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1 In t r o d u c t io n

T he A d S /C F T  correspondence [1- 3] suggests th a t  ce rta in  conform al field theories (C FT s) 
can  be holographically  dual to  grav ity  theories w ith  asym pto tically  AdS spacetim es. T he 
A d S /C F T  correspondence can  hence be used as a too l to  gain u n d ers tan d in g  of various 
field theo ry  phenom ena, usually  a t s trong  coupling, by phrasing  th e  problem  a t hand  
in te rm s of th e  dual g rav ita tio n a l theory. A m ongst m any o th er th ings, top ics to  which 
A d S /C F T  m ethods have been applied  in th e  p ast were RG  flows (see e.g. [4 , 5]), holographic 
superconducto rs [6- 8] and  boundary C F Ts (B C F T s), see [9- 16] for a cursory  overview over 
different types of A d S /B C F T  m odels proposed in th e  lite ra tu re .

In  descrip tions of th e  A d S /C F T  correspondence, one will often  encoun ter th e  te rm  
holographic dictionary, describ ing th e  idea of a, real or im agined, list of q uan titie s  defined 
e ith e r on th e  bulk  (AdS) or field th eo ry  (C F T ) side th a t  are m apped  to  each o th e r via th e  
correspondence. A n exam ple of a well-known en try  in to  th is  d ic tionary  is th e  holographic
entanglem ent entropy  form ula [17, 18]

S  = 4 ^  ■ (1 1 )

w here th e  en tang lem ent en tropy  S  of a ce rta in  subregion is a C F T  quan tity , while G N is
th e  (bulk) N ew ton co n stan t and  A  is th e  area of an  ex trem al co-dim ension tw o surface in
th e  bulk  (AdS) spacetim e. Recently, th e re  were tw o independen t proposals for w hat m ight
be th e  field theo ry  dual to  th e  volum es of ce rta in  ex trem al co-dim ension one hypersurfaces.

F irstly , ideas re la ting  to  com putational com plexity  seem to  have en tered  holography in
discussions concerning th e  firew all paradox [19] in th e  works [20- 22], w here a connection
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betw een com plexity  and  bulk  geom etry  was envisioned. Following [22] (see also [23- 26]), we 
will define com putational com plexity  as th e  m inim al num ber of sim ple u n ita ry  operations 
th a t  have to  be carried  ou t by a q u an tu m  com puter in o rder to  im plem ent a given u n ita ry  
o p era tio n  on a sim ple in itia l s ta te , or to  c rea te  a given s ta te  from  a sim ple in itia l s ta te . 
B ased on th e  findings of [21 , 22], it was th en  suggested in [23- 27] th a t  holographically, 
th e  com plexity  C of th e  field theo ry  s ta te  should be m easured by th e  volum es V of ce rta in  
spacelike ex trem al co-dim ension one bulk  hypersurfaces, i.e .1

C *  l g n  . (L2)

I t  was la te r argued in [28, 29] th a t  th e  co m p u ta tio n al com plexity  C should m ore accura te ly
be calcu lated  from  th e  in tegral of th e  bulk  ac tion  over a ce rta in  (co-dim ension zero) bulk
region, th e  W heeler-D eW itt patch . However, th e  sim ple app rox im ation  form ula ( 1.2) has 
continued  to  a t t r a c t  in terest in th e  holography com m unity, see [30- 36]. We will hence work 
w ith  (1.2) in th is  paper, and  com m ent on th e  ac tion  proposal of [28, 29] (see also [37- 50] 
for fu rth e r work in th is  d irection) again  in section 5 .

Secondly, in [51] it was proposed th a t  th e  volum e V of an  ex trem al spacelike co
dim ension one hypersurface should be approx im ate ly  dual to  a q u an tity  G a a  called quantum  
in fo rm ation  m etric  or fidelity  susceptibility  according to  th e  form ula

G a a  =  nd -j~d, (1.3)

w here n d is an  order one factor, L  is th e  AdS rad ius and  d determ ines th e  dim ension such 
th a t  th e  AdS space is d +  1 dim ensional. For tw o norm alised s ta tes  |0(A )) and  |0(A  +  5A)) 
belonging to  a one-param ete r fam ily of s ta tes, G a a  is defined a s2

| (0(A) |0(A  +  5A)) | =  1 -  G a a 5A2 +  O(5A3) (1.4)

and  m easures th e  d istance betw een th e  tw o sta tes, hence th e  nam e q u an tu m  inform ation 
m etric. T he nam e fidelity susceptib ility  derives from  th e  fact th a t  | (0 (A )|0 (A  +  5A)) | is 
called th e  fidelity. As discussed in [51] (see also [52, 53]), G aa can  be holographically  
ca lcu lated  w hen th e  tw o s ta tes  |0(A )) and  |0(A  +  5A)) are th e  g round s ta tes  of a theo ry  
allowing for a holographic dual, and  w hen th e  difference 5A is th e  resu lt of a p e r tu rb a tio n  
of th e  H am ilton ian  by 5A ■ O w ith  an  exactly  m arginal o p era to r O. T he correct bulk 
spacetim e du al to  th is  field th eo ry  problem  is a so called Janus so lution  [54, 55], b u t in [51] 
it was shown th a t  th is  geom etry  m ay be approx im ated  by a sim pler spacetim e w ith  a probe 
defect b rane em bedded in to  it. T his th en  leads to  th e  form ula ( 1.3) . See [30, 33 , 56- 58] 
for fu rth e r resu lts using p rescrip tion  ( 1.3) .

*As discussed e.g. in [23, 24, 28, 29], for dimensional reasons the length scale L has to be introduced 
into equation (1.2), which leads to a certain arbitrariness in the choice of the scale in this definition. In the 
following, we will use equation (1.2) with L being the AdS radius as the definition of complexity, assuming 
an order one factor of proportionality between the left and right hand side.

2As the left hand side is bounded from above by one and SX can have any sign, there cannot be a term
of order SX.
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T he s tru c tu re  of th is p ap er is as follows: in section 2 we will first recap itu la te  th e  
fram ew ork proposed in [10- 12] to  build  A d S /B C F T  m odels, and  th en  we will p resent a 
specific exam ple of a m odel of th is  type: th e  holographic K ondo m odel of [59- 66]. We will 
present th is  m odel, show som e of th e  m ost im p o rtan t resu lts derived from  it so far, and 
explain  why it is a p articu la rly  w ell-behaved m odel of th e  ty p e  [10- 12]. Section 3 will th en  
be deno ted  to  showing th a t  in th is  K ondo m odel, th e  bulk  volum e V of th e  t  =  0 slice of th e  
spacetim e decreases m onotonically  as th e  tem p e ra tu re  is lowered. In  section 4 we will prove 
th a t  u nder ce rta in  physical assum ptions, th is  behav iour is indeed generic in A dS 3/B C F T 2 
m odels. As we will discuss in section 5 , according to  th e  proposals (1.2) and  (1.3) , th is  
im plies th e  existence of a com plexity  a n d /o r  fidelity susceptib ility  analogue of th e  Affleck- 
L udw ig g-theorem  [67] for holographic B C F T s. T his theorem  fam ously im plies th a t ,  for 
B C F T s, th e  boundary entropy  ln g (T ) is a m onotonic function  of th e  tem p e ra tu re  T ,

d
T  • d T  ln (g ) -  0  (L5)

w here lowering th e  tem p e ra tu re  can  be in terp re ted  as going from  th e  UV to  th e  IR  [67- 70].3

2 R ev iew : A d S / B C F T  a n d  a  h o lo g rap h ic  K o n d o  m o d e l

2.1 A d S /B C F T

A B C F T  is a C F T  th a t  lives on a space th a t  has a boundary, such as th e  half-plane 
for exam ple. O ften  defect- and  in terface-C F T s  can  also be equivalently  form ulated  as 
B C F T s, so we will no t d istingu ish  these te rm s in th e  following. T here  are several ways 
to  stu d y  B C F T s holographically  [9- 16], and  in th e  rest of th is  p ap e r we will work in a 
b o tto m -u p  fram ew ork proposed by Takayanagi and  o thers in [10- 12]. T h e  underly ing  idea 
of th is  proposal is very simple: in s tan d a rd  A d S /C F T , we work w ith  a bulk spacetime  
N . T his spacetim e, being asym pto tically  AdS, has a conform al boundary M , on w hich 
conventionally  th e  holographically  dual field theo ry  is in te rp re ted  to  live. In  order to  
describe a B C F T , th is space M  th en  has to  have a b o u n d ary  P  itself, which in th e  following 
we will refer to  as th e  defect in order to  avoid confusion. H olographically, in th e  fram ew ork 
of [10- 12] th is  defect should th en  be ex tended  in to  th e  bulk  spacetim e M  by a co-dim ension 
one hypersurface Q, w hich will refer to  as brane. H ence b o th  M  and Q will in a sense be 
boundaries of th e  bulk  spacetim e N , b u t w ith  th e  im p o rtan t difference th a t  M  will be th e  
asy m p to tic  boundary, on w hich b o u n d ary  and  coun ter-term s have to  be im posed, while 
Q will be considered to  be a p a rt of th e  classical bulk  descrip tion  of th e  dual theory. 
Especially, we will allow for a rb itra ry  classical m a tte r  fields to  live in th e  w orldvolum e of 
Q, holographically  describ ing th e  degrees of freedom  of th e  B C F T  restric ted  to  P .  See 
figure 1. F urtherm ore , th e  bo u n d ary  condition  for th e  bulk  m etric  g^u a t  Q  will be chosen

3It should be pointed out that the g-theorem only holds when the BCFT undergoes an RG flow of its 
boundary, but remains critical otherwise, i.e. while the boundary entropy ln(g) changes, the central charge 
c of the BCFT is assumed not to change. Otherwise, the change of ln(g) may have any sign, see [71] and 
the discussion at the end of [72].
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to  be a N eum ann  bou n d ary  condition  in th e  term inology of [10],4 i.e. th e  induced m etric 
Yij on Q will be allowed to  fluctua te . T he bulk -action  for an  A dSd+1/B C F T d m odel of th is  
ty p e  will th en  read [10- 12]5

S  . 2 f  dd+lx  \ / —g (R  — 2A +  2kN l n ) ----- 2T f  d^x V —Y (K  — KN l q )  +  S c.t.’ )-
2kn  d n  k n  j q

(2. 1)

Here, k 2n  is re la ted  to  N ew ton’s G N co n stan t by k 2n  =  8 n G N , L N is th e  L agrang ian  
of m a tte r  fields in th e  bulk  N , K  is th e  ex trinsic  cu rv atu re  ten so r on Q and  L q  is th e  
L agrang ian  for m a tte r  fields living on th e  worldvolum e of th e  hypersurface Q. 
are bo u n d ary  and  coun ter te rm s defined on M  and P . W hen  calcu lating  th e  equations 
of m otion from  th is  action, ap a rt from  th e  usual equations for th e  fields living in N , we 
o b ta in  th e  following equ a tio n  determ in ing  th e  em bedding  of Q in to  N :

K ij — YijK  =  —KN S ij ■ (2 .2)

H ere K ij  is th e  ex trinsic  cu rva tu re  ten so r of Q, Y j is th e  induced m etric  on Q and S ij  is
th e  energy-m om entum  ten so r derived from  th e  fields L q . As also explained in [60], th e  
sim ilarity  betw een (2.2) and  th e  Israel ju n c tio n  conditions [74], describ ing u nder which 
conditions tw o spacetim es can  be glued to g e th er along a com m on bo u n d ary  surface, is no 
coincidence. Sim ply speaking, w hen assum ing th e  gluing carried  o u t v ia th e  Israel ju n ctio n  
conditions to  be m irro r sym m etric  w ith  respect to  th e  gluing surface, th e  Israel ju n ctio n  
conditions exactly  reproduce (2.2) up  to  a facto r of 2 in fron t of th e  stress energy tensor. 
In  fact, th e  Israel ju n c tio n  conditions can  also be derived from  an  ac tion  principle ansa tz  
of th e  form  (2. 1 ) , b u t w ith  th e  bulk  N  split in to  tw o com ponents N ± sharing  a com m on 
b o u n d ary  surface Q [75, 76]. T he difference betw een such a tw o sided approach  and  th e  
one-sided approach  (2.2) would be in terp re ted  as th e  difference betw een a holographic 
m odel of a defect C F T  (D C F T ) and  a genuine B C F T . For th e  rem ainder of th is  paper, 
th is  d istinc tion  will no t be relevant, and  our resu lts will be applicable to  b o th  holographic 
D C F T s and  B C F T S  as long as th ey  are described by th e  equations of m otion (2.2) .

T he concrete geom etry  of th e  m odel will be determ ined  as follows. For a given bulk 
m etric  g^u on N , and  for a fixed P , th e  em bedding  of Q in to  N  can  be p aram etrised  in term s 
of em bedding functions, for which (2.2) serves as equation  of m otion. T his equation  (2.2) , 
to g e th er w ith  th e  E inste in  equations for g^v and  th e  equations of m otion  for all m a tte r  
fields living on N  and  Q th en  form  a coupled system  of differential equations th a t  has to
be solved. As a sim pler exam ple, consider th e  case w here, as in th e  rest of th is  paper,
we set d =  2 and  specifically look a t s itua tions w here b o th  th e  am bient spacetim e N  
and  th e  em bedding  of Q in to  N  are s ta tic . T his m eans th a t  g^v is supposed to  be sta tic  
and  P ,  by static ity , is ju s t a s tra ig h t line on th e  bo u n d ary  a t fixed bou n d ary  coord inate . 
F urtherm ore , let us for sim plicity  assum e L N =  0. T he bulk  spacetim e g^v is th en  a s ta tic

4See also [73] for a deeper discussion of what can be called a Neumann boundary condition in general 
relativity.

5The sign in front of the extrinsic curvature term depends on the chosen convention. As in [60, 62], we 
will choose the normal vector of Q to be pointing inwards. This yields the signs as in equation (2.1) , (2.2).
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F ig u re  1. Setup for the holographic description of a BCFT according to [10]. The asymptotically 
AdS bulk spacetime N  has the conformal boundary M  and additional boundary Q. The defect P  
is the intersection of M  and Q. We have used standard coordinates t, x, z as in (2.3), where t, x  are 
boundary directions and z increases into the bulk. The figure is taken from [60].

vacuum  solution of 2 +  1 d im ensional E inste in  gravity, w hich we recognize as th e  B T Z  black 
hole [77, 78]

1 /  d z2 \
d s2 =  g^vd x ^ d x v =  y —h (z )d t2 +  +  dx2J  , (2.3)

w ith  h (z) =  1 — z 2/ z 2H . For sim plicity, we have set th e  AdS rad ius L  =  1. W ith o u t loss 
of generality, we can  fix th e  position  of P  to  be x  =  0, and  th e  em bedding  of Q in to  N  is 
th en  described by an  embedding profile x + (z ) (no t  dependence due to  sta tic ity ). We can 
th en  ca lcu late  th e  ex trinsic  cu rv a tu re  tenso r K ij  in te rm s of x+ ,

K ij  = --------------------------/  =  (2.4)

z24  ( 4  — z2) y 1 +  ( 1 — i f )  x + (z)2

x (  — (zH — z2) 2 x + (z) 0 ^
y 0 z z 2H ( z 2 — z 2H ) x+  (z) +  zH x+ (z) +  ( z 2H — z 2) 2 x + (z )3 J  ,

and  tre a t  x + (z ) as a dynam ical field of our m odel w ith  th e  equation  of m otion (2.2) . For 
q u an titie s  like th e  induced m etric  j ij  or th e  ex trinsic  cu rv a tu re  tenso r (2.4) , th e  indices i , j  
ru n  over th e  coord inates t, z . O ne benefit of th is  approach  is th a t  for s ta tic  A dS 3 /B C F T 2 , 
x + (z ) only depends on one coord ina te  and  hence (2.2) is a set of O D Es. T his allows for a 
num ber of elegant exact solutions to  be ob ta in ed  [60].

2.2 A  h o lograp h ic  K ondo m od el

In  th is  and  th e  nex t section, we will revisit a specific A d S /B C F T  m odel inspired by holo
graph ic stud ies of th e  K ondo effect. See [79] for th e  original source on th e  K ondo ef
fect, [80, 81] for a m odern  perspective and  [82] for a brief h istorical overview.

T his effect has first been observed by m easuring th e  resistiv ity  of m eta l probes w ith  
a low co ncen tra tion  of im p u rity  atom s as a function  of tem p era tu re . For exam ple, w hen 
investigating  th e  resistiv ity  of a gold p robe w ith  d ilu te  iron im purities it is found th a t  as 
th e  tem p e ra tu re  is lowered, th e  resistiv ity  first a tta in s  a m inim um  a t a ce rta in  tem p e ra tu re
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and th en  increases [83]. I t  was quickly realised th a t  th e  phenom enon had  to  be due to  th e  
in te rac tio n  of conduction  electrons w ith  th e  localised single m agnetic im purities [79, 82]. 
A p e rtu rb a tiv e  second o rder calcu lation  by Ju n  K ondo in [79] th en  explained th e  rise of 
th e  resistiv ity  a t low tem p era tu res  as a consequence of th e  spin-spin in terac tio n  betw een 
im purities and  electrons, b u t also p red ic ted  an  unphysical divergence of th e  resistiv ity  in 
th e  zero tem p e ra tu re  lim it. T his signifies a breakdow n of th e  p e rtu rb a tio n  th eo ry  below a 
ce rta in  tem p e ra tu re  TK , th e  K ondo tem perature  [79- 81 , 84]. T he desire to  u n d ers tan d  th e  
correct behav iour of these im p u rity  system s a t tem p era tu res  below th e  K ondo tem p era tu re  
T k , th e  K ondo problem  [81], inspired th e  app lica tion  and  developm ent of a varie ty  of 
different physical m ethods [80], including renorm alisa tion  group m ethods [84, 85]. T he 
m odern  u n d erstan d in g  of th e  so lution of th is  problem  is th a t  a t low tem p era tu res  th e  
im p u rity  is screened from  th e  rest of th e  system  by conduction  electrons th a t  form  th e  
K ondo screening cloud .

H olographic m odels of th e  K ondo effect or qualita tively  K ondo like physics were p re
sented in [59, 86- 88], and  we will specifically focus on a b o tto m -u p  m odel proposed in [59] 
and  fu rth e r s tud ied  in [60- 66], referring th e  reader to  these works for all b u t th e  m ost 
relevant details. T he ac tion  of th is  m odel is of th e  form  (2.1)6 w ith  d =  2,7 an d 8

I d3x  y /—gC N =  — N  y T r ^ A  A d A  +  2 A  A A  A A ^ , (2.5)

J  d2x  V —Y L q =  —y  J  d2x  V —Y ( 1  f m n f mn +  7 mra(D mT )t (D „T ) +  V ( $ $ t ) ^  , (2.6)

+  iq A m ® — iqam & . (2.7)

H ere N  is a no rm alisation  facto r th a t  was discussed in [59, 62]. We see th a t  th e  only fields 
living in th e  en tire  bu lk  spacetim e are th e  bulk  m etric  and  a C hern-Sim ons gauge field 
A. T he m eaning of th is  CS field for th e  in te rp re ta tio n  of th e  m odel (2.5)- (2.6) is e lab o ra ted  
upon  in [59, 61], however as th is  field effectively decouples from  th e  o th e r fields [59, 61, 62], 
and  as in th is  work we are m ore in terested  in th is  m odel as a generic w ell-behaved toy  m odel 
of th e  ty p e  of equation  (2.1) th a n  as a concrete K ondo m odel, we will ignore th is  field from 
now on. T he fields on th e  hypersurface Q co n stitu te  som ething sim ilar to  a holographic 
superconducto r in A d S 2, w ith  th e  gauge group of th e  a field chosen to  be U (1). In  th e  
sim plest incarna tion  of th is m odel, th e  po ten tia l of th e  charged scalar is chosen to  be a 
pure m ass te rm

V ( T $ t ) =  M 2 T $ t , (2.8)

6Strictly speaking, the action is in the configuration appropriate for defect CFTs, i.e. with the bulk 
spacetime N being divided in two parts N± to the left and to the right of Q. As we will be mostly working 
on the level of the equations of motion assuming symmetry with respect to the defect, this will not make a 
difference as explained above. See [60, 62] for more details on this matter.

7Due to a s-wave reduction, the Kondo effect can be described by a 1 +  1-dimensional BCFT [89]. Hence 
the bulk in this model is 2 +  1 dimensional.

8As this model was originally studied as a two-sided defect CFT in [59, 62], we introduce an additional 
factor 1/2 in (2.6) compared to [59, 60, 62]. This ensures that when solving the equations of motion, the 
right hand side of (2.2) will have the same magnitude as the analogous equation solved in [60, 62].
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ta n h ( s )  =  1  k2nN C 2 . (2.11)

w ith  Q =  Q and

g  =  g  • z h  =  2 n f .  (2 .16)

9In the standard BTZ black hole with periodic identification x ~  x +  2n, such a rescaling would violate 
this periodicity condition and is hence forbidden.
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w ith  th e  m ass tu n ed  to  th e  B reiten lohner-F reedm an  bound  [90] ap p ro p ria te  for a charged 
scalar in A dS2 [91]. T he bulk  spacetim e is chosen to  be a B T Z  black brane (2.3) w here th e  
b o u n d ary  coord ina te  x  is assum ed to  be decom pactified, x  €  (—ro, + ro ) .

E ven in th e  case including backreaction  (k n  =  0), it is generically possible to  find an  
ana ly tic  solution to  th e  equations of m otion  of th is  m odel in which T (z ) =  0 b u t am (z)  =  0 
for every z, and  we refer to  th is  as th e  uncondensed  or norm al phase. C hoosing th e  gauge 
az (z) =  0, th is so lution reads [62]

at =  —  cosh(s) ^cosh(s) — \ J ( zh / z )2 +  sinh2(s )^  , (2.9)

x + (z ) =  —zh  a rc tan h  | — sinh(s) _  j . (2.10)

W  ( z h /z ) 2 +  sinh2(s ) )

w ith  C2 =  — 1 f  m nfm n  th e  co n stan t electric flux of th e  gauge field and

T his solution has th e  special fea tu re  th a t  th e  energy m om entum  ten so r on Q  takes th e  form 
S ij =  const. x y i j , which is known as a constant tension  m odel. Such co n stan t tension 
m odels are especially im p o rtan t in A d S /B C F T  as th ey  can  be solved analy tica lly  in m any 
cases and  describe RG  fixed points, see [10- 12, 60, 92]. E xpand ing  (2.9) near th e  boundary, 
we find

CL2 cosh(s) C L2 co sh (s)2 Q , ,
a t ------------------- ^  +  . . .  =  Q  +  gc +  . . .  (2.12)

z zh  z

Of course, th e re  are also non-triv ia l solutions w ith  0 (z ) =  0. In  th is  case, th e  asym p
to tic  expansion of a t will still take  th e  form

Q
at ~  + g  +  . . .

z
(2.13)

w here we fix Q and  let th e  chem ical po ten tia l g  vary. T his leads to  a very im p o rtan t point: 
as said above, we use th e  m etric  (2.3) w ith  x  €  (—ro , + to). T his m eans th a t  we can  set

z  =  z / z h , x  =  x / z h , ■£ =  t / z H , f  =  3, at =  at z h , x+  =  x + /z h , etc. (2.14)

Leaving away th e  tildes la te r on, th is  m eans th a t  we can  effectively set z h  =  1,9 which is 
precisely w ha t we will do in section 3 . T he rescaling (2.14) has th e  effect on (2.13) th a t

Q _
at ~  — +  g  +  . . .  

2
(2.15)



We hence see th a t  th e  chem ical p o ten tia l p  sets a scale to  com pare th e  tem p e ra tu re  T  to, 
w ith  th e  only relevant physical com bination  being (2.16) . In  th e  num erics of [62], to  be 
presen ted  in section 3 , fixing zH =  1 and  increasing p  is hence physically equivalent to  
keeping p  fixed and  decreasing th e  tem p e ra tu re  T  below a critica l tem p e ra tu re  Tc. T /T c 
is th en  a function  of (2.16) and  can  be used to  label th e  different solutions. T his is sim ilar 
to  th e  s itu a tio n  in holographic superconducto rs [8]. In  th e  following, we will m ostly  th in k  
ab o u t th e  K ondo m odel in term s of a tem p e ra tu re  being lowered for fixed p , as th is  is 
th e  m ore realistic view point w hen com paring to  experim ental stud ies of th e  K ondo effect. 
From  now on, we will leave th e  tildes away on all quan tities .

Increasing p  above th e  value p c defined in (2.12) , respectively  lowering T /T c below 
1, we find th a t  th e  scalar field T (z ) =  0 ( z ) e ^ (z) in th e  bulk  condenses, and  ob ta ins an  
asy m p to tic  expansion (gauge-fixing 0 (z )  =  0) [59]

where, due to  som e peculiarities of th e  holographic K ondo m odel explained in deta il in [59, 
61], th e  ap p ro p ria te  b o u n d ary  conditions are of th e  double trace ty p e  [93, 94]

w ith  th e  K ondo coupling k. Q ualitatively , th e  K ondo m odel is sim ilar to  a holographic 
superconducto r [6- 8]: a t T  =  Tc, th e  norm al phase described above becom es unstab le, 
and  a t T  <  Tc th e  charged scalar field a tta in s  a non-vanishing profile, th e  condensed  or 
broken phase. H olographically, th is  is in te rp re ted  as th e  fo rm ation  of th e  K ondo cloud  in 
th e  field theo ry  side [59].10 Lowering T /T c (or equivalently  increasing p ), th e  K ondo m odel 
th en  experiences an  RG  flow from  th e  UV fixed po in t described by th e  co n stan t tension 
so lu tion  (2.9)- (2.10) tow ards an  IR  fixed po in t [59].

Irrespectively  of w hether th e  m odel presen ted  in th is  section is an  accu ra te  K ondo  
m odel (see [59- 66] for discussions of th is  question), it is im p o rtan t to  po in t o u t th a t ,  in its 
own right, th is  m odel is a very in teresting  A d S /B C F T  toy  m odel following th e  proposal 
of [10- 12]. T he reasons for th a t  are as follows:

•  T he m odel is non-triv ial, i.e. it has non-triv ia l m a tte r  con ten t L q  =  const., in co n trast 
to  th e  sim pler co n stan t tension  models.

•  T he m odel is w ell-behaved, in th e  sense th a t  th e  m a tte r  fields L q  satisfy (or violate) 
different energy-conditions ju s t in such a way as is phenom enologically necessary for 
a holographic K ondo m odel [60, 62].

•  T he m odel is q ualita tively  w ell-understood, as th e  various energy conditions constra in  
th e  possible geom etries [60, 62].

10The holographic Kondo model hence describes the Kondo effect in terms of a phase transition. Due to 
the Coleman-Mermin-Wagner theorem, this is possible for the real world Kondo effect only in the large N 
limit, where SU(N) is the spin-group of the magnetic impurity [95- 97].

0 (z ) ~  a^~z log(z) +  ^ V Z  +  . . . (2.17)

a  =  KyS, (2.18)
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•  T he m odel nicely displays a physical bou n d ary  RG  flow. As we will discuss in sec
tion  3 .2 , it is for exam ple possible to  explicitly  ca lcu late  th e  boundary entropy  and 
verify th a t  th e  Affleck-Ludwig g-theorem  (1.5) is satisfied [62].

As th e  proposals ( 1.2) and  (1.3) suggest th a t  ce rta in  bulk  volum es will have an  in te r
esting  physical in te rp re ta tio n  in term s of field th eo ry  quan titie s , we will in th e  nex t section 
ca lcu late  th e  loss of volum e th a t  occurs in th e  holographic K ondo m odel along th e  RG  flow.

3 V o lum e loss in t h e  K o n d o  m o d e l

3.1 N u m erica l b ack reaction  and ca lcu la tio n  o f  vo lu m e loss

In  [62], we num erically  ob ta in ed  th e  em bedding  profiles x + (z ) solving (2.2) in th e  K ondo 
m odel (2.5)- (2.7) w ith  th e  effective param eter-choices kn  =  N  =  q =  1 and  C =  1/2. 
T hese choices are slightly  different from  th e  original incarnation  of th e  holographic K ondo 
m odel [59], b u t th ey  allow for non-triv ia l backreaction  and  stab le  num erics. Furtherm ore , 
in [62] we argued  th a t  th e  geom etry  of th e  backreacted  solutions is s trongly  constra ined  by 
th e  energy conditions satisfied or v io lated  by th e  m odel (2.6) , hence th e  precise values of 
kn , N , q, C will no t m a tte r  for th e  q u alita tiv e  features of th e  m odel, and  th e  above choice 
gives represen ta tive  resu lts. In  any case, as argued above th e  m odel u nder consideration  
can  serve as an  in teresting  non-triv ial A dS3/B C F T 2 toy  model.

T he num erical resu lts for th e  em beddings x + (z ) of Q  in to  N  are shown in figure 2 . 
As explained in section 2 .2 , in our num erics we m ake a coo rd ina te  choice th a t  effectively 
keeps th e  event horizon rad ius z H =  1 co n stan t, so th a t  it is s tric tly  speaking g  th a t  is 
varied. T his has th e  benefit th a t  th e  bulk  spacetim e N , given by th e  m etric  (2.3) , stays 
th e  sam e. T he effect of th e  backreaction  is th en  th a t  as we follow th e  RG  flow, th e  b rane 
Q s ta r ts  a t its  co n stan t tension  UV  configuration and  sweeps to  th e  righ t over th e  fixed 
bulk  spacetim e like a cu rta in . I t is hence im m ediately  visible th a t  th e  bulk  spacetim e will 
loose volum e along th e  RG  flow, in fact, we can  in th is  se tup  d irec tly  identify  specific bulk 
po in ts th a t  will be lost and  d eterm ine th e  value of T / T c a t w hich th is  will happen .

Interestingly , we also see th a t  for z ^  0 all th e  curves in figure 2 approach  th e  bo u n d ary  
w ith  th e  sam e slope. T his is a sim ple consequence of th e  fact th a t  th e  scalar field 0 (z) 
falls off tow ards th e  boundary, hence as z ^  0 th e  curves x + (z ) will increasingly resem ble 
th e  solu tion for th e  critica l te m p e ra tu re  w here 0 (z) =  0 everyw here. In  RG  flow parlance, 
if we in te rp re t th e  near bo u n d ary  region of th e  spacetim e as U V region, it is clear th a t  
all curves along th e  RG  flow should be sim ilar in th is  region, as th ey  were all derived by 
following th e  R G  flow from  th e  sam e UV  fixed poin t. T he consequence of th is  sim ilarity  of 
th e  em bedding  curves near th e  b o u n d ary  is th a t  w hen ca lcu la ting  th e  loss of volum e for a 
ce rta in  po in t along th e  RG  flow, we can  expect th e  U V  divergences near th e  b o u n d ary  to  
cancel. We will now show th is  calcu lation  explicitly.

Following th e  proposal ( 1.2) , we will define th e  relative com plexity  v ia th e
p ro p o rtio n a lity 11

L G n  x  Crei(T/Tc) «  VT/Tc< 1 -  VT/Tc=1, (3.1)

n This definition is similar, but slightly different from the definition of a relative complexity given in [48]
or the complexity of formation given in [43].
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F ig u re  2. Embedding profiles x+(z) for the embedding of the brane Q into the bulk spacetime (2.3) . 
Note tha t the bulk spacetime N  is located to  the right of the curves, at larger x-values. See also 
figure 1 again. At T  =  Tc, the scalar field vanishes everywhere and the embedding is known to be 
given by a constant tension solution (2.10). As the tem perature is lowered (or g  is increased), the 
scalar field condenses and the brane bends to the right. The figure is presented as in [62].

w here VT/Tc<1 is m ean t to  be th e  volum e of th e  (co-dim ension one) t  =  0 slice of our bulk 
geom etry  for som e T /T c <  1, while VT/Tc=1 is th e  sim ilar volum e of th e  co n stan t tension 
so lu tion  corresponding  to  th e  UV fixed poin t. D ue to  th e  tim e reflection sym m etry  of th e  
B T Z  geom etry  and its  conform al d iagram , th e  t  =  0 slice is an  equal-tim e slice anchored 
a t th e  tw o boundaries a t tim es t L =  t R =  0 w ith  ex trem al volum e, as required  by th e  
p rescrip tions (1.2) and  (1.3) [43]. I t should be po in ted  ou t th a t  while th e  definition of 
fidelity suscep tib ility  can be easily generalised to  th e  case of m ixed b o u n d ary  s ta tes  [51
53, 58], th is  is no t so clear w ith  com plexity, see however [30, 34, 36, 45]. We will hence 
assum e th a t  we are working in a tw o sided black hole spacetim e, dual to  a therm ofield 
double (-like) pure s ta te . As th e  num erical solutions ob ta in ed  in [62] and  depicted  in 
figure 2 are only on one side of th e  E instein-R osen  (ER ) bridge (and outside of th e  event 
horizon), we have to  conjecture th a t  th e  s ta te  can be purified by adding  an o th er copy of 
th e  K ondo m odel on th e  o th e r side of th e  E R  b rid g e .12

In  short, we define th e  relative com plexity  a t T /T c <  1 to  be p roportional to  th e  loss 
of bulk  volum e com pared to  T /T c =  1. T he induced m etric  on th e  t  =  0 slice of th e  B TZ 
black hole (2.3) reads

approach a constant tension solution of the form (2.10) (however with a different value s) near the horizon, 
and it can be explicitly shown that such a constant tension solution can be analytically and symmetrically 
(!) extended throughout the entire Penrose diagram of the BTZ black hole, i.e. behind the horizon and to 
the other side of the ER bridge. Furthermore, a similar purification of the finite temperature Kondo model 
was achieved in the Kondo MERA model proposed in [98].

ds'2 =  J_ ( d*'2 +  )  ,4  1 —4 (3.2)

12We do not do so without evidence: in fact, in [62] it was shown that the embeddings depicted in figure 2
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T /T c

F ig u re  3. Relative complexity as defined in (3.3) shown as a function of T /T c. Although, as 
discussed in the text, in the Kondo model this quantity is by definition finite as e ^  0, we have 
calculated these points using an explicit cutoff e =  10-10 in order to avoid numerical problems.

where, for th e  m om ent, we have re ta ined  an explicit U V cutoff e. A lthough  technically  
com paring  th e  volum es of tw o different spacetim es, th is  form ula only includes one p aram 
e te r zH , which as explained in section 2.2 we effectively set to  one for b o th  spacetim es. 
We also use th e  sam e cutoff e for th e  regu larisa tion  of th e  d ivergent volum es VT/Tc<1 
and  VT/Tc=1, allowing us to  w rite  th e  difference VT/Tc< 1 — V T/Tc=l as an  in tegral over a 
difference in (3.3) . We will discuss th is d e ta il fu rth e r in section 5 .

T he in tegrand  in (3.3) m ay diverge b o th  near th e  horizon z =  z #  and  near th e  b o u n d 
ary  z =  0, however, th e  divergence a t th e  horizon is m ild and  can  be in teg ra ted  over. W h a t 
ab o u t th e  boundary? A priori, (3.3) m ight be divergent in th e  lim it e ^  0, b u t as we have 
discussed above th e  branes all approach  z =  0 w ith  th e  sam e leading (linear) behaviour 
x /+T/Tc< 1)(0) =  x /+T/Tc= 1) (0), and  as by definition also x+ /Tc< 1(0) =  x+ /Tc= 1(0) =  0, we see 
th a t  x T/Tc= 1(z) — x T/Tc< 1(z) goes to  zero s tric tly  faste r th a n  const. x z. Hence, also th e  
divergence near th e  bo u n d ary  of th e  in tegrand  of (3.3) will be m ild enough to  ca rry  ou t 
th e  in tegral, y ielding a finite resu lt in th e  lim it e ^  0, see figure 3 .

L et us briefly com m ent on th e  resu lts dep icted  in figure 3 . F irs t of all, as explained 
above, th e  depicted  values are m anifestly  finite. Secondly, we see th a t  as T /T c ^  0, th e  
loss of bulk  volum e is m onotonic. T his m ay suggest th a t  th ere  is a com plex ity /fidelity  
susceptib ility  analogue of th e  Affleck-Ludwig g-theorem  (1.5) for holographic B C F T s. We 
will discuss th is  possib ility  in m ore d e ta il in sections 4 and  5 .
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and consequently  we find

f  ZH 1 C x+/Tc 1(z)
VT/Tc<1 — V T/Tc=1 =  d z ----- -1-------  + dx

I  z 2 f T ~ Ę  L + / r '< ‘(z)

f ZH xT/Tc= 1(z) — xT/Tc< 1(z)
=   ( ) ,  +2 ( j , ('3-'3)

J ’ z V 1 — Z2f



3.2 C om p arison  to  im p u rity  en trop y

Before doing so, however, it will be very in struc tive  to  com pare th e  relative com plexity  
defined in (3.3) to  a q u an tity  nam ed im purity  entropy  [99- 102]:

S imp (t) =  s  ( t) | Impurity present — s  ( t) | Impurity absent 5 (3.4)

w here S ( t)L  . is th e  en tang lem ent en tropy  for a b o u n d ary  in terval [0,t] in th eImpurity present |
b ackreacted  geom etry  depicted  in figure 2 , while S ( t)L  , . is th e  sim ilar resu lt for aImpurity absent
triv ia l em bedding x + (z ) =  0. D etails on th e  calcu lation  of th is  q u an tity  in th e  holographic 
K ondo m odel were given in [62], here we will only quickly po in t ou t th ree  relevant points:

•  Ju s t like Crel(T /T c), S imp(t) is m anifestly  finite as th e  U V divergences in (3.4) cancel.
However, th is  cancellation  is m uch less in tricate , S imp(t) would rem ain  finite even 

f(T) f(T=T )if ; (0) =  (0) would no t hold in th e  K ondo m odel. Hence th e  finiteness
of Crel(T /T c) is a s tric te r consistency condition  on th e  m odel th a n  th e  finiteness of 
S imp(t). We will come back to  th is  issue in section 5 .

•  As discussed in [62], th is  q u an tity  can  be re la ted  to  th e  bo u n d ary  en tropy  or g- 
fu n c tio n  v ia  th e  lim it

ln(g) =  Simp(t ^  to). (3.5)

In  fact, in [62] it was explicitly  checked th a t  th e  holographic K ondo m odel sa tis
fies th e  g -theorem  (1.5) as expected  for holographic B C F T s based on th e  proof by 
Takayanagi [10]. T his g-theorem  is our m ain  m otiva tion  to  search for a sim ilar m ono
ton ic ity  theorem  for Crel in th e  next section.

•  It was shown in [101] th a t  in th e  K ondo m odel a t low tem p era tu res

Simp =  ^  6 K T  co th  ^ ~ ~ ~ ~ )  for T ( k / v , & / t  <  1, (3.6)

w here {K is th e  K ondo length scale and  v  is th e  Ferm i velocity. T his resu lt is not 
dependen t on th e  specific details  of th e  K ondo effect and  can  hence be expected  to  
be valid for a broad  class of B C F T s. C orrespondingly, based on a sim ple geom etrical 
approx im ation  we showed in [62] th a t  th is  ty p e  of form ula can also be reproduced  
very generically in holographic A dS3/B C F T 2 m odels. To our cu rren t knowledge, 
no sim ilar generic low tem p e ra tu re  approx im ation  form ula exists for com plexity  or 
fidelity susceptib ility  of B C F T s, and  no generic resu lt for Crel analogous to  (3.6) can 
be derived in A d S /B C F T  w ith  sim ple geom etrical approxim ations. T his again  shows 
th a t  th e  q u an tity  Crel is m uch m ore sensitive to  th e  details  of th e  m odel th a n  S imp(t).

4 A  h o lo g rap h ic  c o m p le x i ty / f id e l i ty  su sc e p t ib i l i ty  a n a lo g u e  o f th e  g- 
th e o re m

In  th is  section we will prove th e  finding of section 3 , i.e. th e  m onotonic decrease of th e  
bulk  volum e w hen m oving along th e  RG  flow, for general A dS 3 /B C F T 2 m odels of th e
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ty p e  (2.1) . In  oder to  do so we need to  clearly  s ta te  th e  underly ing  assum ptions of the  
proof th a t  we are ab o u t to  lay out. T he assum ptions will be th a t  we are investigating  a 
s ta tic  A dS3/B C F T 2 m odel of th e  ty p e  (2.1) , w here th e  fixed bulk  spacetim e g^u is given 
e ith e r by a B T Z  black hole or a P o incare background (2.3) .13 F urtherm ore , we assum e 
th a t  th is  m odel, sim ilarly  to  th e  K ondo m odel of sections 2 and  3 , displays an  RG  flow 
w here instead  of (or in ad d itio n  to) th e  holographic coo rd ina te  z, we have som e p aram ete r 
g  th a t  we can  in te rp re t to  param etrise  an  RG  flow, i.e. w here g  can  be continuously  varied 
betw een values g u v  and  g IR such th a t  th e  em bedding  of Q in to  th e  bulk  spacetim e is a 
function  of g.

A dditionally , we will need to  m ake use of energy conditions on th e  energy-m om entum  
ten so r S j . T he im portance of such energy conditions in s ta tic  A dS3/B C F T 2 m odels has 
been discussed in g reat d e ta il in [60]. Let us briefly sum m arise: as th e  worldvolum e of 
Q is 1 +  1 d im ensional in an  A dS3/B C F T 2 m odel, it follows th a t  in th e  s ta tic  case, by 
effectively using lightcone-coordinates, we can  decom pose th e  energy m om entum -tensor on 
Q in te rm s of two scalar q u an titie s  S  and  S L/ R according to

S
S ij =  2  Yij +  S L/RY/ij . (4 .1)

Here, S  is th e  trace  of S j  while S L/ R is th e  traceless part. Similarly, y j  is th e  induced 
m etric  as before, while / ij  is a sym m etric  traceless tenso r th a t  can  be uniquely construc ted  
from  Yij and  th e  tim elike K illing vector present by th e  assum ption  of staticity . In  te rm s of 
these scalar quan tities , various energy conditions take  a rem arkably  sim ple form, e.g.

null energy condition  (N EC): S L/ R — 0, (4.2)

weak energy condition  (W E C ): 2SL/ R — S  — 0, (4.3)

and  w hat we will refer to  as th e  1 +  1 dim ensional analogue of th e

strong  energy condition  (SEC): 2SL/ R +  S  — 0. (4.4)

W hile N EC  and  W E C  are tak in g  th e  sam e role in th is  s tu d y  as in m any o th e r investigations
of g rav ita tio n al physics, it is im p o rtan t to  re ite ra te  th e  phenom enological im portance of th e  
SEC in A dS3/B C F T 2 m odels th a t  has been discussed in m ore d e ta il in [60 , 62]. In  [60], 
we showed th a t  w hen b o th  W E C  and  SEC are non-triv ially  satisfied a t th e  sam e tim e, 
th e  em bedding  profile x + (z ) solving th e  equations (2.2) will re tu rn  to  th e  bou n d ary  in 
a U -shaped way. Conversely, in o rder to  o b ta in  em beddings for Q which reach from  th e  
b o u n d ary  to  th e  event horizon as for exam ple in figure 2 , e ith er W E C  or SEC have to  
be v iolated . Indeed, in [62] we found th a t  th e  m a tte r  con ten t (2.6) in th e  K ondo m odel 
explicitly  leads to  a v io lation  of th e  SEC.

In  term s of energy conditions, we will hence m ake th e  following assum ptions, see also 
figure 4 . We assum e th a t  for some g  along th e  RG  flow (g u v  <  g  <  g IR ) th e  em bedding is

13While this restriction technically leads to a loss of generality, due to the issues explained in footnote 3 
it seems reasonable to avoid any system that undergoes a flow of the central charge c of the BCFT. For 
example, the bulk metric gMV should certainly not correspond to a domain wall solution interpolating 
between vacua with different effective AdS scales as in [4].
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given by a function  x ^  =  x 0(z) solving (2.2) for th e  energy m om entum  ten so r S ij (g) =  S j . 
M oving an  infinitesim al step  Sg along th e  RG  flow, we find th e  em bedding

x + + ^ )  =  x 0 (z) +  S x(z)  (4.5)

as th e  solution to  (2.2) for th e  energy-m om entum  ten so r S ij ( g  +  Sg) =  Sij- +  S S j . For th e  
physical reasons explained above, it seems p ru d en t to  assum e th a t  th e  N EC  is satisfied and 
th a t  th e  SEC is v io lated  or sa tu ra te d  for b o th  g  and  g  +  Sg:

S L/R  >  °  S L/R  +  SSL/R  >  °  2 S L/R  +  S  <  °  2 S L/R  +  2SSL/R  +  S  +  SS <  0  (4 .6)

W h a t conditions can  or should we im pose for physical reasons on SSL/ R and  SS d irectly? 
In  th e  K ondo m odel, along th e  RG  flow th e  scalar field <fi condenses and  hence adds m ore 
and  m ore positive energy to  th e  energy-m om entum  tensor, consequently  it seems sensible 
to  dem and  th e  N EC

SNEC: SSL/R >  0 (4.7)

for each infinitesim al step  Sg. In terestingly , in [60] we found a close re la tionsh ip  betw een 
N EC  and SEC, w hen expressed as functions of z. E nergy-m om entum  conservation  for a 
s ta tic  em bedding  in a B TZ  background (2.3) im plies

4
dz (S  +  2S l / r ) =  z h (z ) s l / r . (4 .8)

As h(z )  > 0 ou tside  of th e  horizon, th is  m eans th a t  th e  N EC  im plies th a t  th e  SEC has a 
tendency  to  becom e m ore satisfied (or less vio lated) as one moves from  th e  b o u n d ary  into 
th e  bulk. If th e  SEC is satisfied a t th e  b o u n d ary  and  th e  N EC  holds everyw here, th en  th e  
SEC is also satisfied everyw here. T his m otivates th a t  also along th e  RG  flow param etrised  
by g , a lthough  th e  SEC will always be v iolated , it should have th e  tendency  to  becom e 
less violated  tow ards th e  IR .14 We will hence m ake use of th e  assum ption 15

SSEC: 2SS l / r  +  SS >  0. (4.9)

T he next s tep  is to  insert (4.5) in to  th e  equations of m otion (2.2) and  linearise for 
sm all Sx(z). U sing (2.2) and  (2.4) , we th en  find

S S E C  ^ ------------ 2zHSx' (z)   >  0 ^  Sx '(z) >  0 (4.10)
( ( 4  -  ż2)x'o(ż)2 +  z% )3/2

14As explained before, fixed points are expected to be described by constant tension solutions. For such 
solutions, the NEC is saturated, and the tendency of the SEC to become less violated along the RG flow 
implies the statement that the tension of an IR fixed point will always be lower than the tension of a 
UV fixed point, but still nonnegative. This is also a requirement for the Affleck-Ludwig g-theorem to be 
satisfied.

15This assumption as well as (4.7) are satisfied in the holographic Kondo model of section 2.2. Even 
more, in this model we find that the stronger condition SS > 0 is also satisfied, which together with (4.7) 
implies (4.9).
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F ig u re  4. Geometric setup for the proof of volume loss along a boundary RG flow parametrised 
by g.

for all 0 <  z <  zH . As th e  location  of th e  defect P  is fixed by x+t)(0) =  0 for any g , (4.10) 
im plies Sx(z)  >  0 for any 0 <  z <  zH . A nalogously to  (3.3) , we hence find 16

“  dz  —Sf(z) < 0. (4.11)

H ence we have proven th a t  for any infinitesim al step  5g  along th e  RG  flow, th e  bulk 
volum e canno t increase. C onsequently, th e  bulk  volum e is a m onotonically  decreasing 
function  along th e  RG  flow param etrised  by g , ju s t as seen in th e  exam ple of th e  K ondo 
m odel in figure 3 . I t  should be noted , however, th a t  (4.11) will only be finite if dx '(0) =  0, 
i.e. if th e  dSEC (4.9) , (4.10) is saturated  a t  th e  b o u n d ary .17

ÓCrei(g) «  V — V^ =  J

5 D iscussion

In  th is  final section, we will discuss th e  resu lts ob ta ined  in sections 3 and  4, com m ent on a 
few technical details, and  give an  outlook  on fu rth e r possible in teresting  research directions.

As explained in section 2 .2 , w hen working w ith  th e  K ondo m odel we have scaled 
zH ^  1, so th a t  th e  bulk  m etric  g^v on N  in co n stan t along th e  RG  flow param etrised  
by g , and  th e  change of th e  geom etry  m anifests itself only in a change of th e  em bedding 
Q in to  N . However, we have argued  th a t  th is  should be equivalent to  keeping g  fixed

16This is also related to the g-theorem. As explained in [62], due to (3.5) ln g rc — x+(zH), i.e. the 
boundary entropy is given be the extra piece of black hole event horizon visible due to the non-trivial 
backreaction. The above argument then also implies the g-theorem (1.5).

17In the Kondo model of section 2.2, this is indeed the case for T /T c > 0 as discussed in [62]. More 
generally, for a massive scalar field y living on the effectively 1 +  1 dimensional space Q, we find S rc —M 2y 2 
and SL/ R rc dripdiip. The z ^  0 behaviour of the energy-momentum tensor on Q will hence depend on 
the asymptotic behaviour of y(z), and the conditions (4.7) , (4.9) will be saturated at the boundary if no 
new modes of y that do not sufficiently vanish at the boundary get turned on as the parameter g is varied. 
Note that in the Kondo model, the gauge field at has a divergent component near the boundary in (2.12), 
but as Q is kept fixed, this does not affect the change of S and SL/ R near the boundary as g is varied.
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and varying T /T c instead . T here  now appears a technical deta il re la ting  to  th e  choice of 
cutoffs. In  th e  defin ition  (3.1) , we are com paring  tw o different spacetim es w ith  each o ther, 
so s tric tly  speaking we m ake two choices of a cutoff, e(Tc) and  e(Tt  In  section 3 , we have 
chosen these tw o cutoffs to  be th e  sam e after  scaling z H ^  1. If we had  for exam ple done 
so before doing th is  rescaling, (3.3) would have gained an  add itiona l te rm

w hich m ight spoil th e  decrease and  m onotonicity  behav iour found in sections 3 and  4 . How 
serious is th is  problem , and  how can  we arrive a t a physical choice of cutoffs e?18 To answ er 
th is  question, we should first no te  th a t  precisely th e  sam e problem  ap p ears  in th e  definition 
of im purity  en tropy  given in (3.4) . T here, tw o divergent q u an titie s  ca lcu lated  in tw o a 
priori different spacetim es are su b trac ted  to  o b ta in  a finite resu lt. E n tang lem en t en tropy  
for 1 +  1 d im ensional (B )C F T s diverges w ith  ~  log(e) in th e  U V  cutoff, so we see th a t  a 
different choice of cu toff for th e  tw o te rm s in (3.4) would lead to  a sim ilar te rm  as in (5.1) , 
spoiling for exam ple th e  resu lt (3.6) . T he question  should hence be: W hich  tw o s ta tes  
are we com paring  in th e  definitions (3.4) and  (3.1) , respectively? In  th e  defin ition  (3.4) , 
b o th  s ta tes  “Im p u rity  p resen t” and  “Im p u rity  ab sen t” have physical m eaning a t any T . 
In  principle it should be possible to  p repare  th em  in a lab and  carry  ou t m easurem ents on 
them . T he UV  cutoff e would th en  be physically set by th e  la ttice  spacing of th e  m etal 
u nder investigation , which would indeed be th e  sam e for b o th  cases. For th e  exam ple of 
relative com plexity  (3.1) , th e  s itu a tio n  is a little  b it m ore difficult: we need to  specify w hat 
we precisely m ean w ith  th e  q u an titie s  labeled by T  =  Tc in (3.1) and  (3.3) . Clearly, th e  high 
te m p e ra tu re  UV  fixed po in t of th e  system  canno t be p repared  in a lab for low tem p era tu res , 
as th is  would be oxym oronic. However, th e  reader should be rem inded (section 2.2) th a t  
in th e  holographic K ondo m odel, th e  fo rm ation  of th e  K ondo cloud is described by a phase 
tran s itio n  (see foo tno te  10) . T he UV fixed po in t a t T  =  Tc is described by th e  co n stan t 
tension  so lution (2.10) w ith  th e  tension  given by (2.11) , while for T  <  Tc th e  condensed 
phase is therm odynam ically  preferred . However, even for T  <  Tc it is still possible to  
define th e  uncondensed phase and  calcu late  th e  corresponding  (constan t tension) bulk 
geom etry  (2.10) . I t m ay be u nstab le  due to  therm o d y n am ic  fluctuations, b u t a t least in a 
m ath em atica l sense it exists for any T  <  Tc, and  can  be used in (3.1) as th e  reference bulk 
spacetim e in a physical way. As we are th en  in (3.1) genuinely com paring tw o spacetim es 
a t th e  sam e tem p era tu re , it appears physical to  choose th e  cutoffs to  be equ ivalen t.19,20

18The appropriate choice of cutoffs when comparing the complexities of two different spacetimes was also 
discussed in [43] by choosing an asymptotic Fefferman-Graham expansion for both spacetimes. We will in 
the following present an argument that is more focused on the physical interpretation of the Kondo model 
or similar AdS/BCFT models.

19A clever choice of reference states was also a part of the argument in [103] leading to an entropic 
g-theorem.

20More generally, fixed points are described by constant tension solutions, with a specific value of the 
tension. However, in any BTZ background, irrespectively of the value of the temperature T , a constant 
tension solution with the same value can be constructed via a geodesic normal flow [60]. This generically 
allows to define a unique analogue of the UV fixed point for any temperature.
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As we have noted  in section 3 , th e  finiteness of Crei is tied  to  m uch s tric te r conditions 
th a n  th e  finiteness of Simp. F urtherm ore , on th e  exam ple of th e  low tem p e ra tu re  approxi
m ation  (3.6) and  th e  lack of a com plexity  analogue thereof, we saw th a t  com plexity  is m ore 
sensitive to  details of th e  m odel a t hand . T his can be seen b o th  as a d e trim en t and  as an 
advantage. F irs t of all, it m ight be a d e trim en t, because holographic studies are usually  
m ost relevant to  real world physics w hen focusing on universal quan tities , behaviours or 
m echanism s. T his is due to  th e  sim ple fact th a t  th e re  is no real world physical system  w ith  
an  exact holographic dual. T he absence of universal resu lts for com plexity  th a t  a broad 
range of B C F T s can  be expected  to  share (like (3.6) for im purity  entropy) is hence d isap 
pointing. Also, th e  fact th a t  th e  volum e in (3.3) ob ta ins non-negligible con tribu tions b o th  
from  th e  near horizon and  th e  near b o u n d ary  p a r t of th e  spacetim e seems to  im ply th a t  
Crel m ixes up UV  and IR  con tribu tions, and  m ay hence not be a clean variable to  stu d y  
RG  flows. However, th e  peculiarities of Crel m ay also have th e ir  advantages. As noted  
in section 3 , th e  reason why Crel is finite is th a t  all curves approach  th e  bo u n d ary  w ith  
th e  sam e slope x+ (0 ). Using z again as th e  RG  scale instead  of T /T c or g , th is  is clearly 
a consequence of all these curves com ing from  th e  sam e U V fixed point, so to  say. T he 
finiteness of Crel hence acts as a bu ilt in check w hether th e  spacetim es com pared  in (3.1) 
really  can  belong to  th e  sam e RG  flow. O nly once th e  system  has fu lly  reached its IR  fixed 
poin t, we expect th e  corresponding  em bedding  to  be given by a co n stan t tension  solution 
sim ilar to  (2.10) , however w ith  a different tension, i.e. a different (lower) value of s. O nly 
th en  would Crel diverge. For th e  K ondo m odel, th is  would im ply th e  ex p ecta tio n  th a t  as 
T /T c ^  0, th e  resu lts in figure 3 w ould stay  finite for finite T , b u t diverge a t T  =  0. T his 
would be an  im p o rtan t q u a lita tiv e  difference betw een Crel and th e  bou n d ary  en tropy  ln g, 
w hich is also m onotonic b u t does no t diverge even a t T  =  0.

T he m ain  resu lt of th is  p ap e r was th e  proof of volum e loss in section 4 . If th e  holo
graph ic proposals (1.2) a n d /o r  (1.3) are correct, th is  would suggest th e  existence of a 
com plex ity /fidelity  susceptib ility  analogue of th e  g-theorem . W h a t would th e  physical in
te rp re ta tio n  of such a theorem  be? In  te rm s of (1.2) , a m onotonic decrease of com plexity  
along th e  RG  flow would ind icate  th a t  as we flow from  th e  UV  to  th e  IR, th e  s ta te  of 
th e  field th eo ry  gets sim pler. A hypo thetica l q u an tu m -co m p u ter would need less gates to  
p repare  th e  IR  s ta te  from  a sim ple reference s ta te  th a n  to  p repare  th e  UV  sta te . Q ual
itatively, th is  seems like a reasonable physical s ta tem en t, and  th e  theorem  of section 4 
m akes th is  m ore precise in a ce rta in  way. In terestingly , as we have specu lated  above, in th e  
holographic K ondo m odel it is expected  th a t  Crel stays finite along th e  RG  flow b u t likely 
diverges for T  ^  0. This would m ean th a t  tak in g  a generic s ta te  from  along th e  RG  flow, 
it would be possible to  undo th e  R G  flow and  recreate  th e  UV  s ta te  w ith  a finite num ber 
of q u an tu m  gates. T aking th e  IR  s ta te  however, from  which all UV degrees of freedom  
have vanished, it would take  us an  infinite am oun t of q u an tu m  gates to  recreate  th e  UV 
s ta te . It will be in teresting  to  com pare th is  in tu itio n  w ith  resu lts from  ten so r netw ork 
m odels of B C F T s [98, 104], or th e  en trop ic  g-theorem  proven in [103]. T here, th e  RG  flow 
was in te rp re ted  in q u an tu m  in form ation  th eo re tic  te rm s as an  increasing distinguishability  
betw een th e  UV  s ta te  and  s ta tes  along th e  RG  flow. Q ualitatively, th e  m ore q u an tu m  gates 
a q u an tu m  com puter needs in o rder to  transfo rm  one s ta te  in to  th e  o ther, th e  m ore d is tin 
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guishable th e  tw o s ta tes  m ight be. T he g-theorem s of th is  p ap e r and  of [103] hence seem to  
po in t in a sim ilar d irection, a lthough  th ey  are very different in th e ir details. F urtherm ore , 
if th e  conjecture of [48] th a t  th e  lack of com plexity  (called uncom plexity) is a resource in 
q u an tu m  co m puta tions is correct, th en  general resu lts ab o u t w hen system s ten d  to  a tta in  
low com plexity, such as a com plexity  g-theorem , m ay be very useful.

From  th e  po in t of view of th e  proposal ( 1.3) on th e  o th er hand , our resu lts suggest 
th e  following qua lita tiv e  in tu ition : th e  fidelity susceptib ility  s tud ied  in [51] m easures th e  
closeness of tw o s ta tes  a fte r a p e r tu rb a tio n  by a m arginal opera to r. T he m onotonicity  
theorem  of section 4 hence im plies th a t  as we move tow ards th e  IR , th e  field theo ry  s ta tes  
(even afte r a sm all p e rtu rb a tio n ) becom e m ore and  m ore sim ilar. In  th e  IR , so to  say, th e  
p e rtu rb ed  s ta tes  are still closer to  each o ther.

L ast b u t no t least, th e re  are a few fu tu re  research directions th a t  we can  now propose. 
C an  th e  p roof of section 4 be fo rm ulated  w ith  a less restric tive  set of assum ptions? C an 
one com pare th e  geom etrical resu lts of th is  p ap er and  of [62] to  tensor-netw ork  (specifically 
M ER A ) m odels of B C F T s [98, 104]? A fter all, com plexity  by its very defin ition  is clearly 
a q u an tity  of relevance for tenso r netw orks. C an  we generalise th e  resu lts of th is  p ap er 
to  h igher d im ensional A d S /B C F T  m odels? T his m ay not be triv ia l, as in [43], it was 
found th a t  for A dS2+1 th e  com plexity  of fo rm ation  had  some ra th e r peculiar features th a t  
did  not generalise to  h igher dim ensions. Also, m any A dS 3/B C F T 2 resu lts u tilising  energy 
conditions do no t generalise easily to  h igher dim ensions as no ted  in [60]. Is th e re  also a 
com plex ity /fidelity  susceptib ility  analogue of th e  holographic c-theorem  proven in [4]? A 
num ber of com plications in th is  work cam e from  th e  fact th a t  following th e  g -theorem  (1.5) , 
we used T /T c respectively th e  chem ical po ten tia l g  as p a ram ete r along th e  RG  flow, instead  
of th e  rad ia l coo rd ina te  z. T his allowed us to  avoid w orking w ith  subregion com plexity, for 
w hich a field theo ry  definition in te rm s of a num ber of q u an tu m  gates is m uch less clear, 
due to  th e  dual s ta te  being m ixed. See however th e  discussions in [30, 34, 36, 45]. W ould 
th e  use of subregion com plexity  allow us to  derive a different kind of g-theorem , m aybe 
m ore sim ilar to  th e  ze ro -tem p era tu re  “en trop ic g -theo rem ” of [103]? T he m ost im p o rtan t 
question  is: can  we derive a sim ilar m onotonicity  theorem  for th e  ac tion  proposal [28 , 29] 
of com plexity? In  th e  A d S /B C F T  m odels s tud ied  in th is  paper, th e  loss of volum e V was 
no t a resu lt of som e in trica te  geom etric fea tu re  affecting only th e  ex trem al slice a t t  =  0, 
it was sim ply th e  resu lt of a loss of bulk  points. T his im plies th a t  generically, lengths and 
volum es, however th ey  m ay be precisely defined, will ten d  to  decrease along th e  RG  flow. 
In  th is  sense, we can also view th e  g -theorem  (1.5) as a consequence of th e  volum e loss, 
as it is satisfied because ce rta in  bulk  geodesic lengths get sh o rter along th e  R G  flow [62], 
see also foo tno te 16. Hence, we have reason to  expect th a t  th e  W heeler-D eW itt (W D W ) 
p a tch  will also shrink. In  th e  ac tion  proposal [28, 29], th is  W D W  patch  is th e  co-dim ension 
zero volum e over w hich th e  ac tion  is to  be in teg ra ted . C onsequently, if th e  in tegrand  does 
no t grow strong  enough to  com pensa te  th e  shrinking of th e  in tegral dom ain, it is indeed 
expected  th a t  a g -theorem  analogue will also hold for th e  ac tion  proposal for holographic 
com plexity. T he detailed  s tu d y  of these questions will be left for fu tu re  research, however.
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