
Department of Computer Science
Series of Publications A

Report A-2012-5

Compressed Full-Text Indexes for Highly
Repetitive Collections

Jouni Sirén

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism, in Auditorium
XII, University Main Building, on June 29th, 2012, at 12 o’clock
noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14924639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Veli Mäkinen, University of Helsinki, Finland

Pre-examiners
Kunihiko Sadakane, National Institute of Informatics, Japan
Jorma Tarhio, Aalto University, Finland

Opponent
Giovanni Manzini, University of Eastern Piedmont, Italy

Custos
Veli Mäkinen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2012 Jouni Sirén
ISSN 1238-8645
ISBN 978-952-10-8051-7 (paperback)
ISBN 978-952-10-8052-4 (PDF)
Computing Reviews (1998) Classification: E.1, E.4, H.3
Helsinki 2012
Unigrafia

Compressed Full-Text Indexes for Highly Repetitive
Collections

Jouni Sirén

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
jouni.siren@cs.helsinki.fi
http://www.cs.helsinki.fi/jouni.siren/

PhD Thesis, Series of Publications A, Report A-2012-5
Helsinki, June 2012, 97 + 63 pages
ISSN 1238-8645
ISBN 978-952-10-8051-7 (paperback)
ISBN 978-952-10-8052-4 (PDF)

Abstract

This thesis studies problems related to compressed full-text indexes. A full-
text index is a data structure for indexing textual (sequence) data, so that
the occurrences of any query string in the data can be found efficiently.
While most full-text indexes require much more space than the sequences
they index, recent compressed indexes have overcome this limitation. These
compressed indexes combine a compressed representation of the index with
some extra information that allows decompressing any part of the data
efficiently. This way, they provide similar functionality as the uncompressed
indexes, while using only slightly more space than the compressed data.

The efficiency of data compression is usually measured in terms of entropy.
While entropy-based estimates predict the compressed size of most texts
accurately, they fail with highly repetitive collections of texts. Examples of
such collections include different versions of a document and the genomes
of a number of individuals from the same population. While the entropy
of a highly repetitive collection is usually similar to that of a text of the
same kind, the collection can often be compressed much better than the
entropy-based estimate.

Most compressed full-text indexes are based on the Burrows-Wheeler trans-
form (BWT). Originally intended for data compression, the BWT has deep
connections with full-text indexes such as the suffix tree and the suffix array.

iii

iv

With some additional information, these indexes can be simulated with the
Burrows-Wheeler transform. The first contribution of this thesis is the first
BWT-based index that can compress highly repetitive collections efficiently.

Compressed indexes allow us to handle much larger data sets than the
corresponding uncompressed indexes. To take full advantage of this, we
need algorithms for constructing the compressed index directly, instead of
first constructing an uncompressed index and then compressing it. The
second contribution of this thesis is an algorithm for merging the BWT-
based indexes of two text collections. By using this algorithm, we can derive
better space-efficient construction algorithms for BWT-based indexes.

The basic BWT-based indexes provide similar functionality as the suffix
array. With some additional structures, the functionality can be extended
to that of the suffix tree. One of the structures is an array storing the lengths
of the longest common prefixes of lexicographically adjacent suffixes of the
text. The third contribution of this thesis is a space-efficient algorithm for
constructing this array, and a new compressed representation of the array.

In the case of individual genomes, the highly repetitive collection can be
considered a sample from a larger collection. This collection consists of a
reference sequence and a set of possible differences from the reference, so
that each sequence contains a subset of the differences. The fourth con-
tribution of this thesis is a BWT-based index that extrapolates the larger
collection from the sample and indexes it.

Computing Reviews (1998) Categories and Subject
Descriptors:
E.1 [Data Structures]: String data structures
E.4 [Coding and Information Theory]: Data compaction and

compression — compressed data structures
H.3.3 [Information Storage and Retrieval]: Information search and

retrieval — full-text indexes

General Terms:
data structures, data compression

Additional Key Words and Phrases:
compressed data structures, full-text indexes, string processing, suffix
array, Burrows-Wheeler transform, highly repetitive collections

Acknowledgements

I thank my supervisor Veli Mäkinen for the support and guidance. I also
thank my coauthors Diego Arroyuelo, Francisco Claude, Paolo Ferragina,
Sebastian Maneth, Gonzalo Navarro, Kim Nguyen, Rossano Venturini, and
Niko Välimäki for the fruitful collaboration. In addition to these people,
Travis Gagie, Riku Katainen, Serikzhan Kazi, Juha Kärkkäinen, Simon
Puglisi, Giovanna Rosone, Leena Salmela, and the numerous anonymous
referees deserve thanks for the ideas, advice, and feedback.

Special thanks go to the IT team of the Department of Computer Sci-
ence, and especially to Jani Jaakkola, for the excellent IT infrastructure
and the helpful support well beyond normal working hours.

During the course of my doctoral studies, I was affiliated with the De-
partment of Computer Science at the University of Helsinki, Helsinki Insti-
tute for Information Technology (HIIT), Helsinki Doctoral School in Com-
puter Science and Engineering (Hecse), Graduate School in Computational
Biology, Bioinformatics, and Biometrics (ComBi), Finnish Doctoral Pro-
gramme in Computational Sciences (FICS), Finnish Centre of Excellence
for Algorithmic Data Analysis Research (Algodan), and Finnish Centre of
Excellence in Cancer Genetics Research. My work was also partially funded
by the Academy of Finland, the Research Foundation of the University of
Helsinki, and the Nokia Foundation.

Finally, I would like to thank the Student Union of the University of
Helsinki, the numerous other student organizations at the University, and
Ropecon for all these years. Without these organizations and the fascinating
people in them, I would have finished my studies much, much faster.

v

vi

Original Papers

This thesis consists of an introduction and the following peer-reviewed publi-
cations, which are referred to as Papers I–IV in the text. These publications
are reproduced at the end of the thesis.

I. Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki:
Storage and Retrieval of Highly Repetitive Sequence Collec-
tions.
Journal of Computational Biology 17(3):281–308, 2010.
Preliminary versions in SPIRE 2008 and RECOMB 2009.

II. Jouni Sirén: Compressed Suffix Arrays for Massive Data.
16th Symposium on String Processing and Information Retrieval
(SPIRE 2009), LNCS 5721, pp. 63–74, Springer, 2009.

III. Jouni Sirén: Sampled Longest Common Prefix Array.
21st Annual Symposium on Combinatorial Pattern Matching
(CPM 2010), LNCS 6129, pp. 227–237, Springer, 2010.

IV. Jouni Sirén, Niko Välimäki, and Veli Mäkinen: Indexing Finite
Language Representation of Population Genotypes.
11th Workshop on Algorithms in Bioinformatics (WABI 2011),
LNCS 6833, pp. 270–281, Springer, 2011.

Implementations and data sets used in the experiments can be found at
http://www.cs.helsinki.fi/group/suds/rlcsa/ for Papers I–III, and at
http://www.cs.helsinki.fi/group/suds/gcsa/ for Paper IV.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Original papers and contributions 3
1.3 Outline . 4

2 Background 7
2.1 Definitions . 7
2.2 Full-text indexes . 9
2.3 Compressed data structures 12

3 Compressed suffix arrays 17
3.1 Original indexes . 17
3.2 CSA family . 18
3.3 FMI family . 22
3.4 Supporting full functionality 25
3.5 Dynamic versions . 27

4 Run-length compressed suffix array 31
4.1 Analysis . 32
4.2 Runs in BWT . 33
4.3 Implementation . 37
4.4 Experiments . 39
4.5 Later indexes . 41

5 Space-efficient CSA construction 43
5.1 Merging Burrows-Wheeler transforms 44
5.2 Construction algorithm . 46
5.3 Indexing a single sequence 47
5.4 Implementation . 49
5.5 Experiments . 50

ix

x Contents

6 Longest common prefix array 55
6.1 LCP array representations 55
6.2 Sampling the LCP array . 58
6.3 Space-efficient LCP array construction 60
6.4 Implementation and experiments 63

7 Generalized compressed suffix array 67
7.1 Indexing finite languages . 68
7.2 Construction algorithm . 71
7.3 Analysis . 75
7.4 Implementation and experiments 77

8 Conclusions 81

References 85

Glossary 95

Chapter 1

Introduction

1.1 Motivation

When one thinks of indexes, the type of index found in books is often the
first one to come into mind. These inverted indexes are basically a list of
words, combined with a list of occurrences for each word. Such indexes
are space-efficient, and allow fast word and phrase queries on texts with
well-defined word boundaries, such as many natural languages.

Yet many types of texts, such as DNA sequences, programming lan-
guages, and some natural languages such as Chinese, lack clear or meaning-
ful word boundaries. Even in some natural languages, such as Finnish or
German, many of the clearly separated words are actually concatenations
of the words one might want to search for.

Full-text indexes overcome many of the limitations of inverted indexes.
They allow efficient queries for any substring of the text, making them useful
not only for texts without good word boundaries, but for natural language
texts as well. The most common full-text indexes include the suffix tree
and the more limited suffix array. The q-gram index, basically an inverted
index for all substrings of length q occurring in the text, is another common
full-text index.

The main drawback of full-text indexes is their size. A minimal imple-
mentation of the suffix array requires approximately n log n bits for a text
of length n.1 Suffix trees are several times larger. While this is acceptable
for small texts, the index can become larger than the available memory
in many potential applications. For example, the suffix tree for a human
genome requires tens of gigabytes, making it much larger than the main
memory in current desktop computers.

1In this thesis, all logarithms are base-2, unless otherwise specified.

1

2 1 Introduction

One can try to use full-text indexes optimized for secondary memory
[52] to overcome these limitations. However, these indexes can be slow in
practice, as hard disks only allow about 102 random reads per second. Even
the new solid-state drives with 104 to 105 reads per second can be too slow
for complex operations using these indexes.

Another solution is to use compressed full-text indexes [72] based on the
Burrows-Wheeler transform, such as the compressed suffix array [35] and
the FM-index [20].2 Such indexes are often self-indexes that do not require
the original text to operate. They support a number of queries, with the
most common being the ones required for suffix array-like functionality:

• counting the number of occurrences of a pattern in the text,

• locating the occurrences, and

• extracting an arbitrary substring.

In addition to exact pattern matching, compressed suffix arrays support
approximate matching, allowing a limited number of mismatching char-
acters, insertions, and deletions between the pattern and the text. Such
queries are especially important in read alignment that has been the most
successful application of compressed suffix arrays in bioinformatics [53, 54,
59, 61, 60, 62]. Sequencing machines produce short DNA fragments that
must be mapped to their most likely positions in the reference genome.
Allowing mismatches and other errors is vital, as there can be sequenc-
ing errors, and the sequenced genome will be somewhat different from the
reference.

The size of a compressed index is often given relative to the empirical
entropy of the text.3 For many common types of compressible texts, the size
of these indexes is close to the size of the text compressed using common
compressors such as gzip and bzip2.

However, this is not the case with highly repetitive collections. Infor-
mally, a collection of texts is highly repetitive, if most of the texts are
highly similar to some other text in the collection. Examples of such collec-
tions include collections of individual genomes, web archives, and version
control systems storing different versions of the same documents. Highly
repetitive collections usually have large amounts of redundancy that cannot
be captured by any fixed-order statistical model.

2In the rest of the thesis, compressed full-text indexes based on the Burrows-Wheeler
transform will be called compressed suffix arrays.

3Empirical entropy states roughly that, given k consecutive characters, how much
uncertainty there is on the average over the next character in the sequence.

1.2 Original papers and contributions 3

For such collections, empirical entropy is not a good measure of com-
pressibility. For example, for a text T of length n with H bits of entropy
per character, the total entropy of a collection of r identical copies of T is
approximately rnH bits. A compressed index for such collection would also
be roughly rnH bits in size, making it r times larger than the index for a
single text.

However, common compression methods based on Lempel-Ziv parsing
or the Burrows-Wheeler transform can utilize the large-scale redundancy
in such collections. A good Lempel-Ziv-based compressor would compress
the collection basically to the same size as a single text, while a Burrows-
Wheeler-based compressor would make the collection at most log r times
larger (see Lemma 4.1 and the analysis at the end of Section 2.3).

As the collections can be very large, there is a real need for indexes
capable of compressing their large-scale redundancy. We also need new
ways to measure the compressibility of such collections, and to analyze the
size of the new indexes. Furthermore, as the compressed index can be much
smaller than the original collection, it would be preferable to have fast
construction algorithms, whose memory usage depends on the compressed
size of the text instead of the original size, so that large collections can be
indexed in practice.

1.2 Original papers and contributions

Paper I. We described run-length encoded variants of several compressed
indexes. Compared to earlier run-length encoded proposals [84, 67], these
indexes offer much better compression for highly repetitive collections. This
is because the earlier proposals implicitly assumed that the compressed text
requires at least n bits of space for a text of length n, and hence using
o(n) bits for the additional structures would not increase the total size
significantly.

Instead of empirical entropy, we used the number of equal letter runs
in the Burrows-Wheeler transform of the collection as our complexity met-
ric. We analyzed how various edit operations affect the number of runs,
explaining the superior performance of our indexes with highly repetitive
collections. Experiments on indexing the genomes of 36 strains of Saccha-
romyces paradoxus confirmed the theoretical results.

My contributions to the paper include one of the new indexes, which
proved to be the most efficient of them in practice. I also did most of
the analysis on the effect of edit operations on the number of runs, and
performed most of the experiments.

4 1 Introduction

Paper II. I described a fast algorithm for merging the Burrows-Wheeler
transforms of two text collections, and used the merging algorithm as a
basis for a space-efficient construction algorithm for compressed suffix ar-
rays. The earlier construction algorithms could not handle more than a few
gigabytes in practice, as they either were slow, or used much more memory
than the size of the data. By using a parallel implementation of the merging
algorithm, I was able to construct compressed suffix arrays for data sets of
tens of gigabytes in size.

Paper III. The longest common prefix array is one of the main building
blocks in several compressed suffix tree proposals [85, 27, 69, 76, 75]. In
this paper, I adapted an earlier longest common prefix array construction
algorithm [50] to use the compressed suffix array instead of the text and its
suffix array. The resulting algorithm is the most space-efficient one known,
but also slower than the alternatives. I also proposed a new compressed
representation of the longest common prefix array that is faster to use than
the alternatives, but still achieves similar compression in many cases.

Paper IV. In this paper, we generalized the compressed suffix arrays to
index an automaton-based representation of finite languages. While the
index can be exponentially larger than the automaton in the worst case, we
showed that there are important cases where the growth remains minimal.
An example of such cases is a finite automaton representing the genetic
variation within a population, often constructed from a reference genome
and a set of known variants.

My contributions to the paper include the generalized index, its con-
struction algorithm, the analysis of the effect of mutation rate on the size
of the index, and most of the experiments.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 provides basic
definitions and background to the thesis. Chapter 3 is a short survey on
the most common types of compressed suffix arrays, discussing the basic
techniques used and the most important results obtained with them.

Chapter 4 describes the run-length compressed suffix array, a com-
pressed suffix array intended for highly repetitive collections. The discussion
is based on Papers I and II. There is also a short description of other com-
pressed indexes for highly repetitive collections at the end of the chapter.

1.3 Outline 5

Chapter 5 discusses the space-efficient compressed suffix array construc-
tion algorithm from Paper II. As an extension to the paper, we introduce a
new variant of the algorithm, based on sorting the suffixes of the new texts
by their lexicographic ranks among the suffixes of already indexed texts.

In Chapter 6, we discuss the space-efficient construction algorithm and
the sampling technique for the longest common prefix array from Paper III.
This chapter does not significantly extend the results in the original paper.

Chapter 7 describes the generalization of compressed suffix arrays for
indexing finite automata from Paper IV. The variant of the index discussed
here is both simpler and faster than in the original paper. Included is the
analysis of the effect of mutation rate on the index size, which previously
appeared only in the arXiv version of the paper [89].

The thesis ends with conclusions and future directions in Chapter 8.

6 1 Introduction

Chapter 2

Background

2.1 Definitions

Strings. Let Σ = {1, . . . , σ} be an alphabet of size σ. A string S = S[1, n]
over alphabet Σ is a sequence of characters S[1] · · ·S[n], where S[i] ∈ Σ for
all i. For any string S[1, n], we write |S| = n to denote its length. A sub-
string of S is written as S[i, j] = S[i] · · ·S[j]. Important types of substrings
include prefixes S[1, j] and suffixes S[i, n]. The concatenation of two strings
S[1, n] and S′[1, n′] is written as SS′ = S[1] · · ·S[n]S′[1] · · ·S′[n′].

We define the lexicographic order < among strings in the usual way. For
any two strings S[1, n] and S′[1, n′], we have S < S′, if either S[1] < S′[1]
or S[1] = S′[1] and S[2, n] < S′[2, n′]. The empty string λ of length 0 is
a special case, with λ < S for any non-empty string S of length |S| > 0.
To avoid this special case, we often consider text strings T = T [1, n] that
are terminated by an end marker T [n] = $ 6∈ Σ with lexicographic value 0.
The lexicographic rank of string S among a collection (set) of strings C is
the number of strings S′ ∈ C such that S′ < S, plus one. We often write
rank(T, S) to denote the lexicographic rank of string S among all suffixes
of text T , and rank(C, S) to denote the lexicographic rank of S among the
suffixes of all strings of collection C.

The (Levenshtein) edit distance between two strings S and S′ is the
minimum number of edit operations required to transform string S into
string S′. Allowed edit operations include the substitution of one character
with another, the insertion of one character into any position, and the
deletion of one character. Any set of edit operations transforming string S
into string S′ can be represented as an alignment of the strings. This can
be generalized for a set of strings, producing a multiple alignment of the
strings (see Figure 2.1).

7

8 2 Background

G A C G T A - C T G C A G A T G - T A A T G C
G A C G T A - - - G C A G A T G C T A A T C C
G A T G T A - C T G C T G A T G C T - - T G C
G A C - T A C C T G C A G - T G C T A A T C C

Figure 2.1: A multiple alignment of four sequences. Character − denotes
either a deletion in the current sequence or an insertion in some other se-
quence.

Graphs. A graph G = (V,E) consists of a set V = {v1, . . . , v|V |} of nodes
and a set E ⊂ V 2 of edges such that (v, v) 6∈ E for all v ∈ V . We call
(u, v) ∈ E an edge from node u to node v. A graph is directed, if edge (u, v)
is distinct from edge (v, u). For every node v ∈ V , we define the indegree of
the node in(v) to be the number of incoming edges (u, v), and the outdegree
out(v) to be the number of outgoing edges (v, w).

In a labeled graph, we attach a label `(v) to each node v ∈ V . A path
P = u1 · · ·u|P| is a sequence of nodes such that (ui, ui+1) ∈ E for all i < |P|.
The label of path P is the string `(P) = `(u1) · · · `(u|P|). A cycle is a path
from a node to itself containing at least one other node. If a graph contains
no cycles, it is called acyclic.

A tree is an undirected graph G = (V,E) with exactly one path between
any pair of nodes u, v ∈ V . In a rooted tree, one node vr ∈ V is selected as
the root node. For any edge (u, v) ∈ E, where node u is on the path from
root to node v, we call node u the parent of node v, and node v a child of
node u. An internal node is a node with children, while a leaf node is a
node without children.

A trie is a rooted tree, where every edge e ∈ E is labeled by a character
`(e) ∈ Σ. For any internal node v, the edges leading to its children must
have distinct labels. A path P = e1 · · · e|P | from the root node to a leaf
node is labeled by a string `(P) = `(e1) · · · `(e|P|). The set of strings L(G)
contained in trie G is the set of all path labels from the root to a leaf.

Automata and languages. A finite automaton is a directed labeled
graph A = (V,E).1 The initial node v1 is labeled with `(v1) = # with lex-
icographic value σ + 1, while the final node v|V | is labeled with `(v|V |) = $.
The rest of the nodes are labeled with characters from alphabet Σ. We
assume that every node v ∈ V is contained in some path from v1 to v|V |.

1Unlike the usual definition, we label nodes instead of edges.

2.2 Full-text indexes 9

The language L(A) recognized by automaton A is the set of all path
labels from v1 to v|V |. We say that automaton A recognizes any string
S ∈ L(A), and that a suffix S′ can be recognized from node v, if there is a
path from v to v|V | with label S′. Note that all strings in the language are
of form #x$, where x is a string over alphabet Σ. If the language contains
a finite number of strings, it is called finite. A language is finite if and only
if the automaton recognizing it is acyclic. Two automata are said to be
equivalent, if they recognize the same language.

Automaton A is forward (reverse) deterministic if, for every node v ∈ V
and every character c ∈ Σ ∪ {#, $}, there exists at most one node u such
that `(u) = c and (v, u) ∈ E ((u, v) ∈ E). For any language recognized by
some finite automaton, we can always construct an equivalent automaton
that is forward (reverse) deterministic.

2.2 Full-text indexes

Traditional indexes such as the inverted index treat the text as a sequence
of words. Because of this limitation, they can only support queries based on
words or their prefixes efficiently. If the text cannot be split into words, or
if we want to search for arbitrary substrings, we must use full-text indexes
instead. In later chapters, when we need to differentiate between the indexes
of different texts, we put the original text or collection into subscript (e.g.
BWTT or SAC).

Suffix tree and suffix array. The suffix trie of text T [1, n] is a trie
containing all suffixes of the text. As there are Θ(n2) nodes in the worst
case, the suffix trie is not a practical index for large texts. We get the suffix
tree (ST) [92] by replacing every unary path P of the trie with a single
edge e with label `(e) = `(P). As there is one leaf node for each of the
n suffixes and no unary internal nodes, there are at most 2n − 1 nodes.
If we store the edge labels as pointers to the text, we can store the suffix
tree in O(n log n) bits. In practice, the size of a suffix tree is usually 10–20
bytes per character [47]. The suffix tree can be constructed in linear time
with negligible working space in addition to the text and the final index
[65, 91]. Given a pattern of length |P |, we can find the subtree containing
its occurrences by following the edge labels in O(|P |) time (assuming a
constant-sized alphabet). If there are occ occurrences, we can list their
positions in the text by traversing the subtree in O(occ) time. An example
of the suffix tree and some related indexes can be seen in Figure 2.2.

10 2 Background

A

Suffix tree SA Sorted suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

Figure 2.2: Suffix tree, suffix array, and the Burrows-Wheeler transform of
text GACGTACTG$.

The suffix array (SA) [63, 32] of text T [1, n] is an array of pointers
SA[1, n] to the suffixes of T in lexicographic order. Alternatively, the suffix
array is the set of the leaves of the suffix tree, listed according to the lex-
icographic order of the path labels from root to leaf. The suffix array for
text T [1, n] requires n log n bits of space in addition to the text, and can
be constructed in O(n) time with 2n bits of working space in addition to
the text and the final index [74]. Given pattern P , we can find the range
SA[sp, ep] containing the suffixes that have the pattern as their prefix in
O(|P | log n) by using binary search. Other operations can be supported,
but in general the suffix array is more limited than the suffix tree.

Definition 2.1. A data structure provides suffix array-like functionality, if
it supports the following queries efficiently: (a) find the suffix array range
SA[sp, ep] containing the suffixes prefixed by pattern P ; (b) given i, locate
suffix SA[i] in the text; and (c) given i and j, extract substring T [i, j].

An alternate definition for locate is to locate all occurrences of a pattern
in the text. This definition is more useful for discussing indexes that are
not based on the suffix array, such as the LZ-index (see Section 3.1). With
these indexes, find is not a meaningful operation, and should be replaced
by counting the number of occurrences of a pattern in the text, or just by
determining whether there are any occurrences at all.

The suffix tree and the suffix array can be easily generalized to han-
dle multiple sequences. Assume we are given a collection (a set) of texts

2.2 Full-text indexes 11

function find(P)
[sp, ep]← [C[P [|P |], C[P [|P |] + 1]]
for i← |P | − 1 to 1

sp← C[P [i]] + rankP [i](BWT, sp− 1) + 1

ep← C[P [i]] + rankP [i](BWT, ep)
if [sp, ep] = ∅

return ∅
return [sp, ep]

Figure 2.3: Backward searching on Burrows-Wheeler transform [20]. The
body of the loop constitutes one step of backward searching.

T1, . . . , Tr, and let $i be the end marker of text Ti. To have strict lexico-
graphic ordering between the suffixes, we define $i < $j whenever i < j.
The generalized suffix trie is now simply a trie containing all suffixes of texts
T1, . . . , Tr. Generalized versions of the suffix tree and the suffix array are
derived from the trie in the same way as above.

Burrows-Wheeler transform. Burrows-Wheeler transform (BWT) [6]
is a permutation of the text closely related to the suffix array. The BWT
of text T [1, n] is a sequence BWT[1, n] such that BWT[i] = T [SA[i]− 1], if
SA[i] > 1, and BWT[i] = T [n] = $ otherwise. The transform can be reversed
by a permutation called LF -mapping [6, 20]. Let C[0, σ + 1] be an array
such that C[c] is the number of characters in {$, 1, 2, . . . , c−1} occurring in
the BWT, with C[0] = C[$] = 0 and C[σ + 1] = n. We define LF -mapping
as LF (i) = C[BWT[i]] + rankBWT[i](BWT, i), where rankc(BWT, i) is the
number of occurrences of character c in prefix BWT[1, i].

The rankBWT[i](BWT, i) in the definition can be interpreted as the lexi-
cographic rank of suffix T [SA[i], n] among those suffixes preceded by char-
acter BWT[i]. Hence LF (i) is the lexicographic rank of suffix T [SA[i]−1, n]
(or T [n], if SA[i] = 1) among all suffixes of the text. This allows us to move
from the suffix array position corresponding to suffix T [SA[i], n] to that of
suffix T [SA[i]− 1, n] without using the text or its suffix array.

By using LF -mapping, we can support find with just arrays C and
BWT through backward searching [20] (see Figure 2.3). When searching
for pattern P , the algorithm maintains an invariant that SA[spi, epi] is the
range of suffixes prefixed by P [i, |P |]. If BWT[j] and BWT[j′] are the first
and the last occurrences of character P [i− 1] in range BWT[spi, epi], then
SA[LF (j), LF (j′)] is the range of suffixes prefixed by P [i−1, |P |]. In Chap-

12 2 Background

ter 3, we show how backward searching can be implemented efficiently in
compressed suffix arrays.

Theorem 2.1. Assume that an index performs one step of backward search-
ing in tB time. Then it supports find(P) in O(|P | · tB) time.

The inverse function of LF -mapping is Ψ(i) = selectc(BWT, i − C[c]),
where c is the highest value with C[c] < i, and selectc(BWT, j) is the posi-
tion of the jth occurrence of character c in BWT [35]. We will often write
char(i) to denote such character c. This function allows us to move from
the suffix array position of suffix T [SA[i], n] to that of suffix T [SA[i] + 1, n].
Function Ψ is strictly increasing in the range Cc = [C[c] + 1, C[c+ 1]] corre-
sponding to suffixes starting with character c ∈ Σ. Note that T [SA[i]] = c
and BWT[Ψ(i)] = c for every i ∈ Cc.

Enhanced suffix array. Let lcp(A,B) be the length of the longest com-
mon prefix of sequences A and B. The longest common prefix (LCP) array
of text T [1, n] is an array LCP[1, n] such that LCP[1] = 0 and LCP[i] =
lcp(T [SA[i − 1], n], T [SA[i], n]) for i > 1. The array requires n log n bits
of space, and can be constructed in O(n) time [43, 80, 50, 30, 26]. The
best construction algorithms require little more space than for the text, the
suffix array, and the LCP array. By using another n log n-bit array derived
from the LCP array, the time complexity of searching for pattern P in a
suffix array is reduced from O(|P | log n) to O(|P |+ log n) [63].

The suffix array, the BWT, and the LCP array can be further augmented
with various partial representations of suffix tree topology. This approach,
generally known as the enhanced suffix array [1], allows us to simulate the
suffix tree in the same asymptotic time, while using less space. Many com-
pressed suffix tree proposals are based on a similar idea (see Chapter 6).

2.3 Compressed data structures

Data structure compression. The field of lossless data compression
is centered on finding smaller representations for different types of data.
Its three main goals are i) compression efficiency, ii) resources required
for compressing the data, and iii) resources required for decompression.
The relative importance of these goals varies greatly by the applications
considered.

In data structure compression, we are not interested in just compressing
the data, but we also want to support various operations on the data. Hence
the third goal becomes an efficient support for these operations instead of

2.3 Compressed data structures 13

just the efficiency of full decompression. The main tools used are com-
pression methods that support partial decompression, and space-efficient
indexes that allow us to quickly find the right part to decompress.

Most data structures contain no extra information in addition to the
data they represent. For example, while the suffix array for text T [1, n]
requires n log n bits of space, we can construct it from the text requiring
only n log σ bits of space. Hence it should be possible to represent the suffix
array in roughly n log σ bits of space. A data structure that achieves this
goal while providing efficient support for the required operations is called
succinct. More generally, a data structure for data D is succinct, if it takes
|D|(1+o(1)) bits of space, where |D| is the size of data in bits, and efficiently
supports the required operations.

Compressed data structures are still more powerful than succinct ones.
Let H be a complexity metric that measures the repetitiveness of the data
with respect to some model, and let f be a function such that input data
D can be compressed into f(H(D), |D|) bits. Then a data structure is
compressed with respect to metric H, if it requires O(f(H(D), |D|)) bits of
space, and supports the required operations efficiently. Later in this section,
we discuss two complexity metrics for textual data: empirical entropy and
the number of equal letter runs in the Burrows-Wheeler transform.

We call a succinct or compressed full-text index a self-index, if it does
not require the original text to operate, and is able to fully reproduce the
text. This allows us to replace the original text with the self-index that
often requires less space.

Empirical entropy. The empirical entropy [64]Hk(S) of sequence S[1, n]
is the average uncertainty over the next character in the sequence, given
a context of k ≥ 0 previous characters. If we encode each character in
the sequence separately, while considering only the k preceding characters
during the encoding, then nHk(S) bits is a lower bound for the size of the
compressed representation.

Order-0 empirical entropy is defined as

H0(S) = −
σ∑
c=1

nc
|S|

log
nc
|S|

,

where nc is the number of occurrences of character c in sequence S, and
0 log 0 = 0. For k > 0, let w ∈ Σk be a sequence, and let wS be the
concatenation of the characters following the occurrences of w in sequence

14 2 Background

S. Order-k empirical entropy for k > 0 is then defined as

Hk(S) =
∑
w∈Σk

|wS |
|S|

H0(wS).

For any k ≥ 0 and any sequence S, it holds that

0 ≤ Hk+1(S) ≤ Hk(S) ≤ log σ.

These definitions can be generalized for the integer alphabet N = {0, 1, . . .}.
In the rest of this thesis, we will write Hk instead of Hk(S), if sequence S
is evident from the context.

Runs in Burrows-Wheeler transform. While the empirical entropy
is a natural statistical metric of the compressibility of a sequence, it does
not reflect well the large-scale repetitiveness of the sequence. Consider
an arbitrary sequence S[1, n] and its order-k empirical entropy Hk(S) for
k � n. As Hk(SS) ≈ Hk(S), empirical entropy implies that the size of a
compressed representation of the concatenation of two copies of sequence S
should be about twice that of a single sequence. However, it is evident that
we can compress SS to take only a little more space than the compressed
representation of sequence S.

For sequences with large-scale repetitiveness, we define another com-
plexity metric that is a natural structural property of suffix arrays and
related structures. We consider the number of equal letter runs in the
Burrows-Wheeler transform of the sequence. When a text is repetitive, the
characters preceding lexicographically adjacent suffixes are identical with
high probability. Hence the number of runs should be small when the text
is repetitive.

Let T [1, n] be a text, and let BWT be its Burrows-Wheeler transform.
If BWT[i] = BWT[i+ 1], then positions i and i+ 1 belong to the same run.
As T [SA[i], n] and T [SA[i+1], n] are lexicographically adjacent suffixes, and
T [SA[i]−1] = T [SA[i+1]−1], then T [SA[LF (i)], n] and T [SA[LF (i+1)], n]
must also be lexicographically adjacent, and hence LF (i) = LF (i+ 1)− 1.
This means that, for every run BWT[i, i + l − 1], there is a corresponding
self-repetition SA[i′, i′+l−1] in the suffix array, with SA[i+j] = SA[i′+j]+1
for 0 ≤ j ≤ l − 1.

Let R(T) be the number of equal letter runs in the BWT of text T [1, n].
If the text is evident from the context, we write R instead of R(T). In
addition to the trivial upper bound R ≤ n, another bound [67]

R ≤ nHk(T
′) + σk for all k ≥ 0,

2.3 Compressed data structures 15

where T ′ is the reverse of text T , is also relevant for low-entropy texts.2

See Section 4.2 for bounds for the number of runs in texts with large-scale
repetitiveness.

Encoding integers. Many compression algorithms transform the data
into a sequence of integers. These integers are then encoded into binary
strings with a variety of methods, and the resulting strings are concatenated
to form the compressed representation. Encoding scheme g : N → {0, 1}∗
is prefix-free, if for any integers i, j ∈ N, neither of the codes g(i) and g(j)
is a prefix of the other. If the encoding scheme is prefix-free, then the
compressed sequence can be decoded unambiguously one integer at a time.

Huffman codes [41] are based on binary trees. Initially, each integer
i ∈ N with ni > 0 occurrences forms a separate tree with one node. As long
as there are multiple trees left, we select two trees G1 and G2 with the least
number of occurrences n(G1) and n(G2), and replace them with a new tree
G with n(G) = n(G1) + n(G2) occurrences. Tree G consists of a root node
with G1 as its left subtree and G2 as its right subtree. The final tree is a
Huffman tree for frequencies (ni)i∈N.

To read the codes from the Huffman tree, we label each edge from a
node to its left child with 0, and each edge to right child with 1. The code
for integer i corresponding to leaf node vi is then the path label from root
to node vi. With the help of a lookup table, both encoding and decoding
can be done in constant time per symbol.

Huffman codes are prefix-free and optimal among those prefix-free codes
that encode each occurrence of an integer with the same binary string [41].
The average code length is less than H0 + 1 bits per symbol. Assuming
that the integers are bounded by some polynomial poly(n), where n is the
length of the sequence, we can compress the sequence into n(H0 + 1) +
O(σ log n) bits, where σ is the number of integers with a positive number
of occurrences. The O(σ log n) term comes from storing the number of
occurrences for each of the occurring integers.

Elias codes [14] assign fixed codes to all positive integers. They are useful
in situations, where the distribution is not known at the time of encoding,
or when storing the numbers of occurrences would require significant space.
The implicit assumption behind Elias codes is that small integers are more
common than large ones, which is often true in e.g. encoding the differences
of an increasing sequence of integers.

2The term σk is actually an upper bound for the number of different order-k contexts
appearing in the reverse text.

16 2 Background

Let b(i) be the length |b(i)| = dlog(i + 1)e binary representation of
integer i > 0, and let b′(i) be the same sequence without the leading 1-bit.
The Elias γ-code for integer i is the binary string γ(i) = 0|b

′(i)|b(i) of length
2|b(i)| − 1. These codes are prefix-free, and encoding and decoding them
takes constant time with the help of a lookup table. If we replace the
unary representation 0|b

′(i)| with another γ-code, we get δ-codes δ(i) =
γ(|b(i)|)b′(i) of length log i + O(log log i). In general, γ-codes are better
when most of the integers are small, while δ-codes require asymptotically
less space (see also Section 3.2).

For an example, consider a simple run-length encoding of the BWT of
text T [1, n]. For a run consisting of l occurrences of character c, we output
a pair of integers (c, l). The character is encoded directly using dlog σe bits,
while δ-codes are used for encoding the length of the run. As logarithm is
a concave function, the worst case for encoding a given number of runs is
when all the runs are of similar length. For R runs, the average length of a
run is n/R characters, so the encoding uses at most

R(log σ + log(n/R)) +O(R log log(n/R))

bits of space. See Section 4.1 for the size bound for another variant of
run-length encoding.

Chapter 3

Compressed suffix arrays

3.1 Original indexes

The compressed suffix arrays (CSA) discussed in this chapter are com-
pressed self-indexes that provide the functionality of the suffix array (Defini-
tion 2.1). They are based on backward searching on the Burrows-Wheeler
transform (see Section 2.2), with their major differences in the solutions
used to encode the BWT and support rank and select on it.

The first index in the CSA family was the compressed suffix array of
Grossi and Vitter [35]. It was not a self-index, but encoded the suffix array
of text T [1, n] recursively in the following way:

• Binary string B[1, n] is used to mark even suffix array values: B[i] = 1,
if SA[i] is even.

• For odd suffix array values SA[i], we store Ψ(i) instead. As Ψ is strictly
increasing in range Cc for all c ∈ Σ, these values form σ increasing
sequences that can be encoded efficiently by using gap encoding (see
Section 3.2). If odd SA[i] is needed, it can be computed as SA[Ψ(i)]−1.

• For even suffix array values SA[i], we store SA[i]/2 in array SA′. If
even SA[i] is needed, it can be computed as 2 ·SA′[rank1(B, i)]. Array
SA′ can either be stored explicitly or encoded recursively.

Sadakane later transformed the compressed suffix array into a self-index
[84], and showed how to implement backward searching using Ψ instead of
BWT [83].

The FM-index (FMI) of Ferragina and Manzini [20] was a simultane-
ous development that was already a self-index. The BWT was split into
blocks that were compressed separately. To support backward searching,

17

18 3 Compressed suffix arrays

the rankc(BWT, ·) value corresponding to the beginning of each block was
stored explicitly for each character c. To compute rank for later positions,
the block had to be decompressed. Later developments concentrated on
improving the time/space trade-offs for large alphabets.

Because of these historical roots, papers on indexes of the CSA family
still often discuss compressing Ψ, while papers on the FMI family discuss
compressing the BWT. This is not a fundamental distinction, however. As
function Ψ is strictly increasing in range Cc for all characters c ∈ Σ, we
can represent this part of Ψ as a binary string Bc, where Bc[i] = 1 if and
only if Ψ(j) = i for some j ∈ Cc. But as Ψ(j) = selectc(BWT, j − C[c]),
where j ∈ Cc, this means that Bc[i] = 1 if and only if BWT[i] = c. As
most indexes in the CSA family store the values of Ψ separately for each
of the ranges Cc, they are essentially encoding the BWT by binary strings
Bc. Hence the differences between the CSA family and the FMI family are
more semantical than technical in nature.

We describe the CSA family, based on encoding the binary strings Bc,
in more detail in Section 3.2. Section 3.3 discusses the FMI family, concen-
trating on supporting rank and select directly on BWT by using wavelet
trees. There are also other proposals [31, 2, 59] to support rank and select
on BWT that we will not consider here. Later sections describe the tech-
niques used to support locate and extract, as well as dynamic compressed
suffix arrays that allow various updates to the text.

In addition to the compressed suffix arrays, there are also compressed
indexes that are based on Lempel-Ziv parsing of the text [71, 20, 82, 46].
In general, these LZ-indexes have faster locate and extract than the BWT-
based indexes [18]. On the other hand, they do not support find, as they
are not based on compressing the suffix array. These LZ-indexes are not
further discussed in the thesis.

3.2 CSA family

Bit vectors. Bit vectors are the basic building block of compressed data
structures. Built for a binary sequence B[1, n], a bit vector provides effi-
cient support for operations rank1(B, ·) and select1(B, ·). Some structures
also support select0(B, ·), while rank0(B, ·) can be solved by reduction
rank0(B, i) = i− rank1(B, i). In the following, bit vector B refers both to
the binary sequence and the data structure.

Indexes of the CSA family use bit vectors Bc, where Bc[i] = 1 if and
only if BWT[i] = c, to represent the BWT. They reduce the basic opera-
tions rankc(BWT, ·) and selectc(BWT, ·) to rank1(Bc, ·) and select1(Bc, ·),

3.2 CSA family 19

respectively. The best encoding for the bit vectors depends on the type of
data, the size of the alphabet, and the desired time/space trade-off.

A basic succinct bit vector [42, 66, 8] consists of the binary sequence
and separate o(n)-bit indexes for rank and select. For rank, we split the
sequence into large blocks of l = log2 n bits, and store the number of 1-bits
before each block in array Rl. A large block is further divided into small
blocks of s = log n/2 bits, and the number of 1-bits in previous small blocks
of the same large block is stored in array Rs. These arrays take O(n/ log n)
and O(n log logn/ log n) bits, respectively. We can now solve

rank1(B, i) = Rl[bi/lc] +Rs[bi/sc] + popcount(B[s · bi/sc, i]),

where popcount(S) is the number of 1-bits in sequence S, in constant time.
In practice, this solution requires 3 or 4 random memory accesses per rank,
depending on whether popcount is solved directly or by using lookup tables.

In select, large and small blocks consist of κ = log2 n 1-bits and log2 κ =
O((log logn)2) 1-bits, respectively. Arrays similar to Rl and Rs in rank are
used to store the answer to select for the first 1-bit of each block. These
arrays take O(n/ log n) bits for large blocks and O(n/ log log n) bits for
small blocks. A lookup table is used to answer select for the 1-bits within
a small block. This solution takes O(1) time and up to 4 random memory
accesses.

An exception to the above are long blocks. If a large block spans
more than log4 n positions in the sequence, relative positions within it
might take more than O(log log n) bits each. But as there are at most
O(n/ log2 n) 1-bits within such blocks, we can store their positions explic-
itly in O(n/ log n) bits and ignore the small blocks. Similarly, if a small
block spans more than log n positions, answering select within it might
not be constant-time. Yet as there are at most O(n(log log n)2/ log n)
1-bits within these blocks, storing their relative positions takes at most
O(n(log log n)3/ log n) bits.

As there are
(
n
n1

)
binary sequences of length n with n1 1-bits, we can

store the sequence in dlog
(
n
n1

)
e ≤ dnH0e bits. A simple entropy-compressed

bit vector achieves nH0 +o(n) bits of space by storing each small block as a
pair of integers (i, j), where i is the number of 1-bits in the block, and j is
the lexicographic rank of the block among those blocks with i 1-bits. The
bit vector of Raman et al. [81] requires nH0 + O(n log log n/ log n) bits of
space, and supports rank and select in constant time.

An alternative approach is to use gap encoding (also called differential
encoding) to compress the sequence. Each 1-bit is stored as the distance
between it and the previous 1-bit, often by using γ-codes or δ-codes. Indexes

20 3 Compressed suffix arrays

are built for large and small blocks to allow fast decoding. The relevant
complexity metric here is

gap(B) =

n1∑
i=1

dlog(select1(B, i)− select1(B, i− 1) + 1)e,

where select1(B, 0) = 0. If the sequence is evident from the context, we
write gap instead of gap(B), as with the other complexity metrics. In the
worst case, we have gap / n1 log(n/n1) ≤ nH0, but gap can get much
smaller, if the 1-bits are not evenly spaced [37].1 The bit vector of Gupta
et al. [37] achieves sublogarithmic query complexity, while its space occu-
pancy is gap +O(n1 log(n/n1)/ log n1) +O(n1 log log(n/n1)) bits.

Gap encoding essentially replaces runs of 0-bits with their lengths. If
there are long runs of 1-bits, it may be beneficial to replace these runs
as well. This technique is called run-length encoding (RLE). Bit vectors
can use RLE directly or reduce it to gap encoding. One such reduction
replaces binary sequence B with another sequence B′ that contains an 1-bit
at the first position of every run of 0-bits and 1-bits in B. The relevant
complexity metrics are the number of runs of 1-bits R(B) (or just R) and
run(B) = gap(B′). In the worst case, run(B) / 2R(B) log(n/(2R(B))) by
the same reasoning as with gap encoding.

Choosing the bit vector. The choice between various encodings de-
pends on the sequence B (see Okanohara et al. [77]). If B is essentially
random, succinct representation and entropy compression are both good
choices. For n1 ≈ n/2, we have H0 ≈ 1, and both representations achieve
similar size. On the other hand, if the distribution is biased, entropy com-
pression can reduce the size significantly. For non-random B, gap encoding
or run-length encoding may be able to exploit the structure at the cost of
query performance. Note that while entropy compression and gap encod-
ing both have nH0 as the most significant term in their size bounds, their
actual performances differ. For a sparse sequences, where n1 � n/2, gap
encoding is often a better choice, as it usually has larger small blocks and
hence less overhead. Entropy compression tends to perform better in dense
(non-sparse) sequences, as gap encoding has some overhead per 1-bit.

When the sequence B is very compressible, low-order terms in the
size bound can dominate the size of the bit vector. For example, the
O(n log logn/ log n) term of the bit vector of Raman et al. [81] is almost
linear in n, so it dominates the overall size when H0 � 1. In these cases, it

1A pessimistic non-approximate bound is gap ≤ n1 log(n/n1) + n1.

3.2 CSA family 21

is preferable to use a data-aware bit vector, where the size overhead scales
either with the compressed size of the sequence or with some related prop-
erty of the sequence. An example of a data-aware bit vector is the one by
Gupta et al. [37], with the low-order term almost linear in the number of
1-bits n1. The key for making a bit vector data-aware is to make the small
blocks data-aware: they might contain a certain amount of compressed data
or a certain number of 1-bits.

The size of gap encoded and run-length encoded bit vectors depends
greatly on the integer codes they use. A common solution is to use either
γ-codes or δ-codes. While δ-codes are asymptotically smaller, γ-codes have
smaller code lengths for integers i ∈ {2, 3, 8, . . . , 15}. For i ≥ 32, δ-codes
are shorter than γ-codes. When used in compressed suffix arrays, γ-codes
perform better for regular texts [28], while δ-codes are better for low-entropy
or highly repetitive texts [36].

Self-indexes of the CSA family. Assume that we want to use a bit
vector that supports rank in time tR and select in time tS to encode the
binary sequences Bc. To compute Ψ(i), we must be able to determine
efficiently the largest character c with C[c] < i. One solution is to use bit
vector C ′, where C ′[i] = 1 if C[c] = i for some character c > 0.2 Then
Ψ(i) = select1(Bc′ , i − C[c′]), where c′ = rank1(C ′, i). Hence Ψ can be
computed in tΨ = O(tR + tS) time.

For backward searching, we need to compute LF for the first and the
last occurrences of character P [i − 1] in range BWT[spi, epi]. This can be
done as

spi−1 = C[P [i− 1]] + rank1(BP [i−1], spi − 1) + 1;

epi−1 = C[P [i− 1]] + rank1(BP [i−1], epi).

Hence one step of backward searching takes tB = O(tR) time.

Theorem 3.1 (From Theorems 2.1 and 3.3). Let rank and select on binary
sequences take tR and tS time, respectively. Then a self-index of the CSA
family with sample rate d supports find(P) in O(|P | · tR) time, locate in
O(d · (tR + tS)) time, and extract(i, j) in O((d+ j − i)(tR + tS)) time.

See Section 3.4 for the definition of sample rate d.
To compute LF (i) for an arbitrary position i, we need to know the

character BWT[i]. As the character can be encoded in any of the binary
sequences Bc, this takes tLF = O(σ · (tR + tS)) time. Hence computing LF
is inefficient in the CSA family, except for sequences with small alphabets.

2This solution assumes that every character of alphabet Σ appears in the text.

22 3 Compressed suffix arrays

As the encoding of BWT consists of σ bit vectors of length n, any o(n)-bit
terms in the size bound of the bit vector will sum up to o(σn) bits. In prac-
tice, this can be much more than the n log σ bits of the original sequence.
Hence indexes of the CSA family tend to use bit vectors that are at least
partially data-aware, with non-constant rank and/or select times.

The best-known index of the CSA family is the compressed suffix ar-
ray of Sadakane (Sad-CSA) [84, 83]. It uses a differential encoding of
Ψ that is essentially either a gap encoded or a run-length encoded rep-
resentation of the bit vectors Bc. A run-length encoded Sad-CSA requires
nHk + O(n log log σ) bits for k ≤ α logσ n and some constant 0 < α < 1
[72]. The performance of Sad-CSA follows from Theorems 2.1 and 3.3 with
tB = O(log n), tR = tS = O(1), and tΨ = O(1). In practice, Sad-CSA
provides good compression and supports locate and extract very efficiently,
while losing to other indexes in find [18].

The run-length compressed suffix array (RLCSA) [69, 88] uses data-
aware run-length encoded bit vectors to encode the sequences Bc. Intended
for indexing highly repetitive sequences, RLCSA requires

R
(

log
σn

R
+ log

n

R
+O

(
log log

σn

R

))(
1 +

O(log n)

b

)
+O(σ log n)

bits of space, where b is the block size in bits. For b = O(log n), the
performance follows from Theorem 3.1 with tR = tS = O(log n). This
index is described in detail in Chapter 4.

3.3 FMI family

Wavelet trees. The wavelet tree [34] is a versatile data structure that
supports rank and select on general sequences. In its general form [22], a
wavelet tree reduces rank and select on strings over alphabet Σ to the same
operations on strings over a smaller alphabet Σ′. An example of a wavelet
tree can be seen in Figure 3.1.

Definition 3.1. A wavelet tree for string S over alphabet Σ with internal
alphabet Σ′ is a rooted tree, where each internal node has at most |Σ′|
children, and the leaves are the characters of alphabet Σ. Let v1, . . . , vk
be the children of the root node. The root is labeled with string S′, where
S′[i] = j, if character S[i] is in the subtree with vj as its root. The subtree
of each child vj is a wavelet tree for the subsequence Sj of S that contains
only the characters in that subtree.

3.3 FMI family 23

A $A C CG G GT T
101111 0000

G G T
1

T
1

GA A
00

$ C
0

C
1 1 0 0 0

A A $

$ A C G T

11 0

Figure 3.1: A binary wavelet tree for sequence GGTAAT$CGC (the Burrows-
Wheeler transform in Figure 2.2). The internal nodes of an actual wavelet
tree contain only the binary sequences, but not the conceptual character
sequences.

Let vj be the root of the subtree containing character c. With the above
definition, rank and select over string S are supported in the following way:

rankc(S, i) = rankc(Sj , rankj(S
′, i));

selectc(S, i) = selectj(S
′, selectc(Sj , i)).

The computation of rank starts at the root and proceeds towards the leaf,
where rankc(S, i) = i, while select starts from the leaf with selectc(S, i) = i
and proceeds towards the root. In either case, rank or select on string S is
reduced to h operations with the internal alphabet, where h is the distance
of character c from the root. Character S[i] can also be determined in
h steps by starting from the root, continuing to the subtree of vS′[i], and
searching for character SS′[i][rankS′[i](S

′, i)] there.

Compression with wavelet trees. Burrows-Wheeler transform groups
characters followed by the same k-character context together, simultane-
ously for all k ≥ 0. If we partition BWT by order-k contexts for some fixed
k, and encode each part separately by an order-0 encoder, the result will
be compressed to the order-k entropy of the reverse text, excluding low-
order terms. Compression boosting [17] improves upon this by finding the
partition that minimizes the overall size for a given order-0 encoder.

In practice, a quickly adapting order-0 encoder uses an almost optimal
partition implicitly, achieving similar compression as explicit boosting [16].

24 3 Compressed suffix arrays

We can use this implicit compression boosting to achieve nHk+o(n log σ)+
O(σk+1 log n) bits of space simultaneously for all k ≥ 0 by using the bit
vector of Raman et al. [81] to encode a binary wavelet tree [68]. This
means that, in some sense, indexes of the FMI family can achieve similar
compression as the best BWT-based compressors.

Building the self-index. Assume that the wavelet tree is a complete
binary tree, and the sequences are encoded by a bit vector supporting rank
in time tR and select in time tS . Then we can compute LF (i) = C[BWT[i]]+
rankBWT[i](BWT, i) with log σ rank operations in tLF = O(tR log σ) time by
recursion

rankBWT[i](BWT, i) = rankBWT[i](SS′[i], rankS′[i](S
′, i)).

With array C implemented in the same way as in the CSA family, we can
compute Ψ(i) = selectc(BWT, i − C[c]) in tΨ = O(tR + tS log σ) time. A
step of backward searching

spi−1 = C[P [i− 1]] + rankP [i−1](BWT, spi − 1) + 1;

epi−1 = C[P [i− 1]] + rankP [i−1](BWT, epi).

can be done in tB = O(tR log σ) time.

Theorem 3.2 (From Theorems 2.1 and 3.3). Let rank and select on binary
sequences take tR and tS time, respectively. Then a self-index of the FMI
family with sample rate d supports find(P) in O(|P | · tR log σ) time, locate
in O(d · tR log σ) time, and extract(i, j) in O((d+ j − i) · tR log σ) time.

See Section 3.4 for the definition of sample rate d.
With a Huffman-shaped wavelet tree, we can replace the log σ factors in

time complexities by the order-0 entropy H0 in the expected case [28]. Note
that as the total length of the bit vectors is n log σ, the sublinear terms in
size bounds sum up to o(n log σ). Hence, unlike in the CSA of Theorem 3.1,
we can use the bit vectors with tR = tS = O(1) to overcome the extra log σ
factors in time complexities.

Self-indexes of the FMI family. The succinct suffix array (SSA) [67]
is a simple Huffman-shaped wavelet tree using succinct bit vectors with
tR = tS = O(1). It requires n(H0 + 1)(1 + o(1)) bits of space, and its
performance follows from Theorem 3.2. In practice, SSA is one of the fastest
self-indexes, due to its simplicity [18]. However, other indexes achieve better
compression on texts with low high-order entropy.

3.4 Supporting full functionality 25

The run-length FM-index (RLFM) [67] is a variant of the SSA that
builds the wavelet tree over the run heads (the first characters of each run)
of the BWT, and uses a separate bit vector to encode the lengths of the
runs. Its performance follows from Theorem 3.2 with tR = tS = O(1), while
the size bound is nHk log σ + 2n+ o(n log σ) bits for k ≤ logσ n− ω(1). In
practice, the query performance of RLFM is similar to AFFM below [10].
Index size tends to be larger than AFFM on regular texts [10] and smaller
on highly repetitive texts [90]. A data-aware variant of RLFM exists, but
it is both larger and slower than RLCSA [69].

Instead of a single wavelet tree, the alphabet-friendly FM-index (AFFM)
[22] uses explicit compression boosting to partition the BWT, and en-
codes each part separately with a wavelet tree with internal alphabet of
size o(log n/ log log n). Compression boosting guarantees a size bound of
nHk + o(n log σ) bits for k ≤ α logσ n− 1, while the performance of AFFM
follows from Theorems 2.1 and 3.3 with tB = tLF = O(1 + log σ/ log log n)
and tR = tS = O(1). AFFM achieves similar compression as Sad-CSA, with
fast find and relatively slow locate and extract [18].

There are several variants of SSA using compression boosting. With the
implicit compression boosting offered by the bit vector of Raman et al. [81]
on a balanced wavelet tree, we get the same size bound as for AFFM.
The query performance of this FMI variant follows from Theorem 3.2 with
tR = tS = O(log σ). Another variant (SSA-RRR) using a Huffman-shaped
tree improves both size and performance, making the index smaller than
AFFM and RLFM, but also slower than them [10]. We get the same size
bound by dividing the BWT into blocks of σ log2 n characters and building
a separate SSA or SSA-RRR for each of the blocks [51]. With SSA-RRR
as the basic index, this variant is the smallest entropy-compressed index of
the FMI family, and almost as fast as AFFM. When using SSA, we combine
the size of AFFM with the performance of SSA.

A data-aware run-length encoded variant of SSA also exists [69]. While
this index offers slightly better compression than RLCSA, it is much slower
in practice.

3.4 Supporting full functionality

Sampling mechanism. The basic solution to locate and extract has not
changed much since the original FM-index [20]. We sample a number of
pairs (i,SA[i]), and use either LF or Ψ to derive the unsampled positions.

Assume that we want to retrieve SA[i]. If suffix array position i is
sampled, we can just use the sampled value. Otherwise we compute LF (i)

26 3 Compressed suffix arrays

and continue from that position. Eventually, after k steps, we find a sample
(LF k(i), SA[LF k(i)]). As SA[LF (i)] = SA[i]− 1 (unless SA[i] = 1), we now
know that SA[i] = SA[LF k(i)]+k. The special case can be avoided by always
sampling (SA−1[1], 1). In a similar way, we can also use Ψ to find SA[i]. As
SA[Ψ(i)] = SA[i]+1 (unless SA[i] = n), we get SA[i] = SA[Ψk(i)]−k, where
(Ψk(i),SA[Ψk(i)]) is a sampled position.

To extract substring T [i, j], we find the smallest k ≥ j, for which
(SA−1[k], k) has been sampled, and use LF to proceed backwards. After
k − j steps, we have reached (LF k−j(SA−1[k]), j). We can now determine
T [j] = c, where C[c] < LF k−j(SA−1[k]) ≤ C[c+ 1]. After that, we proceed
with LF until we reach T [i], and determine each character in the same way.
Instead of using LF , we can also use Ψ by starting at the largest sampled
value k ≤ i and moving forward until we reach T [j].

A practical solution is to sample (i,SA[i]) for those positions i, where
SA[i] = j · d for some sample rate d > 0, in addition to the special cases
(SA−1[1], 1) and (1, n). Then the nearest sample is always within d − 1
steps of LF or Ψ. The sampled positions are marked in bit vector Bs
(Bs[i] = 1, if (i,SA[i]) has been sampled). Sampled values are encoded as
SA[i]/d, taking log(n/d) bits each, and stored in array SAs in suffix array
order. Checking whether SA[i] has been sampled takes O(tR) time, where
tR is the time required to answer rank1(Bs, i). Retrieving a sampled value
SA[i] = d · SAs[rank1(Bs, i)] also takes O(tR) time.

For extract, the starting position k is d · (b(j−1)/dc+1) when using LF
and d · bi/dc when using Ψ. For all samples (SA−1[k], k), we store the values
rank1(Bs,SA

−1[k]) in an array in text order. This array SA−1
s takes a total

of (n/d) log(n/d) bits. We can determine SA−1[k] = select1(Bs, SA
−1
s [k/d])

for a sampled text position k in O(tS) time, where tS is the time required
to answer select. The current character can be determined in O(tR) time
by using the bit vector representation of array C.

Theorem 3.3. Assume that an index computes LF in tLF time and Ψ in
tΨ time, and that we are given a bit vector that supports rank in tR time and
select in tS time. Then we can answer locate in O(d · (tR + min(tLF , tΨ)))
time and extract substring T [i, j] in O(tS + (d + j − i)(tR + min(tLF , tΨ))
time by using O((n/d) log(n/d)) + |B| bits of extra space, where d > 0 is
the sample rate and |B| is the size of the bit vector.

In theoretical size bounds, the sample rate is often assumed to be
log1+ε n for some ε > 0. Then, assuming that we use the bit vector of
Raman et al. [81] for marking the sampled positions, the extra space be-
comes o(n) bits, while tR = tS = O(1).

3.5 Dynamic versions 27

Optimizations. If the index supports both LF and Ψ efficiently (as the
FMI family does), we can effectively double the number of samples by using
an extra binary string Bn of length n. For each suffix array position i, we
write Bn[i] = 1, if the nearest sample can be found faster by using Ψ than
by using LF . This reduces the expected distance to the nearest sample from
d/2 to d/4. If d ≈ log n, this is already more space-efficient than doubling
the number of samples.

A typical use of locate is to call it for all positions in the suffix array
range returned by find. If the text is repetitive, it can be more efficient to
compute locate for all positions in the range simultaneously, instead of doing
it one position at a time. If suffix array positions i and i + 1 are located
in the same equal letter run in BWT (self-repetition in the suffix array),
then LF (i + 1) = LF (i) + 1 (Ψ(i + 1) = Ψ(i) + 1), and the corresponding
bit vector operations are usually faster than for arbitrary positions. In
repetitive texts, positions LF (i) and LF (i+ 1) (Ψ(i) and Ψ(i+ 1)) are also
in the same run (self-repetition) with high probability, and a significant
amount of work can be saved by doing locate simultaneously for the entire
range. See Section 4.4 for experimental results.

The standard sampling strategy, as described above, is geared towards
worst case performance. As the nearest sample is never more than d − 1
steps away, the desired position can be found in O(d · tLF) or O(d · tΨ)
time. On the other hand, if the query distribution is very skewed, another
sampling strategy might provide better expected case performance. Ex-
periments suggest that locate can be up to 10 times faster, if the samples
have been optimally selected for a known distribution [23].3 Adapting the
samples for an unknown query distribution remains an open problem.

3.5 Dynamic versions

Consider the differences between the Burrows-Wheeler transforms of texts
T and cT , for an arbitrary text T and an arbitrary character c. In both
cases, the position of the end marker, rank(T, T) or rank(cT, cT), is deter-
mined by the longest suffix. Additionally, BWTcT [rank(cT, T)] = c, while
BWTT [rank(T, T)] = $. This suggests of a simple procedure for obtaining
BWTcT from BWTT (see Figure 3.2). The first step is essentially a step of
backward searching. The lexicographic range corresponding to pattern T in
the suffix array of text T is [rank(T, T), rank(T, T)], and if we continue the
search with character c, we get [rank(cT, cT), rank(cT, cT) − 1] (note that
rank(T, cT) = rank(cT, cT)).

3The full version of [23] reports even greater speedups.

28 3 Compressed suffix arrays

function update(rank(T, T), c)
rank(cT, cT)← C[c] + rankc(BWT, rank(T, T)) + 1
BWT[rank(T, T)]← c
BWT← BWT[1, rank(cT, cT)− 1] $BWT[rank(cT, cT), n]
for i← c+ 1 to σ + 1

C[i]← C[i] + 1
return (BWT, C, rank(cT, cT))

Figure 3.2: Updating the Burrows-Wheeler transform of text T to that of
text cT [38].

Chan et al. [7] used this idea to obtain dynamic compressed suffix arrays
for a collection of texts, supporting insertion and deletion of individual
texts. Their solution uses a balanced search tree to store the small blocks
of a succinct bit vector, with each block containing log n to 2 log n bits of
the underlying sequence. Each node also contains the number of bits and
1-bits stored in the corresponding subtree. The bit vector takes O(n) bits of
space, and supports rank and select in tR = tS = O(log n) time. Inserting,
deleting, and updating a bit takes tU = O(log n) time.

If we want to insert a new end marker $r+1 into the BWT of collection C
of r texts, its lexicographic rank is rank(C ∪{$r+1}, $r+1) = r+1. Any text
T in the collection can be extended to cT by using the update procedure
in Figure 3.2, if we know the lexicographic rank of T . We can also remove
the first character of any text and finally the end marker by reversing the
same procedure.

Theorem 3.4. Let rank and select on dynamic binary sequences take tR
and tS time, respectively, and let updating the sequence take tU time. Then
a dynamic self-index of the CSA family supports the insertion and deletion
of text T in O(|T | · (tR + σ · tU)) time and O(|T | · (tR + tS + σ · tU)) time,
respectively. For an index of the FMI family, insertion and deletion times
are O(|T | · (tR + tU) log σ) and O(|T | · (tR + (tS + tU) log σ)), respectively.
The performance of these indexes follows from Theorems 3.1 and 3.2.

In the CSA family, rank and select on BWT are solved with just one
bit vector operation, while updating the BWT requires updating all σ bit
vectors. In the FMI family, rank, select, and updating all require log σ bit
vector operations.

Mäkinen and Navarro [68] used a dynamic gap encoded bit vector to
build an index of the FMI family. Their bit vector requires nH0 + o(n)
bits of space, making the total size of the index nHk + o(n log σ) bits for

3.5 Dynamic versions 29

k ≤ α logσ n − 1 and any constant 0 < α < 1. The performance of their
index follows from Theorem 3.4 with tR = tS = tU = O(log n).

Lee and Park [58] used a wavelet tree with internal alphabet of size log n
to produce a more efficient dynamic index. Their index achieves AFFM-like
query times and requires O(|T | · (1 + log σ/ log logn)) time for inserting or
deleting text T . Initial variants were either succinct or run-length encoded,
but later developments by González and Navarro [33] and Lee and Park [57]
obtained the same size bound as Mäkinen and Navarro [68].

So far, the dynamic indexes have been mostly theoretical in nature. Ger-
lach [29] has implemented a dynamic FM-index using succinct bit vectors
in a Huffman-shaped wavelet tree. In practice, the index takes 2n to 3n
bytes for a text of length n. Experiments suggest that dynamic updates are
faster than rebuilding the index, when the size of insertion or deletion is at
most n/20.

Salson et al. [86, 87] investigated a different model, where updates are
allowed not only at the beginning of a sequence, but anywhere in the col-
lection. They were unable to obtain meaningful time bounds, as the time
complexity of a particular edit operation depends on the number of pre-
vious suffixes whose lexicographic rank is changed. See Section 4.2 for an
expected case analysis of a closely related problem.

30 3 Compressed suffix arrays

Chapter 4

Run-length compressed suffix array

In the terminology of Chapter 3, the run-length compressed suffix array
(RLCSA) is a compressed self-index of the CSA family using data-aware
run-length encoded bit vectors. As a theoretical structure, RLCSA has been
described and analyzed in Paper I. Many of the implementation choices have
been described in Paper II.

RLCSA has been designed for indexing highly repetitive sequences or
collections of sequences. A sequence can be considered highly repetitive, if
the number of equal letter runs in the Burrows-Wheeler transform is much
less than the length of the sequence. Run-length encoding achieves good
compression in such cases, if the bit vectors and other structures are data-
aware, with no significant dependencies on the length of the sequence in
their size bounds. Other design principles include simplicity and practi-
cal efficiency, even when a more complicated design might provide better
theoretical time or space bounds.

In some sense, RLCSA is a a data-aware variant of Sad-CSA. Paper I also
describes data-aware versions of RLFM and SSA, designed and implemented
by Niko Välimäki. The improved run-length FM-index (RLFM+) uses the
bit vector of Gupta et al. [37] to encode the lengths of equal letter runs,
but is otherwise identical to the original RLFM. The run-length encoded
wavelet tree (RLWT) is based on a balanced wavelet tree, using two gap
encoded bit vectors of Gupta et al. [37] per binary sequence to achieve run-
length encoding. While all three indexes have similar space bounds, RLWT
is slightly smaller than RLCSA in practice, while RLFM+ is clearly larger.
On the other hand, RLCSA is the fastest of the three indexes, followed by
RLFM+ and RLWT.

31

32 4 Run-length compressed suffix array

4.1 Analysis

RLCSA uses data-aware run-length encoded and gap encoded bit vectors.
Technical details of these bit vectors are described in Section 4.3. For the
theoretical analysis, it is enough to note that both bit vectors support rank
and select in O(log n + b) time, where b is the size of small blocks in bits.
On a binary sequence B of length n, with n1 1-bits in R1 runs, the size
bounds are (

gap(B) +O

(
n1 log log

n

n1

))(
1 +

O(log n)

b

)
bits for the gap encoded variant and(

run(B) +O

(
R1 log log

n

R1

))(
1 +

O(log n)

b

)
bits for the run-length encoded variant.

Assume that there are R equal letter runs in the Burrows-Wheeler trans-
form. Then the total number of runs of 1-bits in bit vectors Bc is also R.
As the total number of 1-bits is n and the total number of 0-bits is (σ−1)n,
we get a size bound of

R
(

log
σn

R
+ log

n

R
+O

(
log log

σn

R

))(
1 +

O(log n)

b

)
bits for BWT by using the bound gap ≤ n1 log(n/n1)+n1. This size bound
has an extra R log(n/R) term, when compared to direct run-length encoding
of the BWT (see Section 2.3), as we are encoding the runs of each character
separately.

We use the sampling scheme described in Section 3.4 to support lo-
cate and extract. A gap encoded bit vector is used as Bs to mark the
sampled positions. With sample rate d, the total size of the samples is
O((n/d) log(n/d)) bits. Gap encoded bit vectors are also used for encod-
ing array C and marking sequence boundaries. Together with the overhead
from alphabet size and the number of sequences, these bit vectors take
O((r + σ) log n) bits, where r is the number of sequences in the collection.
From Theorem 3.1, we get the following theorem.

Theorem 4.1. Assume we have a collection of r texts with total length N .
The run-length compressed suffix array for the collection takes

R

(
log

σN

R
+ log

N

R
+O

(
log log

σN

R

))(
1 +

O(logN)

b

)
+O

(
N

d
log

N

d
+ (r + σ) logN

)

4.2 Runs in BWT 33

bits of space, where b is the block size in bits, R is the number of equal letter
runs in the Burrows-Wheeler transform of the collection, and d is the suffix
array sample rate. The index supports find(P) in O(|P | · (logN + b)) time,
locate in O(d ·(logN+b)) time, and extract(i, j) in O((d+j−i)(logN+b))
time.

In practice, block size b is chosen to be Θ(logN) bits, so that the factor
1+O(logN)/b in the size bound becomes 1+ε, for some constant 0 < ε < 1.
This also simplifies the factor logN + b in the time bounds to O(logN).

4.2 Runs in BWT

In Section 2.2, we defined that each sequence of a collection has a distinct
end marker, making the set of suffixes of the collection well-ordered. A
drawback of this definition is that it increases the alphabet size significantly
for large collections. In the following analysis, as well as in practice, we avoid
the drawback replacing all end markers with a single symbol $ after sorting.
By doing this, we lose the ability to compute Ψ for suffix array positions
corresponding to the end markers, as well as the ability to compute LF for
positions corresponding to the first characters of a sequence.

Entropy-based estimates. As noted in Section 2.3, the number of equal
letter runs in the BWT of a text of length n is R(T) ≤ nHk(T

′) + wk(T
′),

where T ′ is the reverse of text T and wk(T
′) is the number of order-k

contexts occurring in the reverse text. This bound holds simultaneously for
all k ≥ 0.

If we assume that the text has been generated by an order-0 source, we
can use the character frequencies to approximate the expected number of
runs. The character at position i in the Burrows-Wheeler transform is a
run head, if i = 1 or if the suffixes with lexicographic ranks i− 1 and i are
preceded by different characters. Assuming that the character distribution
is p = [n1/n, · · · , nσ/n], the probability that the preceding characters differ
is 1−p·p. Hence we can estimate that for an order-0 source, R ≈ n(1−p·p).
Similar estimates can be made for higher order sources as well.

Highly repetitive collections. For k = dlogσ ne, the number of possible
order-k contexts is σk ≥ n. If a significant fraction of these contexts occur
in the text, then the model will probably take more space than a statistical
encoding of the text based on that model. Hence it is not reasonable to
use an order-k′ model, for k′ > k, to describe the text, unless only a small

34 4 Run-length compressed suffix array

fraction of the possible contexts occur in the text, making it highly repet-
itive. On the other hand, if the number of runs is significantly less than
predicted by an order-k model, lexicographically adjacent suffixes will likely
be preceded by the same character, making the text highly repetitive.

Definition 4.1. A collection of texts with total lengthN is highly repetitive,
if the number of equal letter runs in the Burrows-Wheeler transform of
the collection is significantly less than predicted by an order-k model, for
k = dlogσNe.

In the following, we estimate the number of equal letter runs in the
Burrows-Wheeler transform of a highly repetitive collection, created by ap-
plying s random edit operations on a collection of r identical random texts
of length n.

Combinatorial properties.

Lemma 4.1. Let C = {T1, . . . , Tr} be a collection of r copies of text T .
Then R(C) = R(T).

Proof. For all positions j, the suffixes Ti[j, n] and Ti′ [j, n] are identical for
any texts Ti and Ti′ , and the lexicographic order among them is determined
by sequence numbers. Hence rank(C, Ti[j, n]) = r · (rank(T, T [j, n])− 1) + i.
As the suffixes Ti[j − 1, n] are also identical for all texts Ti, we have

BWTC [rank(C, T1[j, n]), rank(C, Tr[j, n])] = BWTT [rank(T, T [j, n])]r.

Hence the number of equal letter runs does not depend on the number of
copies of text T .

Definition 4.2. Let C = {T1, . . . , Tr} be a collection of texts, all derived
by substitutions, insertions, and deletions from some base text T , and let
A be a multiple alignment representing those edit operations. The signif-
icant prefix Si,j of suffix Ti[j, |Ti|] is the shortest prefix of Ti[j, |Ti|] that
differentiates it from all other suffixes, except possibly from those with first
characters aligned with character Ti[j].

The intuition behind the definition is that significant prefixes can be
used to sort non-aligned suffixes into lexicographic order. Aligned suffixes
are assumed to be equivalent in respect to the number of runs, unless there
has been an edit operation nearby.

Lemma 4.2. Let C = {T1, . . . , Tr} be a collection of r copies of text T , and
let C′ be the same collection after substituting one character of one text with
another character. Then R(C′) ≤ R(T) + O(k), where k is the number of
suffixes of collection C′ whose significant prefixes cover the substitution.

4.2 Runs in BWT 35

Proof. Assume that the substituted character was Ti[j]. We get the new
Burrows-Wheeler transform BWTC′ by removing the characters correspond-
ing to suffixes Ti[1, n], . . . , Ti[j + 1, n] from BWTC and inserting them into
their new positions, as the rest of the suffixes remain the same.

As k significant prefixes cover the substituted character, suffixes Ti[1, n]
to Ti[j − k, n] are not affected by the substitution. The lexicographic or-
der between them and the remaining non-aligned suffixes does not change.
The lexicographic order between a removed suffix and aligned suffixes can
change, but as the preceding character does not change, this means just in-
serting the same character back into a different part of the same run. Hence
we only need to consider suffixes Ti[j − k + 1, n] to Ti[j + 1, n].

For suffixes Ti[j − k + 1, n] to Ti[j, n], we are inserting the same char-
acter into a new position in the BWT. This can break an existing run into
two parts, and the inserted character can create another run on its own.
Hence these suffixes can create at most 2k new runs. Finally we insert the
substituted character to the original position of suffix Ti[j + 1, n]. This can
also break an existing run and create a new run, so the total number of
new runs is at most 2k + 2. The result follows by noting that according to
Lemma 4.1, R(C) = R(T).

The lemma immediately generalizes to multiple substitutions.

Corollary 4.1. Let C = {T1, . . . , Tr} be a collection of r copies of text T ,
and let C′ be the same collection after substituting a total of s characters
with other characters. Then R(C′) ≤ R(T) + O(k), where k is the num-
ber of suffixes of collection C′ whose significant prefixes cover at least one
substitution.

Proof. The proof follows that of Lemma 4.2. For each substitution Ti[j], we
remove the characters corresponding to suffixes whose significant prefixes
contain the substitution, and insert them into their new positions.

Expected case properties. In the following, we assume that all random
choices are independent and identically distributed.

Lemma 4.3. Let T be a random text. The expected length of the longest
repeated substring is O(logσ n).

Proof. Let Xk
i,j , where i < j ≤ n− k + 1, be a variable indicating whether

substrings T [i, i+ k − 1] and T [j, j + k − 1] are identical. If i+ k ≤ j, the
expected value of Xk

i,j is σ
−k.

Consider now the case j < i+k, where the substrings overlap at k−(j−i)
positions. To get identical substrings, we can choose T [i, j − 1] arbitrarily,

36 4 Run-length compressed suffix array

but character T [l] must be identical to T [l − (j − i)] for all j ≤ l < j + k.
Hence the expected value of Xk

i,j is also σ
−k in this case.

The expected number of repeats of length k is then

E

 ∑
1≤i<j≤n−k+1

Xk
i,j

 ≤ n2

2σk
.

By Markov’s inequality, the probability of having at least one repeat of
length 2 logσ n+ k′ is at most 1/(2σk

′
). As the probability decreases expo-

nentially by k′, the expected length of the longest repeat is O(logσ n).

We are now ready to prove the main result.

Theorem 4.2. Let C = {T1, . . . , Tr} be a collection of r copies of random
text T [1, n] over alphabet of size σ, and let C′ be the same collection after
randomly substituting a total of s characters with other characters. Then
the expected number of runs in the Burrows-Wheeler transform of collection
C′ is at most R(T) +O(s logσ(rn)).

Proof. Consider texts Ti and Ti′ of collection C′, and some arbitrary po-
sitions j < j′ in them. If the substring of length k starting at Ti[j] is
identical to the one starting at Ti′ [j′], then the corresponding suffixes must
have significant prefixes of length at least k + 1. By following the proof of
Lemma 4.3, we find that the expected length of the longest such repeat is
O(logσ(rn)), so significant prefixes of length O(logσ(rn)) are enough in the
expected case. The result follows from Corollary 4.1.

Extensions. While above results consider only substitutions, they are
easy to extend to handle random insertions and arbitrary deletions. If an
insertion happens after character Ti[j], and suffix Ti[j−k+1, n] is the longest
one whose significant prefix covers at least one of the inserted characters,
then we have to remove suffixes Ti[j − k + 1, n] to Ti[j + 1, n], and insert
them to their new positions, along with the new suffixes. Similarly, if we
delete substring Ti[j, j′], we remove suffixes Ti[j − k + 1, n] to Ti[j′ + 1, n],
and insert the ones that were not deleted to their new positions.

Large insertions consisting of a substring already in the collection are
also easy to handle. A recombination, replacing texts T1 = T1,aT1,b and
T2 = T2,aT2,b with texts T1,aT2,b and T2,aT1,b, is essentially two edit opera-
tions. Extending a text by a LZ77 phrase consisting of a substring already
occurring in the collection, followed by a single character, is also worth two
edit operations. In general, we can estimate the effect of a complex edit

4.3 Implementation 37

operation on the number of runs by counting the points of discontinuity
the operation introduces into the collection, and treating each of them as a
simple edit operation.

4.3 Implementation

The implementation of RLCSA has been written in C++. All queries have
been implemented as const functions that do not alter the state of the
index, allowing multiple threads to to use the index in parallel. Index
construction (see Chapter 5) has also been parallelized by using OpenMP
and either MCSTL1 or the version of MCSTL integrated into GCC, the
libstdc++ parallel mode.

Both gap encoded and run-length encoded bit vectors support a num-
ber of derived queries in addition to the plain rank and select. For exam-
ple, valueAfter(i) returns (i′, rank1(B, i′)) for the smallest i′ ≥ i such that
B[i′] = 1. Iterator version of select allows calling select for successive 1-bits
faster than by using the plain query. Another variant selectRun(i) returns
the length of the run of 1-bits starting from the one of rank i, in addition
to answering select.

Small blocks consist of b bits of compressed data. In gap encoded bit
vectors, the compressed data consists of δ-encoded distances between suc-
cessive 1-bits. If a code does not fit into the current block, it is stored in the
next block, and the rest of the block remains empty. In run-length encoded
bit vectors, each run is encoded as the distance from the previous run, fol-
lowed by the number of 1-bits in the run. Both of the integers are encoded
using δ-codes, as they are expected to be fairly large in highly repetitive
sequences (see Sections 3.2 and 4.2). The entire encoding of a run must fit
into the block, or else it is stored in the next block. However, a maximal
run of 1-bits can be split into two shorter runs, so that the first of these
runs can be stored in the last remaining bits of a block.

For each small block, the first 1-bit B[i] not included in the previous
blocks is sampled and stored as a pair (i, rank1(B, i)) taking 2dlog(n+ 1)e
bits, where n is the length of the binary sequence. This sample is not
included in the corresponding block. Separate large blocks are used for
rank and select. In both cases, the parameter space ([1, n] for rank and
[1, n1] for select) is divided into nb/5 blocks of equal size, where nb is the
number of small blocks. For each large block containing the range [a, a′] of
parameter space, we store a pointer to the small block that is used to answer
rank1(B, a) or select1(B, a). Each of these pointers takes dlog(nb+1)e bits.

1http://algo2.iti.kit.edu/singler/mcstl/

38 4 Run-length compressed suffix array

To answer rank1(B, i) or select1(B, i′), we start by dividing the param-
eter by the length of a large block. This gives us j, the number of the large
block that contains the answer to the query. Pointers for large blocks j and
j + 1 give us the range of small blocks that contains the answer, and the
correct block is determined by binary searching the sampled 1-bits corre-
sponding to these small blocks. Finally, the small block is decompressed
to determine the answer. Finding the correct small block takes O(log n)
time, and decompressing the block takes O(b) time. The number of random
memory accesses is 3, unless the large block contains many small blocks.

The implementation uses linear search instead of binary search to find
the small block. This does not guarantee performance in the worst case,
but is faster in practice. If the binary sequence is very skewed, some large
blocks can contain many small blocks, reducing query performance for those
blocks. While this behavior has been seen in practice, the effect seems to
be limited on real data [23].

RLCSA uses the standard sampling mechanism (see Section 3.4) to sup-
port locate and extract. In addition to locating a single position at a time,
the implementation also contains a variant of locate that locates all positions
in a suffix array range simultaneously. This version is often several times
faster than the standard one, taking advantage of both memory locality and
the run-length encoding in the bit vectors. In addition to selecting samples
at regular intervals, it is also possible to select the samples optimally or
greedily according to a known query distribution [23].

Default small block sizes are 32 bytes for the run-length encoded bit
vectors and 16 bytes for the gap encoded ones. Suffix array sample rate
d defaults to 128, with samples taking less than n bits for a sequence of
length n. Instead of using a bit vector, array C has been implemented with
an ad hoc mechanism that is somewhat similar to the high level structure
in bit vectors, but faster in practice. Alphabet has been fixed to 0, . . . , 255,
where 0 plays the role of end marker $ in some construction options, while
being a regular character in other alternatives.

Support for multiple sequences is based on having different lexicographic
values for the end markers of different sequences, as described in Section 2.2.
The sequences are implicitly concatenated to form a single sequence, and
a bit vector is used to map positions in this sequence to actual sequences.
Some padding is added to between the sequences, so that a new sequence
always starts at a position that is a multiple of sample rate d. This way,
the regular sampling mechanism always samples the first position of every
sequence. The end marker of each sequence is implicitly sampled, as its
lexicographic rank corresponds to the sequence number.

4.4 Experiments 39

RLCSA Sad-CSA
Data set Size Size Find Size Find

para 409 MB 41.34 MB 1.12 MB/s 69.92 MB 0.34 MB/s
fiwiki 400 MB 5.63 MB 1.36 MB/s 53.05 MB 0.38 MB/s

Table 4.1: RLCSA and Sad-CSA for two highly repetitive collections. Index
size without suffix array samples and find performance on 50000 patterns
of length 20.

4.4 Experiments

In this section, we compare the size and query performance of RLCSA to
Sad-CSA (see Section 3.2), the most similar earlier self-index. We chose
two highly repetitive data sets: the genomes of 36 strains of Saccharomyces
paradoxus (para) from Paper I, taking a total of 409 megabytes, and a 400-
megabyte prefix of the Finnish language Wikipedia archive with full version
history from Paper II. The experiments were performed on a system with
two quad-core 2.53 GHz Intel Xeon E5540 processors running Ubuntu 10.04
with Linux kernel 2.6.32. Only one core was used in the experiments. The
programs were compiled with g++ version 4.4.3. For a more thorough
experimental comparison, see Paper I.

We measured find and locate (including find) performance of the indexes
with 50000 randomly selected patterns of length 20. The indexes used
default parameter values and suffix array sample rates d = 32, 64, 128, 256.
In RLCSA, we used both the standard locate mechanism (RLCSA) and the
one optimized for locating ranges of suffix array values (RLCSA-OPT).

Index sizes and find results can be seen in Table 4.1. Of the two data
sets, fiwiki turned out to be much more repetitive. RLCSA was able to com-
press it to just 1.6% of the original size, while the non-data-aware Sad-CSA
required more than 13% of the original size. On para, the differences were
smaller, with RLCSA taking 10% and Sad-CSA 17% of the original size.
The find performance of RLCSA was much better than that of Sad-CSA,
as the compressed representation of Ψ in Sad-CSA does not support rank
directly, but uses binary search on select instead.

The results for locate can be seen in Figure 4.1. RLCSA with opti-
mized locate is faster than Sad-CSA with the same sample rate, and also
much smaller. With regular locate, RLCSA loses to Sad-CSA, especially
on the more repetitive fiwiki data set. As both indexes are much faster on
fiwiki than on para, the implementation of Sad-CSA seems to have some
optimizations for locating suffix array ranges simultaneously as well.

40 4 Run-length compressed suffix array

●

●

●

●

0 50 100 150

0
20

40
60

80

Size (MB)

T
im

e
(µ

s
/ o

cc
ur

re
nc

e)

●
●

●

●

●

●

●

●

0 50 100 150

0
20

40
60

80

Size (MB)

T
im

e
(µ

s
/ o

cc
ur

re
nc

e)

●●●
●

●

●

RLCSA
RLCSA−OPT
Sad−CSA

Figure 4.1: Locate performance of RLCSA and Sad-CSA on para (left)
and fiwiki (right). Index sizes and average locate times with sample rates
d = 32, 64, 128, 256 on 50000 patterns of length 20.

The optimized locate is 13–18 times faster than the standard one on
fiwiki, and about 4 times faster on para. This shows that even though
RLCSA is unable to compress the samples, unlike some other proposals
[69, 40], it can compensate this by using a small number of samples more
efficiently, when the collection is highly repetitive.

In general, the optimizations depend on both the number and the length
of the repetitions. Assume that we want to locate a pattern that occurs at
the beginning of a repeated substring of length l, with k copies in the col-
lection. Then k is an upper bound for the speedup from the optimizations,
and the actual speedup depends on whether the significant prefixes of the
sampled suffixes used in the locate are within the repeated substring. If
this is the case, then the suffixes remain lexicographically adjacent until
the samples have been found. Otherwise the suffixes diverge at some point,
limiting the speedup from locating all occurrences simultaneously.

It should be noted that Sad-CSA has been optimized for locate. The
small blocks in the encoding of Ψ contain a fixed number of values (1-bits)
each, and hence the correct block can be derived directly from the parameter
value, avoiding one level of indirection. The sampling mechanism is also
non-standard, storing one out of d suffix array values instead of one out
of d text positions. This does not guarantee worst-case time bounds, but
makes it much faster to determine whether the current suffix array value
has been sampled.

4.5 Later indexes 41

4.5 Later indexes

RLCSA was the first compressed index that was intended for indexing highly
repetitive collections. Later papers on similar topics have used it as a ref-
erence point, against which the authors compare their results.

The self-index of Huang et al. [40] is based on a multiple alignment of
similar sequences. The authors start with similar analysis as in Section 4.2,
and explicitly encode the differences between the sequences, while building
a BWT-based index for the common segments in the sequences. When the
number of differences is small, the index is smaller than RLCSA. The main
reason for this is that the common segments are stored just once, while
RLCSA uses O(log r) extra bits per run to encode the r copies. Because
of the complexity of the index, find is slower than in regular BWT-based
indexes. On the other hand, locate can be much faster, if the pattern occurs
mostly in the common segments.

The work of Claude et al. [11, 9] develops self-indexes based on straight-
line programs (SLP) in general, and Re-Pair [55] in particular. Similar
to LZ-indexes, these indexes offer fast locate, but do not support find. A
straight-line program is essentially a context-free grammar in the Chomsky
normal form for a language containing a single sequence. In the gram-
mar, each variable X produces either two new variables Y Z or a character
c ∈ Σ. One variant compresses the text with Re-Pair, allowing fast ran-
dom access to it, and uses a q-gram index, where the occurrence lists are
differentially encoded and compressed with LZ77. Another variant uses the
Re-Pair encoding of the text directly as a self-index. Both variants offer
better compression than RLCSA, if the text is very highly repetitive [9].

As already conjectured in the original paper describing RLCSA, a self-
index based on LZ77 parsing offers better compression for highly repetitive
sequences than RLCSA. The LZ77-index of Kreft and Navarro [46] proves
this conjecture. Like the other LZ-indexes, the index is much larger than
plain LZ77-compressed text. In practice, the LZ77-index is smaller and
offers faster locate than RLCSA and SLP-based indexes on highly repetitive
texts. The reason for better compression than SLP-based indexes is that
while both approaches replace a repetition with a reference, SLPs have more
overhead in encoding the original copy.

There have also been recent papers on compressing highly repetitive
collections of sequences, while supporting the decompression of individual
sequences or arbitrary substrings efficiently [48, 21, 45]. In these tasks,
RLCSA is at disadvantage, as LZ77 compresses highly repetitive texts better
than BWT, and the bit vector-based encoding of BWT also adds some
overhead, when compared to direct compression.

42 4 Run-length compressed suffix array

Chapter 5

Space-efficient CSA construction

In this chapter, we investigate the direct construction of compressed suf-
fix arrays, extending the results in Paper II. We are mostly interested in
algorithms whose space usage is dominated by the CSA itself, making it
possible to build indexes for texts that are larger than memory size.

The standard way of constructing compressed suffix arrays is to build a
suffix array first, and then compress it. There are many existing algorithms
[79], with the best of them working in O(n) time and requiring 2n bits of
working space in addition to the text and the suffix array [74]. Yet as a
compressed suffix array usually requires less than n bytes of memory [18],
and can take less than n bits with highly repetitive texts (see Section 4.4),
this approach limits the use of CSAs to much smaller texts than could be
handled in the available memory.

Many of the suffix array construction algorithms can be adapted to
construct the Burrows-Wheeler transform directly. This often replaces the
4n to 8n-byte suffix array with a n-byte BWT, reducing memory usage
considerably. Yet even the best algorithms [49, 78] require the text or the
BWT — or both — in memory, limiting the size of the texts that can be
indexed. External memory algorithms for constructing the suffix array [13]
and the Burrows-Wheeler transform [15] exist, but they tend to be slow in
practice. In principle, dynamic self-indexes (see Section 3.5) could be used
for space-efficient CSA construction, but the implementations seen so far
are both slower and require more memory than the alternatives.

Direct algorithms for compressed suffix array construction [38, 70, 39]
are the best solution so far. We are especially interested in the algorithm
of Hon et al. [38] that works in O(n log n) time and requires |CSA|+ O(n)
bits of memory. The algorithm essentially uses a static index to simulate
CSA construction by a dynamic index, inserting many suffixes in a single
update. We describe two practical variants of this algorithm: one that is

43

44 5 Space-efficient CSA construction

more space-efficient and another one that can be faster than the original. As
the basic building block, we describe an algorithm for merging compressed
suffix arrays.

A similar idea has been recently used for constructing the Burrows-
Wheeler transform for a large collection of short texts in external memory
[3]. Instead of inserting large blocks of text at once, the algorithm extends
each text by a single character in each step. This way, the algorithm re-
mains simple and has to maintain only a small amount of state information,
making it fast and space-efficient in practice. On the other hand, if the texts
are longer than a few hundred characters, the algorithm requires too many
passes over the data to be useful.

5.1 Merging Burrows-Wheeler transforms

Algorithm of Hon et al. The construction algorithm of Hon et al. [38]
can be interpreted as updating the Burrows-Wheeler transform of a text.
Assume that we have already constructed BWT for some text T , and we
want to update it for ST , where S is a sequence of length l. We call the
suffixes of ST starting in S the long suffixes of ST , and the rest of the
suffixes short suffixes.

Definition 5.1. Let T and T ′ be two texts. The rank array RA[1, |T ′|] of
text T ′ relative to text T is an array such that RA[i] = rank(T, T ′[i, |T ′|]).
The rank array of a set of suffixes of text T ′ relative to text T is the corre-
sponding subsequence of array RA.

The definition also generalizes for collections of texts.
Updating the BWT starts with computing the rank array of long suffixes

of text ST relative to text T . Backward searching can be used to compute
the rank array in a similar way as in the update rule for dynamic com-
pressed suffix arrays (see Section 3.5). A detailed algorithm can be found
in Figure 5.1.

In addition to determining the lexicographic ranks of long suffixes among
short suffixes, we must also determine their ranks among themselves. Con-
ceptually this is done by sorting the long suffixes by their first l characters,
breaking ties by using the suffix array of T . With both ranks, we can
determine the lexicographic ranks of long suffixes among all suffixes.

Lemma 5.1 (Fact 1 in [38]). The lexicographic rank of a long suffix S′

among all suffixes of ST is the sum of its lexicographic ranks among long
suffixes and among short suffixes.

5.1 Merging Burrows-Wheeler transforms 45

function computeRanks(rank(T, T), S, l)
pos← rank(T, T)
for i← l to 1

pos← C[S[i]] + rankS[i](BWT, pos) + 1

RA[i]← pos
return RA

Figure 5.1: Computing the rank array of long suffixes of text ST relative
to text T by backward searching the Burrows-Wheeler transform of T .

At this point, we have the lexicographic ranks among long suffixes in suf-
fix array order, and the ranks among short suffixes in text order. By sorting
the rank array in increasing order, we get both ranks in suffix array order.
This follows from the fact that S1 < S2 implies rank(T, S1) ≤ rank(T, S2).
Hence the lexicographic ranks of long suffixes among short suffixes must
form a non-decreasing sequence, when put into suffix array order. The
entire merging algorithm is as follows.

1. Determine the rank array RA by the algorithm in Figure 5.1. Sort it
to get array RA′, and update this array by rule RA′[i]← RA′[i] + i to
get the lexicographic ranks of long suffixes among all suffixes.

2. Sort the long suffixes, and form BWTS as the subsequence of BWTST
corresponding to the long suffixes.

3. Update BWTT [rank(T, T)]← S[l], and then merge BWTS and BWTT
to get BWTST . The merging is done by inserting characters from
BWTS to positions marked in RA′, filling the rest of the positions
with characters from BWTT .

Lemma 5.2 (Lemma 10 in [38]). The above algorithm updates BWTT to
BWTST in O(l log n+ n) time, requiring 4l log n+ n+ o(n) bits of space in
addition to BWTS and BWTT .

Merging compressed suffix arrays. A simplified version of the above
algorithm can be used to merge two compressed suffix arrays. Assume that
we have compressed suffix arrays for two texts T and T ′, and we want to
merge them to get a compressed suffix array for the collection C = {T, T ′}.
We select CSAT as the basic index, and update it to get CSAC .

In step 1, we get the rank array by searching CSAT for text T ′. However,
as we are inserting entire texts instead of extending existing texts, we start

46 5 Space-efficient CSA construction

with RA[|T ′|] = 1, as the end marker of T ′ will come immediately after the
end marker of T in lexicographic order. Step 2 is not needed, as we already
have CSAT ′ . Step 3 works as above, except that we are merging compressed
BWTs instead of plain BWTs. If we merge the bit vectors of an index of
the CSA family one at a time, we are forced to scan the array RA′ at least σ
times. This can be avoided by merging all bit vectors simultaneously, using
a buffer of Θ(σ) characters to avoid polling each of the bit vectors for the
next 1-bit too often.

Lemma 5.3. The above algorithm merges compressed suffix arrays CSAT
and CSAT ′, where |T ′| ≤ |T |, in O(|T ′| · (tB + log|T ′|) + min(|CSATT ′ |, |T |))
time, where tB is the time required for one step of backward searching. Work-
ing space is |T ′| log|TT ′|+O(σ log n) bits in addition to the CSAs and T ′.

The lemma applies for indexes of both CSA and FMI families, as long
as individual bit vectors can be merged in time relative to their compressed
size, and a sequential scan of a bit vector can be done in O(n1) time. It
generalizes immediately to merging compressed suffix arrays of collections
of sequences.

We can also output the rank array directly in suffix array order, avoiding
the O(|T ′| log|T ′|) term in the time bound, if we backward search CSAT ′

simultaneously. This allows us to store the array RA′ as a bit vector of
length |TT ′|, which can be much less than the |T ′| log|TT ′| bits of a plain
array, if the texts are of similar size. We do not even need the text T ′, as
it can be efficiently extracted from CSAT ′ (in blocks of d characters in the
CSA family, as extraction proceeds in forward direction). In practice, none
of these optimizations are very useful, as backward searching is much more
expensive than integer sorting.

5.2 Construction algorithm

The merging algorithm can be used as the basic building block of a space-
efficient CSA construction algorithm. Assume that we have a large collec-
tion of texts C with total length N . The algorithm is as follows, with CSAi
denoting the compressed suffix array of collection Ci.

1. Split the collection into m smaller collections C1, . . . , Cm of size N/m.

2. Build CSA = CSA1, and use it as a basis for the final index.

3. For i = 2, . . . ,m, build CSAi and merge it with CSA to get the new
CSA.

5.3 Indexing a single sequence 47

Note that if there are r sequences in the union of collections C1, . . . , Ci,
the rank array of collection Ci+1 must have value r for each end marker in
the collection.

Theorem 5.1. Let C be a collection of texts with total length N that can be
split into m subcollections of size N/m. We can use the merging algorithm
to construct a compressed suffix array for C in O(N + m · min(|CSA|, N))
time using |CSA|+ maxi(|CSAi|) +O((N/m+σ) logN) bits of space, where
σ is the size of the alphabet and CSAi is a CSA for the ith subcollection.

Proof. We assume that the CSA is based on bit vectors that support rank
and select in O(1) time. By using backward searching on CSAi to output
the rank array directly in suffix array order, we can do all merges within
the given time and space bounds. The result follows by using any linear-
time suffix array construction algorithm for building the partial indexes
CSAi.

The algorithm can be efficiently parallelized on a single machine. For
building the partial indexes, we can either use a parallel suffix array con-
struction algorithm or, if memory allows, index multiple subcollections in
parallel. Backward searching can be parallelized, as it does not change the
state of the index. Parallel sorting is a well-researched topic, so it does not
matter, whether we construct the rank array in text order or in suffix array
order. Finally, merging can be parallelized by either merging multiple bit
vectors simultaneously, or by dividing a bit vector into multiple parts for
merging. If the final CSA is small enough to fit into the memory of a single
system, we can also use a computer cluster for construction.

5.3 Indexing a single sequence

With practical implementation choices, the algorithm in Section 5.2 uses
roughly (2N/m) logN bits of working space to construct a compressed suffix
array for a collection of total size N in m parts, while the algorithm of
Hon et al. [38] uses roughly (4N/m) logN + N bits. As the algorithms
are otherwise almost the same, this represents a significant improvement
in space usage without any similar penalty in performance. On the other
hand, the collection must be partitioned at sequence boundaries, while the
algorithm of Hon et al. can use arbitrary partitioning. In this section, we
show how this limitation can be lifted by using (3N/m) logN bits of working
space, with the possibility of making the algorithm faster in practice.

As noted in Section 5.1, S1 < S2 implies rank(T, S1) ≤ rank(T, S2)
for any text T and any sequences S1 and S2. In particular, this means

48 5 Space-efficient CSA construction

that T ′[i, |T ′|] < T ′[j, |T ′|] implies RA[i] ≤ RA[j] in the merging algorithm.
Additionally, T ′[i] < T ′[j] implies T ′[i] +RA[i] < T ′[j] +RA[j]. This means
that sequence T ′ + RA (where (T ′ + RA)[i] = T ′[i] + RA[i]) has the same
suffix array as text T ′.

Lemma 5.4. Let T and T ′ be two texts. Then T ′+RA has the same suffix
array as text T ′, where RA is the rank array of text T ′ relative to text T .

If text T is much longer than text T ′, most elements in the rank array
are likely to be unique. Hence it should be faster to build a suffix array for
the rank array than for the text itself. This gives us the following algorithm.

1. Split the collection into m smaller collections C1, . . . , Cm of size N/m.

2. Build CSA = CSA1, and use it as a basis for the final index.

3. For i = 2, . . . ,m, determine the rank array RA of collection Ci relative
to the union of all previous collections C′. Build a suffix array of
Ci + RA, use it to build CSAi, and merge CSAi with CSA to get the
new CSA.

We may have to split a text T = ST ′ into two collections, so that T ′ ∈ Ci
and S ∈ Ci+1. In this case, we append an end marker to string S, and put
x = rank(C′, T ′) in the corresponding position in the rank array. As the
end marker must be unique to get the correct suffix array, we increment the
rank array by 1 for all other positions i, where RA[i] ≥ x. Furthermore, if
collection C′ contains r texts, and there are r′ texts with regular end markers
in collection Ci+1, we reserve ranks r, . . . r + r′ − 1 for the end markers to
get the correct ordering between them, and increment all other values by
r′ − 1. Note that we have to remove the position corresponding to the end
marker of string S from the suffix array before constructing CSAi+1, as the
end marker is not included in the original collection. Note that all changes
to the rank array must be reversed, before it can be used in merging.

Theorem 5.2. Let C be a collection of texts with total length N , and let
m > 0 be an integer. We can use the merging algorithm to construct a
compressed suffix array for C in O(N+m·min(|CSA|, N)) time using |CSA|+
maxi(|CSAi|) +O((N/m+σ) logN) bits of space, where σ is the size of the
alphabet and CSAi is a CSA for the ith subcollection.

The working space is now roughly (3N/m) logN bits, as suffix array con-
struction algorithms generally require (2N/m) logN bits of writable space
with large alphabets, and the rank array must be kept intact during con-
struction.

5.4 Implementation 49

5.4 Implementation

Two variants of the construction algorithm are included in the implementa-
tion of RLCSA (see Chapter 4). Written in C++, the principal goal of the
implementation is to allow indexing text collections that are too large to fit
into memory. The implementation has been parallelized by using OpenMP
and either MCSTL1 or the version of MCSTL integrated into GCC, the lib-
stdc++ parallel mode. Both algorithms assume that the collection is stored
on disk as a set of m files, each of them less than 4 gigabytes in size.

First of the algorithms, Merge, is an implementation of the algorithm
in Section 5.2. It first builds RLCSAs for all of the subcollections, using a
parallelized prefix-doubling algorithm (see below) for the task, and stores
them on disk. After all partial indexes have been built, the algorithm
starts merging them. Merging has also been parallelized, assuming that
the current subcollection consists of multiple texts, so that multiple threads
can be used to construct the rank array. The merging phase requires roughly
9n bytes of memory in addition to the two RLCSAs, where n = N/m is
the size of a subcollection. This includes 8n bytes for the rank array and n
bytes for the collection. In practice, working space can be significantly more
than that, as in-place merging of bit vectors has not been implemented.

The second algorithm, Fast, is the algorithm from Section 5.3, except
that splitting a text into two subcollections has not been implemented. It
processes the subcollections one at a time, using the rank array to build a
RLCSA, before merging it with the existing index. This variant uses 25n to
29n bytes of working space, where the extra 16n to 20n bytes comes from
the suffix array construction algorithm.

Both algorithms use a parallelized prefix-doubling algorithm to build
the partial indexes. Prefix-doubling-based algorithms are useful for con-
structing suffix arrays for collections, as we can easily afford having dif-
ferent lexicographic values for the end markers of different sequences. A
prefix-doubling algorithm maintains an invariant that array SAk contains
the suffixes in lexicographic order, and array RAk contains the lexicographic
ranks of the suffixes in text order, when the ordering is based on k-character
prefixes of each suffix. From these arrays, SA2k can be determined by sort-
ing SAk with (RAk[SAk[i]],RAk[SAk[i] +k]) as the sort key for SAk[i]. From
SA2k, it is then easy to determine RA2k in linear time. If sorting is also
done in linear time, the prefix-doubling algorithm uses O(n log n) time for
a collection of size n.

1http://algo2.iti.kit.edu/singler/mcstl/

50 5 Space-efficient CSA construction

The algorithm has been influenced by the suffix array construction algo-
rithm of Larsson and Sadakane [56]. If suffix SAk[i] has already been sorted,
we have RAk[i] = RA2k[i] and SAk[i] = SA2k[i]. Hence we have to handle
only unsorted ranges in subsequent iterations. To make parallelization eas-
ier, we store the unsorted ranges explicitly as pairs of 32-bit integers. In the
worst case, there can be almost n/2 unsorted ranges in both SAk and SA2k,
requiring up to 4n bytes of space. In practice, the ranges take at most n
bytes of space.

As the first part of the sort key is equal for all suffixes in an unsorted
range, we only have to use RAk[SAk[i] + k] as the sort key for SAk[i]. To
avoid cache misses during sorting, we sort pairs (SAk[i],RAk[SAk[i] + k])
of two 32-bit integers, instead of retrieving the sort key indirectly. This
increases the space usage of the algorithm by 4n bytes to a total of 12n to
16n bytes. Initially, we use the parallel quicksort from MCSTL to sort pairs
(i, T [i, i+ 1]) or (i, T [i]), depending on whether we can pack two characters
into a single 32-bit integer. Later, we divide the unsorted ranges between a
number of threads, and use the standard sequential sorting algorithm from
STL to sort each of the ranges.

The suffix array construction algorithm used in Fast differs from the
basic version above. As we are building the suffix array for the rank array
instead of the collection, we have to use 64-bit sort keys in the initial sorting,
and cannot pack two adjacent characters into the key. On the other hand,
as the elements of RAk are 32-bit integers, we can pack both RAk[SAk[i]+k]
and RAk[SAk[i] + 2k] into the sort key of SAk[i], and obtain SA3k instead of
SA2k. This prefix-tripling algorithm uses 16n to 20n bytes of memory, and
is usually somewhat faster than the prefix-doubling variant.

5.5 Experiments

To compare the performance of Merge and Fast, we used both algorithms
to build RLCSA for two data sets from Paper II. The first of them, fiwiki, is
the Finnish language Wikipedia with full version history (42.03 gigabytes),
while the other, enwiki, is a snapshot of the English language Wikipedia
(41.46 gigabytes). Of the two data sets, fiwiki is a highly repetitive col-
lection. The construction was done on the same system as in Section 4.4,
using 8 parallel threads.

The only other CSA construction algorithm for collections that are too
large to fit into memory is the algorithm of Hon et al. [38] that is essentially
an earlier variant of Merge. Some implementations [53, 59] of the algorithm
exist, but they can only be used for constructing uncompressed BWT for

5.5 Experiments 51

texts over 2-bit alphabets such as DNA sequences. As the algorithms are
so similar to each other, any performance differences would most likely be
due to implementation choices.

Another way to construct CSAs for collections larger than the main
memory is to use an external memory suffix array or BWT construction
algorithm. The fastest known general-purpose algorithm is the bwte of Fer-
ragina et al. [15]. Distantly related to the algorithm of Hon et al. [38], bwte
builds an index for the long suffixes, streams the already indexed part of
text to determine the gap array, and uses the gap array to merge the new
index with the existing BWT. The gap array, closely related to the rank
array, stores the number of short suffixes falling between two lexicographi-
cally adjacent long suffixes. If a collection of size N is indexed in m passes,
bwte takes O(mN) time, streams O(mN log σ) bits of data, and requires
O((N/m) log(N/m)) bits of working space. As our test environment uses
network storage with relatively low transfer rates, it was not reasonable to
use it for testing external memory algorithms. Instead, we used a system
with a quad-core 2.93 GHz Intel Core i7-870 processor running OS X 10.6.8
with bwte. This system had 16 gigabytes of memory and a solid-state drive.

We split both data sets into 400-megabyte subcollections for Merge and
Fast, and also used 800-megabyte subcollections with Merge. We built
RLCSA with default parameters b = 32 bytes and d = 128. The final index
sizes were 14.33 GB for enwiki and 4.42 GB for fiwiki. For bwte, we used
1.5-gigabyte subcollections, resulting in 28 (enwiki) and 29 (fiwiki) passes
over the input collection.

In the fiwiki collection, different versions of the same document are
stored consecutively. This is almost the worst possible ordering for Fast. If
a number of lexicographically adjacent suffixes belong to the same subcol-
lection, they will have the same values in the rank array, and sorting them
probably requires many iterations. To test the effect of document ordering,
we sorted the sequences in fiwiki by their timestamps. We then compared
Merge using 400 and 800-megabyte and 1.5-gigabyte subcollections with
Fast using 400-megabyte subcollections on the new collection fiwiki-sorted.

Construction times and memory requirements can be seen in Table 5.1.
Note that while the results for bwte include just BWT construction, building
RLCSA would not increase construction time significantly. In general, Fast
is faster than Merge with the same subcollection size, while Merge offers
better time/space trade-offs. However, when the sequences have been sorted
by their timestamps, Fast becomes faster than Merge with the same amount
of memory, as it can build the partial indexes much faster.

52 5 Space-efficient CSA construction

Algorithm Time Space Speed Build Rank Sort Merge I/O

enwiki
Merge-400 10.3 24.5 1.14 3.91 1.52 0.94 3.28 0.68
Merge-800 8.6 27.0 1.36 3.34 1.50 0.94 2.14 0.71
Fast-400 8.9 30.0 1.32 3.24 1.51 0.92 2.97 0.28
bwte-1536 84.3 12.0 0.14 – – – – –
fiwiki
Merge-400 11.8 11.6 1.01 6.96 1.38 0.87 2.23 0.37
Merge-800 10.1 14.0 1.18 5.68 1.34 0.88 1.64 0.57
Fast-400 10.5 19.4 1.14 6.27 1.37 0.86 1.73 0.27
bwte-1536 72.9 12.0 0.16 – – – – –
fiwiki-sorted
Merge-400 12.6 11.5 0.95 7.48 1.25 0.94 2.36 0.60
Merge-800 11.2 15.0 1.07 6.38 1.20 0.96 2.10 0.52
Merge-1536 11.3 22.9 1.06 7.08 1.18 0.95 1.66 0.45
Fast-400 10.1 19.7 1.18 5.51 1.25 0.94 2.33 0.11

Table 5.1: Indexing two 41 to 42-gigabyte collections. Construction time
in hours, memory usage in gigabytes, and construction speed in megabytes
per second. For Merge and Fast, the numbers also include a breakdown
of time usage between partial index construction (Build), rank array con-
struction (Rank), rank array sorting (Sort), index merging (Merge), and
I/O and other overhead (I/O). The number in algorithm name indicates
subcollection size in megabytes.

5.5 Experiments 53

Both Merge and Fast are much faster than bwte. While bwte is an ex-
ternal memory algorithm, its performance is constrained by CPU speed in
practice. Most of the time is taken by the construction of the gap arrays.
This requires backward searching for a volume of data equal to roughlym/2
times the size of the collection — more than 500 gigabytes in these exper-
iments. As backward searching is easy to parallelize, minor modifications
should make bwte more competitive on current hardware.

Even though the prefix-doubling algorithm has superlinear time com-
plexity, increasing subcollection size from 400 megabytes to 800 megabytes
decreases the time required for constructing the partial indexes. A probable
explanation is that while the total amount of work increases with block size,
the algorithm parallelizes better when sorting larger sets of suffixes. Merg-
ing also takes less time with larger block sizes, as fewer merges are required.
Still, the effect of subcollection size on running time remains small.

54 5 Space-efficient CSA construction

Chapter 6

Longest common prefix array

A compressed suffix tree (CST) is a compressed data structure that provides
similar functionality as the concrete suffix tree. While the exact list of
operations varies from proposal to proposal, the extra functionality over a
suffix array (see Definition 2.1) is mostly tree navigation and determining
the length of the longest common prefix of the suffixes in a given subtree.
The majority of compressed suffix tree proposals are actually compressed
enhanced suffix arrays, combining a CSA, a compressed representation of
the LCP array, and some representation of the suffix tree topology [85, 27,
69, 76, 75].

In this chapter, we investigate compressed LCP array representations
and their space-efficient construction, based on Paper III. We describe a
LCP array sampling mechanism that can be used in a similar way as the
suffix array samples in a compressed suffix array. For regular texts, this rep-
resentation offers better time/space trade-offs than the earlier compressed
representations. We also describe an algorithm for constructing the LCP
array directly from a compressed suffix array.

6.1 LCP array representations

In a plain representation of the LCP array, each element is a log n-bit inte-
ger, for a total of n log n bits. Yet as the array can be derived from the text,
it should be at least as compressible as the text itself. A number of different
compressed representations have been proposed for the LCP array. Most
of them are based on one or more of the three main ideas: variable-length
codes, storing the array in text order, and sampling the array.

55

56 6 Longest common prefix array

Variable-length codes. If the text is not highly repetitive, most of the
LCP values are likely to be small. An easy way to utilize this to compress
the LCP array is to store small values (less than 255) as 8-bit integers [1].
Large values are marked with a 255 in the array and stored explicitly as
pairs (i, LCP[i]). If a large value is needed, it can be found efficiently with
binary searching. On typical texts, where large LCP values are rare, this
representation takes approximately 8n bits of space.

A more advanced representation [12] is based on directly addressable
codes [5]. The binary representation of each LCP value is broken into b-bit
chunks. The ith element of array B1 contains the least significant chunk
of LCP[i], followed by a bit indicating whether more chunks are needed to
encode the value. Array B2 contains the next chunks of LCP values larger
than 2b − 1, and a rank index is built over the indicator bits of array B1 to
map the elements of B1 to the corresponding elements of B2. If more than
2b bits needed to encode the largest LCP values, arrays B3, B4, . . . are built
in a similar way. On typical texts, this representation takes 6n to 8n bits of
space, with an average access time similar to one rank or select operation
on a bit vector.

Permuted LCP array. While encoding each LCP value individually al-
lows fast random access, the compression results are not that good. For
better compression, we have to encode the values relative to other values.
The key to this is the permuted LCP (PLCP) array PLCP that stores the
LCP values in text order. By using the PLCP array and the suffix array,
we can retrieve any LCP value as LCP[i] = PLCP[SA[i]].

Definition 6.1. For text T [1, n] and integer i > 1, the left match of suffix
T [SA[i], n] is the suffix T [SA[i− 1], n].

It follows that PLCP[j] is the length of the longest common prefix of
suffix T [j, n] and its left match T [j′, n]. As lcp(T [j′ + 1, n], T [j + 1, n]) is
a lower bound for PLCP[j + 1] (unless PLCP[j] = 0), we get the following
lemma.

Lemma 6.1 ([43, 50]). For j ∈ {1, . . . , n− 1}, PLCP[j + 1] ≥ PLCP[j]− 1.

The definition and the lemma generalize for collections of texts as well.
An immediate consequence of Lemma 6.1 is that values PLCP[j] + 2j

form a strictly increasing sequence. Hence the PLCP array can be encoded
as bit vector BL of length 2n. Individual PLCP values can then be retrieved
as PLCP[j] = select1(BL, j)− 2j. In the original proposal of Sadakane [85],
bit vector BL was a succinct bit vector with constant-time select, taking

6.1 LCP array representations 57

2n + o(n) bits of space and allowing constant-time access to individual
PLCP values.

For highly repetitive texts, a run-length encoded bit vector representa-
tion of the PLCP array provides even better compression.

Definition 6.2. A PLCP value PLCP[j] is minimal, if j = n or PLCP[j] <
PLCP[j + 1] + 1. Value PLCP[j] is maximal, if j = 1 or PLCP[j − 1] is
minimal.

In a maximal run of 1-bits in bit vector BL, the first 1-bit encodes a
maximal PLCP value, and the last 1-bit encodes a minimal value.

Lemma 6.2. Value PLCP[j] is non-minimal if and only if PLCP[j] =
PLCP[j + 1] + 1.

Proof. By definition, j < n and PLCP[j] ≥ PLCP[j+1]+1 for non-minimal
PLCP[j]. By Lemma 6.1, PLCP[j] ≤ PLCP[j + 1] + 1.

Lemma 6.3. The 1-bit encoding PLCP[SA[i]] in bit vector BL can be a run
head only if BWT[i] is also a run head.

Proof. Assume that BWT[i − 1] = BWT[i], and let SA[i − 1] = j′ and
SA[i] = j. Suffix T [j′, n] is then the left match of suffix T [j, n]. As we have
LF (i− 1) = LF (i)− 1, we also have that T [j′− 1, n] = T [SA[LF (i− 1)], n]
is the left match of suffix T [j − 1, n] = T [SA[LF (i)], n]. And as T [j′ − 1] =
BWT[i−1] = BWT[i] = T [j−1], it follows that PLCP[j−1] = PLCP[j] + 1.
As PLCP[j−1] is non-minimal by Lemma 6.2, PLCP[j] is non-maximal, and
the 1-bit encoding PLCP[j] is not a run head.

Corollary 6.1 ([27]). The number of runs of 1-bits in bit vector BL is at
most R.

For every run of 1-bits, there is exactly one minimal and one maximal
PLCP value. Note that PLCP[SA[i]] is not necessarily a maximal value,
when BWT[i] is a run head. Experimental results suggest that the number
of runs of 1-bits in bit vector BL is usually about 2R/3 (see Section 6.4).

Proposed run-length encoded representations of bit vector BL require at
most 2R log(n/R) + O(R) + o(n) [27] or 2R log(n/R) + O(R log log(n/R))
[69] bits of space, and provide fast access to individual PLCP values. The
main drawback of all PLCP-based representations is that when used with a
compressed suffix array, accessing LCP values requires using locate, which
is an expensive operation.

58 6 Longest common prefix array

Sampled PLCP representations. An alternative way to compress the
PLCP array is to sample one out of d′ values and use the text and the suffix
array to derive the rest [44]. Assume that we have sampled PLCP[ad′] and
PLCP[(a + 1)d′], and we want to determine PLCP[ad′ + b] for some b < q.
Lemma 6.1 states that PLCP[ad′]− b ≤ PLCP[ad′ + b] ≤ PLCP[(a+ 1)d′] +
d′−b, so at most d′+PLCP[(a+1)d′]−PLCP[ad′] character comparisons are
required to determine the missing value. While the number of comparisons
can be large in the worst case, the average number of character comparisons
over the array is O(d′) [50].

With a more careful selection of the sampled positions, we get similar
trade-offs even in the worst case. In particular, we can store the samples in
o(n) bits, while requiring only O(logδ n) character comparisons in the worst
case, for any δ > 0 [25]. This solution is essentially the select structure of
bit vector BL without the bit vector itself.

While the sampled PLCP representations provide attractive trade-offs
when used with a plain suffix array, they are slow with a compressed suf-
fix array. In addition to requiring the expensive locate operation to access
LCP values, they also use the equally expensive extract for character com-
parisons.

6.2 Sampling the LCP array

While increasing the number of suffix array samples increases the perfor-
mance of PLCP-based representations, it also quickly eliminates the size
advantage of those representations. A sampled LCP representation can
offer better time/space trade-offs, as individual LCP samples tend to be
smaller than suffix array samples.

Assume that we have sampled the at most R minimal PLCP values,
where PLCP[j] < PLCP[j+1]+1. If we store these samples in suffix array or-
der in the same way as suffix array samples, we can use a similar mechanism
to retrieve the rest of the values. If LCP[i] has not been sampled, we proceed
to position Ψ(i) and check if LCP[Ψ(i)] has been sampled. If LCP[Ψk(i)] is
the first sampled position we encounter, then LCP[i] = LCP[Ψk(i)]+k. This
follows from the fact that LCP[Ψk′(i)] is a non-minimal PLCP value for all
k′ < k, and hence LCP[Ψk′(i)] = PLCP[SA[i]+k′] = PLCP[SA[i]+k′+1]+1 =
LCP[Ψk′+1(i)] + 1 by Lemma 6.2.

Lemma 6.4 ([50]). For a text of length n, the sum of minimal or maximal
PLCP values is at most 2n log n.

The worst case occurs in random texts, where most of the PLCP values
are both maximal and minimal, and the average value is Θ(logσ n) (see

6.2 Sampling the LCP array 59

the analysis in Section 4.2). For a binary de Bruijn sequence, the sum of
maximal values (with a looser definition, where Lemma 6.3 holds in both
directions) is (n/2) log n−O(n) [50], making the bound asymptotically tight.
In highly repetitive texts, the sum of minimal values tends to be less than
n (see Section 6.4).

If we use the bit vector of Gupta et al. [37] to mark the sampled po-
sitions, the vector takes (1 + O(1/ logR))R log(n/R) + O(R log log(n/R))
bits of space in the worst case. As the sum of the samples is at most
2n log n, we can concatenate the binary representations of the samples in at
most R log(2n log n/R) + R bits. The two-level storage scheme of Ferrag-
ina and Venturini [24] allows constant-time access to the samples by using
O(R log log n/ log n) bits of extra space. Overall, the samples require(

2 +O

(
1

logR

))
R log

n

R
+O

(
R log log

n

R

)
bits of space, which is almost the same as for one of the run-length encoded
PLCP proposals [69].

To guarantee worst-case behavior and to improve the performance with
highly repetitive texts, where R � n, we also sample one out of d′ > 0
PLCP values, when the successive minimal values are spaced more than d′

positions apart. With the pessimistic assumption that each of these extra
samples is large, requiring log n bits, the size bound becomes(

1 +O

(
1

log nS

))
nS log

n

nS
+R log

n

R
+
n log n

d′
+O

(
nS log log

n

nS

)
bits, where nS ≤ R + n/d′ is the number of samples. In practice, an
extra sample PLCP[j] requires roughly logPLCP[j] bits and a mark in the
bit vector, while an extra suffix array sample requires 2 log(n/d) bits in
addition to the mark, where d is the suffix array sample rate. Hence with
typical sample rates, adding extra LCP samples is cheaper than adding the
same number of suffix array samples.

Theorem 6.1. Let T [1, n] be a text, and let d′ > 0 be an integer. The LCP
samples for text T with sample rate d′ require

O

(
nS log

n

nS

)
+
n log n

d′

bits of space, where nS ≤ R + n/d′ is the number of samples, and R is the
number of equal letter runs in the Burrows-Wheeler transform of text T . A
compressed suffix array that computes Ψ in tΨ time can use the samples to
access any element of the LCP array in O(d′ · (tΨ + o(log n))) time.

60 6 Longest common prefix array

6.3 Space-efficient LCP array construction

Kasai et al. [43] introduced the first linear-time LCP array construction
algorithm. As the algorithm requires the suffix array in memory, it uses
Θ(n log n) bits of space for a text of length n. Yet as the LCP array can be
compressed into 2n + o(n) bits or even less, this greatly restricts the size
of the texts with which the LCP array can be used. Later developments
concentrated on reducing the working space to O(n log σ) bits [80, 50, 30, 4]
or making the construction faster in practice [50, 30, 26].

The fastest algorithm so far is the one by Fischer [26]. Based on a
suffix array construction algorithm using induced sorting [73], the algorithm
works in linear time, yet requires Θ(n log n) bits of working space. Another
interesting algorithm is the one by Beller et al. [4] that builds the LCP
array directly from a compressed suffix array. On a conceptual level, the
algorithm is based on repeating the following for k = 0, 1,

1. For all patterns P of length k, let [spP , epP] be the suffix array range
containing the occurrences of the pattern. Assume that set Qk con-
tains all these ranges.

2. Use backward searching to determine set Qk+1 from set Qk.

3. For each range [sp, ep] ∈ Qk+1, set LCP[ep+1]← k, unless LCP[ep+1]
has already been defined.

A practical variant of the algorithm works in O(n log n) time and uses
roughly n bytes of working space in addition to the compressed suffix ar-
ray. The LCP array is written directly to disk in several passes. While
the algorithm is reasonably fast and space-efficient, it cannot be used for
constructing the LCP array for texts that are too large to fit into memory.
This is in contrast to the compressed suffix arrays, for which such algorithms
exist (see Chapter 5).

By starting from the irreducible LCP algorithm of Kärkkäinen et al. [50],
we can design an LCP array construction algorithm that uses negligible
working space in addition to the compressed suffix array and the compressed
(P)LCP representation. The irreducible LCP algorithm finds the irreducible
(maximal) PLCP values, computes them directly, and uses Lemma 6.2 to
derive the rest of the values. As the sum of maximal PLCP values is at
most 2n log n, the algorithm works in O(n log n) time. The PLCP values
are computed in text order, making it possible to build any compressed
PLCP representation directly.

6.3 Space-efficient LCP array construction 61

The original irreducible LCP algorithm uses the text and the suffix array
to identify the maximal values. With a compressed suffix array, we want to
identify the irreducible values using function Ψ in one pass over the text.
Additionally, as computing the irreducible values also involves scanning the
text forward using Ψ, we can avoid redundant work by finding minimal
instead of maximal PLCP values.

From Lemma 6.3, we can derive the following result by noting that
PLCP[j] is minimal if PLCP[j + 1] is maximal.

Lemma 6.5. Let SA[i] = j. Value PLCP[j] can be minimal only if j = n
or if BWT[Ψ(i)] is a run head.

Let c be a character such that C[c] < i ≤ C[c + 1]. As we compute
Ψ(i) = selectc(BWT, i−C[c]), we know that BWT[Ψ(i)] is a run head if we
use a run head in BWT (or in bit vector Bc) to compute Ψ(i). Equivalently,
BWT[Ψ(i)] is a run head if and only if char(i− 1) 6= char(i) or Ψ(i− 1) 6=
Ψ(i)− 1.

While Lemma 6.5 produces false positives, we can identify true minimal
values by buffering the previous candidate, until we find the next possibly
minimal value. The modified irreducible LCP algorithm can be seen in
Figure 6.1.

A two-pass variant of the same algorithm can be used to sample the LCP
array. In the first pass, we scan the CSA in suffix array order, and find the
minimal samples. As the samples are output in suffix array order, we can
compress them immediately, using negligible working space. The second
pass is in text order, as in the original algorithm. We output one out of
d′ consecutive non-minimal values as pairs (i, LCP[i]), deriving LCP[i] from
the next sample. Once the non-minimal samples have been determined, we
sort them in suffix array order, and merge them with the minimal samples.

Theorem 6.2. Given a compressed suffix array for a text of length n, the
irreducible LCP algorithm computes the PLCP array in negligible working
space in addition to the CSA and the PLCP array. The running time of
the algorithm is equivalent to extracting O(n log n) characters from the text
using the CSA. A two-pass version of the algorithm samples the LCP array
with sample rate d′ > 0 in the same time bound, while using O((n/d′) log n)
bits of additional working space.

62 6 Longest common prefix array

function lcp(i)
(i′, k)← (i− 1, 0)
c← char(i)
while i′ ∈ Cc

(i′, i, k)← (Ψ(i′),Ψ(i), k + 1)
c← char(i)

return k

function irreducibleLCP(SA−1[1])
PLCP[1]← 0
(i, j, j′)← (SA−1[1], 1, 2)
while j < n

c← char(i)
if i− 1 6∈ Cc or Ψ(i− 1) 6= Ψ(i)− 1

x← lcp(Ψ(i))
PLCP[j′, j + 1]← (x+ j + 1− j′, . . . , x)
j′ ← j + 2

(i, j)← (Ψ(i), j + 1)
return PLCP

Figure 6.1: The irreducible LCP algorithm for computing the PLCP array
directly from a compressed suffix array. The algorithm maintains an in-
variant that SA[i] = j, while PLCP[j′] is the maximal value in the current
run.

6.4 Implementation and experiments 63

6.4 Implementation and experiments

LCP samples, bit vector encodings of the PLCP array, and their construc-
tion algorithms have been implemented as a part of RLCSA (see Chapter 4).
For PLCP, we use a run-length encoded bit vector with highly repetitive
data sets, and a succinct bit vector with regular data sets. For marking
the sampled LCP positions, we similarly use a gap encoded bit vector with
highly repetitive data sets, and a succinct vector with the regular ones. The
sampled values are encoded with δ-codes, and stored in a stripped-down
version of the gap encoded bit vector for fast access.

The succinct bit vector is a practical implementation designed for cur-
rent hardware. For rank, we divide the vector into 256-bit blocks, and store
the number of 1-bits before each block in log n bits. Solving rank then
requires retrieving the stored value for the correct block, and counting the
number of 1-bits in the block up to the queried position using the 64-bit
popcount function provided in GCC. The function compiles either into a
single instruction or a small subroutine, depending on architecture.

For select, the implementation uses two levels of indexes. The first one
stores n/256 pointers to blocks that contain the 1-bit of rank i ·256n1/n+1,
for i = 0 to n/256−1. With this index, we get a range of blocks that contains
the queried 1-bit. If the range spans more than 16 blocks, we use binary
search in the rank index to narrow it down. When the range becomes short
enough, we continue with linear search in the rank index to find the correct
block, and resort to popcount to compute the answer within the block.

To avoid redundant work in LCP sampling and PLCP construction, we
interleave the computation of minimal values with the main loop. When
sampling the LCP array, we make both of the passes in text order, and store
all samples in an array of pairs (i, LCP[i]) before compressing them.

For the experiments, we used the same system as in Section 4.4. Only
once core was used in the experiments. We used the same four data sets
as in Paper III. As regular data sets, we used human DNA sequences (dna)
and English language texts (english) from the Pizza & Chili Corpus [18].
As highly repetitive data sets, we used Finnish language Wikipedia with
full version history (fiwiki) and the genomes of 36 strains of Saccharomyces
paradoxus (para) (see also Chapter 4). When the data set was much larger
than 400 megabytes, a 400 MB prefix was used instead. Further information
on the data sets can be found in Table 6.1.

The construction times reported in Table 6.1 are for the highest number
of SA and LCP samples. Note that sample rates had no significant impact
on construction times. With the regular data sets, the irreducible LCP
algorithm was very slow, as its time complexity scales with the sum of

64 6 Longest common prefix array

Minimal Construction
Data set Size Runs Number Sum PLCP Samples Induced

dna 385 243.49 158.55 2215 2402 2695 47
english 400 156.35 99.26 1052 1181 1471 76
fiwiki 400 1.79 1.15 117 210 365 46
para 409 15.64 10.05 299 374 590 55

Table 6.1: Data sets used in LCP experiments. Size in megabytes, millions
of runs in BWT, number and sum of minimal samples in millions, and
construction time in seconds. Construction times for PLCP and (LCP)
Samples are from using the irreducible LCP algorithm, while Induced is for
building the LCP array with the algorithm of Fischer [26], which is currently
the fastest LCP construction algorithm.

minimal PLCP values. A parallel version that scans different sequences
in different threads might still be as fast as direct CSA construction (see
Chapter 5), as the basic CSA operations parallelize well. The algorithm
was much faster with the highly repetitive data sets, while still being 5 to
10 times slower than the LCP construction algorithm of Fischer [26].

As noted in Section 6.1, the number of minimal PLCP values was
roughly 2/3 times the number of equal letter runs in the Burrows-Wheeler
transform of the text. As the number of minimal PCLP values is the same
as the number of runs of 1-bits in the PLCP vector BL, this means that
the size bounds for the run-length encoded PLCP variants are significantly
larger than the size in practice.

To compare the time/space trade-offs offered by PLCP bit vectors and
LCP samples, we built RLCSA with sample rates d = 8, 16, 32, 64 for the
regular data sets, and d = 32, 64, 128, 256 for the highly repetitive data
sets. We used LCP sample rates d′ = 8, 16 for the regular data sets, and
d′ = 16, 32, 64 for the highly repetitive ones. Instead of measuring the
average time required for a random LCP query, we used a measure that is
independent of the underlying CSA implementation, counting the average
number of steps of Ψ required to find a sampled SA or LCP position. The
results can be seen in Figure 6.2. As a lower bound for the size of any
PLCP-based representation, we also included the results for locate in the
figures.

With the regular data sets and sparse SA sampling, the performance of
LCP samples was superior to the PLCP-based approach, while increasing
the overall index size only slightly. As 25% (english) to 40% (dna) of text
positions were sampled, a sampled position was found in a couple of steps

6.4 Implementation and experiments 65

0 200 400 600 800

0
10

20
30

40

Size (MB)

N
um

be
r

of
 s

te
ps

dna

0 200 400 600 800

0
10

20
30

40

Size (MB)

N
um

be
r

of
 s

te
ps

PLCP
Samples
Locate

english

0 50 100 150 200 250

0
50

10
0

15
0

Size (MB)

N
um

be
r

of
 s

te
ps

fiwiki

0 50 100 150 200 250

0
50

10
0

15
0

Size (MB)

N
um

be
r

of
 s

te
ps

para

Figure 6.2: Experimental results for 106 random LCP queries with LCP
samples and PLCP, with 106 random locate queries as a lower bound for
any PLCP-based representation. Index size in megabytes and the average
number of steps required to reach a SA/LCP sample. The results with LCP
samples have been grouped by SA sample rate.

66 6 Longest common prefix array

most of the time. With denser suffix array sampling, this advantage mostly
disappeared, as the locate queries were no longer that expensive.

As there were only a few minimal samples in the highly repetitive data
sets (see Table 6.1), the solution using LCP samples relied mostly on the
non-minimal extra samples. This made the LCP samples significantly larger
than the run-length encoded PLCP bit vector. While the LCP samples
still offered better time/space trade-offs than any PLCP-based approach in
some cases, the improvement was not significantly better than what could
be achieved by denser suffix array sampling.

We also measured the average number of steps required for computing
the LCP values directly. As there were long repetitions even in the regular
data sets, the results (2424 steps in dna and 5786 steps in english) were
not competitive with the other approaches. Still, as many of the minimal
samples are small, it should be possible to decrease the size of the samples
without sacrificing too much performance by storing only large minimal
samples, and computing the small ones directly when required.

Chapter 7

Generalized compressed suffix array

The compressed suffix arrays discussed so far index either single sequences
or collections of sequences. This is not a fundamental limitation, however.
In this chapter, based on Paper IV, we generalize the compressed suffix
arrays to handle a certain class finite automata. This class of automata can
recognize all finite languages and some infinite languages as well.

Backward searching using BWT is based on the following property: text
positions containing character c are sorted in the same order as text posi-
tions preceded by character c. If we consider the sequence a finite automa-
ton, we could say that nodes labeled with character c are sorted in the same
order as those nodes with a predecessor labeled with character c. To use
this idea to index finite automata, we need to solve two problems: handling
nodes with multiple predecessors or successors (Section 7.1), and construct-
ing an automaton that can be sorted in the desired way (Section 7.2).

In the general case, the sorted automaton can be exponentially larger
than the minimal deterministic automaton recognizing the same language.
However, if only a small fraction of the nodes of the minimal automaton
have multiple successors, most of the nodes can be sorted by the label
of the unique path of length k (for some k > 0) starting from the node.
For these languages, the sorted automaton is not much larger than the
minimal one. An important example of this kind of automata are those
arising from a reference sequence and a set of substitutions, insertions, and
deletions, or from a multiple alignment of sequences. In the latter case,
the automaton will recognize not only the original sequences, but all their
plausible recombinations as well.

67

68 7 Generalized compressed suffix array

7.1 Indexing finite languages

The XBW transform [19] is a generalization of the Burrows-Wheeler trans-
form for labeled trees, where leaf nodes and internal nodes are labeled with
different alphabets. Each internal node of the tree is represented as a con-
catenation of the labels of its children. These representations, sorted in
lexicographic order according to the path labels from the node to the root,
form sequence BWT. The starting position of each internal node in BWT
is marked by an 1-bit in bit vector F , so that the node with lexicographic
rank i can be found as BWT[select1(F, i), select1(F, i+ 1)− 1].

XBW supports tree navigation with generalizations of functions LF and
Ψ. In downward functions such as LF , the lexicographic ranks returned by
the regular versions of the functions are converted into BWT ranges by
using select on bit vector F , as above. Upward functions such as Ψ work in
the opposite way, converting BWT ranges into lexicographic ranks by using
rank on bit vector F , before calling the regular version of the function.

Generalization for finite automata. Bit vector F , mapping lexico-
graphic ranks into BWT ranges, allows a single node to have multiple pre-
decessors. We can use a similar idea to allow multiple successors, extending
XBW from trees to finite automata. The idea is to use another bit vector
M to encode the number of outgoing edges, so that the node with lexico-
graphic rank i has select1(M, i + 1) − select1(M, i) outgoing edges.1 For
convenience, we assume that the final node V|V | has a single outgoing edge
to the initial node V1.

Backward navigation (LF) first uses bit vector F to convert lexico-
graphic ranks into a BWT range, then calls the regular version of the func-
tion, and finally uses bit vector M to convert the edge range into lexico-
graphic ranks. Forward navigation (Ψ) uses bit vectors M and F in the
opposite way. See Figure 7.1 for pseudocode for basic navigation functions,
and below for exact definitions of the functions.

Definitions. As mentioned in the beginning of the chapter, the automa-
ton must have a certain property in order for functions LF and Ψ to work.
We call this property prefix-range-sortedness.

Definition 7.1. Let A = (V,E) be a finite automaton, and let v ∈ V be a
node. Let rng(v) be the smallest (open, semiopen, or closed) lexicographic
range containing all suffixes that can be recognized from node v. Node v

1This definition of bit vector M makes the generalization simpler than the original
definition.

7.1 Indexing finite languages 69

function LF([sp, ep], c)
[sp, ep]← [select1(F, sp), select1(F, ep+ 1)− 1]
[sp, ep]← [C[c] + rankc(BWT, sp− 1) + 1, C[c] + rankc(BWT, ep)]
[sp, ep]← [rank1(M, sp), rank1(M, ep)]
return [sp, ep]

function Ψ(i, j)
c← char(i)
i← select1(M, i) + j − 1
i← selectc(BWT, i− C[c])
i← rank1(F, i)
return i

Figure 7.1: Pseudocode for the basic navigation functions LF and Ψ.

is prefix-range-sorted, if no suffix S ∈ rng(v) is recognized from any other
node v′ 6= v. Automaton A is prefix-range-sorted, if all nodes are prefix-
range-sorted.

In the following, we use a stronger definition to simplify the discussion.
The results for prefix-sorted automata generalize for prefix-range-sorted au-
tomata as well.

Definition 7.2. Let A be a finite automaton, and let v ∈ V be a node.
Node v is prefix-sorted by prefix p(v), if the labels of all paths from v to
v|V | share a common prefix p(v), and no path from any other node u 6= v
to v|V | has p(v) as a prefix of its label. Automaton A is prefix-sorted, if all
nodes are prefix-sorted.

We can use the prefixes p(v) to sort the nodes of a prefix-sorted au-
tomaton in lexicographic order. If we do so, then we have also sorted the
outgoing edges (u, v) using sequences `(u)p(v) as sort keys, and the edge
encoded by bit M [i] has lexicographic rank i. This is the key for functions
LF and Ψ to work properly. For any given character c, all outgoing edges
from nodes with label c are lexicographically adjacent, and they are sorted
by prefix p(v) of the destination node. Similarly, all occurrences of char-
acter c in BWT encode an incoming edge from a node with label c, and
these edges are also sorted by prefix p(v) of the destination node. Hence
the incoming edge labeled by the jth occurrence of character c is the same
edge as the outgoing edge of rank C[c] + j, and the other way around. Note
that C[c] stores the number of occurrences of characters smaller than c in
BWT, not the number of nodes with label smaller than c.

70 7 Generalized compressed suffix array

Operations. We define the basic navigation functions in the following
way.

• LF ([sp, ep], c) is the lexicographic range of nodes with label c that
have a successor in the lexicographic range [sp, ep]. This is essentially
a step of backward searching with character c.

• Ψ(i, j) is the lexicographic rank of the jth successor of the node with
lexicographic rank i.

• char(i) is the label of the node with lexicographic rank i.

These operations can be used to support the following generalization of
suffix array functionality (see Definition 2.1).

• find(P) returns the lexicographic range [sp, ep] of nodes recognizing
any suffix that has pattern P as its prefix.

• locate(i) returns a numerical value corresponding to the node with
lexicographic rank i.

• extract(i,P) returns the label of path P starting from the node with
lexicographic rank i.

We can support find by replacing the first two lines of the loop body in
Figure 2.3 with function LF from Figure 7.1.

For locate, we assume that there is a (not necessarily unique) numerical
value id(v) attached to each node v ∈ V . Examples of these values include
node ids (so that id(vi) = i) and positions in a multiple alignment. To
avoid excessive sampling of node values, id(v) should be id(u)+1 whenever
(u, v) is the only outgoing edge from u and the only incoming edge to v.

We sample id(u), if there are multiple outgoing edges from node u, or
if id(v) 6= id(u) + 1 for the only outgoing edge (u, v). We also sample one
out of d node values, given sample rate d > 0, on paths of at least d nodes
without any samples. The sampled values are stored in the same order as
the nodes, and their positions are marked in bit vector Bs.

As we have sampled all nodes with multiple successors, we can use the
locate algorithm of the CSA family directly with our new function Ψ. To
retrieve id(u) for node u of lexicographic rank i, we first check if Bs[i] = 1,
and return sample rank1(Bs, i), if this is the case. Otherwise we follow the
only outgoing edge (u, v) by using function Ψ, and continue from node v.
When we find a sampled node w, we return id(w)−k, where k is the number
of steps taken by using Ψ.

7.2 Construction algorithm 71

In extract, we assume that the description of path P allows us to deter-
mine in constant time, which outgoing edge we should take, and have we
already finished the path. With such description, we can use function Ψ to
move forward on the path, and function char(·) to read the next character
of the path label. The algorithm is similar to the extract algorithm of the
CSA family, with the exception that we already know the lexicographic rank
of the initial node. This is because we might be using a node value scheme
that does not allow mapping node values to lexicographic ranks.

We call a compressed self-index based on this generalization of the XBW
transform a generalized compressed suffix array (GCSA). As each step of LF
and Ψ requires both rank and select, we get the following generalization of
Theorem 3.1.

Theorem 7.1. Let rank and select on binary sequences take tR and tS
time, respectively. Then a generalized compressed suffix array with sample
rate d supports find(P) in O(|P | · (tR + tS)) time, locate in O(d · (tR + tS))
time, and extract(i,P) in O(|P|(tR + tS)) time.

A better encoding. Recall that the size bound of RLCSA (Theorem 4.1)
is worse than for plain run-length encoding of the BWT (Section 2.3). This
is because RLCSA has to encode each character of BWT with either a 0-bit
or an 1-bit in every bit vector Bc, while the run-length encoding encodes
each character only once. In GCSA, we can use this redundancy for our
advantage.

As a prefix-range sorted automaton is reverse deterministic, each node
can have at most one predecessor with a certain label. Hence the section
of BWT corresponding to a node can have at most one occurrence of each
character, meaning that we can put all these predecessor labels into the
same position in bit vectors Bc. As the bit Bc[i] now determines, whether
the node with lexicographic rank i has a predecessor with label c, we no
longer have to use bit vector F to map between lexicographic ranks and
BWT ranges. This is a major speedup in practice, as we get rid of one
third of bit vector operations.

7.2 Construction algorithm

A straightforward way of constructing a prefix-sorted automaton from a
finite automaton recognizing a finite language is via a prefix-doubling algo-
rithm (see Section 5.4). The algorithm consists mostly of sorting, scanning,
and database joins. Hence it can be efficiently implemented in parallel,
distributed, and external memory settings.

72 7 Generalized compressed suffix array

G G GA AC C CT

T

T $

Figure 7.2: A reverse deterministic automaton corresponding to the first 10
positions of the multiple alignment in Figure 2.1.

G G G

A

A

A

A

A

A

C

C C C

T

T T $

GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

Figure 7.3: A prefix-sorted automaton built for the automaton in Figure 7.2.
The strings above nodes are prefixes p(v).

Theorem 7.2. Assume we have a length n multiple alignment of r se-
quences over alphabet of size σ. We can build a prefix-range-sorted automa-
ton recognizing all paths through the alignment in O(nr + |V ′| log n + |E′|)
time and O(nr log σ+ |V ′| log|V ′|+ |E′| log|E′|) bits of space, where V ′ and
E′ are the largest intermediate sets of nodes and edges, respectively.

Proof. From Lemmas 7.1, 7.2, and 7.3 below.

The sizes of the largest intermediate sets of nodes and edges are analyzed
in a restricted model in Section 7.3. An example of construction can be seen
in Figures 7.2 and 7.3 and Table 7.1.

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT # CT CG C A $
M 1 1 1 1 1 1 1 1 1 1 1 1 100 1 100 1 1 1

Table 7.1: GCSA for the automaton in Figure 7.3. Nodes are identified by
prefixes p(v).

7.2 Construction algorithm 73

Building a reverse deterministic automaton. With the following al-
gorithm, we can build a reverse deterministic automaton that recognizes all
paths through a multiple alignment of sequences. The same approach, when
used with a reference sequence and a set of edit operations, is essentially a
variant of the textbook algorithm for determinizing finite automata.

In the following, we assume that the alignment consists of sequences
S1, . . . , Sr of length n, possibly containing gap characters −. Sequences Si
and Si′ are considered to be equivalent at position j, if Si[j] = Si′ [j] 6= −.
We can allow edit operations longer than one character by using a context
to determine the equivalence of two positions. With context length k ≥ 0,
sequences Si and Si′ are equivalent at position j, if Si[j] = Si′ [j] 6= − and
the next k non-gap characters in the sequences are also equal.

The algorithm works in one pass from right to left. Assume that we
have already processed positions j + 1 to n and created the corresponding
part of the automaton. For each sequence Si with a non-gap character in
column j, we first create a temporary node vi,j and an edge from vi,j to the
node corresponding to the next non-gap character in sequence Si. Next,
we merge the temporary nodes for those sequences that are equivalent at
position j.

Finally, we find the preceding non-gap characters for all sequences with
a non-gap character at position j. Assume that two or more sequences
that are equivalent at position j have c as the preceding non-gap character.
If these characters c occur at different positions, we move them all to the
rightmost of these positions. This way, the node vi,j corresponding to the
equivalent sequences will only have one predecessor with label c.

Lemma 7.1. Let n be the length of the multiple alignment, r the number of
sequences, and σ the size of the alphabet. Building a reverse deterministic
automaton takes O(nr) time and requires O(nr log σ + |E| log|E|) bits of
space, where E is the set of edges of the automaton.

Note that each position can be processed in O(r) amortized time, re-
gardless of context length, by keeping the suffixes Si[j] in sorted order and
maintaining the lengths of the longest common prefixes of lexicographically
adjacent suffixes.

Creating a prefix-sorted automaton.

Definition 7.3. Let A be a finite automaton recognizing a finite language,
and let k > 0 be an integer. Automaton A is k-sorted if, for every node v,
the labels of all paths from v to v|V | share a common prefix p(v, k) of length
k, or if node v is prefix-sorted by prefix p(v, k) of length at most k.

74 7 Generalized compressed suffix array

Every automaton is 1-sorted. Automaton A is prefix-sorted if and only
if it is n-sorted, where n is the length of the longest string in L(A).

Starting from a reverse deterministic automaton A = A0, we create the
nodes of automata Ai = (Vi, Ei) for i = 1, 2, . . . that are 2i-sorted, until
we get an automaton that is prefix-sorted. For every node v ∈ Vi, let P (v)
be the path of A corresponding to prefix p(v, 2i). We store the first and
the last nodes of this path as from(v) and to(v), and set rank(v) to be the
lexicographic rank of prefix p(v, 2i) among all distinct prefixes p(u, 2i) of
nodes u ∈ Vi. If node v has unique rank(v) value, then it is prefix-sorted.

The basic step of the algorithm is the doubling step from Ai to Ai+1. If
node u ∈ Vi is prefix-sorted, we duplicate it as w ∈ Vi+1, and set rank(w) =
(rank(u), 0). Otherwise we create a joined node uv ∈ Vi+1 for every node
v ∈ Vi such that P (uv) = P (u)P (v) is a path in A, and set `(uv) = `(u)
and rank(uv) = (rank(u), rank(v)). As path P (uv) exists if and only if
there is an edge (to(u), from(v)) ∈ E0, this essentially requires two database
joins.2 When the nodes of Ai+1 have been created, we sort them by their
ranks, and replace the pairs of integers with integer ranks.

The doubling step is followed by the pruning step, where we merge
equivalent nodes. The nodes in Vi+1 are sorted by their rank(·) values. If
all nodes sharing a certain rank(·) value also share their from(·) node, these
nodes are equivalent, and can be merged. Merging makes the resulting node
prefix-sorted.

Lemma 7.2. Prefix-doubling algorithm creates the nodes of a prefix-sorted
automaton equivalent to A in O(|V ′| log n) time and O(|V ′| log|V ′|) bits of
space in addition to automaton A, where V ′ is the largest set of nodes during
construction, and n is the length of the longest string in L(A).

The lemma assumes using a linear-time integer sorting algorithm.

Creating the edges. Let A = (V,E) be a reverse deterministic automa-
ton recognizing a finite language, and letW be the set of nodes of an equiv-
alent prefix-sorted automaton. To create the edges, we first merge nodes
with adjacent rank(·) values, if they share their from(·) node. The resulting
set V ′ is the set of nodes of a prefix-range-sorted automaton A′ = (V ′, E′)
equivalent to automaton A. The set of edges E′ can be constructed effi-
ciently from automaton A and the set of nodes V ′.

The key to edge construction is that for each node v ∈ V ′, the set of
from(u) nodes for the predecessors u of node v is the same as the set of

2Juha Kärkkäinen noted that one join is enough, if we replace to(u) with the destina-
tion nodes w for all edges (to(u), w) ∈ E0.

7.3 Analysis 75

predecessors of node from(v). With automaton A and the set of nodes V ′,
we can output the edges (u, v) ∈ E′ initially as pairs (from(u), v), sorted
by (`(from(u)), rank(v)). Note that this is the same order as sorting the
edges by rank(u).

We can map nodes from(u) to nodes u by scanning the sorted lists of
nodes and edges. As every node has at least one outgoing edge, and no
adjacent nodes share their from(·) value, all adjacent edges with the same
from(·) values start from the current node. When the from(·) value changes
in the list of edges, we advance to the next node.

Lemma 7.3. Creating the edges of prefix-range-sorted automaton A′ takes
O(|W |+ |E′|) time and requires O(|W | log|W |+ |E′| log|E′|) bits of space,
where W is the set of nodes of an equivalent prefix-sorted automaton.

7.3 Analysis

Languages recognized by prefix-range-sorted automata. As shown
in Section 7.2, every finite language can be recognized by a prefix-range-
sorted automaton. There are also some infinite languages that can be rec-
ognized by such automaton. For example, consider the regular language
{#x$ | x ∈ {a, b}∗}. The minimal automaton recognizing this language is
prefix-range-sorted, as each node has a distinct label.

Not all regular languages have prefix-range-sorted automata, however.
Consider, for example, the language L = {#x$ | x ∈ {a, b}∗ ∪ {a, c}∗}.
Assume that there is a prefix-range-sorted automaton that recognizes the
language. Suffixes Bn = anb$ and Cn = anc$ must be recognized from
different nodes, as bBn is a suffix of language L, while bCn is not. Because
Bn+1 < Cn+1 < Bn, suffixes Bn and Bn+1 must also be recognized from
different nodes. As the automaton must have an infinite number of nodes,
it cannot be a finite automaton.

Size of the automaton. We analyze the size of the automata created by
the doubling algorithm in the following model. Let S[1, n] be a reference
sequence, and let p be the mutation rate. For each position i = 1, . . . , n,
the initial automaton A has a node ui with label `(ui) = S[i], randomly
chosen from alphabet Σ. With probability p, there is also another node wi
with a random label `(wi) ∈ Σ \ {S[i]}. The automaton has edges from all
nodes at position i to all nodes at position i+ 1.

Definition 7.4. Let k > 0 be an integer. A k-path in an automaton is a
path of length k, or a shorter path ending at the final node.

76 7 Generalized compressed suffix array

Let k > 0 be an integer. For any position i, let Xi,k be the number
k-paths starting from position i. If there are j mutated positions covered
by these paths, then Xi,k = 2j , and each of the paths has a different la-
bel. The number of mutations is binomially distributed, with path length
and mutation probability as the parameters. From the moment-generating
function for binomial distribution, we get

E [Xi,k] =

k∑
j=0

Pr(Xi,k = 2j)2j ≤ (1 + p)k. (7.1)

For positions i = 1, . . . , n− k + 1, this is an equality.
Let Ah be the 2h-sorted automaton created by the prefix-doubling algo-

rithm. By summing Equation 7.1 for all positions in the reference sequence,
and including the initial and the final nodes, we get N(2h) = n(1 + p)2h + 2
as an upper bound for the expected number of nodes in Ah. As the expected
number of predecessors for any node at position i > 1 is (1 + p), we get
N(2h)(1 + p) as an upper bound for the expected number of edges.

Consider the expectation E
[
Xi,kXi′,k

]
for a pair of text positions i < i′.

If i′ ≥ i+k, then the random variables are independent, and the expectation
becomes

E
[
Xi,kXi′,k

]
= E [Xi,k] E

[
Xi′,k

]
≤ (1 + p)2k. (7.2)

Otherwise assume that the paths starting from positions i and i′ overlap
in k′ < k positions. Then the expectation is a product of the expectations
of three independent random variables Xi,k−k′ , X2

i′,k′ , and Xi′+k′,k−k′ . By
using the moment-generating function, we get

E
[
Xi,kXi′,k

]
≤ (1 + p)2(k−k′)(1 + 3p)k

′ ≤ (1 + p)3k. (7.3)

Definition 7.5. A pair of nodes of automaton Ah collides, if the corre-
sponding 2h-paths have identical labels.

Automaton Ah is prefix-sorted, if it has no colliding pairs. Two nodes
can collide only, if the 2h-paths are of length 2h and start from different
positions in the reference sequence. By Equations 7.2 and 7.3, the expected
number of colliding pairs is at most∑

i<i′

E
[
Xi,2hXi′,2h/σ

2h
]
≤ n2(1 + p)3·2h/σ2h . (7.4)

Lemma 7.4. Let n be the length of the reference sequence, σ the size of the
alphabet, and p < σ1/3 − 1 the mutation rate. For any ε > 0, the largest
automaton created by the prefix-doubling algorithm has at most n(1+p)k+2

nodes with probability 1− ε, where k = 2 logσ
n2

ε /(1− 3 logσ(1 + p)).

7.4 Implementation and experiments 77

Proof. We want to find k = 2h, for an integer h, such that the expected
number of colliding pairs in automaton Ah is at most ε. Then, by Markov’s
inequality, the probability of having a colliding pair is at most ε. If this
happens after h doubling and pruning phases, the expected number of nodes
in the largest automaton created is at most N(k) = n(1 + p)k + 2.

By using the bound for the expected number of colliding pairs from
Equation 7.4, we get

n2(1 + p)3k

σk
≤ ε ⇐⇒

logσ
n2

ε

1− 3 logσ(1 + p)
≤ k.

As k has to be a power of two, 2 logσ
n2

ε /(1 − 3 logσ(1 + p)) is an upper
bound for the smallest suitable k.

With reasonable mutation rates, the expected number of nodes and
edges is at most n(1 + p)O(logσ n) +O(1).

Theorem 7.3. Let n be the length of the reference sequence, σ the size of
the alphabet, and p the mutation rate. If 1/p = Ω(logσ n), then the expected
number of nodes and edges in the largest automaton created by the prefix-
doubling algorithm is O(n).

7.4 Implementation and experiments

We have implemented GCSA in C++, using the components from the im-
plementation of RLCSA (see Section 4.3). For each character c ∈ Σ∪ {#},
we use a gap encoded bit vector to mark the occurrences of c in BWT. Bit
vector M is run-length encoded, as it usually consists of long runs of 1-bits.
Bit vector B marking the sampled positions is gap encoded, while the sam-
ples are stored using dlog(idmax + 1)e bits each, where idmax is the largest
sampled value. Block size is set to 32 bytes in all bit vectors.

For our experiments, we used the same system as in Section 4.4. The
construction algorithms were parallelized, while the rest of the experiments
used only one core. As our test data, we used a multiple alignment of
four different assemblies of the human chromosome 18 (about 76 million
base pairs each).3 We built a GCSA with sample rate d′ = 16 for the
alignment, as well as RLCSA (sample rate d = 32) for the four sequences.
We searched for exact matches of 10 million Illumina/Solexa reads of length
56, sequenced from the whole genome, as both regular patterns and reverse
complements. Table 7.2 lists the results of these experiments.

3See Paper IV for a description of the sequences and the alignment.

78 7 Generalized compressed suffix array

Construction Matching
Index Size Time Space Matches Find Locate

GCSA-2 67.7 MB 11 min 5.9 GB 388,963 12 min 16 min
GCSA-4 66.0 MB 11 min 5.7 GB 388,134 12 min 14 min
GCSA-8 64.7 MB 11 min 3.6 GB 387,696 12 min 13 min
RLCSA 165.0 MB 4 min 1.0 GB 384,400 6 min 7 min

Table 7.2: Index construction and exact matching with GCSA (sample rate
16) and RLCSA (sample rate 32) for four sequences of human chromosome
18. The number of matches is the number of matching patterns out of 10
million. Times for locate include the time used by find. GCSA-k denotes
GCSA with context length k.

As there were relatively few occurrences inside the selected chromosome,
most of the time was spent doing find. Hence the sample rate that only af-
fects locate had little effect on the overall performance. GCSA was 2.0–2.3
times slower than RLCSA. About 1% of the reads matched by GCSA were
not matched by RLCSA. Memory requirements for building GCSA were
significantly higher than for RLCSA. The differences in query performance
between GCSA and RLCSA reflect the fundamental techniques, as the im-
plementations share most of their basic components and design choices.
Theoretically GCSA should be about two times slower, as it requires four
bit vector operations per character in find, while RLCSA uses just two.

To test GCSA in a more complicated algorithm, we implemented BWA-
like approximate searching [59] for both GCSA and RLCSA. There are
some differences to BWA: i) we return all best matches; ii) we do not use
a seed sequence; iii) we have no limits on gaps; and iv) we have to match
O(|P | log |P |) instead of O(|P |) characters to build the lower bound array
for pattern P , as we have not indexed the reverse sequence. We used con-
text length 4 for GCSA. The results can be seen in Table 7.3. GCSA was
consistently about two times slower than RLCSA, while finding from 1.0%
(exact matching) to 2.4% (edit distance 3) more matches in addition to
those found by RLCSA.

7.4 Implementation and experiments 79

GCSA-4 RLCSA
k Matches Time Matches Time

0 388,134 14 min 384,400 7 min
1 619,927 78 min 609,320 39 min
2 875,183 220 min 856,373 111 min
3 1,145,895 1,356 min 1,118,719 703 min

Table 7.3: Approximate matching with GCSA and RLCSA. The reported
numbers of matching patterns for a given edit distance k include those found
with smaller edit distances.

80 7 Generalized compressed suffix array

Chapter 8

Conclusions

Chapter 4. We showed that compressed suffix arrays can achieve much
better compression than predicted by empirical entropy, if the text is highly
repetitive. This improved compression does not degrade the query perfor-
mance of the index significantly. A partial exception is the locate query,
whose performance depends on the number of suffix array samples. While
there has been some success in compressing the samples when a good mul-
tiple alignment of a collection of texts is known [69, 40], they are still in-
compressible in the general case.

When analyzing the proposed index, we used the number of equal letter
runs in the Burrows-Wheeler transform as our complexity metric, instead
of the usual empirical entropy. We provided evidence that the number of
runs scales with the complexity of the text, and hence is a good complexity
metric, at least for highly repetitive texts. An interesting open question is,
how does the number of runs relate to the number of phrases in a Lempel-
Ziv parsing of the text. We get an expected case bound for the number
of runs from Theorem 4.2 by treating each phrase as a constant number of
edit operations. No worst-case bounds or bounds in the other direction are
known, however.

Chapter 5. In many applications, the size of data sets increases with
the amount of computing power available. One consequence of this is that
when using compressed data structures, the space requirements of the con-
struction algorithm often become the bottleneck that determines how large
data sets we can process. We showed how to construct a compressed suffix
array for a collection of length N in O(Nm) time and O(N/m logN) bits of
extra working space by indexing the collection in m parts. In many cases,
this means that we can build the compressed suffix array in O(n log n) time

81

82 8 Conclusions

while using less space than original size of the collection. As the algorithm
parallelizes well, it can be used to index data sets of up to tens of gigabytes
in size on current hardware.

One variant of the construction algorithm sorts the suffixes of a new
subcollection by their lexicographic ranks among the suffixes of already in-
dexed subcollections. This generalizes the well-known technique of packing
several consecutive characters into a single machine word to speed up suffix
sorting. While a straightforward application of the idea did not yield sig-
nificant improvements in construction speed, there may be other ways to
use the rank information to construct the suffix array faster.

Chapter 6. We proposed an extremely space-efficient algorithm for con-
structing various compressed representations of the longest common prefix
array directly from a compressed suffix array. While the algorithm is much
slower than the alternatives with larger space requirements, it should par-
allelize well, making it competitive with space-efficient CSA construction.
Yet if we have to construct the LCP array from scratch every time we insert
new sequences into the collection, LCP construction will be the bottleneck
in maintaining the index. An open question is, can we merge the LCP
arrays of two text collections efficiently in a similar way as we merge the
CSAs in the space-efficient construction algorithm.

We also showed how to derive any LCP value from a set of sampled
values in a similar way as deriving suffix array values from samples in a
locate query. With regular (not highly repetitive) texts, this new sampled
LCP array representation occupies the middle ground in time/space trade-
offs, combining reasonable compression and relatively fast access to the LCP
values. Yet if most of the minimal LCP values are small, it might be possible
to achieve better compression without sacrificing too much performance
by computing the small values directly. It remains to be seen, if some
combination of sampling and direct LCP computation can provide improved
time/space trade-offs.

Many compressed suffix tree proposals are based on combining a com-
pressed suffix array, a compressed representation of the LCP array, and a
representation of suffix tree topology. For the first two components, there
exist solutions whose size depends on the number of equal letter runs in the
Burrows-Wheeler transform, making them attractive for indexing highly
repetitive collections. Unfortunately, no known solution for compressing
the suffix tree topology combines such compression performance with fast
queries. Finding such solution would make compressed suffix trees much
more attractive for indexing highly repetitive collections.

83

Chapter 7. We generalized compressed suffix arrays for indexing finite
automata. While the index can be exponentially larger than the automaton
in the worst case, the size increase will remain small for highly repetitive
languages such as those arising from a set of individual genomes. The
generalized index is slower than a regular compressed suffix array by a
factor of two, due to the use of an additional bit vector to map outgoing
edges to nodes. Index construction still requires much more memory than
with regular CSAs. It should be possible to adapt most of the algorithms
using a CSA to use the generalized index instead.

A major open problem is, whether a similar generalization is possible
for grammar-based indexes. Context-free grammars have many advantages
over finite automata in describing finite languages. One of the advantages
is the ability to express rearrangements: substrings that occur in different
positions in different strings of the language.

84 8 Conclusions

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.
Replacing suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, 2(1):53–86, 2004.

[2] Jérémy Barbay, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich.
Alphabet partitioning for compressed rank/select and applications. In
Proceedings of the 21st International Symposium on Algorithms and
Computation, Part II (ISAAC 2010), volume 6507 of LNCS, pages
315–326. Springer, 2010.

[3] Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight
BWT construction for very large string collections. In Proceedings
of the 22nd Annual Symposium on Combinatorial Pattern Matching
(CPM 2011), volume 6661 of LNCS. Springer, 2011.

[4] Timo Beller, Simon Gog, Enno Ohlebusch, and Thomas Schnattinger.
Computing the longest common prefix array based on the Burrows-
Wheeler transform. In Proceedings of the 18th Symposium on String
Processing and Information Retrieval (SPIRE 2011), volume 7024 of
LNCS, pages 197–208. Springer, 2011.

[5] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. Directly
adressable variable-length codes. In Proceedings of the 16th Symposium
on String Processing and Information Retrieval (SPIRE 2009), volume
5721 of LNCS, pages 122–130. Springer, 2009.

[6] Michael Burrows and David J. Wheeler. A block sorting lossless data
compression algorithm. Technical Report 124, Digital Equipment Cor-
poration, 1994.

[7] Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko
Sadakane. Compressed indexes for dynamic text collections. ACM
Transactions on Algorithms, 3(2):21, 2007.

85

86 References

[8] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary
storage (extended abstract). In Proceedings of the seventh annual
ACM-SIAM symposium on Discrete algorithms (SODA 1996), pages
383–391. SIAM, 1996.

[9] Francisco Claude, Antonio Fariña, Miguel Martínez-Prieto, and Gon-
zalo Navarro. Compressed q-gram indexing for highly repetitive biolog-
ical sequences. In Proceedings of the 10th IEEE International Confer-
ence on Bioinformatics and Bioengineering (BIBE 2010), pages 86–91.
IEEE, 2010.

[10] Francisco Claude and Gonzalo Navarro. Practical rank/select queries
over arbitrary sequences. In Proceedings of the 15th International Sym-
posium on String Processing and Information Retrieval (SPIRE 2008),
volume 5280 of LNCS, pages 176–187. Springer, 2008.

[11] Francisco Claude and Gonzalo Navarro. Self-indexed text compression
using straight-line programs. In Proceedings of the 34th International
Symposium on Mathematical Foundations of Computer Science (MFCS
2009), volume 5734 of LNCS, pages 235–246. Springer, 2009.

[12] Rodrigo Cánovas and Gonzalo Navarro. Practical compressed suffix
trees. In Proceedings of the 9th International Symposium on Experi-
mental Algorithms (SEA 2010), volume 6049 of LNCS, pages 94–105.
Springer, 2010.

[13] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter
Sanders. Better external memory suffix array construction. Journal
of Experimental Algorithmics, 12:article 3.4, 2008.

[14] Peter Elias. Universal codeword sets and representations of the inte-
gers. IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[15] Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight
data indexing and compression in external memory. Algorithmica,
63(3):707–730, 2012.

[16] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The engi-
neering of a compression boosting library: theory vs practice in BWT
compression. In Proceedings of the 14th Annual European Symposium
on Algorithms (ESA 2006), volume 4168 of LNCS, pages 756–767.
Springer, 2006.

References 87

[17] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, and Marinella
Sciortino. Boosting textual compression in optimal linear time. Journal
of the ACM, 52(4):688–713, 2005.

[18] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano
Venturini. Compressed text indexes: From theory to practice. Journal
of Experimental Algorithms, 13:article 1.12, 2009.

[19] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukr-
ishnan. Compressing and indexing labeled trees, with applications.
Journal of the ACM, 57(1):article 4, 2009.

[20] Paolo Ferragina and Giovanni Manzini. Indexing compressed text.
Journal of the ACM, 52(4):552–581, 2005.

[21] Paolo Ferragina and Giovanni Manzini. On compressing the textual
web. In Proceedings of the third ACM international conference on Web
search and data mining (WSDM 2010), pages 391–400. ACM, 2010.

[22] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo
Navarro. Compressed representations of sequences and full-text in-
dexes. ACM Transactions on Algorithms, 3(2):20, 2007.

[23] Paolo Ferragina, Jouni Sirén, and Rossano Venturini. Distribution-
aware compressed full-text indexes. In Proceedings of the 19th An-
nual European Symposium on Algorithms (ESA 2011), volume 6942 of
LNCS, pages 760–771. Springer, 2011.

[24] Paolo Ferragina and Rossano Venturini. A simple storage scheme for
strings achieving entropy bounds. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms (SODA 2007),
pages 690–696. SIAM, 2007.

[25] Johannes Fischer. Wee LCP. Information Processing Letters, 110(8–
9):317–320, 2010.

[26] Johannes Fischer. Inducing the LCP array. In Proceedings of the 12th
International Symposium on Algorithms and Data Structures (WADS
2011), volume 6844 of LNCS, pages 374–385. Springer, 2011.

[27] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-
bounded compressed suffix trees. Theoretical Computer Science,
410(51):5354–5364, 2009.

88 References

[28] Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vit-
ter. When indexing equals compression: Experiments with compress-
ing suffix arrays and applications. ACM Transactions on Algorithms,
2(4):611–639, 2006.

[29] Wolfgang Gerlach. Dynamic FM-index for a collection of texts with ap-
plication to space-efficient construction of the compressed suffix array.
Master’s thesis, Bielefeld University, 2007.

[30] Simon Gog and Enno Ohlebusch. Fast and lightweight LCP-array con-
struction algorithms. In Proceedings of the Thirteenth Workshop on
Algorithm Engineering and Experiments (ALENEX 2011), pages 25–
34. SIAM, 2011.

[31] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select
operations on large alphabets: a tool for text indexing. In Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithms (SODA 2006), pages 368–373. SIAM, 2006.

[32] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New
indices for text: PAT trees and PAT arrays. In William B. Frakes and
Ricardo Baeza-Yates, editors, Information retrieval: data structures
and algorithms, pages 66–82. Prentice-Hall, 1992.

[33] Rodrigo González and Gonzalo Navarro. Rank/select on dynamic com-
pressed sequences and applications. Theoretical Computer Science,
410(43):4414–4422, 2009.

[34] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order
entropy-compressed text indexes. In Proceedings of the fourteenth an-
nual ACM-SIAM symposium on Discrete algorithms (SODA 2003),
pages 841–850. SIAM, 2003.

[35] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string matching.
SIAM Journal on Computing, 35(2):378–407, 2005.

[36] Roberto Grossi, Jeffrey Scott Vitter, and Bojian Xu. Wavelet trees:
from theory to practice. In Proceedings of the First International Con-
ference on Data Compression, Communication and Processing, pages
210–231. IEEE, 2011.

[37] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter.
Compressed data structures: dictionaries and data-aware measures.
Theoretical Computer Science, 387(3):313–331, 2007.

References 89

[38] Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung,
and Siu-Ming Yiu. A space and time efficient algorithm for constructing
compressed suffix arrays. Algorithmica, 48(1):23–36, 2007.

[39] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a
time-and-space barrier in constructing full-text indices. SIAM Journal
on Computing, 38(6):2162–2178, 2009.

[40] Songbo Huang, T.W. Lam, W.K. Sung, S.L. Tam, and S.M. Yiu. In-
dexing similar DNA sequences. In Proceedings of the The Sixth Interna-
tional Conference on Algorithmic Aspects in Information and Manage-
ment (AAIM 2010), volume 6124 of LNCS, pages 180–190. Springer,
2010.

[41] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[42] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings
of the 30th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 1989), pages 549–554. IEEE, 1989.

[43] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo
Park. Linear-time longest-common-prefix computation in suffix arrays
and its applications. In Proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching (CPM 2001), volume 2089 of LNCS,
pages 181–192. Springer, 2001.

[44] Dmitry Khmelev. Program lcp version 0.1.9. http://www.math.
toronto.edu/dkhmelev/PROGS/misc/lcp-eng.html, 2004.

[45] Sebastian Kreft and Gonzalo Navarro. LZ77-like compression with fast
random access. In Proceedings of the 2010 IEEE Data Compression
Conference (DCC 2010), pages 239–248. IEEE, 2010.

[46] Sebastian Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In
Proceedings of the 22nd Annual Symposium on Combinatorial Pattern
Matching (CPM 2011), volume 6661 of LNCS, pages 41–54. Spr, 2011.

[47] Stefan Kurtz. Reducing the space requirement of suffix trees. Software:
Practice and Experience, 29(13):1149–1171, 1999.

[48] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative Lempel-
Ziv compression of genomes for large-scale storage and retrieval. In

90 References

Proceedings of the 17th Symposium on String Processing and Informa-
tion Retrieval (SPIRE 2010), volume 6393 of LNCS, pages 201–206.
Springer, 2010.

[49] Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting.
Theoretical Computer Science, 387(3):249–257, 2007.

[50] Juha Kärkkäinen, Giovanni Manzini, and Simon Puglisi. Permuted
longest-common-prefix array. In Proceedings of the 20th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2009), volume 5577
of LNCS, pages 181–192. Springer, 2009.

[51] Juha Kärkkäinen and Simon J. Puglisi. Fixed block compression boost-
ing in FM-indexes. In Proceedings of the 18th Symposium on String
Processing and Information Retrieval (SPIRE 2011), volume 7024 of
LNCS, pages 174–184. Springer, 2011.

[52] Juha Kärkkäinen and S. Srinivasa Rao. Full-text indexes in external
memory. In Algorithms for Memory Hierarchies, volume 2625 of LNCS,
chapter 7, pages 149–170. Springer, 2003.

[53] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu.
Compressed indexing and local alignment of DNA. Bioinformatics,
24(6):791–797, 2008.

[54] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ul-
trafast and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biology, 10(3):R25, 2009.

[55] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based com-
pression. In Proceedings of the 1999 IEEE Data Compression Confer-
ence (DCC 1999), pages 296–305. IEEE, 1999.

[56] N. Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. The-
oretical Computer Science, 387(3):258–272, 2007.

[57] Sunho Lee and Kunsoo Park. Dynamic compressed representation of
texts with rank/select. Journal of Computing Science and Engineering,
3(1):15–26, 2009.

[58] Sunho Lee and Kunsoo Park. Dynamic rank/select structures with ap-
plications to run-length encoded texts. Theoretical Computer Science,
410(43):4402–4413, 2009.

References 91

[59] Heng Li and Richard Durbin. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760,
2009.

[60] Heng Li and Richard Durbin. Fast and accurate long-read alignment
with Burrows-Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[61] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu,
Karsten Kristiansen, and Jun Wang. SOAP2: an improved ultrafast
tool for short read alignment. Bioinformatics, 25(15):1966–1967, 2009.

[62] Chi-Ming Liu, Tak-Wah Lam, Thomas Wong, Edward Wu, Siu-Ming
Yiu, Zhiheng Li, Ruibang Luo, Bingqiang Wang, Chang Yu, Xiaowen
Chu, Kaiyong Zhao, and Rui. SOAP3: GPU-based compressed index-
ing and ultra-fast parallel alignment of short reads. In Third Workshop
on Massive Data Algorithms (MASSIVE 2011), 2011.

[63] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[64] Giovanni Manzini. An analysis of the Burrows-Wheeler transform.
Journal of the ACM, 48(3):407–430, 2001.

[65] Edward M. McCreight. A space-economical suffix tree construction
algorithm. Journal of the ACM, 23(2):262–272, 1976.

[66] J. Ian Munro. Tables. In Proceedings of the 16th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 1996), volume 1180 of LNCS. Springer, 1996.

[67] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on
run-length encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[68] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed
sequences and full-text indexes. ACM Transactions on Algorithms,
4(3):32, 2008.

[69] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Stor-
age and retrieval of highly repetitive sequence collections. Journal of
Computational Biology, 17(3):281–308, 2010.

[70] Joong Chae Na and Kunsoo Park. Alphabet-independent linear-time
construction of compressed suffix arrays using o(nlogn)-bit working
space. Theoretical Computer Science, 385(1-3):127–136, 2007.

92 References

[71] Gonzalo Navarro. Indexing text using the Ziv-Lempel trie. Journal of
Discrete Algorithms, 2(1):87–114, 2004.

[72] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes.
ACM Computing Surveys, 39(1):2, 2007.

[73] Ge Nong, Sen Zhang, andWai Hong Chan. Linear suffix array construc-
tion by almost pure induced-sorting. In Proceedings of the 2009 IEEE
Data Compression Conference (DCC 2009), pages 193–202. IEEE,
2009.

[74] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear time suffix array
construction using D-critical substrings. In Proceedings of the 20th
Annual Symposium on Combinatorial Pattern Matching (CPM 2009),
volume 5577 of LNCS, pages 54–67. Springer, 2009.

[75] Enno Ohlebusch, Johannes Fischer, and Simon Gog. CST++. In
Proceedings of the 17th Symposium on String Processing and Informa-
tion Retrieval (SPIRE 2010), volume 6393 of LNCS, pages 322–333.
Springer, 2010.

[76] Enno Ohlebusch and Simon Gog. A compressed enhanced suffix array
supporting fast string matching. In Proceedings of the 16th Symposium
on String Processing and Information Retrieval (SPIRE 2009), volume
5721 of LNCS, pages 51–62. Springer, 2009.

[77] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-
compressed rank/select dictionary. In Proceedings of the Ninth Work-
shop on Algorithm Engineering and Experiments (ALENEX 2007),
pages 60–70. SIAM, 2007.

[78] Daisuke Okanohara and Kunihiko Sadakane. A linear-time Burrows-
Wheeler transform using induced sorting. In Proceedings of the 16th
Symposium on String Processing and Information Retrieval (SPIRE
2009), volume 5721 of LNCS, pages 90–101. Springer, 2009.

[79] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of
suffix array construction algorithms. ACM Computing Surveys, 39(2):4,
2007.

[80] Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-
common-prefix array computation. In Proceedings of the 19th Inter-
national Symposium on Algorithms and Computation (ISAAC 2008),
volume 5369 of LNCS, pages 124–135. Springer, 2008.

References 93

[81] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
indexable dictionaries with applications to encoding k-ary trees and
multisets. In Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA 2002), pages 233–242. SIAM,
2002.

[82] Luís M. S. Russo and Arlindo L. Oliveira. A compressed self-index
using a Ziv-Lempel dictionary. Information Retrieval, 11(4):359–388,
2008.

[83] Kunihiko Sadakane. Succinct representations of lcp information and
improvements in the compressed suffix arrays. In Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA 2002), pages 225–232. SIAM, 2002.

[84] Kunihiko Sadakane. New text indexing functionalities of the com-
pressed suffix arrays. Journal of Algorithms, 48:294–313, 2003.

[85] Kunihiko Sadakane. Compressed suffix trees with full functionality.
Theory of Computing Systems, 41(4):589–607, 2007.

[86] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent
Mouchard. A four-stage algorithm for updating a Burrows-Wheeler
transform. Theoretical Computer Science, 410(43):4350–4359, 2009.

[87] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent
Mouchard. Dynamic extended suffix arrays. Journal of Discrete Algo-
rithms, 8(2):241–257, 2010.

[88] Jouni Sirén. Compressed suffix arrays for massive data. In Proceedings
of the 16th Symposium on String Processing and Information Retrieval
(SPIRE 2009), volume 5721 of LNCS, pages 63–74. Springer, 2009.

[89] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing finite language
representation of population genotypes, 2011. arXiv:1010.2656v4.

[90] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-
length compressed indexes are superior for highly repetitive sequence
collections. In Proceedings of the 15th Symposium on String Processing
and Information Retrieval (SPIRE 2008), volume 5280 of LNCS, pages
164–175. Springer, 2008.

[91] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

94 References

[92] Peter Weiner. Linear pattern matching algorithms. In Proceedings of
the 14th Annual IEEE Symposium on Switching and Automata Theory
(FOCS 1973), pages 1–11. IEEE, 1973.

Glossary

Abbreviations

AFFM Alphabet-friendly FM-index
BWT Burrows-Wheeler transform
CSA Compressed suffix array
CST Compressed suffix tree
LCP Longest common prefix (array)
GCSA Generalized compressed suffix array
PLCP Permuted longest common prefix (array)
RLCSA Run-length compressed suffix array
RLE Run-length encoding
RLFM Run-length FM-index
SA Suffix array
Sad-CSA Compressed suffix array of Sadakane
SSA Succinct suffix array
SSA-RRR A CSA with implicit compression boosting
ST Suffix tree
WT Wavelet tree
XBW Extended Burrows-Wheeler transform for trees

Functions

char(i) Character T [SA[i]]
gap(B) Complexity metric for gap encoding of B
lcp(A,B) Length of the longest common prefix of A and B
popcount(B) Number of 1-bits in binary sequence B
rankc(S, i) Number of occurrences of character c in S[1, i]
rank(T, S) Lexicographic rank of S among the suffixes of T
run(B) Complexity metric for run-length encoding of B
selectc(S, i) Position of the ith occurrence character c in S

95

96 Glossary

Notation

A Finite automaton; A = (V,E)
A Multiple alignment of sequences
B Binary string, bit vector
Bs Bit vector marking sampled suffix array positions
BL Bit vector representation of the PLCP array
BWT Burrows-Wheeler transform of a text
C[c] Number of occurrences of characters c′ < c in the text
Cc Range [C[c] + 1, C[c+ 1]], typically of SA or BWT
C Collection of texts
E Set of edges of a graph
F Bit vector delimiting nodes in GCSA and XBW
G Graph; G = (V,E)
H Complexity metric
Hk Order-k empirical entropy
L Formal language

L(A) Language recognized by automaton A
LCP Longest common prefix array of a text
LF A function such that SA[LF (i)] = SA[i]− 1; the inverse of Ψ
N Total length of a collection of texts
M Bit vector encoding the outgoing edges in GCSA
P Pattern
P Path in a graph

PLCP LCP array in text order
R Number or equal letter runs in BWT
RA Rank array of a text relative to another text
S String / sequence
SA Suffix array of a text
T Text string terminated by end marker $
V Set of nodes of a graph
b Block size in bits
b(i) Binary representation of integer i
c Character
d Suffix array sample rate
d′ LCP or PLCP array sample rate
e Edge of a graph
f, g Functions

i, j, k, l Non-negative integers
` Label

Glossary 97

m Number of collections
n Length of input string
n1 Number of 1-bits
p Probability
r Number of texts in a collection
s Number of mutations

u, v, w Nodes of a graph
sp, ep Starting and ending points of a suffix array range
tB Time complexity of one step of backward searching
tLF Time complexity of computing LF
tR Time complexity of computing rank
tS Time complexity of computing select
tU Time complexity updating a bit vector
tΨ Time complexity of computing Ψ
λ Empty string of length 0
Σ Alphabet
σ Size of the alphabet
Ψ A function such that SA[Ψ(i)] = SA[i] + 1; the inverse of LF
$ End marker of a text string; lexicographic value 0
First character of a formal language; lexicographic value σ + 1

