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A b s t r a c t :  We s tu d y  non-equilibrium  dynam ics and  q u an tu m  quenches in a recent g au g e / 
g rav ity  d uality  m odel for a strongly  coupled system  in terac tin g  w ith  a m agnetic im purity  
w ith  S U (N ) spin. At large N , it is convenient to  w rite th e  im purity  spin as a b ilinear in 
A brikosov ferm ions. T he m odel describes an  RG  flow triggered  by th e  m arginally  relevant 
K ondo opera to r. T here  is a phase tran s itio n  a t a critica l tem p era tu re , below w hich an 
o p e ra to r condenses w hich involves b o th  an  electron and  an  A brikosov ferm ion field. T his 
corresponds to  a holographic superconducto r in A dS2 and  m odels th e  im purity  screening. 
We quench th e  K ondo coupling e ith e r by a G aussian  pulse or by a hyperbolic tan g en t, 
th e  la tte r  tak in g  th e  system  from  th e  condensed to  th e  uncondensed phase or vice-versa. 
We stu d y  th e  tim e dependence of th e  condensate  induced by th is  quench. T he tim escale 
for equ ilib ration  is generically given by th e  leading quasinorm al m ode of th e  dual grav ity  
m odel. T his m ode also governs th e  fo rm ation  of th e  screening cloud, w hich is ob ta ined  as 
th e  decrease of im purity  degrees of freedom  w ith  tim e. In  th e  condensed phase, th e  leading 
quasinorm al m ode is im aginary  and  th e  re laxation  of th e  condensate  is over-dam ped. For 
quenches whose final s ta te  is close to  th e  critica l poin t of th e  large N  phase tran sitio n , we 
s tu d y  th e  critica l slowing dow n and  o b ta in  th e  com bination  of critica l exponen ts zv  =  1 . 
W hen  th e  final s ta te  is exactly  a t th e  phase tran sitio n , we find th a t  th e  exponen tia l ringing 
of th e  quasinorm al m odes is replaced by a power-law behav iour of th e  form  ~  t - a  sin(b log t). 
T his ind icates th e  em ergence of a d iscre te  scale invariance.
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1 In trodu ction

T he A d S /C F T  correspondence [1- 3] and  its generalisations to  a m ore general g au g e /g rav ity  
d u ality  provide a new approach  for study ing  strongly  corre la ted  system s. O ne of th e  
m any applications of g au g e /g rav ity  d u ality  is th e  s tu d y  of non-equilibrium  strongly  coupled 
system s. T his applies in p a rticu la r to  q u an tu m  quenches and  to  th e  subsequent re laxation  
to  a new ground s ta te . W hile th is idea was first s tud ied  in re la tion  to  heavy-ion physics and 
th e  quark-g luon  p lasm a [4 , 5], m ore recently  quenches have been considered for system s 
relevant to  condensed m a tte r  as well [6 , 7].

In  th is  p ap e r we use g au g e /g rav ity  d u ality  to  s tu d y  q u an tu m  quenches for strongly  
coupled system s in terac tin g  w ith  a m agnetic im purity . In  p articu la r, we consider quenches 
in a recent holographic m odel [8 ] th a t  describes th e  RG  flow triggered  by an im purity  
opera to r. T his is a holographic varian t of th e  well-known K ondo m odel w ith  ce rta in  d is tin c t 
featu res owed to  considering a m odel for which a grav ity  dual m ay be construc ted . As is 
s tan d a rd  in th e  A d S /C F T  correspondence, th e  large N  lim it needs to  be tak en  to  o b ta in  
a classical g rav ity  dual. T hus in th is  m odel, th e  spin g roup  of th e  im p u rity  spin is S U (N ).
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For co nstruc ting  th e  grav ity  dual m odel of [8 ], it was im p o rtan t to  no te  th a t  large 
N  K ondo m odels are well-known in th e  condensed m a tte r  lite ra tu re  [9- 11]. According 
to  th is  approach , th e  spin is tak en  to  be in a to ta lly  an tisym m etric  rep resen ta tio n  given 
by a Young tab leau  w ith  q boxes. In  th e  large N  lim it, it is convenient to  in troduce 
Abrikosov pseudo-ferm ions x  and  to  w rite  th e  im p u rity  field as a b ilinear in these ferm ions, 
i.e. S a =  X T aX. U sing F ierz iden tities and  d ropp ing  term s subleading in 1 /N , th e  K ondo 
in terac tio n  n J aS a w ith  J a th e  electron  cu rren t becom es k O O t w ith  O  =  ^ x .  Here, k 
is th e  K ondo coupling, ^  is an  electron and  x  an  A brikosov ferm ion as in troduced  above. 
T his o p era to r triggers a flow to  an  IR  fixed point. T he key po in t of th e  condensed -m atter 
large N  K ondo m odel is th a r t  th e  IR  is charac terised  by a non-triv ial condensate  (O), 
i.e. th e re  is a critica l tem p e ra tu re  Tc, slightly  sm aller th a n  th e  K ondo tem p e ra tu re  T # , 
below which th is condensate  form s [10, 11]. T he condensation  corresponds to  screening of 
th e  im p u rity  by th e  K o n d o  cloud.

In  th e  du al g rav ity  m odel, according to  [8 ] a re la ted  im p u rity  system  is described by 
a holographic superconducto r in th e  following setting : th e  g rav ity  dual ac tion  involves a 
C hern-Sim ons field in 2+ 1  dim ensions du al to  th e  electron  cu rren t. For sim plicity, th e  
num ber of channels (flavours) is tak en  to  be k  =  1, w hich renders th is  C hern-Sim ons field 
A belian. In  add ition , th e re  is a p rop ag atin g  A belian  gauge field restric ted  to  a (1+ 1)- 
dim ensional subspace spanned  by tim e and  th e  holographic rad ia l coord inate . T he tim e 
com ponent is du al to  th e  charge density  x^X. M oreover, th ere  is com plex scalar in th e  
sam e (1+1)-d im ensional subspace, which is dual to  th e  o p era to r O. In  th e  probe lim it, all 
of these fields are em bedded in a B T Z  black hole spacetim e, i.e. a black hole in A d S 3. T he 
horizon of th e  black hole sets th e  tem p era tu re .

A cen tra l difference betw een th e  holographic m odel and  th e  s tan d a rd  large N  K ondo 
m odel is th a t  th e  electron  gas is strongly  coupled even before th e  in te rac tion  w ith  th e  m ag
netic  im p u rity  is sw itched on. For describ ing th e  required  R G  flow, th e  strongly  coupled 
th eo ry  is p e rtu rb ed  by th e  m arginally  relevant o p e ra to r kO O ^ w ith  O =  ^ x .  H olograph
ically, th is  p e rtu rb a tio n  is achieved by considering th e  g rav ity  dual of a ‘double t ra c e ’ 
deform ation  as in troduced  in [12]. k diverges a t a tem p e ra tu re  scale TK  w hich defines th e  
K ondo tem p era tu re . Solving th e  equations of m otion, a second-order (m ean field) phase 
tran s itio n  is found a t a tem p e ra tu re  Tc ju s t below TK . Below Tc, th e  scalar acquires a 
non-triv ia l condensate. T his is th e  grav ity  dual analogue of th e  phase tran s itio n  in th e  
cond en sed -m atte r large N  K ondo m odel: precisely th e  sam e o p era to r ^ x  condenses in 
b o th  cases. M oreover, a t low tem p era tu res  th e  charge density  dual to  th e  tw o-dim ensional 
gauge field decreases, such th a t  th e  dim ension of th e  spin rep resen ta tion  is decreased. This 
corresponds to  th e  screening of th e  im purity . Also, th e  electrons are sub ject to  a phase shift 
w hich is ob ta ined  from  th e  W ilson loop involving th e  C hern-Sim ons field in A d S 3. T he 
resistiv ity  is ob ta ined  from  an  analysis of th e  leading irrelevant opera to r. D ue to  th e  large 
N  lim it, th e  charac te ristic  logarithm ic behav iour a t low tem p era tu res  is absent. R a th er, 
th e  resistiv ity  has a polynom ial dependence on tem p e ra tu re  w ith  real exponent [8].

In  [13- 15], th e  m odel of [8 ] was ex tended  to  include th e  backreaction  of th e  defect on 
th e  background geom etry, which allows to  th e  calcu lation  of th e  en tang lem ent en tropy  in 
p articu la r. T he tw o-im purity  version of th e  m odel of [8 ] was stud ied  in [16]. Recently,
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tw o-point functions for th is m odel were calcu lated  in [1 7 , 18], w here it was found th a t  th e  
spec tra l function  displays a F ano  resonance ch arac te ristic  of sca tte rin g  betw een a con tin 
uum  and a localised resonance. In  th e  screened phase w here (O) =  0, th e  quasinorm al 
m odes (QNM ) are purely  im aginary  and  scale as w a  - i ( O ) 2. T his is charac te ristic  of th e  
K ondo resonance in th e  large N  lim it.

In  th is  paper, we re stric t to  th e  p robe lim it as in [8 , 16]. We consider tim e-dependen t 
configurations in which th e  tim e-dependence of th e  K ondo coupling is chosen as an  inpu t. 
In  particu la r, we consider b o th  G aussian  pulses in th e  K ondo coupling k as well as tan h - 
shaped  tran sitio n s  from  th e  unscreened to  th e  screened phase and  vice-versa. We consider 
fast quenches, in w hich th e  quench tim e for th e  K ondo coupling is of order of th e  inverse 
K ondo tem p era tu re .

O u r m ain  resu lt is th a t  as generally  expected  in th e  holographic approach , th e  response 
of th e  system  to  quenches is dom inated  by th e  QNM . These fix th e  equ ilib ra tion  tim e for 
re laxation  to  th e  new ground s ta te . In  general, th is  re laxation  tim e is independen t of 
th e  original quench tim e. T he QNM s ensure th a t  th e  re laxation  tim e is longer w hen th e  
final s ta te  is closer to  th e  phase tran sitio n . For re laxation  to  th e  critica l s ta te  a t th e  
phase tran sitio n , as ob ta ined  w hen quenching th e  K ondo coupling to  its critica l value, th e  
re laxation  becom es polynom ial ra th e r th a n  exponential. In  th is  case, th e re  is a critica l  
slow ing dow n  and  a d am ped  log-periodic behav iour which m ay be a sign of d iscre te  scale 
invariance.

For quenches to  th e  screened phase we confirm  th a t  th e  leading QNM  behaves as 
w a  —i(O ) 2 as seen in [17, 18]. T he fact th a t  th e  leading QNM  is im aginary  im plies 
th a t  th e re  are no oscillations ab o u t th e  new ground s ta te , and  th e  re laxation  is over
dam ped . For larger values of th e  condensate, i.e. a t very low tem p era tu res , we see a different 
behav iour w a  —iln (O ), w hich corresponds to  a dev ia tion  from  m ean-field behaviour. T he 
investigation  of th e  ze ro -tem p era tu re  behav iour will require a refinem ent of th e  m odel 
corresponding  to  stab ilisa tion  of th e  IR  fixed po in t by a q u artic  co n trib u tio n  to  th e  scalar 
p o ten tia l on th e  grav ity  side, which we leave for th e  fu ture .

In  th e  m odel considered, th e  num ber of degrees of freedom  a t th e  im p u rity  site is 
represented  by th e  charge density  of th e  A brikosov ferm ions. T his is re la ted  to  th e  size 
of th e  spin rep resen ta tion . T he charge density  is holographically  du al to  th e  A d S 2 gauge 
field and  m ay be w ritten  as th e  flux of th e  A dS 2 gauge field th ro u g h  th e  bo u n d ary  of 
A dS 2. E valua ting  th is  flux a t th e  black hole horizon th en  gives a m easure of th e  effective 
num ber of im p u rity  degrees of freedom . In  th e  condensed phase, we observe th a t  th is  flux 
is reduced, which corresponds to  a grav ity  dual realisa tion  of th e  screening. In  th is  paper, 
we stu d y  th e  tim e evolution of th e  flux afte r a G aussian  quench in th e  condensed phase 
and  observe th a t  it decays exponentially , w hich corresponds to  an  exponentia l decrease of 
th e  num ber of degrees of freedom  afte r a quench. T his m odels th e  tim e dependence of th e  
K ondo cloud fo rm ation  a t th e  im purity  site.

Q u an tu m  quenches in th e  s tan d a rd  SU(2) K ondo m odel were recently  stud ied  w ith in  
condensed m a tte r  physics. These investigations include [19- 23]. In  p articu la r, [19] deals 
w ith  th e  s tu d y  of a q u an tu m  quench caused by th e  abso rp tion  of a p h o ton  by a q u an tu m  
do t, while [22 ] stud ies th e  universal behav iour of en tang lem ent en tropy  a fte r a quench of
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an  im purity  system . In  [20], quenches in th e  pseudogap single-im purity  A nderson m odel 
are investigated  using num erical RG  techniques. T he system  reaches an  equilibrium  s ta te  
a t la te  tim es. F urtherm ore , th e  sp a tio tem p o ra l fo rm ation  of th e  K ondo cloud a fte r a 
quench was sim ulated  in [23], w here an  em ergent lightcone s tru c tu re  is observed. T he 
non-equilibrium  correlation  functions are determ ined  by two different scales, in itia lly  by 
th e  la ttice  Ferm i velocity and by th e  K ondo tem p e ra tu re  a t la te  tim e. In  our m odel 
considered here, generically th e  K ondo tem p e ra tu re  is th e  only scale. Generally, due to  
th e  large N  lim it for th e  spin sym m etry  required  in our holographic approach , com parison 
to  th e  condensed m a tte r  resu lts is possible only concerning a lim it num ber of aspects, in 
p a rticu la r due to  th e  large N  phase tran s itio n  which is no t p resent in th e  SU(2) case. T he 
large N  lim it im plies th a t  in th e  screened (condensed) phase, th e re  are no oscillations of th e  
screening cloud and  th e  re laxation  of th e  condensate  is over-dam ped. On th e  o th er hand , in 
SU(2) K ondo quenches such oscillations are frequently  present, as seen for instance in [22].

T he p ap er [7] considers quenches in 3+1-d im ensional holographic superconductors w ith  
backreaction . Sim ilarly to  th e  present paper, for som e p aram ete r regim es an  over-dam ped 
behav iour is found. In  co n tra st to  those resu lts however, here we generically find over
dam ping  w henever th e  final s ta te  is in condensed phase. T his is due to  th e  leading QNM  
being purely  im aginary  in th is  phase, as expected  from  th e  presence of a K ondo resonance. 
M oreover, [24] stud ies holographic quenches of a doub le-trace  o p era to r in a rb itra ry  d im en
sions, and  th e  corresponding  critica l exponen ts for quenches th ro u g h  th e  phase tran s itio n  
are ob tained .

T he s tru c tu re  of th is  p ap e r is as follows: in section 2 , we briefly describe th e  se tup  
of th e  holographic K ondo m odel of [8 ]. Some add itional details ab o u t th e  ana ly tica l and 
num erical tre a tm e n t of th e  resu lting  equations of m otion  are re legated  to  appendices A 
and  B . We th en  sum m arise our resu lts in section 3 . We fu rtherm ore s tu d y  quenches in 
th e  norm al phase in section 3 .2 , as well as in th e  condensed phase in section 3 .3 . In  
section 4.1 we stu d y  th e  phenom enon of critica l slowing dow n near th e  phase tran sitio n . 
In  section 4 .2 , th is  leads us to  a s tu d y  of th e  la te -tim e behav iour of th e  system  w hen the  
end s ta te  is exactly  a t th e  phase tran sitio n . We end in section 5 w ith  a sum m ary  and 
an  outlook.

2 Setup

2.1 A c tio n  and eq u ation s of m otion

We consider th e  b o tto m -u p  m odel proposed in [8 ]. T h e  bulk  spacetim e is th a t  of a (2 +  1)- 
dim ensional finite te m p e ra tu re  B T Z  black brane,

-  2 /  \  z2
d s 2 =  G n vd x ^ d x v =  ( —h ( z ) d t2 +  +  d x 2 ) , h (z) =  1 ----- ^  , (2 .1)

z  V h (z) /  z 2H

w here — is th e  A d S 3 radius, and  z is th e  rad ia l coord inate , w ith  th e  b o u n d ary  a t z =  0 and 
th e  horizon a t z =  zH . T he tem p e ra tu re  of th e  dual field th eo ry  corresponds to  th e  black 
b ra n e ’s H aw king tem p era tu re , T  =  1 /(2 n z H). We app ly  th e  scaling sym m etries available 
to  set zH =  1 and  — =  1 for th e  rest of th is  work.
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The model of [8] has a non-dynamical co-dimension one hypersurface at x =  0, which 
provides the gravity dual of the localised Kondo im purity of the boundary field theory. 
The action consists of an A d S 3 bulk contribution involving the Chern-Simons gauge field 
A, and an AdS2 defect contribution involving a complex scalar $  and a U(1) gauge field a ,1

where f mn =  dman — dnam is the U(1) field strength, D m is the gauge-covariant derivative,

and the AdS2 m etric g is the pullback of the A d S 3 m etric G to  the hypersurface by the 
immersion x =  0. The Rom an indices m, n  run over t, z. For the rem ainder of this paper, 
we restrict to  a U(1) flavour sym m etry and thus the Chern-Simons contribution (2.3) to 
the action becomes Abelian. The equations of m otion are [8]

where greek indices run from 0 to  2 and latin indices from 0 to  1. A m are understood to  
be the components of the projection of A to  the hypersurface. Upon gauging A z =  0 and 
requiring regularity of the CS field a t the horizon, A t ( z n ) =  0, only A x remains nontrivial. 
Hence, the projection of the Chern-Simons field to  the defect hypersurface vanishes which 
implies th a t A decouples from the rest of the fields. Due to  this we are allowed to  neglect 
the CS field when solving for the fields restricted to  the defect. In principle, the CS field 
could be integrated from the solutions of $  and a.

The field content of the model defined by equations (2.2)- (2.4) is to  be interpreted in 
the light of the holographic dictionary outlined in [8 , 16]. Specifically, the Chern-Simons 
gauge field A is holographically dual to  the chiral current of conduction electons ^  in the 
boundary theory. Similarly, the gauge field a , which is restricted to  the A d S 2  subspace at 
x =  0, is dual to  the charge of the slave fermions x  th a t are restricted to  the im purity at

A n  [16] , a  U (2 ) g au g e  g ro u p  w as a ssu m e d  fo r th e  g au g e  field  a , c o rre sp o n d in g  to  a  tw o  im p u r i ty  K o n d o -
m o d e l.

S =  Sc s  +  SA dS2 , (2 .2)

S c s  =  -  N J  t r  (  A A dA +  2  A  A A  A A J ,  (2.3)

SAdS2 =  —n J  d2x V - g  4  f mnfmn  +  g™  (D m$ ) f D n $  +  V ( $ f$ ) , (2.4)

D m $  — ( d m  +  i A m  i a m ) $  , (2.5)

=  N S ( x ) Jn , 

dm (V - g g mpgnq f m ) =  Jn ,
dn J n =  0 ,

(2.6)

(2.7)

(2.8)

(2.9)dm { V —9 9 mndn4>) =  V - g A m A m ^  +  1  ,

where we param etrised $  =  0 e ^  and defined

J n  =  2V —ggmn^ m 02 , Am =  am — A m — dm^ , (2 .10)
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x =  0 in th e  field th eo ry  p icture. T he scalar $ ,  charged u nder b o th  th e  gauge groups of 
th e  fields a  and  A, is th en  dual to  th e  com posite o p era to r O =  ^ % ,  w hich ind icates the  
coupling of th e  conduction  band  to  th e  im purity . T he p o ten tia l te rm  V ( $ t$ )  in (2.4) is 
chosen as

V ( $ f $ )  =  M 2 $ f $ , (2 .11)

w ith  M 2 tu n ed  to  th e  B reiten lohner-F reedm an  bound to  o b ta in  th e  correct scaling d im en
sions. A t tem p era tu res  below a critica l one, Tc, th e  scalar field exhib its an  instability , 
w hich leads to  its condensation  and  th u s a nonvanishing ex p ecta tio n  value, (O) =  0. T his 
is in te rp re ted  as th e  fo rm ation  of th e  K ondo cloud in th e  la rg e-N  holographic m odel we 
consider here. We shall refer to  th e  phase above Tc w here th e  scalar does no t condense as 
th e  n orm al phase, and  th e  phase below Tc w here it does as th e  condensed phase. In  th e  
condensed phase, th e  im purity  is screened. F u rth e r details  m ay be found in [8 , 16]. Below, 
we review only those previous resu lts th a t  are relevant in th e  con tex t of th is  paper. We 
present our new resu lts on tim e dependence in sections 3 and  4 .

2.2 B ou n d ary  b eh av iou r and co n d itio n s on  th e  K on d o coup lin g

In  th e  norm al phase T  >  Tc, th e  so lu tion for th e  gauge field is given by

at ( t ,  z) =  Q  +  p ,  (2 .12)

w here Q denotes th e  electric flux a t th e  bo u n d ary  and  p  th e  chem ical po ten tia l. As 
explained in [8 ], Q defines th e  rep resen ta tio n  of th e  im p u rity  spin and  by following the  
sam e conventions, we set Q =  — 2. |Q | is re la ted  to  th e  num ber of boxes q in th e  spin 
rep resen ta tio n  Young tab leau  by |Q | =  q / N . In  o rder to  o b ta in  regu larity  a t th e  horizon, 
we m ust set p  =  —Q. To be able to  m ap our b o tto m -u p  m odel to  th e  K ondo m odel, we 
need to  fix th e  scaling dim ension of th e  scalar o p era to r to  be A O =  2, see [8 ]. As th e  scalar 
field is restric ted  to  live in an  asym pto tica lly  A dS 2 space, th e  scaling dim ension is given by

a o  =  d  ±  ^ / d f - ,  (2 .13)

w here we set d = 1  [25]. I t can  be seen th a t  th e  correct scaling dim ensions can  only be 
ob ta in ed  if we p u t th e  scalar exactly  a t th e  B reiten lohner-F reedm an  bound. W ith  our 
choice of Q, th is  m eans se ttin g  M  =  0. T he leading o rder behav iour of th e  scalar field near 
th e  bounday  is th en  given by

$ ( t ,  z) =  (t, z) +  i 0 2 (t, z) V z  (a ( t)  log(z) +  0 (t)) +  . . .  (2.14)

w here a ( t)  =  a 1(t) +  i a 2(t) and  0 ( t)  =  0 1(t) +  i0 2 (t) are com plex functions of tim e. As was 
shown in [8 , 1 2 , 16], th e  bou n d ary  condition  for a bo u n d ary  double trace  o p era to r KOOt 
is given by requiring a  =  . F urtherm ore , it was d em o n stra ted  th a t  an  a rb itra ry  energy
scale A has to  be in troduced  due to  th e  appearence of th e  logarithm  in th e  bo u n d ary  
expansion. T he K ondo coupling k is runn ing  w .r.t. rescalings of A and  eventually  diverges 
a t low tem p era tu res  a t th e  K o n d o  tem perature  TK =  A e 1/K/2 n , which is invarian t under
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these rescalings. We avoided this energy scale by rescaling z by zH , which renders the 
radial coordinate z dimensionless. To avoid confusion, note th a t the notation of k, fi, a  
in [8] differs from ours by a subscript (-)T , which we left out for convenience.

We impose a tim e-dependent boundary condition on the Kondo coupling K(t) =  k 1(t) +  
i K2(t) which is a real function of tim e, i.e. we set K2(t) =  0. The relationships between the 
leading and subleading expansion coefficients at the boundary are hence given by

a i( t )  =  Ki(t) fii(t) and a 2(t) =  k 1(t) fi2( t ) . (2.15)

At the same time, the electric flux Q of the gauge field a is required to  stay constant, which 
is actually necessary to  render the variational problem meaningful, cf. [18]. Together w ith 
regularity at the event horizon, this fixes all boundary conditions for our system of partial 
differential equations. After going through the holographic renorm alisation procedure, 
which was carefully constructed and carried out in [16], one finds2

(O) =  - N f i t . (2.16)

Since we are interested in the real-tim e dynamics of the scalar operator, fi will thus be the 
main quantity  we focus on below.

In equilibrium, the tem perature measured in units of the Kondo tem perature T k can 
be found from k1, and it is the same relationship as th a t given in [8]:

=  exp ( -1 /K i ) . (2.17)

F urtherm ore , we have from  [18]

log =  - 2 R e  f f ^ - i Q  -  log 2 , (2.18)

w here H (z) is th e  harm onic num ber. For |Q | =  1 /2 , which is used th ro u g h o u t th is  paper, 
we have

Kc =  k i(T c) =  ^2R e + lo g 2 ^  w 8.9796. (2.19)

To s tu d y  how th e  system  evolves given a K ondo coupling th a t  is changing in tim e, we 
investigate th e  tim e evolution  of th e  ex p ecta tio n  value of th e  scalar opera to r, (O ( t) ) .  We 
consider tim e-dependen t profiles for th e  K ondo coupling w ith  a form  of e ith er a hyperbolic 
tan g en t,

K
Ki(t) =  Ki +  —  [ ta n h  ( s ( t  -  to)) +  1] , (2.20)

or a G aussian,
K1(t) =  Ki +  A k exp (—s ( t  — t 0)2) . (2.21)

We consider th e  system  to  be in itially  prepared  in an  equilibrium  s ta te  charac terised  by 
th e  K ondo coupling Ki , which is th en  quenched to  an o th er s ta te  whose equilibrium  is

2In [8], the expectation value of the dual scalar operator was identified as (O) <x a. See [16] for a 
complete discussion of the difference.
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charac terised  by K f . For a hyperbolic tan g en t quench, Kf =  k  +  A k , w hereas for a 
G aussian  quench, Kf =  Kj. In  b o th  cases, th e  am plitu de  p a ram ete r A k  controls how m uch 
k i can  change du ring  th e  quench. T he steepn ess  p a ram ete r s controls th e  speed of the  
quench, while th e  offset t 0 determ ines th e  m idpoin t of th e  quenching process. We shall 
refer to  th e  set of p aram eters  {kj, K f, A k , s , to} as th e  quench param eters.

In  view of th e  num erical analysis, we change to  E dd ing ton -F inkelste in  coord inates 
and  choose th e  rad ia l gauge for th e  defect gauge field a. T he num erical so lu tion  of th e  
evolution  involves pseudospectra l m ethods in th e  rad ia l d irection  and  an  im plicit evolution 
m ethod  in th e  tim e d irection. M ore details  of th e  num erical im plem entation  are  given in 
appendices A and  B .

3 R esu lts

3.1 G en eric  t im e  ev o lu tio n  for phase tra n sitio n s

H ere we present exam ples w hich show th e  generic form  of th e  tim e-evolu tion  of th e  scalar 
condensate  as th e  system  is quenched from  one phase to  a different one. T he in p u t to  
th e  tim e-evolu tion  problem  is K i(t), w hich we choose to  have a hyperbolic tan g en t profile 
as given in (2.20) . S im ilar quenches of a doub le-trace  coupling were stud ied  in [24], bu t 
in a different se ttin g  w ith o u t defect. G iven th e  quench profile of th e  K ondo coupling, 
we solve th e  equations of m otion  to  o b ta in  th e  evolution of f i1>2(t) and  p ( t ) ,  and  ex trac t 
from  it in form ation  ab o u t th e  condensate  (O (t)). As we explain  below, QNM s can  also be 
ex trac ted  from  th e  tim e-evolu tion  of th e  scalar condensate.

F igures 1 to  3 show th e  tim e evolution of th e  scalar o p era to r ex p ecta tio n  value (O (t) )  
for a quench from  th e  norm al phase (T  >  Tc, k 1 >  Kc) to  th e  condensed phase (T  <  Tc, 
K1 <  Kc). T he profile for th is  “norm al-to-condensed” quench, Knc(t), is shown in figure 1 
(a). F igure 1 (b) shows th e  abso lu te  value of (O (t)), and  we see first a clear exponentia l rise 
(figure 1 (c)), and  th en  an  exponen tia l decay to  a co n stan t value (figure 1 (d )) .3 F igure 2 
shows finer details  of th e  tim e evolution for th e  norm al-to-condensed  quench, k™c(t). We 
see th a t  (O (t)) oscillates and  th en  settles exponentia lly  to  a non-zero value d ic ta ted  by Kf 
in th e  condensed phase. N ote th a t  appreciab le changes in (O (t)) do not begin un til well 
a fte r th e  end of th e  quench.

We m odel th e  tim e evolution of th e  scalar field using a QNM  behav iour of th e  form

f  (t) =  a e -Iu t +  b , u  =  u R +  i u i , (3.1)

to  fit our results, w ith  u  is th e  com plex QNM  frequency. T he fit is dep icted  by th e  red 
curve in figure 2 , which agrees very well w ith  th e  full num erical resu lt given by th e  blue 
curve. T he in itia l behav iour ju s t a fte r th e  quench is described by a QNM  w ith  u R =  0, 
leading to  an  oscillation profile, and  w ith  u i  >  0 , leading to  an  exponentia l rise ind icating

3In the normal phase, the scalar condensate vanishes, (O) <x = 0 . However numerically, zero is only 
represented up to machine precision, i.e. a finite quantity is regarded as zero if its magnitude is less than 
the machine precision. To avoid numerical artefacts at machine precision and to have a firmer control of 
the numerical accuracy, we set fi1(t =  0) =  @2(t =  0) =  10-10, which explains the initial plateau.
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(c) Log plot of (b), indicating the exponential in
stability.

2 nTt
(a) Q u e n ch  p ro file  fo r K 1 as g iv en  b y  eq. (2 .20 ) 
w i th  p a ra m e te rs  Ki  =  9, Kf =  1, s  =  1 /1 0 , a n d  
2 n T t o  =  50.

2 nTt
(b) T im e  e v o lu tio n  o f th e  a b so lu te  v a lu e  o f (O ).

( d )  L og  p lo t fo r th e  d e v ia t io n  a t  la te  t im e s , in d i
c a t in g  th e  Q N M  rin g d o w n  to  th e  e q u ilib r iu m  value  
fo r th e  new  c o u p lin g  Kf =  «™c (ro ) .

Figure 1. Typical numerical evolution of the scalar operator (b) for a quench from the normal 
to the condensed phase (a). Note the different time scales involved due to the instability mode (c) 
and the QNM ringdown to the final equilibrium (d).

Figure 2. Time evolution of the real and imaginary part of (O) (a), and the normalised absolute 
value of Re (O) (b) for the normal-to-condensed quench, k"c(1). The red curve in (b) is a numerical 
fit to the unstable QNM behaviour of the form given by eq. (3.1), with w/ > 0.

an instability. Physically, this comes about since the quench is driving the system out of 
the normal phase, and instabilities must occur prior to  the form ation of a scalar condensate 
leading to  the new stable ground state. Ju s t after the quench, the dom inant QNM  is thus 
associated w ith the instability of the normal phase. We will make this more precise in the 
next subsection.
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2 nT t

F ig u re  3. Time evolution of A t =  y  — dtb 0 for the normal-to-condensed quench K"c(t).

O n th e  o th er hand , th e  re laxation  a t la te  tim es is described by a QN M  w ith  w/  <  0 
and  wR =  0, i.e. a pu re  exponen tia l decay. Such behav iour is expected  as th e  system  reach 
near its final equilibrium  sta te , and  is controlled by th e  QNM  of th e  final s ta te , see e.g. [26]. 
N ote th a t  th is  exponen tia l decay is governed by th e  lowest-lying QNM , i.e. one w ith  th e  
sm allest |w/1. H igher QNM s would produce m uch faste r decays th a n  th a t  from  th e  lowest 
QNM , w hich would be exponentia lly  suppressed in com parison, and  no t be visible a t la te  
tim es. N ote also th a t  since th e  tim e-evolu tion  is described by th e  QNM s, its tim e scales are 
given by th e  ap p ro p ria te  w- 1  in th e  ap p ro p ria te  regime. T hese scales are all long com pared 
to  th e  tim e scale of th e  quench profile.

F igure 3 shows th e  tim e evolution of th e  gauge invariant q u an tity  A t =  y  — dtQ0 ,4 for 
th e  norm al-to-condensed quench K™c(t). I t  s ta r ts  ou t a t & 1 /2  since in th e  norm al phase 
b ( 0 ) =  1 /2  and  th e  phase ro ta tio n  dtQ0 is approx im ate ly  zero if th e  coupling p aram ete r 
Ki =  9 is close to  its critica l value. As th e  system  is quenched, A t rises to  an  in term ed iate  
p la teau . T his is due to  th e  fact th a t  an  in stab ility  m ode of th e  norm al phase is tu rn ed  on, 
whose im aginary  p a r t is ju s t th e  phase ro ta tio n  velocity. E ven tua lly  a t 2 n T t & 200, th e  
scalar field becom es m acroscopic in size, see figure 1b. T his causes backreaction  on A t , 
w hich th en  drops to  a new asy m p to tic  co n stan t value for 2 n T t >  200.

L et us now tu rn  to  a quench from  th e  condensed to  th e  norm al phase, as shown in 
figure 4 to  6 . T he profile for th e  condensed-to-norm al quench, Kfn (t), is shown in figure 4 a . 
F igure 4b shows th e  abso lu te  value of (O (t)), and  we see now a clear exponentia l decay to  
zero righ t a fte r th e  quench, as expected  for th e  scalar in th e  norm al phase.

F igure 5 shows finer details  of th e  tim e evolution  for th e  condensed-to-norm al quench, 
k1 n (t) . We see th a t  (O ( t) )  oscillates and  th en  se ttles exponentia lly  to  zero in th e  norm al 
phase. Again, th e  tim e evolution is very well described by th e  QNM  behav iour of th e  form 
given by eq. (3.1) . T his tim e, th e  governing QNM  is th e  lowest-lying in th e  norm al phase 
w ith  w/ <  0. N ote th e  period  of th e  oscillations is m uch longer (by one to  two orders of 
m agnitude) com pared  to  th e  norm al-to-condensed quench since here, |w/1 is m uch sm aller.

In terestingly , th e  QN M  behav iour takes over alm ost im m ediately  afte r th e  quench, 
ra th e r  th a n  a t la te  tim es. T here  does no t ap p ear to  be a nonlinear regim e betw een th e  end 
of th e  quench and  th e  s ta r t  of th e  ringdow n. T his ap p ears  to  be a universal fea tu re  of holog
raphy, w here strongly-coupled system s are m odelled by dual g rav ita tio n a l dynam ics [26, 27].

4The quantity bo is the leading order expansion coefficient of the phase of the scalar field, and is given 
by bo =  arctan (^2(t)/^i(t)).

-  10 -

JH
E

P
04(2017)045



Figure 4. The quench profile (left) and the time evolution of the absolute value of (O) (right) for 
a quench from the condensed to the normal phase. The quench parameters are k  = 8 ,  Kf rc 10.7, 
s rc 0.022 and 2 n T t0 rc 447.

F ig u re  5. Time evolution of the real and imaginary part of (O) (left), and the absolute value 
of Re (O) (right) for the condensed-to-normal quench, Kĉ (t). The red curve in the right plot is a 
numerical fit to  the lowest QNM ringdown of the form given by eq. (3.1) .

2 n T t

Figure 6. Time evolution of the gauge invariant quantity, A t =  p  — dt-0o.

Figure 6 shows the tim e evolution of the gauge invariant quantity  A t =  p  — dt^ 0 for the 
condensed-to-normal quench K1n (t). Compared to  the normal-to-condensed quench, there 
is no plateau or basin structure seen between the initial and the final equilibrium values 
of A t . The value of A t does not asym ptote to  p c =  1/2 (for Q =  1/2) due to  the ongoing 
phase ro tation of the scalar field, whose velocity asym ptotes to  a constant which m atches 
the offset in 6 . This offset arises from the real part of the lowest QNM of the normal phase.
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3.2 Q N M s in  norm al phase

B y th e  holographic correspondence, th e  QNM s of th e  scalar fluctua tions are re la ted  to  th e  
poles of th e  tw o-point function  of th e  dual scalar o p era to r O. In  th e  norm al phase, these 
poles are analyically  given by [17]

k tS w ) =  -  log TK  =  H  ( - 1  + iQ  -  i 2 n T )  +  H  ( - 2 -  iQ )  + log 2 ■ (3-2)

For com plex frequencies, k t (w) is a com plex function. As th e  tem p e ra tu re  is lowered, 
poles in th e  lower half of th e  com plex w-plane move up  tow ards th e  origin, arriv ing  th ere  
a t th e  critica l tem p era tu re , Tc. T hey  cross in to  th e  u p p er half p lane below Tc, signalling an  
in stab ility  [17]. T his is q ualita tively  sim ilar to  th e  behav iour of th e  low est-lying QNM s in 
holographic superconducto rs [7 , 28]. T he critica l coupling a t which phase tran s itio n  occurs 
is th u s k t (0) =  k c, th e  sam e critica l value as th a t  given in eq. (2.19) .

F igure 7 shows a con tou r plot of th e  m agn itude of th e  K ondo coupling, |k |, on th e  
com plex w plane. T he dashed  curve traces ou t a p a th  on which k is real. Following th is  
curve, we have k >  kc (T  >  Tc) in th e  lower half plane, k <  k c (T  <  Tc) in th e  u p p er half 
p lane, and  k =  k c a t th e  origin as expected . T he righ t of figure 7 shows a blow -up of th e  
region in th e  con tour p lo t a round  th e  origin m arked by th e  red square. T he QNM s found 
num erically  from  fitting  th e  tim e evolution of th e  scalar condensate  to  th e  QNM  behaviour 
given by eq. (3.1) are m arked by th e  red dots. Those com ing from  fitting  th e  exponentia l 
rise in th e  norm al-to-condensed  quench give QNM s in th e  u p p er half plane, while those 
from  th e  exponen tia l decay in th e  condensed-to-norm al quench give QNM s in th e  lower half 
p lane. We see th a t  th ey  fall perfectly  on th e  dashed  curved ana ly tica lly  given by eq. ( 3.2) , 
ind icating  th a t  it is indeed th e  norm al phase QNM  associated  w ith  in stab ility  th a t  governs 
th e  exponen tia l rise seen in figure 1, and  th e  lowest QNM  in th e  norm al phase th a t  governs 
th e  re laxation  seen in figure 4 .

N ote th a t  close to  Tc, QNM s in th e  norm al phase can  be found analy tically  [18]. In  
p articu la r, th e  lowest QNM  is given by

2rtTc =  Q  (2 +  iQ ) ( %  “  0  ’ (3 .3)

w hich im plies a re laxation  tim e scale

T -  w - 1 -  T -  ( T  — ^  , T  >  Tc , (3.4)

and we have used the fact th a t Tc — TK for |Q| =  1/2.

3.3 Q N M s in  con d en sed  phase

In the condensed phase, the two-point function of the scalar operator, as well as the associ
ated QNMs, can be found by solving a coupled system of fluctuation equations. Close to  Tc 
when the scalar condensate is small, the QNMs can also be found semi-analyically, see [18].
Here, we obtain QNMs in the condensed phase in yet another way by fitting the relaxation
of (O) after Gaussian quenches, and we find excellent agreement to  those found in [18].
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(a) C o n to u r  p lo t o f  |k | in  th e  c o m 
p lex  freq u en cy  p lan e . W h ite  sp ace  
d e n o te s  c ro p p in g  fo r v a lu es |k | >  2.

(b) B lo w u p  o f th e  re d  sq u a re  in  (a ). R e d  d o ts  in d ic a te  Q N M s 
e x tr a c te d  fro m  n u m erica l f i tt in g  a t  d iffe ren t te m p e ra tu re s .  W h ite  
sp a c e  d e n o te s  c ro p p in g  fo r v a lu es |k | >  100.

Figure 7. Contour plot of |k(w)| over the complex w-plane. A blow-up around the origin is shown 
in (b). Along the dashed curve k(w) is real. The contours denote constant values of |k|, with the 
colour scale indicating the value. The contour k(w) =  kc intersects the dashed line at the origin in 
(b). The red dots are lowest lying QNM found from fitting the time evolution of the scalar operator 
after the quench to the QNM behaviour defined in eq. (3.1) .

Figure 8a shows the lowest QNMs, i.e. QNMs closest to  the real axis, found from fitting 
the relaxation at late times after a quench from states initially in the condensed phase at 
various T  <  Tc. We see they are all purely imaginary, and move down the imaginary axis 
as the tem perature  is lowered, all in agreement w ith [18]; the relaxation of the condensate 
is then  a pure exponential decay w ithout oscillations. Figure 8b exhibits the tem perature 
dependence of the lowest QNM in the condensed phase, when the tem perature is normalised 
by Tc. We see th a t this purely imaginary mode first moves down the imaginary axis as 
tem perature  decreases below Tc and then  turnes back up towards the origin. This shows 
th a t the system experiences critical slowing down both  as T  ^  Tc and as T  ^  0 (see 
section 4.1 for further discussion of this phenomenon in the T  ^  Tc limit).

The over-damped relaxation behaviour has been seen before in [6 , 7], which performed 
the quench differently and employed a different quench protocol.5 In particular, in [7] the

5T h e  q u e n c h  w ere  e n a c te d  th ro u g h  th e  so u rce  o f th e  d u a l  s c a la r  o p e ra to r ,  a n d  G a u ss ia n  q u e n c h  p ro to c o l 
w ere  used .
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(a) B e h a v io u r  fo r T  <  T c. T h e  d a sh e d  lin e  is a  lin e a r  (b) F u ll te m p e ra tu r e  ra n g e  fro m  T /T c =  1 d o w n
fit fo r th e  re g io n  1 >  T /T c >  0.998 p a ss in g  th ro u g h  to  T /T c «  0.008. T h e  d a sh e d  lin e  is a  fit fo r th e
th e  o rig in . re g io n  T /T c <  0.33.

Figure 9. Functional dependence of the lowest QNM on K2(O)2 in the condensed phase.

lowest (most dom inant) QNMs th a t encode the relaxation at late times were also seen to  
move down the imaginary axis as tem perature were lowered below Tc. However in [7], a 
regime of dam ped oscillatory relaxation were found for some T* <  Tc, a t which point the 
previously sub-dom inant QNMs become the dom inant ones. We note th a t backreaction is 
icluded in [7]. For our kind of quench, we have not found such dam ped oscillatory regime 
within the tem perature  range where the probe approxim ation is valid. To explore whether 
such regime exists for our quench in our system at even lower tem peratures would require 
the inclusion of backreaction, which is beyond the scope of the current work.

Figure 9 shows how the lowest QNM vary as a function of k2( 0 ) 2. Close to  Tc, we find 
th a t the lowest QNM has a linear dependence on K2(O )2/ N 2,

w/ =  6 k ? ( 0 ) 2/ N 2 , b & —18.7, (3.5)

where b is found from a numerical fit. This value of b is very close to  th a t in [18]. The 
difference is about 6%, and is due to  the slight differences in the d a ta  being fitted. Deviation 
from this linear relation began to  be visible for T  >  0.988Tc. Note th a t from [8], (O) a
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(a) Normalised to 2nT and shown in complex plane. (b) Normalised to 2nTc and plotted vs. T /T c.

F ig u re  8. The lowest QNMs extracted from fitting the relaxation behaviour after Gaussian 
quenches in the condensed phase characterised by 0.008 < T /T c <  1.



(Tc — T ) 1/2 for T  <  Tc. G iven T /T K  =  e 1/ki , th is  im plies a re laxation  tim e scale

b T  /  T  \ - 1 
T -  w- 1  -  —  log2 —  ^  — - J  , T  <  Tc . (3.6)

Interestingly , a t low tem p era tu res  we observe a sw itching to  a logarithm ic dependence from 
th e  linear one found close to  Tc:

2V T  = b log ( S T N * )  ■ b " —0 -14 ■ (3-7)

Such log behav iour would ind icate  a dev iation  from  m ean-field behaviour. To u n d erstan d  
th e  origin of th is  log behav iour and  be sure th a t  it persists all th e  way dow n to  T  =  0 
requires a s tu d y  of th e  IR  behav iour around  zero tem p era tu re . T his requires, however, th e  
inclusion of full backreaction  and  stab ilisa tion  of th e  scalar a t th e  IR  fixed p o in t ,6 which 
is beyond th e  scope of th e  cu rren t work. We plan  to  address these questions in th e  fu ture , 
w hich are also in teresting  in th e  con tex t of finding th e  ze ro -tem p era tu re  im p u rity  en tropy  
a t th e  defect [ 14].

3.4  E v o lu tio n  o f  th e  screen in g  o f  th e  im p u rity

O ne p articu la r goal of th e  analysis p resented  is to  o b ta in  th e  tim e evolution of th e  screen
ing due to  th e  fo rm ation  of th e  K ondo cloud. A ccording to  [8 ], th e  electric flux a t th e  
asy m p to tic  bou n d ary  and  th e  event horizon provides a m easure of th e  num ber of im purity  
degrees of freedom  in th e  U V  and th e  IR , respectively. Its  decrease th u s corresponds to  th e  
screening of th e  im purity  in th e  IR . T his is due to  th e  fact th a t  th e  flux involves a t , which 
is dual to  th e  charge density  determ in ing  th e  size of th e  S U (N ) spin rep resen ta tion . T he 
electric flux a t th e  event horizon is a q u an tity  th a t  m ay be traced  in E dd ing ton -F inkelste in  
coord inates. A lthough th ere  is no stra igh tfo rw ard  m ap  of horizon dynam ics to  th e  b o u n d 
ary, th e  decay co n stan t of th e  horizon flux still encodes in form ation  ab o u t th e  decrease of 
im p u rity  degrees of freedom .

In  our choice of coord inates and  gauge fixing (see ap pend ix  A ) , a'v (v, y )  is p roportional 
to  th e  electric flux. We define a new variable D  by

D =  aV(v , 1) 1 ( 38)
D  =  a vu) — 1 • (3-8)

w hich s ta r ts  ou t a t zero a t t  =  0 by co nstruc tion  and  becom es non triv ia l during  a generic 
quench. In  figure 10, we show th e  evolution of D  for a G aussian  quench around  k 1 =  1 
and  k 1 =  8.5, respectively. We observe an  in itia l rise due to  th e  G aussian  quench which 
takes th e  system  to  a s ta te  w ith  sm aller condensate, and  subsequently  an  exponen tia l decay
w hich corresponds to  th e  reduction  of im purity  degrees of freedom  due to  screening. For
th e  K ondo coupling k 1 =  8.5 shown in figure 10b, which is closer to  th e  phase tran sitio n , 
th e re  is a p la teau  a t in te rm ed ia te  tim es w hich is a sign of th e  onset of critica l slowing- 
dow n near th e  phase tran sitio n . F it t in g  th e  evolution  a t la te  tim es to  an  exponen tia l decay

6This can be done, for example, by adding a quartic term to the scalar potential in (2.11).
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D D

F ig u re  10. A log plot of D as defined in (3.8) for different Gaussian quenches, showing the late
time exponential decay of the effective IR degrees of freedom due to screening. Signs of critical 
slowing down can be seen in (b) as the system is close to the critical tem perature Tc.

reveals th a t  it is governed by a QNM  which, not suprisingly, coincides w ith  th e  com plex 
frequency ob ta in ed  by analysing th e  tim e dependence of bo u n d ary  quan tities . Of course, 
it w ould be in teresting  to  exam ine fu r th e r observables th a t  con ta in  inform ation  ab o u t th e  
evolution  of th e  screening, in p a rticu la r th e  evolution of th e  K ondo cloud in th e  spatia l 
d irec tion  am bient to  th e  defect (i.e. in 1 +  1 dim ensions). T his will allow a com parison to  
th e  K ondo cloud evolution ob ta ined  e.g. in [23]. T his m ay be ob ta ined  holographically  w ith  
m ethods proposed in [14], however for tim e-dependen t couplings. I t requires to  include the  
backreaction  of th e  geom etry  to  th e  field con ten t on th e  defect hypersurface. T his is left 
for fu tu re  research.

4 C ritical behaviour

In  th is  section we consider quenches for which th e  final value of th e  K ondo coupling k 
is e ither very close to  or exactly  a t th e  critica l value kc w here th e  phase tran s itio n  takes 
place. In  th e  form er case, we find th e  expected  critica l slow ing down. In  th e  la tte r  case, 
in stead  of an  exponen tia l decay we observe a polynom ial one. In  particu la r, looking a t th e  
real and  im aginary  p a rts  of th e  condensate  separately, we observe a so-called log-periodic 
oscillation, w hich is a sign of d iscrete  scale invariance.

4.1 C ritica l slow in g  dow n

In  subsections 3.2 and  3 .3 , we saw th a t  w/  ^  0 as th e  phase tran s itio n  a t k =  kc is 
approached. T his im plies th a t  near th e  phase tran s itio n , th e  charac te ristic  tim e scale 
t  =  w - 1 diverges, a well know n phenom enon know n as critica l slow ing down. Specifically, 
th e  th eo ry  of dynam ic critica l phenom ena (see e.g. [29] and  [30- 33] for a holographic 
con tex t) suggests a divergence of th e  form

-  -  ( m r  '4 . , ,
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w here z and  v are critica l exponents. For holographic superconductors, it was found th a t

z =  2 and  v =  1  (4.2)

independen tly  of th e  dim ension [31- 33].7 As th e  K ondo m odel u nder consideration  resem 
bles a holographic superconducto r in A dS 2 space, we expect it to  fall in to  th e  sam e uni
versality  class, i.e. to  have th e  sam e critica l exponents (4.2) . T his is indeed th e  case, as we 
discuss below. T his is non-triv ia l in th e  sense th a t  generally, th e  C olem an-M erm in-W agner 
theorem  [35, 36] precludes phase tran sitio n s  in low dim ensions. However, th is  theorem  
does not apply  in th e  large N  lim it w here long-range fluctua tions are suppressed [37]. For 
com parison w ith  h igher dim ensions we note th a t  also in [24], th e  exponen ts (4.2) were 
found in a holographic m odel involving a doub le-trace  o p era to r in a background spacetim e 
w ith  black hole horizon.

T he holographic K ondo m odel shows a behav iour of th e  form  (4.1) w ith  an  exponent 
zv  =  1, as expected from  (4.2) . To see th is, we begin w ith  th e  uncondensed phase, w here 
equa tion  (3.2) holds. L inearising th is ab o u t w =  0, we o b ta in

k(w) =  Kc +  K(1)W +  O (w 2). (4.3)

Here, we have defined th e  co n stan t

(1) * ^ (1) (2  — 2 ) / \k =  7 ------------------- ------^ -----2 ----------------^  «  —189.64 +  63.20i, (4.4)
( H _ 2 2  +  Y +  lo g (2 )+  1 — 2 ) )  2

w here ^ (n) is th e  polygam m a function  and y is th e  E u ler co n stan t. For com plex w close to  
zero and  real k — kc , we hence see

t  -  w_  = -------------1— w— - v . (4 .5)
(k -  Kc) Im

t  _1 _ 1
Using 7£T =  e k , th is  yields th e  resu lt

t ------------T r r  ( )  1 , (4.6)
KcIm ( k« U

consisten t w ith  th e  ex p ecta tio n  based on equations (4.1) and  (4.2) . T his ana ly tic  argum ent 
described th e  critica l slowing dow n for T  >  Tc, however th e  critica l exponents z and  v can 
be defined for b o th  th e  norm al and  th e  condensed phase. In  th e  la tte r  case, w here T  <  Tc, 
we do no t have ana ly tica l resu lts for th e  re laxation  of th e  system , b u t as figure 8b shows, 
our num erical resu lts ind icate  th a t  a t T  <  Tc,

t  -  w- 1 -  ( )  1 . (4.7)

T his again  agrees w ith  th e  ex p ecta tio n  from  equations (4.1) and  (4.2) .

7See also e.g. [34] for a non-holographic study of critical exponents in superconductors.
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4.2  P ow er-law  b eh av iou r and d iscrete  sca le  invariance at th e  cr itica l p o in t

Above we saw th a t due to  the critical slowing down, the tim e scale governing the expo
nential decay of perturbations of the system diverges as k  ^  k c. In the following, we 
investigate the evolution of the system as we quench the Kondo coupling k 1 from the 
condensed phase k 1 <  k c right onto the critical value k 1 =  k c.

The numerical results for a quench of this type are shown in figure 11, where we show 
the tim e-dependent behaviour of ^ 1(t) and ,02 (t) after the quench. We clearly see th a t 
the values relax to  zero for late times, i.e. th a t the systems settles to  the solution $  =  0 
as appropriate for the onset of the normal phase. A t first glance, the curves in figure 11 
appear to  look qualitatively similar to  the QNM depicted earlier, e.g. in figure 5. However, 
there is a significant difference: figure 5 is a log plot and shows a behaviour — Re (e-iwt) 
w ith complex w, while in contrast figure 11 is a log-log plot and hence shows a behaviour

both  of which are less than  1% off the fractional values of u/  =  —1/2 and uR =  3/2. 
W hen quenching the system to a final value K/ina1 <  k c or K/ina1 >  k c, the results of 
the earlier sections 3.2 and 3.3 suggest th a t we should expect an exponential fall-off with 
decreasing exponent w as k  ^  k c. Our numerical results show th a t for K/ina1 =  k c, the 
naively expected infinitely slow exponential decay gives way to  a power law behaviour of 
the form (4.8) .

In fact, late tim e power-law tails are common in the study of QNMs. However, they 
are often associated with the QNMs of asym ptotically fla t black holes, see e.g. [38] for a 
review. In asym ptotically AdS spaces in contrast, power-law tails of QNMs are usually 
absent [39]. Furtherm ore, while in [38] a num ber of systems are m entioned th a t exhibit 
QNMs with power-law tails of the form t - a  sin(/ff), in (4.8) we observe a so-called log- 
periodic (dam ped) oscillation. Here, the am plitude of an oscillating function decays as 
a power law (— t - a ), while the oscillation takes place in logarithm ic tim e (— sin(blogt)). 
This behaviour is known to  be characteristic for systems exhibiting discrete scale invariance 
and the associated complex critical exponents, see [40] for a review. In short, discrete scale 
invariance means th a t a theory is invariant under scale transform ations only for specific 
scales, i.e.

only for specific scales A. In general, the solution to  (4.11) may then  take the form [40]

A ( t)  — Re (e- i u  log(t )) =  Re ( t- i u ) =  tVI cos(vr  log(t)), 

& (t)  — Im (e- i u log(t )) =  Im (t~ iV) =  —t UI sin(uR  log(t)).

(4.8)

(4.9)

Specifically, from the da ta  of figure 11 we may read off

u/  ~  —0.502 and uR «  1.51, (4.10)

O d s i  ( x )  =  / ( O d s i (A x ) (4.11)

(4.12)
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hence the connection with complex exponents and log-periodicity. This phenomenon has

quakes (see [40] and references therein for these two examples), bu t also quenches in 
condensed m atter models [41], black hole form ation [42- 45] and even holographic mod
els [46- 48]. See also [49] for a recent application of discrete scale invariance in Q FT toy 
model building. We observe th a t in our model, similarly to  w hat was found in [44, 45], the 
discrete scale invariance, i.e. the presence of a non-zero Ur  in (4.8) , manifests itself in form 
of a phase ro tation

The quantities |a (t) | and |0 (t) | hence do not show any signatures of discrete scale invari
ance, only a power-law fall-off determ ined by u / . The physical variable in the holographic 
Kondo model is of course the complex vev 0 (t) ~  (O) (2.16) . Hence while the modulus 
| (O (t)) | decreases as a power-law, its complex phase ro tates w ith ~  logt. Equivalently, 
we see th a t the (bulk) gauge-invariant quantity  A t =  y  — d 0 0 falls off towards the limiting 
value A t =  1/2 as ~  t - 1 .

A definitive in terpretation of how the discrete scale invariance arises in the model un
der investigation cannot be given ju st based on the numerical results presented, and it is 
not possible to  determ ine w hat sets the corresponding scale. S tarting  from the observa
tion (4.8) , we propose an ansatz of the form

where Pn (x) stands for the Legendre polynomial of the first kind and 2F 1 is the hyper
geometric function. We find th a t 0 irreg diverges a t the event horizon z =  zH =  1, and

8N o te , how ever, t h a t  in  m a n y  o f th e se  e x am p le s  i t  is n o t  th e  t im e  v a r ia b le  t  in  w h ich  lo g -p erio d ic  
o sc illa tio n s  is o b se rv ed .

been observed8 in a wide range of physical systems, including stock m arkets and earth-

(4.13)

(4.14)

01 (t, z) =  tVl’̂  cos(uR log(t))0(z) +  O (tx ,x  < u/ ,^ < 0), 

02(t, z) =  tVl'  ̂ s in(—U rlog (t))0 (z) +  O (tx, x <  u/,^ < 0),

at(t, z) =  Q  +  y  +  O (tx, x <  0)

(4.15)

(4.16)

(4.17)

and insert it into the equations of m otion (2.6)- (2.9) , using — Q =  y  =  1 as throughout 
the paper. In this way, we obtain the lowest-order equation

4z2h(z) ( h/(z)(^/(z) +  h (z )0 " (z ) ) +  (z — 1)20(z) =  0 (4.18)

for 0(z), which has the two independent solutions

(4.19)
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consequently  th e  physical so lution to  (4.18) is given by co n st. x  0 reg, w ith  no fu rth e r 
p a ram ete r to  ad ju st bo u n d ary  conditions. T he b o u n d ary  expansion of (/>reg reads

^reg(z) ~  co n st. x  / Z  (log(z) +  ( h -  1 + i +  H -  1 -  i +  log(2 ) j  . .  ^  , (4.20)

im plying

K1 =  H  , + , +  H  1 i ■ + lo g (2 )  =  <421)
2 + 2 2 2

see equations (2.15) and  (2.19) . We have hence proven th a t  a pow er law ansa tz  such 
as (4.16) can  only  solve th e  equations of m otion  if th e  bou n d ary  condition  is fixed a t th e  
critica l value k =  k c. However, th e  low est-order equations ob ta in ed  v ia  th e  ansa tz  (4.16) 
do no t fix th e  p aram eters  v i,$  and  v r ^ . P resum ab ly  th is would require th e  ap p ro p ria te  
inclusion of h igher orders in to  th e  ansa tz .

T he analy tic  s tu d y  of power law tails  of QNM s is an  im p o rtan t sub ject, for exam 
ple concerning th e  question  w hether these ta ils  are in trinsically  non-linear phenom ena, 
see again [38] for an  overview. T here  exist specialised ana ly tica l m ethods to  tre a t  these 
problem s [50], and  th e  m ethods em ployed in [44, 45] m ay also have applicability  to  our 
system . D ue to  th e  possible im portance of h igher-order effects, a full ana ly tica l analysis
of th e  em erging log-periodic behav iour of our system  is however beyond th e  scope of th e
present paper, and  will be left to  fu tu re  investigations.

5 Sum m ary and outlook

5.1 Sum m ary

We have stud ied  q u an tu m  quenches in a holographic K ondo m odel. We solved th e  full tim e- 
dependen t dynam ics of our m odel num erically  using spec tra l and  finite difference m ethods, 
and  we stud ied  th e  re laxation  of th e  system  u nder various quench protocols. We found 
th a t  th e  re laxation  is determ ined  by th e  lowest QNM  of th e  in itia l s ta te  of th e  system , 
w hich describes an  exponen tia l decay, w ith  an  add itiona l oscillatory  profile for quenches 
to  th e  norm al phase. T he lowest QNM  provides an  excellent descrip tion  of th e  re laxation  
of th e  system  no t only a t la te  tim es, as one expects close to  equilibrium , b u t also alm ost 
im m ediately  as th e  system  begin to  relax  afte r th e  quench of th e  K ondo coupling: th ere  
does no t ap p ear to  be any appreciab le region in th e  onset of th e  re laxation  th a t  is not 
described by th e  lowest QNM . T his seems to  be a generic featu re  in holographic system s 
m odelling strong  dynam ics. M ost im portan tly , we found th a t  in th e  condensed (screened) 
phase, th e  leading QNM  is purely  im aginary, w hich corresponds to  over-dam ping. In  a 
te m p e ra tu re  region below Tc, we have w a  - i { O ) 2. T his is consisten t w ith  expecta tions 
from  th e  behav iour of th e  K ondo resonance [18]. A t low tem p era tu res , we see a dev iation  
from  m ean-field behaviour, w a  —ilog ({O )).

T he tim e-dependence of th e  flux th ro u g h  A d S 2 a t  th e  black hole horizon, w hich is dual 
to  th e  size of th e  im p u rity  represen ta tion , describes th e  decrease of degrees of freedom  after 
a quench to  th e  condensed phase. T his corresponds to  a m easure for th e  fo rm ation  of the
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Figure 11. A log-linear (a) and log-log (b) plot of a\  and a2 as functions of time. Below, we see 
log-log plots of the gauge-invariant quantities A t =  p. — d^0 and 0 =  (O) / N  which are not featuring 
any oscillations in (logarithmic) time.

Kondo cloud at the site of the impurity. We found the decrease of degrees of freedom to 
be exponential.

In section 4.1 we studied in more detail the critical slowing down of the system near 
the phase transition  at T  =  Tc, and showed the corresponding (combination of) critical 
exponents to  be zv =  1, ju st as expected from the similar holographic models [24, 30- 33]. 
However, we also pointed out th a t due to  the low dimensionality of our model, great 
care is required when interpreting critical exponents and their (hyper) scaling relations. 
Interestingly, the critical exponents of a large N  Kondo-Heisenberg lattice near a quantum  
critical point have been studied in [51, 52], w ith the result z =  3.

Section 4.2 was then denoted to  the study of quenches th a t lead directly to  the critical 
point, k ^  kc. Our numerical results for quenches of this type, displayed in figure 11, show 
a dam ped log-periodic behaviour of the form (4.8) . This log-periodic behaviour is known to  
be a telltale sign of discrete scale invariance, reviewed in [40] and observed in holographic 
models already in [46- 48]. U nfortunately our numerics alone do not offer insight into 
the underlying mechanism causing the emergence of this phenomenon, and a lowest-order 
ansatz for the late tim e solutions of the equations of motion does not fix the involved 
complex critical exponent. A full analytical treatm ent of this interesting problem is hence 
left for future study. We note th a t in [46, 47], it was speculated th a t the emerging discrete
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(a) Log-linear plot of (O) vs. time. (b) Log-log plot of (O) vs. time.

(c) Log-log plot of |(O)| vs. time. (d) Log-log plot of At vs. time.



scale invariance is connected to  th e  physics of a near-horizon A dS 2 region. Similarly, in 
our m odel, we are effectively w orking w ith  an  asym pto tic  A dS 2 spacetim e. T his seems to  
im ply th a t  an  A dS 2 s tru c tu re  is advantageous to  th e  em ergence of d iscre te  scale invariance 
in holographic m odel. T his m ay have in teresting  im plications for th e  Sachdev-Y e-K itaev 
(SYK) m odel [53- 55]. We no te  th a t  th e  SYK m odel and  th e  m odel considered in th e  present 
p ap e r are re la ted  by th e  fact th a t  th e  Sachdev-Ye m odel of [53] is derived by w riting  a spin 
H am ilton ian  in term s of th e  A brikosov pseudo-ferm ions x  also used in th e  con tex t of th is  
paper, and  reducing to  an  effective m odel in 0 + 1  dim ensions by ap p ro p ria te  averaging. 
T his resu lts in a q u artic  m odel for th e  x ’s. T he m ajo r difference betw een th e  m odel of th e  
p resent p ap e r and  th e  SYK m odel is th a t  here, we b reak  conform al sym m etry  explicitly  
by sw itching on th e  doub le-trace  K ondo opera to r. T his is a p rerequisite  for observing th e  
phase tran s itio n  described, w hich consequently  is no t present in th e  SYK model.

5.2 O u tlook

O ne obvious generalisation  of our approach  will be to  investigate quenches and  o th er tim e- 
dependen t phenom ena in th e  holographic tw o-im purity  K ondo m odel of [16]. M oreover, it 
will be instructive  to  stu d y  th e  T  =  0 lim it in fu rth e r detail. T his requires to  add  a q u artic  
te rm  to  th e  scalar p o ten tia l in order to  ensure a well-defined IR  fixed po in t and  a finite 
condensate  for T  ^  0 (see also [14]).

Also, as po in ted  ou t above, th e  em ergence of d iscrete  scale in varian ce  for critical 
quenches k ^  kc deserves fu rth e r study. In  fact, we see from  figure 8 b th a t  in th e  condensed 
phase w i ^  0 no t only for T /T c ^  1, b u t also for T /T c ^  0. T his seems to  ind icate  
th a t  in th e  holographic K ondo m odel, critica l slow ing dow n  does no t only occur near the  
phase tran s itio n  a t T  =  Tc, b u t also a t T  =  0. W h e th e r th is  critica l slowing dow n a t 
zero tem p e ra tu re  will be accom panied by sim ilar log-periodic oscillations to  those  th a t  we 
found a t T  =  Tc is however no t clear. T his requires a fu rth e r s tu d y  of th e  T  ^  0 lim it in 
a m odel w hich ensures s tab ility  of th e  IR  fixed point, as described above.

One in teresting  fu rth e r d irec tion  m ay be to  com bine th e  stu d y  of tim e-dependen t 
phenom ena in th e  holographic K ondo m odel of [8 , 16] th a t  was carried  ou t in th is  work 
w ith  th e  s tu d y  of backreaction  and  en tang lem ent en tropy  done in [13- 15]. In  particu la r, 
in [14, 15], it was shown th a t  in th e  backreacted  holographic K ondo m odel, th e re  is a n a tu ra l 
geom etric leng th  scale th a t  takes th e  role of th e  K ondo scale . A stu d y  of a holographic 
m odel allowing for b o th  tim e-dependence and  backreaction  m ay hence allow th e  s tu d y  of 
th e  ch arac te ristic  tim e and  leng th  scales involved in th e  fo rm ation  of th e  K ondo cloud in 
a sim ilar way to  w hat was done in [23] on th e  field th eo ry  side. F u therm ore, calculations 
of th e  tim e-dependence of en tang lem ent en tropy  a fte r a quench in th e  holographic K ondo 
m odel m ay be com pared to  th e  resu lts of field theo ry  studies such as [2 2 ].

F inally, recently  th e re  appeared  m odels of K ondo physics in th e  con tex t of QCD  [56] 
and  L orentz v io lation  [57]. B y ad ap tin g  th e  m ethods of th is  paper, we expect th a t  quenches 
in these m odels can  also be studied  holographically.
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A  G auge fixing, coord inates and field redefin ition

We app ly  th e  rad ia l gauge for b o th  th e  gauge field a  on th e  (1 +  1)-dim . defect m anifold 
as well as th e  C hern-Sim ons field in th e  (2  +  1)-dim . bulk. R egu larity  of th e  C hern-Sim ons 
field im plies A t | =  0 which prolongs to  A t =  0 th ro u g h o u t th e  bulk  a fte r im posing
th e  equations of m otion. H ence only A x is non-triv ial. As it is o rthogonal to  th e  defect 
m anifold, it does no t ap p ear in th e  equations of m otion  for ne ither th e  scalar nor th e  gauge 
field. T hus we m ay neglect th e  C hern-Sim ons field in our analysis.

As a lready  m entioned around  eq. (2.14) , th e  asym pto tic  behaviour of th e  scalar field 
in Schwarzschild-like coord ina tes is given by

0 i(t, z) ^  / z  (a i( t )  log(z) +  @ i(t)) +  O (z 3/2) (A .1)

as we approach  th e  AdS bo u n d ary  a t z =  0. T he difficulty in dealing w ith  th e  equations 
num erically  is th is  non-analy tic  b o u n d ary  behaviour.

We address th is  issue w ith  a field redefinition and  a change of coord inates. T he change 
of variables can  get rid  of all (non-analy tic  a t z =  0 ) term s in th e  bo u n d ary  expansion 
if we let y 2 =  z. W ith  th is  defin ition  th e  b o u n d ary  and  horizon are a t y  =  0 and  y  =  / H ,  
respectively. T his redefin ition  only changes th e  log term s by a facto r of two, however, so 
th e  fields are still non-analy tic  a t y =  0. In  te rm s of th e  old coord inates, we define th e  new 
differentials to  be

d t =  dv +  2 y dy , dz =  2 y d y . (A .2 )
h (y )

T he m etric  (2.1) becomes

d s 2 =  -1  ( —h (y)  d v 2 — 4 y dv dy +  d x 2) , (A.3)

w here h(y) =  1 — y4. N ote th a t  v and  t  have th e  sam e level sets a t th e  boundary , y =  0, 
so th a t  we can  sim ply replace th em  w hen analysing b o u n d ary  properties. T he rad ia l 
gauge az =  0 in Schwarzschild-like coord inates tran s la te s  in to  ay =  2 y a v/h (y )  in our 
ad ap ted  EF-like coord inates. We decom pose th e  scalar field in to  its real and  im aginary  
p a r t $  =  0 1 +  i0 2. A pplying th is  ansa tz , th e  relevant equations of m otion  (2.6)- (2.9) are
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n * 2 ± 4 d y d v (1 +  3y4) d y0 i  2y  (02 dya v +  2av dy02) , ,
0 =  ay 01 - ~ r n  m A m  ’ ( )
n x 2 m 4 dy dv 02 (1 +  3y4) dy 02 , 2y (0 i dy av +  2av dy 0 i)
0 =  ®“ 02 " W » )  y h (y )  +  hhcy> • (A -5)

3 4
0 =  dy2av +  y  dy av -  (02 dy 0 i  -  01 dy 02) , (A.6)

explicitly given by

0 =  dy dv av +  y3 av (0 2 +  0 2)

2
-  y4  ([h(y) dy0i + 2  y  d v 0 i ] 02 -  0 i  [h(y) d y02 +  2 y  d v02 ]) , (A.7)

where, as an tic ip a ted , th e  C hern-Sim ons field does no t en ter th e  equations of m otion of 
th e  fields restric ted  to  th e  defect.

T h e  next step  is a field redefinition w here we su b trac t a num ber of d om inan t log term s 
in th e  b o u n d ary  expansion. If  we su b trac t enough term s, th e  redefined fields will have 
regular second derivatives a t y =  0. T h is  also m eans th a t  th e  non-analy tic  con tribu tions 
from  th e  log term s only ap p ear a t h igher order. B y applying (2.15) , th e  v-dependent 
b o u n d ary  expansion of th e  rem aining fields looks like

0 i(v , y )  ~  P i(v )y  (1 +  2 K i(v) log y)

+  y 3 ( a (4) (v) log4 y  +-------+ a ( i)(v) log y  +  a (0)(v )) +  (A.8)

av (v,y)  ^  +  M v) +  c(3)(v )lo g 3 y-+-------+ c( i)(v )lo g  y
2 y

+  y 2 ( d (4) (v) log4 y +-------+ d (i) (v) log y +  d (0) (v )) +  . . . ,  (A.9)

w here a (k)(v), c(k)(v) and  d(k)(v) are functions of 0 i (v), Ki (v), ^ (v ) and th e ir  derivatives. 
We choose to  su b trac t all term s con tain ing  a log y and  divergent term s up  to  O (y 3). In  
o th e r words, we define

0i(v , y) =  1  (0 i(v , y) -  s (<̂ ^  , (A.10)

av(v,y)  =  av(v, y) -  s (“v) , (A.11)

w here

s (^i) =  2 y 0 i(v) Ki(v) log y +  y 3 ( a (4)(v )lo g 4 y +--------+ a (i) (v) log y )  , (A.12)

s (“v) =  -  2 ^ 2  +  c(3)(v ) lo g 3 y +-------+ c( i)(v )lo g  y, (A.13)
2 y

+  y 2 ^d(4)(v) log4 y +------- + d (i)(v )lo g  y )  +  . . .  (A.14)

T hese tilded  fields have regular second y-derivatives on th e  dom ain  0 <  y <  1. M ore
over, th e  bo u n d ary  value of 0 i is 0 i and  th e  b o u n d ary  value of a v is ^ . W ith  these redefi
n itions th e  equations of m otion becom e to o  long to  reproduce on th e  page here. However, 
th ey  involve only fields and derivatives th a t  are regular, which provides some num erical 
stability .
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B N um erical evolu tion  schem e

O ur goal is to  find solutions in which we give k 1 a v -dependen t profile. We always s ta r t 
from  a s ta tic  solution, so th e  assum ption  is th a t  k 1 is co n stan t for all v  <  0 . A t v =  0 , 
k 1(v) becom es a tim e-dependen t function  which sm ooth ly  connects to  th e  in itia l co n stan t 
value. T his function  could be a G aussian  or a hyperbolic tan g en t, for exam ple. B y solving 
th e  equations of m otion, we find th e  resu lting  m otion of th e  fields and , consequently, th e  
coefficients ^ 1(v), ^ 2 (v) and  y (v ) in (A .9) and  (A .8 ) . We use an  im plicit C rank-N icholson 
in teg ra tio n  m ethod  in v and  pseudospectral m ethods in y.

T he first step  is to  find th e  s ta tic  so lution to  th e  equations of m otion. For th a t ,  we get 
an  in itia l guess for th e  solutions by using th e  shooting  m ethod: we choose th e  in itia l value 
of k 1, th en  ad ju st ^ 1, ft2 and  y  un til in teg ra tion  of th e  solutions from  bo u n d ary  to  horizon 
yields solutions th a t  are regular everyw here. A fter th a t ,  we discretise th e  equations of 
m otion  and  solve th e  resu lting  non-linear m a trix  equations w ith  th e  o u tp u t of th e  shooting  
m ethod  as in itia l guess. M ore precisely, th e  equations are discretised  on C hebyshev-L obatto  
collocation poin ts, s ta rtin g  a t y =  e and  ending  a t y =  1 — e. D ifferential op era to rs  are 
replaced by pseudospectra l d ifferen tiation  m atrices. For N  collocation poin ts, th e  fields 
are discretised  to  (<̂ 1) 1, . . . ,  ( ( D n  and  sim ilarly for ( 2 and  a v.

Since we know th e  bo u n d ary  expansion for each of th e  fields, th e  first com ponent of 
each can  be replaced by th a t  bo u n d ary  expansion up to  a given order, w hich will be m ade 
up  of term s con tain ing  ^ 1, ^ 2, k 1 and y , only. We app ly  a num erical algorithm  to  solve for 
th e  3 N  com ponents ( ( 1)2 , . . . ,  ( ( O n , ( ( 2) 2 , . . . ,  ( ( 2) n , (&v)2 , . . . ,  ( a v )n , ( 1, ( 2  and  y.

For our purposes, we found th a t  it is sufficient to  consider N  =  50 points, e =  10-3  

and to  cu t th e  b o u n d ary  expansion a t nex t-to -lead ing  order.
S ta rtin g  w ith  th e  s ta tic  so lu tion  found in th e  previous section, we can  use a tim e- 

m arching  m ethod  to  evolve th e  solutions in v. We discretise th e  spacetim e in th e  v-
d irection, using an  evenly-spaced grid of step  size A v. T he equations are stiff, so we use
im plicit m ethods. We use C rank-N icholson, w hich has an  erro r th a t  is second order in th e  
A v. We s ta r t  w ith  th e  s ta tic  solution a t vo and  earlier, so th a t  th e  fields and  coefficients 
a t vi equal th e  fields and  coefficients a t v0 for i <  0 . A t each step  we th en  ca lcu late  th e  
new fields and  coefficients a t vi+ 1 from  th e  values on th e  previous tim e slices.

So far th is  is general. T he C rank-N icholson m ethod  specifies precisely how we calcu late  
values on v-slice vi+ 1. We use th e  equations of m otion  and  discretise th em  in th e  following 

way. For f  e  j ( 0 - ,  y), ( 2(-, y), a v(■, y), ( 2, y  j  we m ake th e  replacem ents

f (v) ^  f  (vi+ 1)

dv f  (v) ^  2 f  (vi+1A — f  (vi) — dv f  (vi)

2 /  (vi+l)- f  (vi ) Q f  (v .)
d 2 f  (v) ^  2 ------------------------- ^  — d 2 f  (vi) (B.1)

w here for each v-derivative a t slice vi+ 1 we use th e  su b s titu tio n  rules to  m ake a replacem ent 
un til th e  equations con ta in  no v-derivatives evaluated  a t vi+ 1. N ote th a t  even th o u g h  the
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original equations were first o rder in v, th e  equations for th e  tilded  fields con tain  higher 
derivatives of th e  coefficients ^ 1, ^ 2, k and  y.

T he discretised  equations of m otion are used as follows. We know th e  values of the  
fields and  th e ir  derivatives a t v-slice i. In itia lly  we use th e  s ta tic  so lution and  set all th e  
v-derivatives to  zero. If we su b s titu te  in these num erical values, th e  discretised  equations 
of m otion  are th en  algebraic in values of f  a t vi+ 1. We solve for these new values, store 
them , and  also use equations (B .1 ) to  find th e  v-derivatives a t vi+ 1.

Solving for th e  field values a t vi+ 1 is sim ilar to  th e  s ta tic  case. We first discre- 
tise th e  equations in th e  z-d irection  as well, g e ttin g  3 N  equations. We th en  replace 
(<̂ 1(vi+ 1) 1, (<̂ 2(vi+ 1) ) 1, and  (av(vi+ 1) ) 1 w ith  th e ir  (v-dependent) bo u n d ary  expansions and 
solve for th e  3 N  com ponents (0 1 (vm ))2 , . . . ,  (0 1 Cg+1) ) n , (0 2 (vi+1) )2 , . . . ,  (0 2 (v i+O )w , 
(flv (v i+1) ) 2 , . . . ,  (flv (vi+1))w , A  (vi+ 1), ^2  (vi+1) and  y (v i+ 1). We ad ju st A v for each quench 
such th a t  th e  sho rtest tim e scale appearing  in th e  respective ru n  is well resolved. All of 
th e  discussed algorithm s were im plem ented and  com puted  in M a t h e m a t i c a .

O p en  A ccess. T his artic le  is d is trib u ted  under th e  te rm s of th e  C reative Com m ons 
A ttr ib u tio n  License (C C -B Y  4.0) , w hich perm its  any use, d is trib u tio n  and  rep roduction  in 
any m edium , provided th e  original au th o r(s) and  source are credited .
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