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A bstract: We study non-equilibrium dynamics and quantum quenches in a recent gauge/
gravity duality model for a strongly coupled system interacting with a magnetic impurity
with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in
Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant
Kondo operator. There is a phase transition at a critical temperature, below which an
operator condenses which involves both an electron and an Abrikosov fermion field. This
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corresponds to a holographic superconductor in AdS2 and models the impurity screening.
We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent,
the latter taking the system from the condensed to the uncondensed phase or vice-versa.
We study the time dependence of the condensate induced by this quench. The timescale
for equilibration is generically given by the leading quasinormal mode of the dual gravity
model. This mode also governs the formation of the screening cloud, which is obtained as
the decrease of impurity degrees of freedom with time. In the condensed phase, the leading
quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For
quenches whose final state is close to the critical point of the large N phase transition, we
study the critical slowing down and obtain the combination of critical exponents zv = 1.
When the final state is exactly at the phase transition, we find that the exponential ringing
ofthe quasinormal modes is replaced by a power-law behaviour of the form ~ t-a sin(b logt).
This indicates the emergence of a discrete scale invariance.
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1 Introduction

The AAS/CFT correspondence [1- 3] and its generalisations to a more general gauge/gravity
duality provide a new approach for studying strongly correlated systems. One of the
many applications of gauge/gravity duality is the study of non-equilibrium strongly coupled
systems. This applies in particular to quantum quenches and to the subsequent relaxation
to a new ground state. While this idea was first studied in relation to heavy-ion physics and
the quark-gluon plasma [4, 5], more recently quenches have been considered for systems
relevant to condensed matter as well [6, 7].

In this paper we use gauge/gravity duality to study quantum quenches for strongly
coupled systems interacting with a magnetic impurity. In particular, we consider quenches
in a recent holographic model [8] that describes the RG flow triggered by an impurity
operator. This is a holographic variant of the well-known Kondo model with certain distinct
features owed to considering a model for which a gravity dual may be constructed. As is
standard in the AdS/CFT correspondence, the large N limit needs to be taken to obtain
a classical gravity dual. Thus in this model, the spin group of the impurity spin is SU(N).
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For constructing the gravity dual model of [8], it was important to note that large
N Kondo models are well-known in the condensed matter literature [9- 11]. According
to this approach, the spin is taken to be in a totally antisymmetric representation given
by a Young tableau with g boxes. In the large N limit, it is convenient to introduce
Abrikosov pseudo-fermions x and to write the impurity field as a bilinear in these fermions,
i.e. Sa = XTaX. Using Fierz identities and dropping terms subleading in 1/N, the Kondo
interaction nJaSa with Ja the electron current becomes kOOt with O = ~x. Here, k
is the Kondo coupling, ~ is an electron and x an Abrikosov fermion as introduced above.
This operator triggers a flow to an IR fixed point. The key point of the condensed-matter
large N Kondo model is thart the IR is characterised by a non-trivial condensate (O),
i.e. there is a critical temperature Tc, slightly smaller than the Kondo temperature T#,
below which this condensate forms [10, 11]. The condensation corresponds to screening of
the impurity by the Kondo cloud.

In the dual gravity model, according to [8] a related impurity system is described by
a holographic superconductor in the following setting: the gravity dual action involves a
Chern-Simons field in 2+1 dimensions dual to the electron current. For simplicity, the
number of channels (flavours) is taken to be k = 1, which renders this Chern-Simons field
Abelian. In addition, there is a propagating Abelian gauge field restricted to a (1+1)-
dimensional subspace spanned by time and the holographic radial coordinate. The time
component is dual to the charge density x"X. Moreover, there is complex scalar in the
same (1+1)-dimensional subspace, which is dual to the operator O. In the probe limit, all
of these fields are embedded in a BTZ black hole spacetime, i.e. a black hole in AdS3. The
horizon of the black hole sets the temperature.

A central difference between the holographic model and the standard large N Kondo
model is that the electron gas is strongly coupled even before the interaction with the mag-
netic impurity is switched on. For describing the required RG flow, the strongly coupled
theory is perturbed by the marginally relevant operator kOO~ with O = ~x . Holograph-
ically, this perturbation is achieved by considering the gravity dual of a ‘double trace’
deformation as introduced in [12]. k diverges at a temperature scale TK which defines the
Kondo temperature. Solving the equations of motion, a second-order (mean field) phase
transition is found at a temperature Tc just below TK. Below Tc, the scalar acquires a
non-trivial condensate. This is the gravity dual analogue of the phase transition in the
condensed-matter large N Kondo model: precisely the same operator ~ x condenses in
both cases. Moreover, at low temperatures the charge density dual to the two-dimensional
gauge field decreases, such that the dimension of the spin representation is decreased. This
corresponds to the screening of the impurity. Also, the electrons are subject to a phase shift
which is obtained from the Wilson loop involving the Chern-Simons field in AdS3. The
resistivity is obtained from an analysis of the leading irrelevant operator. Due to the large
N limit, the characteristic logarithmic behaviour at low temperatures is absent. Rather,
the resistivity has a polynomial dependence on temperature with real exponent [8].

In [13- 15], the model of [8] was extended to include the backreaction of the defect on
the background geometry, which allows to the calculation of the entanglement entropy in
particular. The two-impurity version of the model of [8] was studied in [16]. Recently,
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two-point functions for this model were calculated in [17, 18], where it was found that the
spectral function displays a Fano resonance characteristic of scattering between a contin-
uum and a localised resonance. In the screened phase where (O) = 0, the quasinormal
modes (QNM) are purely imaginary and scale as wa -i(O )2. This is characteristic of the
Kondo resonance in the large N limit.

In this paper, we restrict to the probe limit as in [8, 16]. We consider time-dependent
configurations in which the time-dependence of the Kondo coupling is chosen as an input.
In particular, we consider both Gaussian pulses in the Kondo coupling k as well as tanh-
shaped transitions from the unscreened to the screened phase and vice-versa. We consider
fast quenches, in which the quench time for the Kondo coupling is of order of the inverse
Kondo temperature.

Our main result is that as generally expected in the holographic approach, the response
of the system to quenches is dominated by the QNM. These fix the equilibration time for
relaxation to the new ground state. In general, this relaxation time is independent of
the original quench time. The QNMs ensure that the relaxation time is longer when the
final state is closer to the phase transition. For relaxation to the critical state at the
phase transition, as obtained when quenching the Kondo coupling to its critical value, the
relaxation becomes polynomial rather than exponential. In this case, there is a critical
slowing down and a damped log-periodic behaviour which may be a sign of discrete scale
invariance.

For quenches to the screened phase we confirm that the leading QNM behaves as
w a —i(0)2 as seen in [17, 18]. The fact that the leading QNM is imaginary implies
that there are no oscillations about the new ground state, and the relaxation is over-
damped. For larger values of the condensate, i.e. at very low temperatures, we see a different
behaviour wa —iln(O), which corresponds to a deviation from mean-field behaviour. The
investigation of the zero-temperature behaviour will require a refinement of the model
corresponding to stabilisation of the IR fixed point by a quartic contribution to the scalar
potential on the gravity side, which we leave for the future.

In the model considered, the number of degrees of freedom at the impurity site is
represented by the charge density of the Abrikosov fermions. This is related to the size
of the spin representation. The charge density is holographically dual to the AdS2 gauge
field and may be written as the flux of the AdS2 gauge field through the boundary of
AdS2. Evaluating this flux at the black hole horizon then gives a measure of the effective
number of impurity degrees of freedom. In the condensed phase, we observe that this flux
is reduced, which corresponds to a gravity dual realisation of the screening. In this paper,
we study the time evolution of the flux after a Gaussian quench in the condensed phase
and observe that it decays exponentially, which corresponds to an exponential decrease of
the number of degrees of freedom after a quench. This models the time dependence of the
Kondo cloud formation at the impurity site.

Quantum quenches in the standard SU(2) Kondo model were recently studied within
condensed matter physics. These investigations include [19-23]. In particular, [19] deals
with the study of a quantum quench caused by the absorption of a photon by a quantum
dot, while [22] studies the universal behaviour of entanglement entropy after a quench of
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an impurity system. In [20], quenches in the pseudogap single-impurity Anderson model
are investigated using numerical RG techniques. The system reaches an equilibrium state
at late times. Furthermore, the spatiotemporal formation of the Kondo cloud after a
qguench was simulated in [23], where an emergent lightcone structure is observed. The
non-equilibrium correlation functions are determined by two different scales, initially by
the lattice Fermi velocity and by the Kondo temperature at late time. In our model
considered here, generically the Kondo temperature is the only scale. Generally, due to
the large N limit for the spin symmetry required in our holographic approach, comparison
to the condensed matter results is possible only concerning a limit number of aspects, in
particular due to the large N phase transition which is not present in the SU(2) case. The
large N limit implies that in the screened (condensed) phase, there are no oscillations of the
screening cloud and the relaxation of the condensate is over-damped. On the other hand, in

SU(2) Kondo quenches such oscillations are frequently present, as seen for instance in [22].

The paper [7]considers quenches in 3+1-dimensional holographic superconductors with
backreaction. Similarly to the present paper, for some parameter regimes an over-damped
behaviour is found. In contrast to those results however, here we generically find over-
damping whenever the final state is in condensed phase. This is due to the leading QNM
being purely imaginary in this phase, as expected from the presence of a Kondo resonance.
Moreover, [24] studies holographic quenches of a double-trace operator in arbitrary dimen-
sions, and the corresponding critical exponents for quenches through the phase transition
are obtained.

The structure of this paper is as follows: in section 2, we briefly describe the setup
of the holographic Kondo model of [8]. Some additional details about the analytical and
numerical treatment of the resulting equations of motion are relegated to appendices A
and B. We then summarise our results in section 3. We furthermore study quenches in
the normal phase in section 3.2, as well as in the condensed phase in section 3.3. In
section 4.1 we study the phenomenon of critical slowing down near the phase transition.
In section 4.2, this leads us to a study of the late-time behaviour of the system when the
end state is exactly at the phase transition. We end in section 5 with a summary and
an outlook.

2 Setup

2.1 Action and equations of motion

We consider the bottom-up model proposed in [8]. The bulk spacetime is that of a (2 + 1)-
dimensional finite temperature BTZ black brane,
-2/ \ z2

ds2 = Gnvdx~Ndxv = (—h(z)dt2 + + dx2), h(z) = 1-— N (2.1)
\Y / B

z h(z)

where —is the AdS3 radius, and z is the radial coordinate, with the boundary at z = 0 and
the horizon at z = zH. The temperature of the dual field theory corresponds to the black
brane’s Hawking temperature, T = 1/(2nzH). We apply the scaling symmetries available
to set zH = 1 and —= 1 for the rest of this work.
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The model of [8] has a non-dynamical co-dimension one hypersurface at x = 0, which
provides the gravity dual of the localised Kondo impurity of the boundary field theory.
The action consists of an AdS3 bulk contribution involving the Chern-Simons gauge field
A, and an AdS2defect contribution involving a complex scalar $ and a U(1) gauge field a,1

S = Scs + SAds2, (2.2)
Scs=-NJ tr (AAdA+ 2AAAAA, (2.3)
SAdS: = — J d2xV-g 4 fmnfmn+ g™ (Dm$)fDn$ + V($f$) (2.4)

where fmn = dman —dnam is the U(1) field strength, Dm is the gauge-covariant derivative,

Dm$ — (dm + iAm iam)$ , (2-5)

and the AdS2 metric g is the pullback of the AdS3 metric G to the hypersurface by the
immersion x = 0. The Roman indices m, n run over t, z. For the remainder of this paper,
we restrict to a U(1) flavour symmetry and thus the Chern-Simons contribution (2.3) to
the action becomes Abelian. The equations of motion are [8]

= N S(x)Jn, (2.6)

dm (V-ggmpgngfm) = Jn, (2.7)
dnJn = 0, (2.8)

dm {V—-99mndn4>) = V-gAmAm~" + 1 , (2.9)

where we parametrised $ = 0e” and defined

Jn = 2V—ggmnm 02, Am = am—Am —dm”", (2.10)

where greek indices run from 0 to 2 and latin indices from 0 to 1. Am are understood to
be the components of the projection of A to the hypersurface. Upon gauging Az = 0 and
requiring regularity of the CS field at the horizon, At(zn) = 0, only Ax remains nontrivial.
Hence, the projection of the Chern-Simons field to the defect hypersurface vanishes which
implies that A decouples from the rest of the fields. Due to this we are allowed to neglect
the CS field when solving for the fields restricted to the defect. In principle, the CS field
could be integrated from the solutions of $ and a.

The field content of the model defined by equations (2.2)- (2.4) is to be interpreted in
the light of the holographic dictionary outlined in [8, 16]. Specifically, the Chern-Simons
gauge field A is holographically dual to the chiral current of conduction electons ~ in the
boundary theory. Similarly, the gauge field a, which is restricted to the AdS: subspace at
x = 0, is dual to the charge of the slave fermions x that are restricted to the impurity at

An [16], a U(2) gauge group was assumed for the gauge field a, corresponding to a two impurity Kondo-
model.
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X = 0 in the field theory picture. The scalar $, charged under both the gauge groups of
the fields a and A, is then dual to the composite operator O = "%, which indicates the
coupling of the conduction band to the impurity. The potential term V ($t$) in (2.4) is
chosen as

V($f$) = M2$T$, (2.11)

with M 2 tuned to the Breitenlohner-Freedman bound to obtain the correct scaling dimen-
sions. At temperatures below a critical one, Tc, the scalar field exhibits an instability,
which leads to its condensation and thus a nonvanishing expectation value, (O) = 0. This
is interpreted as the formation of the Kondo cloud in the large-N holographic model we
consider here. We shall refer to the phase above Tc where the scalar does not condense as
the normal phase, and the phase below Tc where it does as the condensed phase. In the
condensed phase, the impurity is screened. Further details may be found in [8, 16]. Below,
we review only those previous results that are relevant in the context of this paper. We
present our new results on time dependence in sections 3 and 4.

2.2 Boundary behaviour and conditions on the Kondo coupling

In the normal phase T > Tc, the solution for the gauge field is given by

at(t,z) = Q + p, (2.12)

where Q denotes the electric flux at the boundary and p the chemical potential. As
explained in [8], Q defines the representation of the impurity spin and by following the
same conventions, we set Q = —2. |Q| is related to the number of boxes q in the spin
representation Young tableau by |Q| = q/N. In order to obtain regularity at the horizon,
we must set p = —Q. To be able to map our bottom-up model to the Kondo model, we
need to fix the scaling dimension of the scalar operator to be AO = 2, see [8]. As the scalar
field is restricted to live in an asymptotically AdS2 space, the scaling dimension is given by

ao=4dz+ "/df- , (2.13)

where we set d =1 [25]. It can be seen that the correct scaling dimensions can only be
obtained if we put the scalar exactly at the Breitenlohner-Freedman bound. W ith our
choice of Q, this means setting M = 0. The leading order behaviour of the scalar field near
the bounday is then given by

$(t,z) = (t,z) +i02(t,z) Vz (a(t)log(z) + 0(t)) + ... (2.14)

where a(t) = a1(t) + ia2(t) and 0(t) = 01(t) + i02(t) are complex functions of time. As was
shown in [8, 12, 16], the boundary condition for a boundary double trace operator KOOt
is given by requiring a = . Furthermore, it was demonstrated that an arbitrary energy
scale A has to be introduced due to the appearence of the logarithm in the boundary
expansion. The Kondo coupling k is running w.r.t. rescalings of A and eventually diverges
at low temperatures at the Kondo temperature TK = Ael/K/2n, which is invariant under
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these rescalings. We avoided this energy scale by rescaling z by zH, which renders the
radial coordinate z dimensionless. To avoid confusion, note that the notation of k, fi, a
in [8] differs from ours by a subscript (-)T, which we left out for convenience.

We impose a time-dependent boundary condition on the Kondo coupling K(t) = « 1(t) +
i K2(t) which is a real function of time, i.e. we set K2(t) = 0. The relationships between the
leading and subleading expansion coefficients at the boundary are hence given by

ai(t) = Ki(t) fii(t)  and  a2(t) = « 1(t) fi2(t). (2.15)

At the same time, the electric flux Q of the gauge field a is required to stay constant, which
is actually necessary to render the variational problem meaningful, cf. [18]. Together with
regularity at the event horizon, this fixes all boundary conditions for our system of partial
differential equations. After going through the holographic renormalisation procedure,
which was carefully constructed and carried out in [16], one finds2

(0) = -N fit. (2.16)

Since we are interested in the real-time dynamics of the scalar operator, fi will thus be the
main quantity we focus on below.

In equilibrium, the temperature measured in units of the Kondo temperature Tk can
be found from k1, and it is the same relationship as that given in [8]:

= exp(-1/Ki). (2.17)
Furthermore, we have from [18]
log = -2Re f £~ -iQ - log2, (2.18)

where H (z) is the harmonic number. For |Q| = 1/2, which is used throughout this paper,
we have

Kc = ki(Tc) = "2Re +log2” w 8.9796. (2.19)

To study how the system evolves given a Kondo coupling that is changing in time, we
investigate the time evolution of the expectation value of the scalar operator, (O(t)). We
consider time-dependent profiles for the Kondo coupling with a form of either a hyperbolic

tangent,
K

Ki(t) = Ki + — [tanh (s(t - to)) + 1], (2.20)

or a Gaussian,
K1(t) = Ki + Ak exp (—s(t —t0)2) . (2.21)
We consider the system to be initially prepared in an equilibrium state characterised by
the Kondo coupling Ki, which is then quenched to another state whose equilibrium is

2In [B], the expectation value of the dual scalar operator was identified as (O) <x a. See [16] for a
complete discussion of the difference.
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characterised by Kf. For a hyperbolic tangent quench, Kf = k + Ak, whereas for a
Gaussian quench, Kf = Kj. In both cases, the amplitude parameter Ak controls how much
ki can change during the quench. The steepness parameter s controls the speed of the
qguench, while the offset t0 determines the midpoint of the quenching process. We shall
refer to the set of parameters {kj, Kf, Ak, s, to} as the quench parameters.

In view of the numerical analysis, we change to Eddington-Finkelstein coordinates
and choose the radial gauge for the defect gauge field a. The numerical solution of the
evolution involves pseudospectral methods in the radial direction and an implicit evolution
method in the time direction. More details of the numerical implementation are given in
appendices A and B.

3 Results

3.1 Generic time evolution for phase transitions

Here we present examples which show the generic form of the time-evolution of the scalar
condensate as the system is quenched from one phase to a different one. The input to
the time-evolution problem is Ki(t), which we choose to have a hyperbolic tangent profile
as given in (2.20). Similar quenches of a double-trace coupling were studied in [24], but
in a different setting without defect. Given the quench profile of the Kondo coupling,
we solve the equations of motion to obtain the evolution of fil>2(t) and p(t), and extract
from it information about the condensate (O(t)). As we explain below, QNMs can also be
extracted from the time-evolution of the scalar condensate.

Figures 1to 3 show the time evolution of the scalar operator expectation value (O (t))
for a quench from the normal phase (T > Tc, k1 > Kc) to the condensed phase (T < Tc,
K1 < Kc). The profile for this “normal-to-condensed” quench, Knc(t), is shown in figure 1
(a). Figure 1 (b) shows the absolute value of (O(t)), and we see first a clear exponential rise
(figure 1 (c)), and then an exponential decay to a constant value (figure 1 (d)).3 Figure 2
shows finer details of the time evolution for the normal-to-condensed quench, k™c(t). We
see that (O(t)) oscillates and then settles exponentially to a non-zero value dictated by Kf
in the condensed phase. Note that appreciable changes in (O(t)) do not begin until well
after the end of the quench.

We model the time evolution of the scalar field using a QNM behaviour of the form

f(t) = ae-lut+ b, u=uR+iui, (3.1)

to fit our results, with u is the complex QNM frequency. The fit is depicted by the red
curve in figure 2, which agrees very well with the full numerical result given by the blue
curve. The initial behaviour just after the quench is described by a QNM with uR = 0,
leading to an oscillation profile, and with ui > 0, leading to an exponential rise indicating

3In the normal phase, the scalar condensate vanishes, (O) <x  =0. However numerically, zero is only
represented up to machine precision, i.e. a finite quantity is regarded as zero if its magnitude is less than
the machine precision. To avoid numerical artefacts at machine precision and to have a firmer control of
the numerical accuracy, we set fil(t = 0) = @(t = 0) = 10-10, which explains the initial plateau.
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2nTt
(a) Quench profile for K1 as given by eq. (2.20)
with parameters Ki = 9, Kf = 1, s = 1/10, and
2nTto = 50.

(c) Log plot of (b), indicating the exponential in-
stability.

nTt

(b) Time evolution of the absolute value of (O).

(d) Log plot for the deviation at late times, indi-
cating the QNM ringdown to the equilibrium value
for the new coupling Kf = «™c(ro).

Figure 1. Typical numerical evolution of the scalar operator (b) for a quench from the normal
to the condensed phase (a). Note the different time scales involved due to the instability mode (c)
and the QNM ringdown to the final equilibrium (d).

Figure 2. Time evolution of the real and imaginary part of (O) (a), and the normalised absolute
value of Re (O) (b) for the normal-to-condensed quench, k"c(1). The red curve in (b) is a numerical
fit to the unstable QNM behaviour of the form given by eq. (3.1), with w/ > 0.

an instability. Physically, this comes about since the quench is driving the system out of
the normal phase, and instabilities must occur prior to the formation of a scalar condensate
leading to the new stable ground state. Just after the quench, the dominant QNM is thus
associated with the instability of the normal phase. We will make this more precise in the

next subsection.
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2nTt

Figure 3. Time evolution of At = y —dtb0 for the normal-to-condensed quench K"c(t).

On the other hand, the relaxation at late times is described by a QNM with w/ < 0
and wR = 0, i.e. a pure exponential decay. Such behaviour is expected as the system reach
near its final equilibrium state, and is controlled by the QNM of the final state, see e.g. [26].
Note that this exponential decay is governed by the lowest-lying QNM, i.e. one with the
smallest |w/l. Higher QNMs would produce much faster decays than that from the lowest
QNM, which would be exponentially suppressed in comparison, and not be visible at late
times. Note also that since the time-evolution is described by the QNMs, its time scales are
given by the appropriate w-1 in the appropriate regime. These scales are all long compared
to the time scale of the quench profile.

Figure 3 shows the time evolution of the gauge invariant quantity At = y —dtQo0,4 for
the normal-to-condensed quench K™ (t). It starts out at & 1/2 since in the normal phase
b(0) = 1/2 and the phase rotation dtQO is approximately zero if the coupling parameter
Ki = 9 is close to its critical value. As the system is quenched, At rises to an intermediate
plateau. This is due to the fact that an instability mode of the normal phase is turned on,
whose imaginary part is just the phase rotation velocity. Eventually at 2nTt & 200, the
scalar field becomes macroscopic in size, see figure 1b. This causes backreaction on At,
which then drops to a new asymptotic constant value for 2nTt > 200.

Let us now turn to a quench from the condensed to the normal phase, as shown in
figure 4to 6. The profile for the condensed-to-normal quench, Kfn(t), is shown in figure 4a.
Figure 4b shows the absolute value of (O(t)), and we see now a clear exponential decay to
zero right after the quench, as expected for the scalar in the normal phase.

Figure 5 shows finer details of the time evolution for the condensed-to-normal quench,
kln(t). We see that (O(t)) oscillates and then settles exponentially to zero in the normal
phase. Again, the time evolution is very well described by the QNM behaviour of the form
given by eq. (3.1). This time, the governing QNM is the lowest-lying in the normal phase
with w/ < 0. Note the period of the oscillations is much longer (by one to two orders of
magnitude) compared to the normal-to-condensed quench since here, |w/1 is much smaller.

Interestingly, the QNM behaviour takes over almost immediately after the quench,
rather than at late times. There does not appear to be a nonlinear regime between the end
ofthe quench and the start of the ringdown. This appears to be a universal feature of holog-
raphy, where strongly-coupled systems are modelled by dual gravitational dynamics [26, 27].

4The quantity bo is the leading order expansion coefficient of the phase of the scalar field, and is given
by bo = arctan ("2(t)/"i(t)).

- 10 -
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Figure 4. The quench profile (left) and the time evolution of the absolute value of (O) (right) for
a quench from the condensed to the normal phase. The quench parameters are k =8, Kf rc 10.7,
s rc 0.022 and 2nTt0 rc 447.

Figure 5. Time evolution of the real and imaginary part of (O) (left), and the absolute value
of Re (O) (right) for the condensed-to-normal quench, Kc~(t). The red curve in the right plot is a
numerical fit to the lowest QNM ringdown of the form given by eq. (3.1).

2nTt

Figure 6. Time evolution of the gauge invariant quantity, At = p —dt-0o.

Figure 6 shows the time evolution of the gauge invariant quantity At = p —dt~ 0 for the
condensed-to-normal quench Kin(t). Compared to the normal-to-condensed quench, there
is no plateau or basin structure seen between the initial and the final equilibrium values
of At. The value of At does not asymptote to pc= 1/2 (for Q = 1/2) due to the ongoing
phase rotation of the scalar field, whose velocity asymptotes to a constant which matches
the offset in 6. This offset arises from the real part of the lowest QNM of the normal phase.
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3.2 QNMs in normal phase

By the holographic correspondence, the QNMs of the scalar fluctuations are related to the
poles of the two-point function of the dual scalar operator O. In the normal phase, these
poles are analyically given by [17]

ktSw) = - logTK = H(-1+iQ - i2nT) + H(-2- iQ) + log2m (3-2)

For complex frequencies, kt (w) is a complex function. As the temperature is lowered,
poles in the lower half of the complex w-plane move up towards the origin, arriving there
at the critical temperature, Tc. They cross into the upper half plane below Tc, signalling an
instability [17]. This is qualitatively similar to the behaviour of the lowest-lying QNMs in
holographic superconductors [7, 28]. The critical coupling at which phase transition occurs
is thus kt (0) = kc, the same critical value as that given in eq. (2.19).

Figure 7 shows a contour plot of the magnitude of the Kondo coupling, |k|, on the
complex w plane. The dashed curve traces out a path on which k is real. Following this
curve, we have k > kc (T > Tc) in the lower half plane, k < kc (T < Tc) in the upper half
plane, and k = kc at the origin as expected. The right of figure 7 shows a blow-up of the
region in the contour plot around the origin marked by the red square. The QNMs found
numerically from fitting the time evolution of the scalar condensate to the QNM behaviour
given by eq. (3.1) are marked by the red dots. Those coming from fitting the exponential
rise in the normal-to-condensed quench give QNMs in the upper half plane, while those
from the exponential decay in the condensed-to-normal quench give QNMs in the lower half
plane. We see that they fall perfectly on the dashed curved analytically given by eq. (3.2),
indicating that it is indeed the normal phase QNM associated with instability that governs
the exponential rise seen in figure 1, and the lowest QNM in the normal phase that governs
the relaxation seen in figure 4.

Note that close to Tc, QNMs in the normal phase can be found analytically [18]. In
particular, the lowest QNM is given by

2rtTc = Q (2 +iQ) (% “ 0 (3.3)

which implies a relaxation time scale
T- w-1- T- (T —" , T >Tc, (3.4)

and we have used the fact that Tc —TK for |Q| = 1/2.

3.3 QNMs in condensed phase

In the condensed phase, the two-point function of the scalar operator, as well as the associ-
ated QNMs, can be found by solving a coupled system of fluctuation equations. Close to Tc
when the scalar condensate is small, the QNMs can also be found semi-analyically, see [18].

Here, we obtain QNMs in the condensed phase in yet another way byfitting the relaxation

of (O) after Gaussian quenches, and we find excellent agreement to those found in [18].
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(a) Contour plot of |k|in the com- (b) Blowup of the red square in (a). Red dots indicate QNMs
plex frequency plane. W hite space extracted from numerical fitting at different temperatures. W hite
denotes cropping for values |k| > 2. space denotes cropping for values |k| > 100.

Figure 7. Contour plot of |k(w)| over the complex w-plane. A blow-up around the origin is shown
in (b). Along the dashed curve k(w) is real. The contours denote constant values of |k|, with the
colour scale indicating the value. The contour k(w) = kc intersects the dashed line at the origin in
(b). The red dots are lowest lying QNM found from fitting the time evolution of the scalar operator
after the quench to the QNM behaviour defined in eq. (3.1).

Figure 8a shows the lowest QNMs, i.e. QNMs closest to the real axis, found from fitting
the relaxation at late times after a quench from states initially in the condensed phase at
various T < Tc. We see they are all purely imaginary, and move down the imaginary axis
as the temperature is lowered, all in agreement with [18]; the relaxation of the condensate
is then a pure exponential decay without oscillations. Figure 8b exhibits the temperature
dependence of the lowest QNM in the condensed phase, when the temperature is normalised
by Tc. We see that this purely imaginary mode first moves down the imaginary axis as
temperature decreases below Tc and then turnes back up towards the origin. This shows
that the system experiences critical slowing down both as T ~ Tcand as T ~ 0 (see
section 4.1 for further discussion of this phenomenon in the T ~ Tc limit).

The over-damped relaxation behaviour has been seen before in [6, 7], which performed
the quench differently and employed a different quench protocol.5 In particular, in [7] the

5The quench were enacted through the source of the dual scalar operator, and Gaussian quench protocol
were used.
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(a) Normalised to 2nT and shown in complex plane. (b) Normalised to 2nTc and plotted vs. T/Tc.

Figure 8. The lowest QNMs extracted from fitting the relaxation behaviour after Gaussian
quenches in the condensed phase characterised by 0.008 < T/Tc< L

(a) Behaviour for T < Tc. The dashed line is a linear (b) Fulltemperature range from T/Tc= 1down
fit for the region 1 > T/Tc > 0.998 passing through to T/Tc« 0.008. The dashed line is a fit for the
the origin. region T/Tc < 0.33.

Figure 9. Functional dependence of the lowest QNM on K2(0O)2 in the condensed phase.

lowest (most dominant) QNMs that encode the relaxation at late times were also seen to
move down the imaginary axis as temperature were lowered below Tc. However in [7], a
regime of damped oscillatory relaxation were found for some T* < Tc, at which point the
previously sub-dominant QNMs become the dominant ones. We note that backreaction is
icluded in [7]. For our kind of quench, we have not found such damped oscillatory regime
within the temperature range where the probe approximation is valid. To explore whether
such regime exists for our quench in our system at even lower temperatures would require
the inclusion of backreaction, which is beyond the scope of the current work.

Figure 9 shows how the lowest QNM vary as a function of k2(0)2. Close to Tc, we find
that the lowest QNM has a linear dependence on K2(O)2/N 2,

w/ = 6k?(0)2/N2, b& —18.7, (3.5)

where b is found from a numerical fit. This value of b is very close to that in [18]. The
difference is about 6%, and is due to the slight differences in the data being fitted. Deviation
from this linear relation began to be visible for T > 0.988Tc. Note that from [8], (O) a
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(Tc—T)1/2 for T < Tc. Given T/TK = e 1/ki, this implies a relaxation time scale

b T / T\ -1
T- w-1- — log2— "~ —-] , T < Tc. (3.6)

Interestingly, at low temperatures we observe a switching to a logarithmic dependence from
the linear one found close to Tc:

NT =blog(STN*) m b" —0-14m (3-7)

Such log behaviour would indicate a deviation from mean-field behaviour. To understand
the origin of this log behaviour and be sure that it persists all the way down to T = 0
requires a study of the IR behaviour around zero temperature. This requires, however, the
inclusion of full backreaction and stabilisation of the scalar at the IR fixed point,6 which
is beyond the scope of the current work. We plan to address these questions in the future,
which are also interesting in the context of finding the zero-temperature impurity entropy
at the defect [14].

3.4 Evolution of the screening of the impurity

One particular goal of the analysis presented is to obtain the time evolution of the screen-
ing due to the formation of the Kondo cloud. According to [8], the electric flux at the
asymptotic boundary and the event horizon provides a measure of the number of impurity
degrees of freedom in the UV and the IR, respectively. Its decrease thus corresponds to the
screening of the impurity in the IR. This is due to the fact that the flux involves at, which
is dual to the charge density determining the size of the SU(N) spin representation. The
electric flux at the event horizon is a quantity that may be traced in Eddington-Finkelstein
coordinates. Although there is no straightforward map of horizon dynamics to the bound-
ary, the decay constant of the horizon flux still encodes information about the decrease of
impurity degrees of freedom.

In our choice of coordinates and gauge fixing (see appendix A), av(v,y) is proportional
to the electric flux. We define a new variable D by

2V 39

which starts out at zero at t = 0 by construction and becomes nontrivial during a generic

D
D

quench. In figure 10, we show the evolution of D for a Gaussian quench around k1 = 1
and k1 = 8.5, respectively. We observe an initial rise due to the Gaussian quench which
takes the system toa state with smaller condensate, andsubsequently an exponential decay
which corresponds to thereduction of impurity degrees of freedom due to screening. For
the Kondo coupling k1 = 8.5 shown in figure 10b, which is closer to the phase transition,
there is a plateau at intermediate times which is a sign of the onset of critical slowing-
down near the phase transition. Fitting the evolution at late times to an exponential decay

6This can be done, for example, by adding a quartic term to the scalar potential in (2.11).
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Figure 10. A log plot of D as defined in (3.8) for different Gaussian quenches, showing the late-
time exponential decay of the effective IR degrees of freedom due to screening. Signs of critical
slowing down can be seen in (b) as the system is close to the critical temperature Tc.

reveals that it is governed by a QNM which, not suprisingly, coincides with the complex
frequency obtained by analysing the time dependence of boundary quantities. Of course,
it would be interesting to examine further observables that contain information about the
evolution of the screening, in particular the evolution of the Kondo cloud in the spatial
direction ambient to the defect (i.e. in 1+ 1 dimensions). This will allow a comparison to
the Kondo cloud evolution obtained e.g. in [23]. This may be obtained holographically with
methods proposed in [14], however for time-dependent couplings. It requires to include the
backreaction of the geometry to the field content on the defect hypersurface. This is left
for future research.

4 Critical behaviour

In this section we consider quenches for which the final value of the Kondo coupling k
is either very close to or exactly at the critical value kc where the phase transition takes
place. In the former case, we find the expected critical slowing down. In the latter case,
instead of an exponential decay we observe a polynomial one. In particular, looking at the
real and imaginary parts of the condensate separately, we observe a so-called log-periodic
oscillation, which is a sign of discrete scale invariance.

4.1 Critical slowing down

In subsections 3.2 and 3.3, we saw that w/ ~ 0 as the phase transition at k = kc is
approached. This implies that near the phase transition, the characteristic time scale
t = w-1diverges, a well known phenomenon known as critical slowing down. Specifically,
the theory of dynamic critical phenomena (see e.g. [29] and [30-33] for a holographic
context) suggests a divergence of the form

-- (m r ‘4.,
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where z and v are critical exponents. For holographic superconductors, it was found that
z=2 and v=1 (4.2)

independently of the dimension [31- 33].7 As the Kondo model under consideration resem-
bles a holographic superconductor in AdS2 space, we expect it to fall into the same uni-
versality class, i.e. to have the same critical exponents (4.2). This is indeed the case, as we
discuss below. This is non-trivial in the sense that generally, the Coleman-Mermin-Wagner
theorem [35, 36] precludes phase transitions in low dimensions. However, this theorem
does not apply in the large N limit where long-range fluctuations are suppressed [37]. For
comparison with higher dimensions we note that also in [24], the exponents (4.2) were
found in a holographic model involving a double-trace operator in a background spacetime
with black hole horizon.

The holographic Kondo model shows a behaviour of the form (4.1) with an exponent
zv = 1, as expected from (4.2). To see this, we begin with the uncondensed phase, where
equation (3.2) holds. Linearising this about w = 0, we obtain

k(w) = Ko+ KL)W+ O(w2). (4.3)

Here, we have defined the constant

k@D = 7o K2 =3) A« —189.64 + 63.20i, l4.4)
(H_22 + Y+ log(2)+ 1—2)) 2

where ~ (n) is the polygamma function and y is the Euler constant. For complex w close to
zero and real k —kc, we hence see

t - W_ = - 1— W—-V. (45)
(k- Kc)Im
Using t —17£T:1 e k, this yields the result
G — Trr ( ) 1, (4.6)
Kelm (k« U

consistent with the expectation based on equations (4.1) and (4.2). This analytic argument
described the critical slowing down for T > Tc, however the critical exponents z and v can
be defined for both the normal and the condensed phase. In the latter case, where T < T,
we do not have analytical results for the relaxation of the system, but as figure 8b shows,
our numerical results indicate that at T < Tc,

t-w1- () 1. (4.7)

This again agrees with the expectation from equations (4.1) and (4.2).

7See also e.g. [34] for a non-holographic study of critical exponents in superconductors.
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4.2 Power-law behaviour and discrete scale invariance at the critical point

Above we saw that due to the critical slowing down, the time scale governing the expo-
nential decay of perturbations of the system diverges as «k ~ «kc. In the following, we
investigate the evolution of the system as we quench the Kondo coupling «1 from the
condensed phase k1< kcright onto the critical value k1= «c.

The numerical results for a quench of this type are shown in figure 11, where we show
the time-dependent behaviour of M 1(t) and ,02(t) after the quench. We clearly see that
the values relax to zero for late times, i.e. that the systems settles to the solution $ = 0
as appropriate for the onset of the normal phase. At first glance, the curves in figure 11
appear to look qualitatively similar to the QNM depicted earlier, e.g. in figure 5. However,
there is a significant difference: figure 5 is a log plot and shows a behaviour —Re (e-iwt)
with complex w, while in contrast figure 11 is a log-log plot and hence shows a behaviour

A (t) —Re (e-iulogt)) = Re (t-iv) = tVIcos(vr log(t)), (4.8)
& (t) —Im (e-iulog(t)) = Im (t~iV) = —tul sin(ur log(t)). (4.9)

Specifically, from the data of figure 11 we may read off
u/ ~ —0.502 and uR « 1.51, (4.10)

both of which are less than 1% off the fractional values of u/ = —1/2 and uR = 3/2.
When quenching the system to a final value K/inal < kc or K/inal > «c, the results of
the earlier sections 3.2 and 3.3 suggest that we should expect an exponential fall-off with
decreasing exponent w as k » «kc. Our numerical results show that for K/inal = «c, the
naively expected infinitely slow exponential decay gives way to a power law behaviour of
the form (4.8).

In fact, late time power-law tails are common in the study of QNMs. However, they
are often associated with the QNMs of asymptotically flat black holes, see e.g. [38] for a
review. In asymptotically AdS spaces in contrast, power-law tails of QNMs are usually
absent [39]. Furthermore, while in [38] a number of systems are mentioned that exhibit
QNMs with power-law tails of the form t-a sin(/ff), in (4.8) we observe a so-called log-
periodic (damped) oscillation. Here, the amplitude of an oscillating function decays as
a power law (—t-a), while the oscillation takes place in logarithmic time (—sin(blogt)).
This behaviour is known to be characteristic for systems exhibiting discrete scale invariance
and the associated complex critical exponents, see [40] for a review. In short, discrete scale
invariance means that a theory is invariant under scale transformations only for specific
scales, i.e.

Odsi(x) = /(Odsi(Ax) (4.11)
only for specific scales A In general, the solution to (4.11) may then take the form [40]

/ log A 2
Odsi(x}a x", a= —9, 2L (4.12)
log A log A
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hence the connection with complex exponents and log-periodicity. This phenomenon has
been observed8 in a wide range of physical systems, including stock markets and earth-
quakes (see [40] and references therein for these two examples), but also quenches in
condensed matter models [41], black hole formation [42-45] and even holographic mod-
els [46- 48]. See also [49] for a recent application of discrete scale invariance in QFT toy
model building. We observe that in our model, similarly to what was found in [44, 45], the
discrete scale invariance, i.e. the presence of a non-zero Ur in (4.8), manifests itself in form
of a phase rotation

t —At (4.13)

a(t) . a—#R a(t) (4.14)
la(t)] la(t)].

The quantities |a(t)|] and |0(t)] hence do not show any signatures of discrete scale invari-
ance, only a power-law fall-off determined by u/. The physical variable in the holographic
Kondo model is of course the complex vev 0(t) ~ (O) (2.16). Hence while the modulus
| (O(t)) | decreases as a power-law, its complex phase rotates with ~ logt. Equivalently,
we see that the (bulk) gauge-invariant quantity At =y —d00 falls off towards the limiting
value At = 1/2 as ~ t-1.

A definitive interpretation of how the discrete scale invariance arises in the model un-
der investigation cannot be given just based on the numerical results presented, and it is
not possible to determine what sets the corresponding scale. Starting from the observa-
tion (4.8), we propose an ansatz of the form

01(t, z) = tVI™ cos(uRlog(t))0(z) + O(tx,x < u/ " < 0), (4.15)
02(t, z) = tVI™sin(—Urlog(t))0(z) + O(tx,x < u/,N < 0), (4.16)
at(t,z) = Q +y + O(tx,x < 0) (4.17)

and insert it into the equations of motion (2.6)- (2.9), using —Q =y = 1 as throughout
the paper. In this way, we obtain the lowest-order equation

4z2h(z) (h/(z)(M(z) + h(z)0"(z)) + (z —1)20(z) = O (4.18)
for 0(z), which has the two independent solutions
7 I 2z |/ 4z \/ 7 1 Z /1 i1 i 2z \
Oreg = V znP—2+2{zn- and (7irreg v z + 1 2FH 2-2,2+2;1;zn),
(4.19)

where Pn(x) stands for the Legendre polynomial of the first kind and 2F1 is the hyper-
geometric function. We find that Oirreg diverges at the event horizon z = zH = 1, and

8Note, however, that in many of these examples it is not the time variable t in which log-periodic
oscillations is observed.
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consequently the physical solution to (4.18) is given by const. x Oreg, with no further
parameter to adjust boundary conditions. The boundary expansion of (breg reads

~reg(z) ~ const. x /Z (log(z) + (h-1+i + H-1-i + log(2)j .." , (4.20)
implying
Ki= H Qi‘z + H 1|22l+log(2) = <421)

see equations (2.15) and (2.19). We have hence proven that a power law ansatz such
as (4.16) can only solve the equations of motion if the boundary condition is fixed at the
critical value k = kc. However, the lowest-order equations obtained via the ansatz (4.16)
do not fix the parameters vi,$ and vr”. Presumably this would require the appropriate
inclusion of higher orders into the ansatz.

The analytic study of power law tails of QNMs is an important subject, for exam-
ple concerning the question whether these tails are intrinsically non-linear phenomena,
see again [38] for an overview. There exist specialised analytical methods to treat these
problems [50], and the methods employed in [44, 45] may also have applicability to our
system. Dueto the possible importance of higher-order effects, a fullanalyticalanalysis
of the emerging log-periodic behaviour of our system is howeverbeyond thescope of the
present paper, and will be left to future investigations.

5 Summary and outlook

51 Summary

We have studied quantum quenches in a holographic Kondo model. We solved the full time-
dependent dynamics of our model numerically using spectral and finite difference methods,
and we studied the relaxation of the system under various quench protocols. We found
that the relaxation is determined by the lowest QNM of the initial state of the system,
which describes an exponential decay, with an additional oscillatory profile for quenches
to the normal phase. The lowest QNM provides an excellent description of the relaxation
of the system not only at late times, as one expects close to equilibrium, but also almost
immediately as the system begin to relax after the quench of the Kondo coupling: there
does not appear to be any appreciable region in the onset of the relaxation that is not
described by the lowest QNM. This seems to be a generic feature in holographic systems
modelling strong dynamics. Most importantly, we found that in the condensed (screened)
phase, the leading QNM is purely imaginary, which corresponds to over-damping. In a
temperature region below Tc, we have w a -i{O )2. This is consistent with expectations
from the behaviour of the Kondo resonance [18]. At low temperatures, we see a deviation
from mean-field behaviour, wa —ilog({O)).

The time-dependence of the flux through AdS2 at the black hole horizon, which is dual
to the size of the impurity representation, describes the decrease of degrees of freedom after
a quench to the condensed phase. This corresponds to a measure for the formation of the
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(a) Log-linear plot of (O) vs. time. (b) Log-log plot of (O) vs. time.

(c) Log-log plot of |(O)| vs. time. (d) Log-log plot of At vs. time.

Figure 11. A log-linear (a) and log-log (b) plot of a\ and a2 as functions of time. Below, we see
log-log plots of the gauge-invariant quantities At = p.—d”0and 0 = (O)/N which are not featuring
any oscillations in (logarithmic) time.

Kondo cloud at the site of the impurity. We found the decrease of degrees of freedom to
be exponential.

In section 4.1 we studied in more detail the critical slowing down of the system near
the phase transition at T = Tc, and showed the corresponding (combination of) critical
exponents to be zv = 1, just as expected from the similar holographic models [24, 30- 33].
However, we also pointed out that due to the low dimensionality of our model, great
care is required when interpreting critical exponents and their (hyper) scaling relations.
Interestingly, the critical exponents of a large N Kondo-Heisenberg lattice near a quantum
critical point have been studied in [51, 52], with the result z = 3.

Section 4.2 was then denoted to the study of quenches that lead directly to the critical
point, k » kc. Our numerical results for quenches of this type, displayed in figure 11, show
a damped log-periodic behaviour of the form (4.8). This log-periodic behaviour is known to
be a telltale sign of discrete scale invariance, reviewed in [40] and observed in holographic
models already in [46-48]. Unfortunately our numerics alone do not offer insight into
the underlying mechanism causing the emergence of this phenomenon, and a lowest-order
ansatz for the late time solutions of the equations of motion does not fix the involved
complex critical exponent. A full analytical treatment of this interesting problem is hence
left for future study. We note that in [46, 47], it was speculated that the emerging discrete
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scale invariance is connected to the physics of a near-horizon AdS2 region. Similarly, in
our model, we are effectively working with an asymptotic AdS2 spacetime. This seems to
imply that an AdS2 structure is advantageous to the emergence of discrete scale invariance
in holographic model. This may have interesting implications for the Sachdev-Ye-Kitaev
(SYK) model [563-55]. We note that the SYK model and the model considered in the present
paper are related by the fact that the Sachdev-Ye model of [53] is derived by writing a spin
Hamiltonian in terms of the Abrikosov pseudo-fermions x also used in the context of this
paper, and reducing to an effective model in 0+1 dimensions by appropriate averaging.
This results in a quartic model for the x’s. The major difference between the model of the
present paper and the SYK model is that here, we break conformal symmetry explicitly
by switching on the double-trace Kondo operator. This is a prerequisite for observing the
phase transition described, which consequently is not present in the SYK model.

5.2 Outlook

One obvious generalisation of our approach will be to investigate quenches and other time-
dependent phenomena in the holographic two-impurity Kondo model of [16]. Moreover, it
will be instructive to study the T = 0 limit in further detail. This requires to add a quartic
term to the scalar potential in order to ensure a well-defined IR fixed point and a finite
condensate for T ~ 0 (see also [14]).

Also, as pointed out above, the emergence of discrete scale invariance for critical
quenches k » kc deserves further study. In fact, we see from figure 8b that in the condensed
phase wi ~ 0 not only for T/Tc ~ 1, but also for T/Tc ~ 0. This seems to indicate
that in the holographic Kondo model, critical slowing down does not only occur near the
phase transition at T = Tc, but also at T = 0. Whether this critical slowing down at
zero temperature will be accompanied by similar log-periodic oscillations to those that we
found at T = Tc is however not clear. This requires a further study of the T ~ 0 limit in
a model which ensures stability of the IR fixed point, as described above.

One interesting further direction may be to combine the study of time-dependent
phenomena in the holographic Kondo model of [8, 16] that was carried out in this work
with the study of backreaction and entanglement entropy done in [13- 15]. In particular,
in [14, 15], it was shown that in the backreacted holographic Kondo model, there is a natural
geometric length scale that takes the role of the Kondo scale . A study of a holographic
model allowing for both time-dependence and backreaction may hence allow the study of
the characteristic time and length scales involved in the formation of the Kondo cloud in
a similar way to what was done in [23] on the field theory side. Futhermore, calculations
of the time-dependence of entanglement entropy after a quench in the holographic Kondo
model may be compared to the results of field theory studies such as [22].

Finally, recently there appeared models of Kondo physics in the context of QCD [56]
and Lorentz violation [57]. By adapting the methods of this paper, we expect that quenches
in these models can also be studied holographically.
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A Gauge fixing, coordinates and field redefinition

We apply the radial gauge for both the gauge field a on the (1 + 1)-dim. defect manifold
as well as the Chern-Simons field in the (2 + 1)-dim. bulk. Regularity of the Chern-Simons
field implies At| = 0 which prolongs to At = 0 throughout the bulk after imposing
the equations of motion. Hence only Ax is non-trivial. As it is orthogonal to the defect
manifold, it does not appear in the equations of motion for neither the scalar nor the gauge
field. Thus we may neglect the Chern-Simons field in our analysis.

As already mentioned around eq. (2.14), the asymptotic behaviour of the scalar field
in Schwarzschild-like coordinates is given by

0i(t,z) » /z (ai(t) log(z) + @i(t)) + 0(z3/2) (A.1)

as we approach the AdS boundary at z = 0. The difficulty in dealing with the equations
numerically is this non-analytic boundary behaviour.

We address this issue with a field redefinition and a change of coordinates. The change
of variables can get rid of all (non-analytic at z = 0) terms in the boundary expansion
if we let y2 = z. With this definition the boundary and horizon are aty = Oandy = /H ,
respectively. This redefinition only changes the log terms by a factor of two, however, so
the fields are still non-analytic at y = 0. In terms of the old coordinates, we define the new
differentials to be

dt = dv+ 2ydy, dz = 2ydy. (A.2)
h(y)
The metric (2.1) becomes
ds2= 41 (—h(y)dv2—4ydvdy + dx2) , (A.3)

where h(y) = 1 —y4. Note that v and t have the same level sets at the boundary, y = 0,
so that we can simply replace them when analysing boundary properties. The radial
gauge az = 0 in Schwarzschild-like coordinates translates into ay = 2yav/h(y) in our
adapted EF-like coordinates. We decompose the scalar field into its real and imaginary
part $ = 01+ i02. Applying this ansatz, the relevant equations of motion (2.6)- (2.9) are
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explicitly given by

n *2t 4d y d v (1 + 3y4)dyO0i 2y (02dyav + 2avdy02) , ,

0=ay01- - .. m A

n  x2m 4dydv02 (1 + 3y4)dy02 , 2y (Oidyav + 2avdyOi)

0=@®02"W ») yh(y) + hhoy> . (A-5)
3 4

0 = dy2av + y dyav - (02 dyOi - 01 dy02), (A.6)

0 = dydvav + y3av (02+ 02)
2
- y4 ([h(y) dy0i +2 y dv0i]02 - Qi [h(y) dy02 + 2y dv02]) , (A7)
where, as anticipated, the Chern-Simons field does not enter the equations of motion of
the fields restricted to the defect.

The next step is a field redefinition where we subtract a number of dominant log terms
in the boundary expansion. If we subtract enough terms, the redefined fields will have
regular second derivatives at y = 0. This also means that the non-analytic contributions
from the log terms only appear at higher order. By applying (2.15), the v-dependent
boundary expansion of the remaining fields looks like

0i(v,y) ~ Pi(v)y (1 + 2Ki(v) logy)
+y3 (a(@)(v) logdy +---—+a(i)(v) logy + a(0)(v)) + (A.8)

av (v,y) ° 2y + Mv) + ¢(3)(v)log3y-+------ +c(i)(v)logy
+y2 (d@(v) logdy +--—-—-- +d(@i) (v) logy+ d@)(v)) + ..., (A.9)

where a(k)(v), c(k)(v) and d(k)(v) are functions of 0i(v), Ki(v), ~(v) and their derivatives.
We choose to subtract all terms containing a logy and divergent terms up to O(y3). In
other words, we define

Oi(v,y) = 1 (0i(v,y) - sgn , (A.10)
av(v,y) = av(v,y) - s(*v), (A.11)
where
s(™) = 2y 0i(v) Ki(v) logy + y3 (a(4)(v)logdy +------- + a(i) (v) logy), (A.12)
s(“v) = - %’\2 + ¢(3)(v)log3y +----- +c(i)(v)logy, (A.13)
y
+ y227d(4)(v) logdy +---—--- +d(i)(v)logy) + ... (A.14)

These tilded fields have regular second y-derivatives on the domain 0 < y < 1. More-
over, the boundary value of Oi is 0i and the boundary value of av is *. With these redefi-
nitions the equations of motion become too long to reproduce on the page here. However,
they involve only fields and derivatives that are regular, which provides some numerical
stability.
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B Numerical evolution scheme

Our goal is to find solutions in which we give k1 a v-dependent profile. We always start
from a static solution, so the assumption is that k1 is constant for all v < 0. At v = 0,
k1(v) becomes a time-dependent function which smoothly connects to the initial constant
value. This function could be a Gaussian or a hyperbolic tangent, for example. By solving
the equations of motion, we find the resulting motion of the fields and, consequently, the
coefficients ~1(v), ~2(v) and y(v) in (A.9) and (A.8). We use an implicit Crank-Nicholson
integration method in v and pseudospectral methods in vy.

The first step is to find the static solution to the equations of motion. For that, we get
an initial guess for the solutions by using the shooting method: we choose the initial value
of k1, then adjust 1, ft2 and y until integration of the solutions from boundary to horizon
yields solutions that are regular everywhere. After that, we discretise the equations of
motion and solve the resulting non-linear matrix equations with the output of the shooting
method as initial guess. More precisely, the equations are discretised on Chebyshev-Lobatto
collocation points, starting at y = e and ending at y = 1 —e. Differential operators are
replaced by pseudospectral differentiation matrices. For N collocation points, the fields
are discretised to (<)1,..., ((D n and similarly for (2 and av.

Since we know the boundary expansion for each of the fields, the first component of
each can be replaced by that boundary expansion up to a given order, which will be made
up of terms containing 1, 2, k1 and y, only. We apply a numerical algorithm to solve for
the 3N components ((1)2,..., ((On, ((2)2,..., ((2)n, (&Vv)2,..., (av)n, (1, (2 and y.

For our purposes, we found that it is sufficient to consider N = 50 points, e = 10-3
and to cut the boundary expansion at next-to-leading order.

Starting with the static solution found in the previous section, we can use a time-
marching method toevolve the solutions in v. We discretise thespacetime inthe v-
direction, using an evenly-spacedgrid of step size Av. Theequations are stiff, soweuse
implicit methods. We use Crank-Nicholson, which has an error that is second order in the
Av. We start with the static solution at vo and earlier, so that the fields and coefficients
at vi equal the fields and coefficients at v0 for i < 0. At each step we then calculate the
new fields and coefficients at vi+1 from the values on the previous time slices.

So far this is general. The Crank-Nicholson method specifies precisely how we calculate
values on v-slice vi+1. We use the equations of motion and discretise them in the following
way. For f e j(O-,y), (2(-y), av(my), (2,yj we make the replacements

f(v) A f(vitl)

dvf (v) A 2 F (Vit1A—F (vi) —dvf (vi)

2/ (vi+l)- fvi) Q f(v.)
d2f(v) » 2 A — d2f(vi) (B.1)

where for each v-derivative at slice vi+ 1 we use the substitution rules to make a replacement
until the equations contain no v-derivatives evaluated at vi+1. Note that even though the
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original equations were first order in v, the equations for the tilded fields contain higher
derivatives of the coefficients 21, 2, k and vy.

The discretised equations of motion are used as follows. We know the values of the
fields and their derivatives at v-slice i. Initially we use the static solution and set all the
v-derivatives to zero. If we substitute in these numerical values, the discretised equations
of motion are then algebraic in values of f at vi+1l. We solve for these new values, store
them, and also use equations (B.1) to find the v-derivatives at vi+1.

Solving for the field values at vi+1 is similar to the static case. We first discre-
tise the equations in the z-direction as well, getting 3N equations. We then replace
(<1 (vi+ D)1, (<2(vi+l1)1, and (av(vi+1))1with their (v-dependent) boundary expansions and
solve for the 3N components (01(vm ))2,..., (01Cg+1))n, (02(vi+1))2,..., (02(vi+O)w,
(fiv(vi+1))2, ..., (filv(vi+1))w, A (vi+1), "2 (vi+1) and y(vi+1). We adjust Av for each quench
such that the shortest time scale appearing in the respective run is well resolved. All of
the discussed algorithms were implemented and computed in M athem atica.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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