will be

changed [CZM10]. If the customer does not want to abandon the service, a compensation

constraint condition will be evaluated to know if the substitution will bring on the

compensation of the entire scope. If the substitution will not bring on the compensation of

the entire scope, the compensation of the failed service is done by activating a substitution

service. So the failed service is replaced with a substitution service.

Figure 4C. An interaction between a customer and a provider of the failed service during

the execution of the Constraint rules-based recovery mechanism [CZM10].

If the customer does not want to use a substitute and wants to cancel the failed service an

UnatomicException will be thrown by the coordinator to the outer scope and the

consecutive services of the failed service will be uninstalled so that they will not be

activated [CZM10]. Same thing happens if the customer does not accept either option: the

substitution or cancellation. In the two previous cases where the UnatomicException was

thrown, the recovery process will stop and wait for the compensation command from the

outer scope. After the outer scope has given a compensate command or in case of that

 62

the substitution causes the compensation of the entire scope, a backward recovery will be

started. An ignorable compensation constraint condition will be evaluated. If there are

services that are linked to the ignorable compensation constraint condition but they are not

activated yet an optimistic evaluation strategy will be used [CZM10]. The optimistic

evaluation strategy means that the linked inactivated services are assumed to be ignorable

and the ignorable compensation constraint condition will get the value true [CZM10]. It

causes that there are fewer services to compensate [CZM10]. A compensation strategy

will be generated, carried out and coordinated. When the backward recovery is completed

the compensated services need to be run again and the substitution of the failed service

will be executed as well.

The Constraint rules-based recovery mechanism makes use of four techniques: an atomic

service retrying, a minimum range recovery, a synchronized compensation and a customer

interaction [CZM10]. Those techniques are marked in the recovery process in Figure 4B

using letters A, B, C, and D. An atomic service retrying (A.) means that only the atomic

services (not composite ones) of the scope will be retried if they fail [CZM10]. This is

because if there is an exception in the composite service all the services of that scope will

be retried and the composite service must remain failed before a coordinator of the scope

will throw an “UnatomicException” to the parent scope [CZM10]. After that, the recovery

process will know that the composite service should be retried but there is no need to retry

as all its services have already been retried. The atomic service retrying prevents the

unnecessary retries of the services.

In a minimum range recovery (B.) a coordinator of the scope does all possible actions to

forward recover a failed service within the scope [CZM10], e.g., by substituting or

cancelling the failed service if the customer allows. If the coordinator will not succeed with

the forward recovery, the scope has failed and an UnatomicException is thrown to the

outer scope. Then the range of the influence of the failed service will be enlarged. The

minimum range recovery takes care that the failed service affects only the needed number

of the scopes and causes as little side effects as possible [CZM10].

A customer interaction (D.) is the negotiation between a customer and the provider of the

failed service if the failed service can be replaced with another, cancelled or neither of

them meaning that the customer does not want to compromise. The provider will suggest

 63

to the customer possible substitutes of the failed service and will give information about

them [CZM10]. Based on the customer’s decision the recovery process will continue.

A synchronized compensation (C.) means that after a coordinator has thrown an

UnatomicException as a sign of the failed forward recovery of the failed service a recovery

process must wait for the compensation command of a parent scope [CZM10]. The

synchronization between the scope, the parent scope and other scopes is essential in

order to fulfill the logic rules of the parent scope [CZM10].

 64

5 Analysis
The expectations for a service composition and recovery model are listed and the

corresponding features of the two new models are written next to them. Those new

models: the DeltaGrid service composition and recovery model and the Constraint rules-

based recovery mechanism and two classic models: the Saga and the BTM are compared

with each other. The explanations of the expectations are given and how the models

answer to the expectations is analysed in this section.

The expectations set for a new service composition model and its recovery model are

listed in Table 6. There are also the features of the DeltaGrid service composition and

recovery model and the features of the Constraint rules-based recovery mechanism, which

answer to those expectations. They are grouped by the aspects of the execution

requirements of an eBusiness transaction. A comparison between the classic and new

models will be done. The classic models are the Saga and the BTM and the new models

are the DeltaGrid service composition and recovery model (DGM) and the Constraint

rules-based recovery mechanism (CM).

An aspect of
execution
requirements
of an
eBusiness
transaction
[HA02]

DeltaGrid service
composition and recovery
model [UX09]

Constraint rules-
based recovery
mechanism
[CZM10]

Expectations for a
service composition
and recovery model

granularity,
cohesion

A hierarchical structure of
an eBusiness transaction
can be expressed as a
composite group which
consists of atomic groups.
The functionality of a
service is defined as an
operation of the atomic
group.

A composite group can be
composed of other
composite groups
 -> nested structure

A hierarchical
structure of an
eBusiness
transaction can be
described as a
scope. The scope
defines a composite
service. An atomic
service has a
provider and a
composite service
consist of atomic
services. Participant
of a scope can be a
sub coordinator->
nested structure

Granularity levels
from process to a
service allow a
flexible
hierarchical
composition
structure.

A transaction has
relaxed atomicity.

 65

coupling The delta schedule is
used to analyse data
dependencies among
concurrently executing
processes when process
failure occurs.

If the primary operation is
dismissible the atomic
group does not need to
have a compensation plan.

Relationships
between atomic
services and
composite services
can be expressed
with constraint
rules used in the
recovery process.
ICCC is used to
decide if
compensation is
ignorable and what
the execution order
and the schedule of
compensation
services (logic
rules) are in the
backward recovery.

Transactions have
a limited number of
data and control
dependencies
which can be taken
into account in the
backward recovery.

reversibility An atomic group has
essential compensation
and contingency plans
for a primary operation of
it. The need of the
compensation and the
contingency plan
depends on the post-
commit recoverability of
the primary operation and
the value of the criticality
attribute of the atomic
group. If the primary
operation is
compensatable the atomic
group must have a
compensation. If the
atomic group is critical it
must have the
contingency.

Using compensation,
contingency and DE-
rollback at the atomic and
the composite groups an
execution failure of the
process can be
automatically recovered at
any composition level
maximizing the potential
forward recovery.

In the forward
recovery a CCC
makes possible to
check if a service
have completed
successfully.

The forward
recovery uses retry
(if an atomic service
caused the
exception: An
atomic service
retrying), (if the
exception happened
in a composite
service negotiation:
customer
interaction)
substitute or
permission to
cancel minimum
range recovery=
tries to forward
recover within the
scope.

If an execution of
the scope fails a
forward recovery is
tried at first.

A service has a
mechanism for
compensation and
a contingency
plan.

A forward recovery
is maximized.

 66

reliability A mechanism is picked
from “A service has a
mechanism for
compensation and a
contingency plan.” on the
previous row.

A mechanism is
picked from “A
service has a
mechanism for
compensation and a
contingency plan.”
on the previous row.

A mechanism for a
compensation of
each sub-
transaction is
needed.

concurrency A delta schedule is used to
analyze data
dependencies of
concurrently running
processes.

The delta schedule
supports DE-rollback
which restores the results
of the execution of a
service as they were even
if the execution has
already terminated.

Locking is not
used and that is
why traditional
rolling back cannot
be used in the
recovery process.
Compensation is
used instead of
rolling back.

Isolation is
relaxed which
allows that data
elements are not
locked during the
execution of the
transaction.

recoverability Operation is an activation
of a DEGS service which is
an autonomous entity that
takes care of its local
correctness using a local
compensation
transaction. It never
terminates in the failed
state.

The DEGS produces and
sends deltas to a PHCS
which maintains the
execution context of every
running process in the
system and creates a log
file called a delta
schedule.

The operation is an ACID
DEGS or a multilevel
DEGS.

A multi-level DEGS has a
pre-commit
recoverability
mechanism (DE-rollback
or a service reset function)
which cleans the

In the backward
recovery situation
logic rules defines
what is the
execution order and
the schedule of
compensation
services and ICCC
defines if a
compensation is
ignorable, based on
the semantics of the
compensation
service and its
relationships to
other services.

If there are services
that are linked to the
ICCC but they are
not activated yet an
optimistic
evaluation strategy
will be used in a
backward recovery.

The synchronization
between the scope,
the parent scope

A transaction has
relaxed
consistency.

There have to be
logging, save points
and context
security
mechanisms
available so that a
transaction reaches
a consistent state
if a service fails.

A recovery
mechanism is
described in
detailed.

 67

consequences of the tried
pre-commit-compensation.
It increases the level of the
consistency of the
multilevel DEGS operation.

A post-commit
recoverability mechanism
of a DEGS operation
(options: reversible,
compensatable) is
needed to semantically
undo a successfully
terminated operation.

The backward recovery of
the atomic group
(options:compensation,
DE-rollback and service-
reset) always terminates in
a consistent state.

Shallow and deep
compensation are used in
the backward recovery of a
composite group which
never terminates in an
inconsistent state.

In the backward recovery
the fault of the operation
will be passed to the
enclosing atomic group
and the fault of the atomic
group will be passed to
the enclosing composite
group recursively until the
whole process has
backward recovered.

and other scopes is
essential in order
that the logic rules
of the parent scope
will be fulfilled. In a
synchronized
compensation after
a coordinator has
thrown an
UnatomicException
a recovery process
must wait the
compensation
command of a
parent scope.

reusability Atomicity types are not
used.

Atomicity types are
not used.

Unaccustomed
classifying of
atomicity is used.

Table 6. The expectations set for a new service composition model and its recovery

model. The features of the DeltaGrid service composition and recovery model and the

features the Constraint rules-based recovery mechanism bearing to the expectations.

They are grouped by the aspects of the execution requirements of an eBusiness

transaction.

 68

An explanation of the expectations for a service composition and recovery model are

written as bold. The four service composition and recovery models, the classic models the

Saga and the BTM and the new models the DGM and the CM, are evaluated after each

explanation with bold text.

A recovery model is founded on a service composition model which should be
hierarchical and well defined starting from a service up to the expression of the
entire eBusiness process. It should allow a nested composition structure which has
a needed number of nesting levels to describe an entire process using services. A

Saga is composed of sequential transactions and has only two nesting levels: a Saga

consists of atomic simple transactions. A long running transaction (LRT) of the BTM is

better because it is composed of the atomic transactions and it uses an open nested

transaction model allowing the needed number of nesting levels. This way an eBusiness

process can be described using nested LRTs. An operation of the DGM and an atomic

service of the CM are similar to the simple transaction of the BTM. The service

composition structure of DGM and CM are similar to the BTM because the hierarchical

service structure of a scope of the CM is similar to the composite group of the DGM that is

similar to a LRT of the BTM. All structures are composed of smaller atomic parts, allow

open nested transaction structure and an eBusiness process can be expressed using

them. In case of the composite group of the DGM the parts are other composite groups

and atomic groups. Also the atomic group includes service activation and it is a building

block of composite group. In case of the scope of the CM, the parts are other scopes,

meaning composite services, and atomic services, which are the building blocks of a

composite service. In case of the LRT of the BMT the parts are other LRTs and atomic

transactions. So the service composition model of the DGM and the CM are as good as

the BTM.

A transaction has to relax atomicity. A Saga relaxes atomicity by allowing access to the

shared recourses but if the transaction of the Saga fails all the transactions of the Saga

must be compensated which is not practical. That is why the Saga does not properly relax

atomicity. The LRT of the BTM relaxes atomicity better, because its participants can

individually decide either to commit or to rollback an atomic transaction of the long running

transaction. So the LRT relaxes atomicity using open nested transactions. The DGM

relaxes the atomicity defining a criticality attribute for an atomic group. The CM relaxes

 69

atomicity defining a CCC for a service. So the DGM and CM relax the atomicity using the

same principle and define a rule for checking it which the BTM not have.

The data and control dependencies are needed in order to take into account the

backward recovery of a transaction. A Saga cannot restore the data taking into account

the data dependencies to other transactions but a LRT can do so if the backward recovery

is performed together with compensation and definition of the business logic of the long

running transaction. The LRT does not describe how the business logic can be defined,

but in CM the business logic is defined using logic rules. In the backward recovery

situation they are used to define the execution order and the schedule of compensation

services. The logic rule of a composite service is created along with the workflow in a

phase of the service composition. In addition, an ignorable compensation constraint

condition (ICCC) will be checked if a compensation of the single service is ignorable. In

DGM the logic of the eBusiness transaction is collected in a delta schedule during the

execution of the service of the process. The delta schedule is a part of DeltaGrid

environment and it is used to analyse data dependencies among concurrently executing

processes when a backward recovery is needed. ICCC matches up to dismissible, which

is the post-commit recoverability option of the primary operation in DGM. Both models

DGM and CM take into account the business logic automatically in the backward recovery

and offer a mechanism to ignore an unnecessary compensation. So in that way, the two

models are equal but they have been improved compared to the LRT of the BTM.

A service should have a mechanism for compensation and a contingency plan and a
forward recovery should be maximized. Every simple transaction of a Saga has a

compensation transaction. The Saga has a pure forward recovery as a contingency plan if

the save-point command is run automatically at the beginning of each transaction. If the

pure forward recovery is not possible backward-forward recovery will be performed: the

compensation transactions are executed to reach the save-point and rerunning the

transactions will be started. If the compensation transaction or the pure forward recovery

fails there are three options: a retry, an alternate transaction, a manual intervention (does

not hold data resources). A LRT has compensating actions to cancel the effects of the

failure [PAP03]. If a system failure occurs during the execution of the LRT the transaction

performs a forward recovery by returning a consistent state and continuing catering for the

occurred failure. The BTM does not represent the forward recovery more detailed. So the

 70

Saga gives better description of the forward recovery than the LRT because it offers two

different ways to do so and also three ways to handle to failed forward recovery.

Each atomic service of the CM has a compensation but if an execution of the scope fails a

forward recovery is tried before backward recovery. When a service fails in the CM, a

completion constraint condition (CCC) is checked. If CCC is not satisfied it means that a

service has not completed successfully and a forward recovery will be started. If the failed

service is atomic an atomic service retrying is performed meaning the coordinator retries to

run the service. In case of a composite service the provider of the failed service will

negotiate with a customer (customer interaction) asking for a permission to substitute or to

cancel. So a minimum range recovery is used. If the forward recovery fails an exception is

thrown to the parent scope. The forward recovery of CM has the same recovery options as

the failed compensation or the failed pure forward recovery of the Saga: a retry, a

substitution (=alternate transaction) and a customer interaction, which demands an action

of the customer as the manual intervention of the Saga demands an action of the

programmer. So CM does the forward recovery with the same actions as the Saga

handling the recovery of the failed compensation or the failed pure forward recovery. That

can be called maximizing the forward recovery and it is an improvement compared to the

Saga. The CM has also added the customer interaction and CCC checking, which the

Saga does not have.

An atomic group of DGM has on needs basis compensation and contingency plans for a

primary operation of it. The need of the compensation and the contingency plan depends

on the post-commit recoverability of the primary operation and the value of the criticality

attribute of the atomic group. If the primary operation is compensatable the atomic group

must have a compensation whereas a reversible or a dismissible primary operation does

not need it. If the atomic group is critical, it must have the contingency. When the primary

operation has failed and compensated, the contingency is performed in case the atomic

group is critical. Otherwise, the contingency is not run. If the contingency fails pre-commit

compensation options: compensation, DE-rollback and service reset, which demands a

special program or a human agent are tried. So DGM does not use a retry as a forward

recovery option. Instead of them the DGM guarantees the consistent state of the atomic

group in the failure of the forward recovery by using pre-commit compensation options that

make use of the DE-rollback of the DeltaGrid environment and an automatic rollback and

service reset of the service provider. So the forward recovery of the DGM is closer to the

 71

backward-forward recovery of the Saga than the CM, but the DGM’s version is more

effective than the Saga because the backward recovery also has automated options.

Using compensation, contingency and DE-rollback at the atomic and the composite groups

an execution failure of a process can be automatically recovered in the DGM at any

composition level. That is maximizing the potential forward recovery [UX09].

A mechanism for a compensation of each sub-transaction is needed. All the models

have a mechanism for a compensation of each sub-transaction. A simple transaction of

the Saga has a compensation transaction. A LRT has compensating actions but they are

not described more detailed. An atomic service of the CM has a compensation and an

atomic group of the DGM has on needs basis compensation plan for a primary operation.

The Saga, the CM and DGM defines a compensation and specifies the usage of it. The

BTM does not.

A transaction has a relaxed isolation. A Saga relaxes isolation by letting a transaction of

the Saga commit without taking into account if the other transactions of the same Saga are

committed, but it may cause an inconsistency problem which the Saga cannot solve. A

LRT of the BTM relaxes isolation the same way but it is able to handle the possible

inconsistency problem. In the CM, isolation is relaxed by not allowing locking. For this

reason a traditional rolling back cannot be used in the recovery process of CM.

Compensation is used instead of rollback. As well in the DGM, the locking of recourses is

not used, which relax isolation. The DGM differs from the Saga, the BTM and the CM so

that a service can be rolled back. That action is called DE-rollback and it is done using the

delta schedule, which restores the results of the execution of a service even if the service

has been terminated.

A transaction has relaxed consistency. There have to be logging, save points and
context security mechanisms available so that a transaction reaches a consistent
state if a service fails. A recovery mechanism is described in detailed. A Saga

relaxes consistency alternatively with a pure forward recovery or by defining a

compensation transaction for each transaction of the Saga. The pure forward recovery

requires that the save-point command is in use. In the latter case, the Saga cannot solve

the inconsistency problem caused by simultaneous relaxation of isolation although the

Saga execution component uses a log [GS87]. A LRT of the BTM relaxes consistency by

running a forward recovery and running a backward recovery together with compensation

 72

and definition of the business logic of the long running transaction. The backward recovery

is not described more detailed. So the Saga describes the recovery more detailed than the

BTM.

The backward recovery is not simple to implement because each operation of the service

would need to lock the resources and have a pre-defined compensation [CO08]. That is a

reason a forward recovery is preferred for the LRTs [CO08]. Both keep a transaction in a

consistent state. The LRT of the BTM takes care of the consistency better than the Saga.

The CM relaxes consistency by defining a CCC for a service, which indicates if the service

has been performed successfully taking into account the task of the scope and the role of

the service in it. When a service fails, a CCC is checked. If CCC is not satisfied a forward

recovery will be started. If the forward recovery did not succeed a coordinator of the scope

will throw an UnatomicException for the parent scope. A synchronized compensation is

used, which means that a backward recovery process must wait the compensation

command of a parent scope. The synchronization between the scope, the parent scope

and other scopes is essential in order to fulfil the logic rules of the parent scope. After the

outer scope has given a compensate command a backward recovery will be started. An

ICCC is evaluated. If there are services that are linked to the ICCC but they are not

activated yet, an optimistic evaluation strategy will be used. A compensation strategy will

be generated using the optimistic evaluation strategy and logic rules. Logic rules define the

execution order and the schedule of compensation services. Then the backward recovery

is carried out and the process reaches a consistent state. The CM describes the backward

recovery more in detail than the BTM. It also defines new strategy and helpful rules for a

process to reach a consistent state. The CCC and ICCC describe the relationships of the

services of the process. The logic rules and the optimistic evaluation strategy take into

account the business logic in the backward recovery. With the optimistic evaluation

strategy there are fewer services to compensate.

The DGM relaxes consistency with a multi-level DEGS operation and a pre-commit

recoverability mechanism helps to reach a consistent state by eliminating the state failed.

An operation of the DGM is an activation of a DEGS service which is an ACID DEGS

operation or a multilevel DEGS operation. The ACID DEGS operation has a transaction

which can automatically do rollback by underlying data base if the operation fails. So ACID

DEGS operation never terminates in the failed state. The multilevel DEGS operation

 73

consists of the ACID DEGS operations which can commit unilaterally. If one of them fails,

a local compensating transaction will be run. After that, the operation will reach a

consistent state. The DEGS operation produces and sends deltas to a PHCS which

maintains the execution context of every running process in the system and creates a

time-ordered schedule of data changes, a log file called a delta schedule. It is a foundation

for DE-rollback.

A multi-level DEGS has a pre-commit recoverability mechanism (options: DE-rollback and

a service reset function), which cleans the consequences of the tried pre-commit-

compensation. It increases the level of the consistency of the multilevel DEGS operation.

A post-commit recoverability mechanism of the DEGS operation (options: reversible,

compensatable) is needed to semantically undo a successfully terminated operation. The

operation is a part of an atomic or a composite group.

The backward recovery options of the atomic group are compensation, DE-rollback and

service-reset. They guarantee that the atomic group always backward recovers to a

consistent state. Shallow and deep compensation are used in the backward recovery of a

composite group. The backward recovery of the composite group never terminates in an

inconsistent state. In the backward recovery the fault of the operation will be passed to the

enclosing atomic group and the fault of the atomic group will be passed to the enclosing

composite group recursively until the whole process has backward recovered and reached

a consistent state. The DGM describes the backward recovery more in detail than the CM

and offers also the algorithms of the important mechanisms e.g. for the atomic group to

post-commit recover and for the composite group to deep compensate. It defines many

new things compared to the CM. The DGM defines a new action called DE-rollback, two

new mechanisms: a pre-commit recoverability and post-commit recoverability and it also

extends the concepts of a shallow compensation and a deep compensation. The use of

them guarantees that a process recovers always in a consistent state which the Saga and

the BTM could not proof.

Unaccustomed classifying of atomicity is used. The BTM has defined atomicity types

for a LRT, which corresponds to an unaccustomed classifying of the atomicity. The DGM

and the CM do not have or use them. It could be good to map the atomicity types, which

are higher level transaction requirements onto combinations of lower level, basic

 74

transactions models [CO08]. Thus, the DGM and the CM are missing a feature that the

BTM has and maybe DGM and CM should include it as well.

 75

6 Conclusions
The nature of the eBusiness collaboration sets requirements for the long running

transactions. E.g., the ACID-properties must take a relaxed form when the long running

eBusiness transactions are managed. Many techniques have been developed to take care

of the execution of the long running business transactions. As an example of the classic

service composition and recovery model the classic Saga and a business transaction

model (BTM) of the business transaction framework (BTF) were introduced.

The expectations for a new service composition and recovery model were set. They were

grouped by the aspects of the execution requirements of an eBusiness transaction. As an

example of the new service composition and recovery model the DeltaGrid service

composition and recovery model (DGM) and the Constraint rules-based recovery

mechanism (CM) were introduced. The explanations of the expectations were given. The

four models were compared to each other and it was analysed how the models answer to

the explanations of the expectations.The result of the analyses answers to the research

question of this paper: how to secure a long running eBusiness transaction to a consistent

state through recovery during an eBusiness transaction.

A service composition model of the new models is as good as the BTM. Both new models

have improved the management of the relaxed atomicity compared to the classic models

by defining a rule (a completion constraint condition (CCC) of the CM and the criticality

attribute of the DGM) for checking if a service does not need to be successful to be able to

terminate the enclosing transaction successfully.

A recovery model of the new models has improved the ability to take into account the data

and control dependencies in the backward recovery. The Saga could not take them into

account at all. The BTM presented that the business logic should be taken into account but

it did not explain how it can be done. The CM uses the optimistic evaluation strategy,

which results to fewer services to be compensated. Both new models take into account the

business logic automatically in the backward recovery which is a great improvement.

The new models present two different kinds of strategies to recover a failed service. The

CM tries to do the forward recovery first and in case it did not succeed the backward

recovery is started. That increases the flexibility and the efficiency [CZM10] compared to

 76

the Saga or the BTF. The CM uses a retry as a forward recovery option which the DGM

does not have. The DGM does the backward recovery first using compensation or DE-

rollback and after that starts the forward recovery. Both new models offer a mechanism to

ignore an unnecessary compensation: an ignorable compensation constraint condition

(ICCC) of the CM and a post-commit recovery option dismissible of the DGM. Both new

models also maximize the potential forward recovery compared to the classic models.

The CM does not describe how to clean up the effects of the failed operation before using

retry as a forward recovery option. The DGM has a service reset function for it. The CM is

lacking the three pre-commit recoverability options out of four compared to the DGM:

automatic rollback, DE-rollback and service reset. On the other hand, if the process is not

performed in the DeltaGrid environment then the automatic rollback and the DE-rollback

are not available. The CM does not describe what happens if the ICCC specifies that the

compensation must be performed and the outer scope has given a compensate command,

but the compensation of the service is missing. The DGM handles the situation by running

DE-rollbackOrServiceReset algorithm.

The DGM describes the backward recovery more in detail compared to the CM and offers

also the algorithms of the important mechanisms. It defines characteristics that the CM

does not have: a DE-rollback, mechanisms for a pre-commit recoverability and for a post-

commit recoverability and extends the concepts of a shallow compensation and a deep

compensation. The use of them guarantees that an eBusiness process recovers always in

a consistent state which is something the Saga, the BTM and the CM could not proof.

Neither new model uses the unaccustomed classifying of atomicity even if the BTM

includes the unaccustomed classifying of atomicity. A future direction is to study how to

map the higher level transaction requirements e.g. atomicity types onto transaction model

of these new models.

 77

References

AL07 Alves A. et. al.: Web Services Business Process Execution Language Ver 2.0

OASIS Standard April 2007. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel Checked 19.2.2012

CAA05 Cabrera F. et. al.: Web Services Atomic Transaction (WS-AtomicTransaction)

Ver. 1.0. August 2005.

http://www.ibm.com/developerworks/library/specification/ws-tx/#coor Checked

on 18.2.2012

CAB05 Cabrera F. et. al.: Web Services Business Activity Framework (WS-

BusinessActivity) Ver. 1.0. August 2005.

http://www.ibm.com/developerworks/library/specification/ws-tx/#coor Checked

on 18.2.2012

CAC05 Cabrera F. et. al.: Web Services Coordination (WS-Coordination) Ver. 1.0.

August 2005. http://www.ibm.com/developerworks/library/specification/ws-

tx/#coor Checked on 17.2.2012

CB97 Crawley C. J., Bukhres O.: Failure Handling in CORBAflow: A CORBA-based

Transactional Workflow Architecture. Database Systems for Advanced

Applications ’97, Proceedings of the Fifth International Conference on

Database Systems For Advanced Applications Melbourne Australia April 1-4,

1997.

CD99 Clark J., DeRose S.: XML Path language (XPath) Version 1.0, W3C

Recommendation, 1999.

CO08 COMPAS: State-of-the-art in the field of compliance languages. EU Project

COMPAS Compliance-driven Models, Languages, and Architectures for

Services, Deliverable D2.1, version 1.0. 2008-07-31.

http://ec.europa.eu/information_society/apps/projects/logos/5/215175/080/deli

verables/D2.1_State-of-the-art-for-compliance-languages.pdf Checked on

11.2.2012.

 78

CUR03 Curbera F. et. al.: Business Process Execution Language for Web Services

(BPEL4WS) 1.1 May 2003.

http://www.ibm.com/developerworks/library/specification/ws-bpel/ Checked on

10.2.2012.

CZM10 Cao J., Zhang B., Mao B., Liu B.: Constraint Rules-based Recovery for

Business Transaction. Grid and Cooperative Computing(GCC), 2010 9th

International Conference on 1-5 Nov. 2010. Pages: 282 – 289 DOI:

10.1109/GCC.2010.63

GLA02 Grefen P., Ludvig H., Angelov S.: A framework for e-Services:

A three-level Approach towards Process and Data management. In 02-07,

C.T.R. editor University of Twente, 2002.

GS87 Garcia-Molina H., Salem K.: Sagas. ACM SIGMOD Record

 Volume 16, Issue 3, 1987. Pages: 249 - 259. DOI

http://doi.acm.org/10.1145/38714.38742

HA02 Heuvel, W.J. van den, Artyshechev: Developing a three-dimensional

transaction model for supporting atomicity spheres. Proceedings oy

NetObjectDays 2002 vol 2.

HV82 Hadzilacos, Vassos: An algorithm for Minimizing Roll Back Cost. Proc ACM

Symp on PODS, Los Angeles, CA, March 1982. Pages: 93-97.

LA95 Laymann F.: Supporting business transactions via partial backward recovery

in workflow management. Proc. of the GI-Fachtagung fur Datenbanksysteme

in Business, Technologie and Web(BTW’95), 1995.

PK06 Papazoglou M., Kratz B.: A business-aware web services transactions model.

Proceedings of the 4th International Conference on Service-Oriented

Computing 2006.

PAP03 Papazoglou M. P.: Web Services and Business Transactions.

World Wide Web Volume 6, Number 1, March, 2003. Pages: 49 - 91 DOI:

10.1023/A:1022308532661

 79

SH05 Singh M. P., Huhns M. N.: Service-Oriented Computing Semantics,

Processes, Agents. John Wiley & Sons Ltd., 2005.

SHH05 Seunglak C., Hyukjae J., Hangkyu K., Jungsook K., Su Myeon K., Junehwa S.

and Yoon-Joon L.: Maintaining Consistency Under Isolation Relaxation of

Web Services Transactions. Kitsuregawa et al. (Eds.): WISE 2005, LNCS

3806. Pages: 245 – 257. 2005. © Springer-Verlag Berlin Heidelberg 2005.

UX09 Urban S. D., Xiao Y.: The DeltaGrid Service Composition and Recovery

Model. International Journal of Web Services Research, vol. 6, no. 3, 2009.

Pages: 35-66.

UXB09 Urban S., Xiao Y., Blake L., Dietrich S.: Monitoring data dependencies in

concurrent process execution through delta-enabled grid services.

International Journal of Web and Grid Services 2009 - Vol. 5, No.1. Pages: 85

– 106. DOI: 10.1504/IJWGS.2009.023870

