
University of Helsinki
Department of Computer Science
Series of Publications C, No. C-2012-2

Enhancing TCP with Cross-layer Notifications and

Capacity Estimation in Heterogeneous Access Networks

Laila Daniel, Markku Kojo

Helsinki, February 8, 2012

Technical Report C-2012-2

University of Helsinki
Department of Computer Science
P. O. Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki, Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14924709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Enhancing TCP with Cross-layer Notifications and Capacity Estimation in

Heterogeneous Access Networks

Laila Daniel, Markku Kojo
Department of Computer Science, University of Helsinki
Technical Report C-2012-2
February 8, 2012
17 pages

Abstract. Finding the available bandwidth for a TCP connection is an important problem as it allows the

connection to have high throughput, low packet loss rate and fairness. As flows arrive and depart, the

state of a TCP connection at any point in time is very dynamic and it is difficult to find the accurate

available capacity for a TCP connection quickly. This becomes extremely important in a heterogeneous

access network environment where the path characteristics of a TCP connection may suddenly change

due to a vertical handoff. We adapt the Packet-pair and PathChirp algorithms combined with cross-

layer notifications regarding the access link bandwidth and delay to quickly determine a rough available

bandwidth for the TCP connection. We apply our algorithms in simulation experiments covering

various scenarios, including the beginning of a TCP connection, after a vertical handoff, and after

a prolonged interruption in the connection. In vertical handoff scenarios we also apply the TCP

algorithms we have earlier developed to mitigate the problems of TCP due to a vertical handoff.

Results show that the proposed algorithms yield better throughput and reduction in packet losses

compared to TCP.

1 Introduction

The Transmission Control Protocol (TCP) [28] is used by a number of applications in the Internet
such as e-mail, Web browsing, file-transfer, streaming audio, video and P2P [36]. Recent measure-
ment studies on Internet traffic show that TCP still dominates the volume of the Internet traffic
(in terms of packets and bytes) whereas UDP now often accounts for the larger fraction of the total
number of flows on a given link due to the rise in the streaming and P2P traffic [9].

Finding the available bandwidth of a TCP connection is an important problem as it allows the
connection to have high throughput, low packet loss rate and fairness. As flows arrive and depart,
the state of a TCP connection at any point in time is very dynamic and it is extremely difficult to find
the available capacity for a TCP connection accurately. In this paper we consider three scenarios in
which a TCP connection is in its ’initial’ phase acquiring its bandwidth share. The three scenarios
are, the beginning of the TCP connection, after a vertical handoff and after a disconnection period.
In all these three cases the available bandwidth is unknown to the TCP connection as there is no
feedback from the current path or the feedback is too old and should be considered stale.

TCP congestion control algorithms [5, 18] enable TCP to adapt to the characteristics of the end-
to-end path. During the initial slow start phase of a TCP connection, TCP rapidly probes for
the available bandwidth in an exponential manner. The slow start phase usually ends in a slow



start overshoot, thereby losing many packets and after recovery TCP moves to the congestion
avoidance phase where it probes for the bandwidth in a linear way. If the end-to-end path had
a high bandwidth-delay product (BDP), TCP slow start algorithm will take many round-trips
(log2BDP) to reach the available capacity [18]. In the case of high BDP paths, it may be possible
to have high packet losses due to slow start overshoot and retransmission timeouts are needed to
recover the lost packets. Many research proposals exist to improve the start-up behaviour of TCP.
Quick-Start is one of those approaches which sets the cwnd and ssthresh to an appropriate rate
agreed by all the routers in the end-to-end [13, 32]. RAPID [21] and NF-TCP [6] are congestion
control algorithms that use PathChirp [30] algorithm to find the available bandwidth of the end-
to-end path continuously during the life-time of a connection. NF-TCP combines ECN [29] for
congestion avoidance.

Internet access with a mobile device is extremely popular today. Contemporary mobile devices
support multiple radio technologies such as Enhanced General Packet Radio Service (EGPRS) [34],
Universal Mobile Telecommunication System/High Speed Down Link Packet Access (UMTS/HS-
DPA) [1], 3GPP Long Term Evolution (LTE) [2] and Wireless Local Area Network (WLAN) [17]
to provide wireless access to the Internet. For instance, the current state-of-the-art mobile phone,
Nokia N8-00, supports multiple radio interfaces such as GPRS/EDGE, HSDPA (maximum speed up
to 10.2 Mbps), HSUPA (2.0 Mbps) and WLAN IEEE 802.11 b/g/n. It is envisaged that in the future
mobile devices can support even ten or more radio interfaces to support a wide range of Internet
applications using a broad range of wireless access technologies [31]. TCP may experience a variety
of problems when a mobile device performs a vertical handoff which is the switching of an active
connection from one access network to another having a different link layer technology [25]. Differ-
ent link layer technologies have widely different link characteristics such as data rate and latency.
As the sending rate of a TCP connection depends on the end-to-end path properties, significant
changes in the link characteristics due to a vertical handoff affects TCP performance [11, 15]. The
problems of TCP due to a vertical handoff have been studied and many solutions are proposed to
mitigate them. After a vertical handoff, finding the capacity of the new path is similar to that of
finding the initial available bandwidth. A solution to this problem is particularly important when
handoff happens to a new path with higher BDP compared to the old path as TCP has the inherent
problem of quickly achieving the available high capacity.

The third scenario where TCP determines its share of bandwidth is after a disconnection. The dis-
connection can be due to a link outage in wireless networks or due to a break-before make handoff
where the connection to the old access router breaks before the connection to the new access router
is made [25]. Usually if the disconnection time is greater than the TCP retransmission timeout
(RTO), RTO timer expires and TCP goes to the slow start. If more than one timeout occur during
the disconnection, the ssthresh usually will become quite low resulting in a low sending rate and
underutilization as the TCP sender is forced to leave the slow start early. This scenario is impor-
tant as most of the current handoff scenarios are break-before-make handoffs. Also intermittent
connectivity is a frequent phenomenon in wireless network, achieving the appropriate bandwidth
for a TCP connection is an important task after the connectivity is resumed.

In this report we propose a bandwidth estimation algorithm to estimate the available bandwidth of
the end-to-end path of a TCP connection in the above three scenarios. The proposed bandwidth
estimation algorithm is mainly based on the Packet-pair algorithm [19] to estimate the bottleneck
capacity and the PathChirp algorithm [30] to estimate the available bandwidth of the end-to-end

2



path of a TCP connection. We use the PathChirp algorithm as many studies have shown that
PathChirp estimates available bandwidth with good accuracy [21,35]. We speed up the bandwidth
estimation with the additional information from the cross-layer notifications such as the bandwidth
and delay of the access links and the occurrence of a handoff or disconnection. This helps the TCP
connection to achieve its share quickly and also to avoid the problems of slow start overshoot.

In our papers [11, 12] we developed algorithms to mitigate the problems of TCP due to a verti-
cal handoff. We use cross-layer notifications regarding the access link characteristics involved in a
handoff to determine the proper values for various parameters such as cwnd , ssthresh and retrans-
mission timeout (RTO)value. The results of extensive simulation study show that our algorithms
are useful in the vertical handoff scenarios. These algorithms can be used after a disconnection
period to combat the problems of TCP arising in this scenario. In the handoff scenarios to a higher
bandwidth/higher BDP path compared to the old path is challenging as TCP has inherent problems
in adapting to a high capacity available. The proposed bandwidth estimation algorithms and the
vertical handoff algorithms are used both after a vertical handoff and also after a disconnection.

We have implemented our algorithm in ns-2 [26] and performed experiments to evaluate the effec-
tiveness of the proposed scheme. We use TCP with Quick-Start algorithm [32] as a benchmark to
evaluate the performance of our proposed algorithm. Quick-Start algorithm allows TCP to have op-
timal performance as it ’knows’ a TCP connection’s share of bandwidth but in practice Quick-start
algorithm finds deployment problems as it requires support by all the routers on the end-to-end
path. Our results show that the proposed bandwidth estimation improves the TCP start-up perfor-
mance. Vertical handoff algorithms combined with bandwidth estimation algorithms are effective
especially in handoffs to high-bandwidth/high-BDP access links.

Section 2 presents the related work in this area and Section 3 describes the proposed algorithm used
and briefly describes the vertical handoff algorithms. Section 4 presents the simulation results and
Section 5 gives the conclusions of the paper and outlines the future work.

2 Related Work

Many research proposals exist to improve the start-up behaviour of TCP. The foremost one is due
to Hoe [16] in which the ssthresh is advised to be set to the BDP of the end-to-end path. Quick-
Start algorithm [13, 32] sets the initial congestion window to a higher value than the default if all
routers along the communication path approve the Quick-Start request for higher sending rate. The
Quick-Start request is included in a hop-by-hop IP option with the TCP SYN packet. Quick-Start
can also be applied after a vertical handoff as proposed in [33]. Even though Quick-Start allows any
TCP connection to start with an accurate share of the bandwidth for that connection, it requires
all the routers on the path to implement the Quick-Start algorithm which makes the deployment of
Quick-Start rather hard.

The bandwidth estimation methods can be used to aid a TCP flow in estimating its share during
its lifetime. Recent research has shown that the bandwidth estimation tools proposed for wired net-
works are not suitable for wireless networks due to the special characteristics of wireless networks
such as rate adaptation, contending traffic, loss recovery using ARQ mechanisms and scheduling

3



etc. ProbeGap [23] and WBest [24] are estimation tools specially designed for wireless LAN en-
vironments. ProbeGap [23] needs an a priori knowledge of the initial capacity [24]. WBest [24]
can estimate the available bandwidth accurately only in controlled WLAN environments and is not
effective in cellular environments [22]. As many bandwidth estimation tools including ProbeGap
and WBest inject probe packets to the network to estimate the available bandwidth, use of separate
probe packets will overload the bottleneck link of the network path.

RAPID [21] is a rate-based end-to-end transport protocol, the first proposal which uses chirping, i.e.,
sending packets as a stream in which the sending rates of the packets are exponentially increasing, for
end-to-end congestion control. In RAPID, bandwidth estimation is based on PathChirp algorithm
and it sends chirps of packets in a stream such that the average rate of the chirps in a stream is the
rate estimated in the previous stream. As the chirps are placed at an exponential rate, the authors
state that a connection using RAPID can reach a Gigabit capacity path in four round-trip times.
As RAPID’s available network capacity estimation fully relies on PathChirp algorithm which may
not be able to give accurate bandwidth estimation in wireless networks, the usefulness of RAPID
in wireless networks may be limited.

NF-TCP [6], a network-friendly TCP for delay insensitive applications uses chirping congestion
control. It combines the congestion control with ECN-based congestion avoidance techniques. NF-
TCP uses additions probe packets to estimate the available bandwidth. It is not advisable to use
additional probe packets in wireless networks which are bandwidth limited.

Setting the cwnd appropriately after a handoff is crucial both in avoiding the congestion-related
losses due to a handoff to a lower bandwidth-delay product (BDP) link as well as in effectively
utilizing the higher BDP of a new link after a handoff. Slow starting [20], using Quick-Start [33],
setting cwnd using the cross-layer notifications on the access link bandwidth and delay [11] and using
packet pairs [37] to find the capacity are some of the proposals to effectively utilize the capacity
after a handoff. A comprehensive survey on the proposals to set the cwnd after a handoff is given
in [11].

3 Proposed available capacity algorithm

The available capacity estimation algorithm we propose in this paper consists of two phases. In
the first phase, the bottleneck capacity estimation is carried out by sending TCP packets back-
to-back. Using this bottleneck capacity, the available network capacity or available bandwidth of
the connection is estimated by sending TCP packets at an exponentially increasing rate. Even
though the basic ideas used in our algorithms are similar to the well-known Packet-Pair [19] and
PathChirp [30], both algorithms are altered to leverage additional information from cross-layer
notifications.

The algorithm is invoked when a notification from the Mobile node (MN) arrives at the TCP sender
at beginning of a TCP connection or after a handoff. The notification includes the bandwidth and
delay of the access link and the number of flows from the TCP sender to MN. Figure 1 gives the
bandwidth estimation algorithm.

4



Algorithm is invoked when a notification from the Mobile node (MN)
arrives at the TCP sender at beginning of a TCP connection or after
a handoff. The notification includes the bandwidth and delay of the
access link and the number of flows from the TCP sender to MN
Calculate the Bandwidth Delay product (BDP) of the access link
using the bandwidth and delay values in the cross-layer notification
BDPlink = Bandwidthlink ∗Delaylink/MSS

Bottleneck capacity estimation algorithm
pkt_count = min(4, BDPlink/(#flows))
If pkt_count ≤ 1 Continue with regular TCP behaviour
Else, TCP sender sends pkt_count of TCP packets back-to-back
TCP receiver calculates bottleneck bandwidth, bbw, sends it to TCP sender
bbw = MSS/(p2 − p1)
where p1, p2 the arrival times of the first and the second packet in a pair
If (bbw > BDPlink), bbw ← BDPlink

Available bandwidth (abest) algorithm - in general
TCP sender sends pkt_count of TCP packets as chirps.
The lowrate and highrate are lowest and highest rates
of the chirps and the spreadfactor is sf
sf = exp(log(highrate/lowrate)/pkt_count)
TCP receiver calculates the available bandwidth, abest, sends it to TCP sender
ssthresh = abest ∗RTT/MSS
(abest > bbw), abest← bbw
The estimation at any abest cycle stops when

abest < highrate or 2 ∗ cwnd > ssthresh
Abest cycle 1
pkt_count = min(cwnd, bbw ∗RTT/(#flows ∗MSS))
lowrate = bbw/(#flows ∗ 2)
highrate = bbw/(#flows)
Estimated available bandwidth abest1
ssthresh = abest1 ∗RTT/MSS
Abest cycle 2
pkt_count = min(cwnd, abest1 ∗RTT/(MSS))
lowrate = 2/RTT
highrate = abest1 ∗ 2
Estimated available bandwidth abest2
ssthresh = abest2 ∗RTT/MSS

...
Abest cycle n (n from 3 onwards)
pkt_count = min(cwnd, abestn ∗RTT/(MSS))
lowrate = lowraten−1 ∗ 2
highrate = highraten−1 ∗ 2
Estimated available bandwidth abestn
ssthresh = abestn ∗RTT/MSS
Repeat the abest cycle until

abest < highrate or 2 ∗ cwnd > ssthresh

Figure 1: Bandwidth estimation algorithm

5



Bottleneck capacity estimation

The bottleneck capacity is estimated using packet dispersion technique that measures the end-to-
end capacity of a network path [19]. The packet dispersion technique sends two or more packets
back-to-back into the network. After traversing the bottleneck link, the time dispersion between
the two packets is linearly related to the bottleneck link capacity. We assume that the access link
forms the bottleneck of the end-to-end path so the bandwidth delay product (BDP) of the access link
determines the maximum number of packets that can be send in a window. The algorithm calculates
the BDP of the access link from the values of the bandwidth (data rate) and propagation delay of
the access link obtained from the cross-layer notification. Since the cross-layer notification gives the
information on the number of flows from the TCP sender to the MN, we set the upper bound for
the share of the capacity for each flow as the BDP divided by the number of flows. At the beginning
of a TCP connection, the initial window of the connection can be a maximum of 4 packets [4]. So
the bottleneck capacity estimation cycle consists of sending the minimum (4, BDPlink/(#flows ∗
MSS)) TCP packets back-to-back. The TCP receiver estimates the bottleneck capacity as bbw =
MSS/(p2−p1) where p1 and p2 are the arrival times of the first and the second packet in a pair and
send this information to the TCP sender. The capacity estimation algorithm allows us to confirm
whether the access link is the bottleneck of the end-to-end path. If bbw estimated is turned out
to be greater than BDPlink, bbw is set to BDPlink assuming that the notification gives us more
accurate value than the bandwidth estimate using 2 or 3 packet-pairs.

If the BDPlink/(#flows)) is less than 2, the algorithm sets the initial cwnd as 1 and follows the
baseline TCP behaviour. This helps to avoid the aggressive behaviour leading to packet losses by
setting an initial window greater than 2.

Available bandwidth estimation (abest) cycles

Once the bottleneck bandwidth is obtained, the next phase is the available bandwidth estimation
(abest) cycle. The available bandwidth estimation (abest) algorithm to estimate the available
bandwidth is based on the PathChirp algorithm [30]. Here TCP packets are sent at an exponentially
increasing data rate with a spreadfactor which is equal to the ratio of the data rate of two adjacent
packets. The basic idea of the PathChirp algorithm is that if the data rate is less than the available
bandwidth the queuing delay experienced by a packet will be zero and if the data rate is greater
than the available bandwidth the packet will experience a queuing delay. As the TCP sender
sends at an increasing rate there will be an increasing trend in the queueing delay at the receiver
once the sending rate becomes larger than the available bandwidth. It is possible that due to a
short transient congestion, the queueing delay can increase. The PathChirp algorithm is taking
care of this situation and checks if queueing delay comes back to zero after a short time. The
PathChirp algorithm searches for a signature (to check the queueing delay increase is due to a
transient overload). In our algorithm, as we are estimating the available bandwidth to calculate
ssthresh, a limit to avoid slow start overshoot, the TCP receiver sets the highest value for the
available bandwidth as the rate at which the queueing delay starts increasing and calculates the
available bandwidth as in the PathChirp algorithm. This way we get a conservative bound to the
ssthresh value.

6



The abest algorithm at the TCP sender sends chirps at an exponential rate. In any cycle, the num-
ber of chirps denoted by pkt_count is the minimum(cwnd , share of the capacity for a flow/MSS).
The TCP sender initiates one or more abest cycles with different high and low rates by sending
pkt_count of TCP packets with a spreadfactor equal to exp(log(highrate/lowrate)/pkt_count).
The highrate and the lowrate are the highest data rate and the lowest data rate of the chirps in an
abest cycle. The number of packets in a abest cycle is upper bounded by the current cwnd . So the
growth rate of the window is similar to that of regular TCP algorithm. The TCP receiver estimates
the available bandwidth and returns it to the sender. Once the estimate for the available bandwidth
has been elicited is calculated ssthresh is set to the product of available bandwidth and RTT worth
of packets. The abest cycle is exited if twice the cwnd is greater than ssthresh value set based
on the available bandwidth. This allows the sender window to grow exponentially to the ssthresh
quickly. The algorithm also exits the abest cycle if the available bandwidth estimated is less than
the highrate of the chirp. If either of the above two conditions are not met, another abest cycle is
initiated with new high and low rates and with a new spreadfactor. As a conservative approach, in
any abest cycle, if the available bandwidth obtained is greater than the bbw, it will be set to bbw.
The cwnd is incremented as in slow start phase of a TCP connection. Next we describe the abest
cycles in detail.

Abest cycle 1

This is the first abest cycle after the capacity estimation cycle that estimates the bottleneck band-
width bbw. Here the pkt_count is the minimum(cwnd, bbw∗RTT/(#flows∗MSS)). The cwnd at
the end of the capacity estimation cycle will be from 6-8 as the cwnd is incremented as in slow start.
The highrate for the chirp cycle is of (bbw/(#flows)) and the lowrate is the half of the highrate,
i.e., (bbw/2∗#flows). The TCP receiver checks the difference in queueing delay of two packets and
see whether there is an increase in queueing delay compared to the previous packets. If so, it set the
rate of other high data rate chirps to the data rate of the packet where the increase in queuing delay
is first noticed. The receiver calculates the average rate and send back this value to the TCP sender
as abest1 (available bandwidth of the abest cycle 1). The ssthresh is set to the product of abest
and RTT in packets. RTT is calculated using the timestamps. If abest1 is greater than or equal to
the highrate and 2∗cwnd is smaller than ssthresh, the algorithm continues to the second abest cycle.

Abest cycle 2

In the second abest cycle, the highrate for the cycle is of abest1 and the lowrate is 2/RTT . The
lowrate is taken the above value so that the chirps will we received in one RTT. The pkt_count
will be the minimum(cwnd, abest1 ∗ RTT/MSS). The cwnd for this cycle will range from 12-16
packets. The TCP receiver calculates the abest2 and sends to the TCP sender. The ssthresh is set
to the product of abest2 and RTT. If abest2 is greater than or equal to the highrate and 2 ∗ cwnd
is smaller than ssthresh, the algorithm continues to the third cycle.

Abest cycle n, n ≥ 3

7



In the third abest cycle and the higher abest cycles, the highrate is twice the highrate of the previous
cycle and the lowrate is twice the lowrate of the previous cycle. As the available bandwidth estimate
of the previous cycle is greater or equal to the highrate of that cycle, in the new cycle the algorithm
tries to see whether the available bandwidth is still higher than the highrate of the previous cycle.
The high rates are probed to see if some flows have left the end-to-end path. As the lowrate is
also doubled and the current cwnd is high, the spreadfactor will be low resulting in closer spaced
chirps leading to a more accurate estimate. The abest cycles continue until one of the conditions
for exiting for the abest cycle is met.

Once the available bandwidth is estimated, the ssthresh is finally set to the product of the available
bandwidth and the RTT. The slow start overshoot that causes a large packet loss is avoided in this
way. The cwnd is incremented as in slow start phase of a TCP connection.

3.1 VHO algorithms

In this section, we a briefly describe the algorithms to mitigate the problems of TCP due to a
vertical handoff. As a vertical handoff results in abrupt significant changes in the bottleneck link
characteristics, TCP may take several RTTs to adapt to the path changes during which TCP may
experience problems such as occurrence of spurious RTOs, packet reordering, packet losses and
unused connection time that affect the application performance.

In a vertical handoff, spurious RTOs may occur when a make-before-break handoff takes place from
a low-delay link to a high-delay link. After the handoff, the ACKs will be delayed due to the high
latency of the new high-delay link. Due to the small RTO value calculated on the basis of the old
path, the TCP retransmission timer may expire before the arrival of the ACKs through the new
link resulting in unnecessary retransmissions and cwnd reduction. Using the bandwidth and delay
values of the old and the new access links, we find the traversal time for a Data-ACK pair at the
time of handoff and if it is greater than the current RTO, there is a possibility of the occurrence of
spurious RTOs. The algorithm calculates the minimum RTO, minrto, based on the new access link
delay and update the RTO timer immediately after the handoff thereby avoiding the occurrence of
spurious RTOs.

Congestion-related packet losses may occur in a vertical handoff if the new path after a handoff has
less capacity than the old path. As the access links are most often the bottleneck links, packet losses
due to congestion may occur if the FlightSize at the time of handoff is greater than the buffering
capacity of the new link. If this condition is met, the algorithm sets the cwnd and ssthresh to the
BDP of the new access link.

Packet reordering occurs when a make-before-break handoff takes place from a high-delay link to
a low-delay link. The packets with high sequence numbers sent after the handoff through the new
link arrive at the TCP receiver earlier than the packets sent before the handoff through the old
link resulting in packet reordering. As a result of reordering, the TCP receiver sends duplicate
acknowledgements (dupacks) over the new link and when the TCP sender gets three dupacks, it
triggers a false fast retransmit causing many unnecessary retransmissions and reduction in cwnd
and ssthresh. The idea behind the algorithm to combat the problems due to packet reordering is
to determine how likely packet reordering occurs given the bandwidth of the two access links and

8



use this information along with Duplicate Selective acknowledgements (DSACKs) [14], an advanced
feature of TCP, for detecting unnecessary retransmissions.

A break-before-make handoff is likely to result in unused connection time. If the disconnection
time is more than the RTO value of a TCP connection, the RTO timer may expire several times
during the disconnection period, each time doubling the RTO value [27]. When the connectivity is
resumed, the TCP sender needs to wait until the RTO timer expires again before attempting another
retransmission. This unused connection time and the repeated reduction in ssthresh are the major
problems of TCP arising from the disconnection caused by a break-before-make handoff. In our
algorithm to reduce the unused connection time, the TCP sender immediately retransmits the first
unacknowledged packet if it is already in RTO recovery when the handoff notification arrives. Also
the ssthresh variable is set to the BDP of the new link to avoid the repeated reduction in ssthresh.

The problems of TCP in a vertical handoff and the cross-layer assisted algorithms that we have
proposed to mitigate those problems are described in detail in our papers [11, 12].

4 Evaluation of the proposed algorithms

We evaluate the proposed algorithms in three scenarios, namely, the initial phase of a TCP connec-
tion, after a vertical handoff and after a disconnection. We use the ns-2 simulator to model these
scenarios and evaluate the proposed algorithms.

In the current study, we model only access networks roughly resembling wireless networks such
as EGPRS, UMTS/HSDPA, LTE and WLAN to connect the mobile node (MN) to the Internet.
The two wireless access links involved in the handoff are represented by their bandwidth and the
propagation delay, the two characteristics that affect the TCP behaviour. We often refer to the
propagation delay of an access link as the ’delay’ of the link. We use the notation ’ x/y link ’ to
denote a link of bandwidth x and delay y. The bandwidth and delay of the wireless access networks
used in our experiments are given in Table 1.

Table 1: Data rate and Propagation delay of the Wireless Access Networks used

Access Network Data rate Propagation Delay
(one way)

EGPRS 200 Kbps 300 ms

HSDPA 2 Mbps, 6 Mbps 50 ms

LTE 50 Mbps 15 ms

WLAN 54 Mbps 2 ms, 4 ms

In this paper we are carrying out a comparative study of our proposed algorithms with TCP versions
that basically follow the congestion control algorithms described in RFC 5681 [5]. The versions of
TCP we evaluate in this simulation experiment are named as follows: Baseline TCP, Qs, Iw10, Vho,
AbestVho.

In our experiments, we use TCP SACK [7] as the baseline TCP to evaluate its performance in
a vertical handoff and to quantify the improvements in TCP performance due to the use of our

9



algorithms. We refer to TCP SACK as regular TCP or just ’TCP’ in presenting our experimental
results. The TCP initial window of three 1460-byte segments is selected based on RFC 3390 [4].
Delayed ACK [8], Limited transmit [3] and DSACK [14] are enabled in TCP. The receiver advertised
window is set to 5000 packets so that it will not be a limiting factor in setting the congestion window.
The TCP packet size is 1500 bytes inclusive of the TCP/IP headers. The router buffer size of each
link is set to the BDP of the access link with at least five packets as the minimum value and no link
capacity allocation delay is modelled.

The QS version of TCP is the baseline TCP with Quick-start [13,32,33] applied both at the start of
a TCP connection and after a vertical handoff. We use QS version as a benchmark to evaluate the
performance of our proposed algorithm. Quick-Start algorithm allows TCP to have optimal perfor-
mance as it ’knows’ a TCP connection’s share of bandwidth but in practice Quick-start algorithm
finds deployment problems as it requires support by all the routers on the end-to-end path.

The Iw10 [10] version is the baseline TCP with initial window of 10 packets.

The Vho version is the baseline TCP with the vertical handoff algorithms we have proposed in [11,
12]. Vho TCP sets the initial ssthresh to the product of the access link bandwidth and delay
obtained in the cross-layer notification.

The AbestVho is the baseline TCP with available bandwidth estimation algorithms proposed in this
paper with the Vho algorithms. In all the experimental scenarios described in this paper AbestVho
evaluates the available bandwidth within in three RTTs.

In our experiments, only one mobile node and one correspondent node are considered. One to four
bulk TCP flows are transferred from the correspondent node to the mobile node. The small number
of multiple flows in the study is adequate considering that a mobile device typically runs a small
number of applications simultaneously.

The cross-layer notification is delivered to the TCP sender which is set at the beginning of a
connection, after the occurrence of a vertical handoff or a disconnection and is modelled using a
user-defined command in ns-2 with the link characteristics as its parameters.

4.1 Initial phase of a TCP connection

In the initial phase of a TCP connection, TCP enters the slow start and probes the available
bandwidth for the connection. Initially the slow start threshold (ssthresh) is set to a very high
value and the congestion window (cwnd) is set to a small value determined by the initial window
and TCP increments the cwnd by one MSS for every incoming ACK till a packet loss occurs. In
slow start the cwnd grows exponentially and when the slow start ends, a large number of packets
may be dropped especially in the case of high bandwidth-delay product networks. This is called
s slow-start overshoot which may need an RTO to recover the lost packets. Subsequently TCP
will enter the congestion avoidance phase with a smaller cwnd thereby reducing the sending rate
drastically.

In this experiment of studying the behaviour of TCP during the initial phase, we sent packets 10,
100 up to 400 packets and find the goodput of the connection. Goodput is defined as the number
of useful data bytes transmitted which excludes the retransmitted data packets.

10



 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

G
o

o
d

p
u

t 
(K

B
/s

e
c
)

Connection Length(packets)

10 50 100 150 200

TCP
Qs

AbestVho
Vho

Iw10

Figure 2: Connection start-up behaviour - Bottle-
neck link 50000 Kbps/15 ms LTE link - 1 Flow

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

G
o

o
d

p
u

t 
(K

B
/s

e
c
)

Connection Length(packets)

10 50 100 150 200

TCP
Qs

AbestVho
Vho

Iw10

Figure 3: Connection start-up behaviour . Bottle-
neck link 54000 Kbps/2 ms WLAN link - 1 Flow

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

G
o

o
d

p
u

t 
(K

B
/s

e
c
)

Connection Length(packets)

10 50 100 150 200

TCP
Qs

AbestVho
Vho

Iw10

Figure 4: Connection start-up behaviour - Bottle-
neck link 50000 Kbps/15 ms LTE link - 4 Flows

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

G
o

o
d

p
u

t 
(K

B
/s

e
c
)

Connection Length(packets)

10 50 100 150 200

TCP
Qs

AbestVho
Vho

Iw10

Figure 5: Connection Start-up behaviour Bottle-
neck link 54000 Kbps/2 ms WLAN link - 4 Flows

The wireless access links we evaluated here are the high bandwidth links such as LTE and WLAN.
LTE (50 Mbps/15 ms) has a BDP of 125 packets. The WLAN (54 Mbps/ 2 ms) is a very fast link
with BDP of 18 packets. We have selected the above access links as TCP has difficulty in quickly
adapting to the high bandwidth/BDP available.

Figures 2 and 4 show the goodput for one and four TCP flows with different number of packets are
sent through an LTE link using one and four simultaneous TCP connections respectively. In all
the three cases QS TCP achieves the highest throughput. AbestVho and Iw10 perform comparably
achieving higher throughput than TCP. Iw10 is aggressive and packet losses occur for Iw10 in all
the three cases whereas AbestVho has zero packet loss. As can be seen in Figure 4, AbestVho
comes closer to the goodput achieved by QS TCP.

Figures 3 and 5 show the goodput for one and four TCP flows with different number of packets
are sent through a WLAN link. AbestVho has performs comparable to QS TCP in the case of one
flow. As Quick-Start has problems in setting the initial rate for multiple TCP flows when the BDP
is low. Iw10 achieves similar goodput than AbestTCP in the four TCP flows but it is aggressive
compared to AbestVho.

It is interesting to note that Vho, which sets the ssthresh to the BDP of the access link achieves a

11



smaller goodput than TCP. This is because the end-to-end BDP is always higher than the BDP of
the access link and by setting ssthresh to the BDP of the access link limits the exponential increase
of the cwnd and thereby the sending rate in the slow start phase.

The results of the above experiments show that AbestVho is less aggressive and utilizes the high
bandwidth/high BDP links efficiently.

4.2 After a Vertical handoff (Vho)

In our experiments a handoff can occur once in the lifetime of a TCP connection in any of the
TCP phases, namely, slow start, slow start overshoot, fast retransmit/fast recovery and congestion
avoidance.

In order to study the behaviour of TCP with vertical handoffs we focus on the TCP behaviour
immediately after a handoff. As a performance metric, we calculate the time taken to transfer (to
get the acknowledgment) n packets through the new link after the handoff. This metric is calculated
with respect to the slowest flow when more than one flow is present.

We have chosen the access links EGPRS, HSDPA, WLAN and LTE to show the effectiveness of
AbestVho in a vertical handoff. We experiment both the make-before-break and break-before-make
handoffs [25]. In each of the experiments we study the behaviour for n long TCP flows where n
equals 1, 2 and 4. All the graphs in this section give the 25 percentile, median and 75 percentile
values.

Make-before-break handoffs

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

T
im

e
 t

o
 t

ra
n

s
fe

r-
1

0
0

 p
a

c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 6: Time to transfer 100 packets after a
make-before-break handoff from a 54000 Kbps/4
ms link to a 6000 Kbps50 ms link

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

T
im

e
 t

o
 t

ra
n

s
fe

r-
5

0
0

 p
a

c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 7: Time to transfer 500 packets after a
make-before-break handoff from a 6000 Kbps/50
ms link to a 54000 Kbps/4ms link

Figures 6 to 9 show the transfer time for n packets after different make-before-break handoff sce-
narios. TCP and QS TCP are affected by the problems of vertical handoffs. Vho TCP mitigates
the problems of TCP due to a vertical handoff and also sets the ssthresh to the BDP of the new
access link after a vertical handoff. AbestVho incorporates the algorithms and estimates the avail-
able bandwidth of the end-to-end path for setting the ssthresh. All the above scenarios show the

12



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

T
im

e
 t

o
 t

ra
n

s
fe

r-
1

0
0

0
 p

a
c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 8: Time to transfer 1000 packets after a
make-before-break handoff from a 54000 Kbps/4
ms link to a 50000 Kbps/15 ms link

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

T
im

e
 t

o
 t

ra
n

s
fe

r-
1

0
0

0
 p

a
c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 9: Time to transfer 1000 packets after a
make-before-break handoff from a 50000 Kbps/15
ms link to a 54000 Kbps/4ms link

reduction in transfer time achieved by the Vho algorithms. In the multiple flow cases, Quick-Start
has higher transfer time compared even to TCP due to the inaccurate setting of the initial rate in
the case of multiple TCP connections.

Figures 6 and 7 show the make-before-break handoff between WLAN (54 Mbps/4 ms) and HSDPA
(6 Mbps/ 50ms) where the BDP of the access links are 38 and 50 packets respectively. We can see
from the above figures that when the handoff is to a slower link, 6 Mbps/50 ms link, Vho TCP and
AbestVho performs in a similar way.

Figures 8 and 9 show the make-before-break handoffs between WLAN (54 Mbps/4 ms) and LTE (50
Mbps/ 15ms) where the BDP of the access links are 38 and 125 packets respectively. In both the
handoff scenarios, AbestVho has at least 20 % reduction in transfer time compared to other TCP
versions. The above figures clearly show the effectiveness of the bandwidth estimation algorithm
together with the vho algorithms in the case of handoff to a high-bandwidth/high-BDP link.

Break-before-make handoffs

The make-before-break vertical handoff is yet to be a reality today. The usual practice in the cellular
world is still a break-before-make handoff. So we had a study of break-before-make handoffs from
EGPRS to LTE and HSDPA to LTE.

Figures 10 and 11 show two break-before-make handoff scenarios. The graphs show the reduction
in transfer time achieved by the Vho algorithms. In addition to mitigating the problems of TCP
due to a vertical handoff Vho TCP sets the ssthresh to the BDP of the new access link after a ver-
tical handoff. AbestVho algorithms incorporating both Vho algorithms and bandwidth estimation
methods achieves the minimum transfer time compared to other TCP versions.

Figure 10 shows the transfer time for a break-before-make handoff from EGPRS (200 Kbps/300 ms)
to LTE (50 Mbps/15 ms), there is a significant increase in BDP from 10 packets to 125 packets. In
the break period of one second in the above break-before-make handoff, TCP timer expires more
than once and the unused connection time and the ssthresh reduction increases the transfer time for

13



 2

 3

 4

 5

 6

 7

 8

 9

T
im

e
 t

o
 t

ra
n

s
fe

r-
5

0
0

 p
a

c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 10: Time to transfer 500 packets after a
break-before-make handoff from a 200 Kbps/ 300
ms link to a 50000 Kbps/15 ms link, disconnection
period of 2 s

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
 t

o
 t

ra
n

s
fe

r-
5

0
0

 p
a

c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 11: Time to transfer 500 packets after
break-before-make handoff from a 2000 Kbps/50
ms link to a 50000 Kbps/15 ms link, disconnection
period of 500 ms

TCP. QS TCP also suffers from the unused connection time, but the Quick-Start algorithm helps
to reduce the transfer time. Here, Vho TCP and AbestVho reduces the transfer time by more than
50 %. AbestVho achieves a slightly lower transfer time than Vho TCP.

Figure 10 shows the transfer time for a break-before-make handoff from HSDPA (2000 Kbps/50
ms) to LTE (50 Mbps/15 ms). AbestVho achieves the smallest transfer time with an improvement
more than a factor of 2.

4.3 After a disconnection

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

T
im

e
 t

o
 t

ra
n

s
fe

r-
1

0
0

 p
a

c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 12: Time to transfer 100 packets after after
a disconnection of 1 s in a a 2000 Kbps/50ms link

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
 t

o
 t

ra
n

s
fe

r-
1

0
0

0
 p

a
c
k
e

ts
a

ft
e

r 
h

a
n

d
o

ff
 (

s
e

c
o

n
d

s
)

Number of flows

1F 2F 4F

TCP
QS

AbestVho
Vho

Figure 13: Time to transfer 1000 packets after a
disconnection of 500 ms in a 50000 Kbps/50 ms
link

In this set of experiments we evaluate the performance of TCP versions after a disconnection or link
outage. The disconnection period is set as one second for HSDPA link and 500 ms for LTE link.

Figure 12 shows the transfer time when a disconnection of one second occurs in an HSDPA (2000
Kbps/50 ms) link. During the disconnection, TCP retransmission timer expires at least two times.

14



TCP and QS TCP suffer from unused connection time and whereas TCP repeatedly reduces the
ssthresh. Vho TCP and AbestVho have the minimum transfer time compared to other TCP versions.

Figure 13 shows the transfer time for TCP versions when the connectivity breaks for 500 ms in
an LTE link. AbestVho has the minimum transfer time compared to other TCP versions. It is
interesting to note the behaviour of QS TCP in this scenario. The RTO value here is slightly higher
than 500 ms and the retransmission timer expires immediately after the connection comes up. So
QS TCP with the Quick-Start algorithm is able to set the cwnd and ssthresh values immediately
after the disconnection period thereby having a similar performance as AbestVho. In break-before-
make handoffs and disconnection scenarios Vho TCP and AbestVho immediately retransmit the
first unacknowledged packet if the retransmission timer has expired during the disconnection.

The above experimental study points out the effectiveness of AbestVho in the start-up behaviour
of TCP, in handoffs and in disconnection. AbestVho improves the TCP performance especially in
high-bandwidth/high-BDP paths.

5 Conclusions and Future Work

In this paper we extend the vertical handoff (vho) algorithms we have proposed earlier with band-
width estimation methods. Our simulation study in current wireless networks such as LTE, WLAN,
HSDPA and EGPRS show that vho algorithms with bandwidth estimation are effective in setting
the initial ssthresh of a TCP connection, in vertical handoff and in intermittent connectivity arising
in wireless networks. In this paper we have compared the proposed algorithm with different TCP
versions such TCP SACK, Quick-Start enabled TCP, TCP with initial window of 10 packets. It
would be interesting to compare the proposed algorithm with RAPID and NF-TCP as both of these
schemes are using available bandwidth estimation techniques to achieve congestion control. It is
also worth to study how well RAPID and NF-TCP react to vertical handoffs. As a future study we
would also like to evaluate our algorithms in real wireless networks.

Acknowledgements

This work was supported by TEKES as part of the Future Internet program of TIVIT (Finnish
Strategic Centre for Science, Technology and Innovation in the field of ICT).

References

[1] 3GPP. High Speed Downlink Packet Access (HSDPA). Technical Report 3GPP TS 25.950,
July 2005.

[2] 3GPP. 3rd Generation Partnership Project; Long Term Evolution. Technical Report 3G TS
36 version, December 2008.

[3] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s Loss Recovery Using Limited
Transmit. Internet RFCs, ISSN 2070-1721, RFC 3042, January 2001.

15



[4] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window. Internet RFCs,
ISSN 2070-1721, RFC 3390, October 2002.

[5] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. Internet RFCs, ISSN
2070-1721, RFC 5681, September 2009.

[6] M. Arumaithurai, X. Fu, and K. K. Ramakrishnan. NF-TCP: A Network Friendly TCP Variant
for Background Delay-Insensitive Applications. In Proc. 10th IFIP International Conference
on Networking (Networking 2011), May 2011.

[7] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative Selective Acknowledgement
(SACK)-based Loss Recovery Algorithm for TCP. Internet RFCs, ISSN 2070-1721, RFC 3517,
April 2003.

[8] R. Braden. Requirements for Internet Hosts – Communication Layers. Internet RFCs, ISSN
2070-1721, RFC 1122, October 1989.

[9] Caida. Internet Traffic Classification. Available at: http://www.caida.org/research/traffic-
analysis/classification-overview, 2009.

[10] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial Window. Internet-
Draft "draft-ietf-tcpm-initcwnd-03.txt", February 2012. Work in progress.

[11] L. Daniel and M. Kojo. Employing Cross-layer Assisted TCP Algorithms to Improve TCP
Performance with Vertical Handoffs. International Journal of Communication Networks and
Distributed Systems (IJCNDS), pages 433–465, November 2008.

[12] L. Daniel and M. Kojo. The Performance of Multiple TCP Flows with Vertical Handoff. In
Proceedings of the 7th ACM International Symposium on Mobility Management and Wireless
Access (MobiWac’09), pages 17–25, October 2009.

[13] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for TCP and IP. Internet RFCs,
ISSN 2070-1721, RFC 4782, January 2007.

[14] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective Acknowl-
edgment (SACK) Option for TCP. RFC 2883, July 2000.

[15] W. Hansmann and M. Frank. On Things to Happen During a TCP Handover. In Proc. 28th
IEEE Conference on Local Computer Networks (LCN’03), pages 109– 118, October 2003.

[16] J. Hoe. Start-up Dynamics of TCP’s Congestion Control and Avoidance Schemes. Master’s
thesis, Massachusetts Institute of Technology, June 1995.

[17] IEEE. IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications. ANSI/IEEE Std 802.11. 1999 Edition (R 2003), 2003.

[18] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIGCOMM ’88, pages
314–329, August 1988.

[19] S. Keshav. A Control-Theoretic Approach to Flow Control. In Proceedings of ACM SIG-
COMM ’91, pages 3–15, 1991.

[20] S-E. Kim and J. A. Copeland. TCP for Seamless Vertical Handoff in Hybrid Mobile Data
Networks. In Proceedings of IEEE Globecom 2003, December 2003.

[21] V. Konda and J. Kaur. RAPID: Shrinking the Congestion Control Timescale. In Proceedings
of IEEE INFOCOM 09, 2009.

[22] D. Koutsonikolas and Y. C. Hu. On the feasibility of bandwidth estimation in wireless access
networks. Wireless Networks, 17(6), August 2011.

[23] K. Lakshminarayanan, V.N. Padmanabhan, and J. Padhye. Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement. In IMC 04, 2004.

16



[24] M. Li, M. Claypool, and R. Kinicki. WBest: a Bandwidth Estimation Tool for IEEE 802.11
Wireless Networks. In Proceedings of 33rd IEEE Conference on Local Computer Networks
(LCN), 2008.

[25] J. Manner and M. Kojo (Eds.). Mobility Related Terminology. Internet RFCs, ISSN 2070-1721,
RFC 3753, June 2004.

[26] Network Simulator ns-2. http://www.isi.edu/nsnam/ns.
[27] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. Internet RFCs, ISSN

2070-1721, RFC 2988, November 2000.
[28] J. Postel. Transmission Control Protocol. Internet RFCs, ISSN 2070-1721, RFC 793, September

1981.
[29] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notification

(ECN) to IP. Internet RFCs, ISSN 2070-1721, RFC 3168, September 2001.
[30] V.J. Ribeiro, R.H. Riedi, R.G. Baraniuk, J. Navratil, and L. Cottrell. PathChirp: Efficient

Available Bandwidth Estimation for Network Paths. Passive and Active Measurement Work-
shop, PAM2003, April 2003.

[31] P. Ruuska, J. Mäkelä, M. Jurvansuu, J. Huusko, and P. Mannersalo. ROADMAP
for Communication Technologies, Services and Business Models 2010, 2015 and Beyond.
http://www.tekes.fi/u/GIGA-Roadmap2010.pdf, August 2010.

[32] P. Sarolahti, M. Allman, and S. Floyd. Determining an Appropriate Sending Rate Over an
Underutilized Network Path. Computer Networks (Elsevier), May 2007.

[33] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo. Using Quick-Start to Improve TCP Perfor-
mance with Vertical Hand-offs. In Proc. 31st IEEE Conference on Local Computer Networks
(LCN’06), pages 897–904, November 2006.

[34] E. Seurre, P. Savelli, and P.-J. Pietri. EDGE for Mobile Internet. Artech House, 2003.
[35] A. Shriram and J. Kaur. Empirical evaluations of techniques for measuring available bandwidth.

In Proceedings of IEEE INFOCOM 07, 2007.
[36] K. Sripanidkulchai, B. Maggs, and H. Zhang. An Analysis of Live Streaming Workloads on

the Internet. In Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement
(IMC’04), pages 41–54, 2004.

[37] K. Tsukamoto, Y. Fukuda, Y. Hori, and Y. Oie. New TCP Congestion Control Scheme for Mul-
timodal Mobile Hosts. IEICE Transactions on Communications, E89-B(6):1825–1836, 2006.

17


