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In this paper, we extend the state-of-the-art filtered backprojection
(FBP) method with application of the concept of Total Variation regular-
ization. We compare the performance of the new algorithm with the most
common form of regularizing in the FBP image reconstruction via apodiz-
ing functions. The methods are validated in terms of cross-correlation
coefficient between reconstructed and real image of radioactive tracer dis-
tribution using the standard Derenzo-type phantom. We demonstrate that
the proposed approach results in higher cross-correlation values with re-
spect to the standard FBP method.
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1. Introduction

Positron Emission Tomography (PET) is currently a key technique in the
medical imaging area, which allows to diagnose functions of the organism
and to track tumor changes. PET scanner consists of detector elements
mounted on one or more rings, positioned so that it surrounds the patient
[1–3]. Those detectors are used to register pairs of gamma quanta emitted
back-to-back from patient’s body. In this work, we will consider only a 2-di-
mensional PET scanner geometry. However, conclusions from this study may
be easily extended to 3-dimensional case. The function f(x, y) describes the
radioactive tracer distribution (see Fig. 1). The measured data are collected
as projections of the function f(x, y) along the lines of response (LORs).
For instance, a projection p(s, φ0) is formed by integration along all parallel
LORs at a fixed angle φ0 (see Fig. 1).

Fig. 1. Data acquisition process in PET measurements. The figure is adapted
from [4].

The goal of the reconstruction process is to compute the unknown func-
tion f(x, y) from registered collection of projections p(s, φ) for all angles
0 ≤ φ ≤ π. However, the registered data p(s, φ) are stochastic while the in-
verse problem is ill-posed. For such a case, even a small perturbation of the
data may lead to an unpredictable change in the resulting image f . Hence,
additional constraints must be applied in order to ensure the computation of
a meaningful solution. This is the essential goal of regularization methods.

The filtered backprojection (FBP) [5] was the first PET reconstruction
technique and it is still treated as the reference method for more advanced
approaches. In the case of the FBP algorithm, the most common form of
regularizing is via smoothing or so-called apodizing functions [4].
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In this paper, we propose a novel PET image reconstruction scheme
based on the concept of total variation (TV) regularization [6]. We inves-
tigate the quality of image reconstruction based on the simulations of the
Derenzo-type phantom with the J-PET detector [7–13]. We demonstrate
that the TV regularization-based image reconstruction algorithm performs
better than the standard FBP algorithm with regularization via apodizing
functions in terms of the quality of reconstructed images.

In Sec. 2, a short description of the idea of regularization methods in
PET image reconstruction is given. The state-of-the-art FBP algorithm is
refined in order to apply the TV regularization method. The simulation
of the J-PET tomograph as well as the results of comparative analysis of
the two regularization techniques, TV method and apodizing functions are
presented in Sec. 3. The conclusions and directions for future work are
presented in Sec. 4.

2. Materials and methods

2.1. Filtered backprojection algorithm

In the FBP algorithm, the projection data are first filtered

pF(s, φ) = F−1 (W (vs)|vs|F (p(s, φ))) (1)

and then backprojected to the image space

f(x, y) =

π∫
0

pF(s = x cosφ+ y sinφ, φ)dφ. (2)

As shown in Eq. (1), the filtering is performed in Fourier space with the
ramp filter |vs|. Additionally, the characteristics of the high pass filter |vs|
is multiplied with apodizing window W (vs). The purpose of the application
of an apodizing window is to suppress amplification of high frequencies by
the ramp filter |vs|, since the high frequency components of the projection
data F(p(s, φ)) are dominated by noise. A very common form of apodizing
functionW (vs) is the Hamming or Hann window [4]. During our preliminary
studies, we observed that the best results are obtained for the Hann window.

2.2. Problem definition

The application of the TV regularization to the FBP image reconstruc-
tion scheme requires an interchange of the order of the filtering and back-
projection steps in Eqs. (1) and (2). Hence, the projection data are first
backprojected
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b(x, y) =

π∫
0

p(s = x cosφ+ y sinφ, φ)dφ (3)

and then filtered in the image space. The filtering operation may be de-
scribed by using the convolution equation

b(x, y) = (h ∗ f)(x, y) . (4)

The original image f(x, y) is convolved with impulse response of the ramp
filter h(x, y) to produce observed, backprojected image b(x, y). The filtering
can be performed via the deconvolution of b(x, y) with impulse response
h(x, y). The impulse response h may be rewritten as a cyclic and square
matrix A and hence the filtration formula may be rewritten to the matrix
notation

b = Af . (5)

The bold symbols b and f in Eq. (5) represent the vectorized versions of
the functions b(x, y) and f(x, y), respectively. The inverse problem defined
in Eq. (5) is ill-posed and the regularization methods are required in order
to calculate a meaningful solution, as mentioned in the introduction.

2.3. Total variation regularization

The most common class of regularization methods in image processing
is based on TV approach [14, 15]. The TV of image f is the sum of the
magnitudes of its discrete gradient at every pixel

TV(f) =
∑
x

∑
y

|Df(x, y)| , (6)

where D is a gradient operator. The reconstruction algorithm finds the
solution of Eq. (5) by solving the unconstrained problem

min
f

(
TV(f) +

µ

2
‖Af − b‖22

)
, (7)

where µ is the regularization parameter. This approach would succeed if the
gradient of the underlying image is sparse [16, 17]. Hence, TV algorithm
can reconstruct not only sparse images but also dense piecewise constant
images. The theory for penalty functions implies that the solution in Eq. (7)
approaches the solution of Eq. (5) as µ approaches infinity. To solve the
problem in Eq. (7), we apply the augmented Lagrangian algorithm [18, 19].
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We wish to make a comment about the related works. PET reconstruc-
tion using TV regularization was investigated by several groups [20–22].
However, typically the reconstruction problem takes into account only the
information about the projection data p(s, φ) and not the backprojected
image b(x, y) as in Eq. (7). Hence, in the proposed scenario, all the opti-
mization process, defined in Eq. (7), is performed in the image space and
not in the projection space. One of the benefits of processing in the im-
age space is the possibility to include the information from Time-of-Flight
(TOF) measurement [1, 23]. Hence, a presented approach may be extended
to PET scanners that provide TOF measurement.

3. Results

For the evaluation of the two regularization approaches, the TV method
and apodizing functions technique, projection data of a Derenzo-type phan-
tom have been used. The Derenzo-type phantom consists of sets of rods with
diameters 10, 15, 23, 32, 40 and 48 mm and the same separation between
surfaces in the corresponding sets. Since only a 2-dimensional geometry of
the PET tomograph has been studied, the length of the rods was set to zero.

Sample data were produced using Monte Carlo simulation of the J-PET
scanner with 384 strips arranged in one layer [24, 25]. The J-PET detector
was defined as a cylinder with inner radius of 428 mm. The phantom was
placed in the plane (x, y), which is perpendicular to the J-PET tomograph
main axis, in its center position (z = 0). During the reconstruction process,
we considered only the projections from the z = 0 plane and we collected
106 coincidence events in total. The reconstructed images were 512 pixels ×
512 pixels and the pixel size was 1 mm × 1 mm.

As the quality measurement, we selected the cross-correlation coefficient
calculated between the real and reconstructed image. The cross-correlation
coefficient ρ was calculated according to the equation

ρ =

∑512
x=1

∑512
y=1

(
f̂(x, y)− f̂m

)
(f(x, y)− fm)√∑512

x=1

∑512
y=1

(
f̂(x, y)− f̂m

)2∑512
x=1

∑512
y=1(f(x, y)− fm)2

, (8)

where f̂(x, y) and f(x, y) are the reconstructed and true images, respec-
tively, and f̂m and fm are the reconstructed and true images mean values,
respectively. The values of ρ are in the range from −1 to 1, where value 1
corresponds to fully correlated images.
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Both reconstruction methods were optimized in the sense of choosing
the regularization parameters that maximize the calculated value of cross-
correlation coefficients. The results of the optimization process for both
regularization methods are presented in Fig. 2.

Fig. 2. (Color online) Performance of image reconstruction methods as a function
of number of coincidence events.

The calculated cross-correlation coefficients for the image reconstruction
method based on TV regularization are marked with dashed (red) line in
Fig. 2 and take higher values in a wide range of number of coincidence
events from 104 to 106 than reconstruction via apodizing windows (black
line in Fig. 2). The difference between those two functions is larger for small
numbers of coincidence events and is about 8% for 104 events. From Fig. 2,
it may be seen that both reconstruction methods have the same asymptotic
properties; as the number of coincidence events goes to infinity, the cross-
correlation coefficient goes to 1. However, in the case of TV regularization-
based approach, the convergence process is faster.

The two image reconstruction examples, based on TV regularization
method and apodizing functions, are shown in Fig. 3 on the left and right
panels, respectively. In both cases, the number of selected events was the
same and equal to 105. The cross-correlation coefficient evaluated between
the real and reconstructed image in the case of regularization based on TV
method and apodizing functions was equal to 0.88 and 0.85, respectively.
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Fig. 3. Images reconstructed with TV regularization algorithm (left) and apodizing
window function (right). In the both cases, the number of selected events was the
same and equal to 105.

4. Conclusions

In this paper, a novel scheme of regularization in PET image reconstruc-
tion, based on the TV method was introduced. We have shown that the
use of the TV regularization method instead of the most common regulariz-
ing approach via apodizing windows improves the quality of reconstructed
images. The calculated cross-correlation coefficients for the image recon-
struction method based on TV regularization take higher values in a wide
range of number of coincidence events from 104 to 106 than reconstruction
via apodizing windows.

Future work will address other aspects of the proposed image process-
ing scheme. One of the benefits of the processing in image space according
to Eq. (7) is that the information from TOF measurement may be easily
included in the image reconstruction. The PET image reconstruction algo-
rithm which additionally allows to take into account the TOF information
is extremely important as the novel PET scanners tend to improve time
resolution [26–29].
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Higher Education through grant 7150/E-388/SPUB/2017/1, and Polish Na-
tional Centre for Research and Development through grant LIDER-274/
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