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THE DOMINATION HEURISTIC 
FOR LP-TYPE PROBLEMS 

Certain geometric optimization problems, for example finding the smallest enclosing ellipse of a set of 
points, can be solved in linear time by simple randomized (or complicated deterministic) combinatorial 
algorithms. In practice, these algorithms are enhanced or replaced with heuristic variants that are faster 
but do not come with a theoretical runtime guarantee. 

In this paper, we introduce a new speed-up heuristic that can easily be integrated into the known linear-
time algorithms, without decreasing their worst-case performance. The heuristic can actually be defined for 
any problem in the well-known abstract class of LP-type problems; its effectiveness in practice depends on 
whether and how fast the heuristic can be implemented for the specific problem at hand. 

We provide test results showing that for two concrete problems, the new heuristic may lead to significant 
speedups compared to state-of-the-art implementations that are available in the Computational Geometry 
Algorithms Library CGAL. 

1 Introduction 

The first (expected) linear-time algorithm for the 
problem of finding the smallest enclosing ellipsoid of 
a set of points in d-dimensional space is due to Welzl 
[10] and was motivated by an earlier randomized al
gorithm for linear programming by Seidel [9]. 

Here is the essential idea of the algorithm (de¬ 
scribed for dimension 2): to find the smallest enclos
ing ellipse E(P) of a set P of n points, choose a point 
p P at random, and recursively compute E:= E(P\{p}). 
If p happens to lie inside E, we are done; otherwise, 
we can conclude that p must be on the boundary of 
E(P), and we therefore recursively compute the 
smallest enclosing ellipse E(P,{p}) of P with p on 
the boundary. A generic recursive call computes 
E(P, R) for a set R of boundary points, where the 
problem is easy for = 5 , since an ellipse is 
uniquely determined by 5 points. 

Despite its simplicity and its backtracking flavor, 
this algorithm achieves expected runtime O(n) for 
any fixed dimension d. The key observation is that 
the probability for p not being contained in E is 
O(1/n), meaning that the computation of E(P\{p}) 
happens only with small probability. The same algo¬ 
rithm also works for the similar problem of finding 
the smallest enclosing ball of a set of points. 

Concerning practical performance, it was al¬ 
ready observed by Welzl in his original paper [10] 
that the above algorithm is rather slow. Welzl sug¬ 
gested a move-to-front variant of his algorithm that 
performs much better in practice but does not come 
with a theoretical runtime bound anymore, short of 
a trivial bound. 

Further speedups in practice can be achieved by 
heuristics that take the geometry into account (in 
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contrast, move-to-front is purely combinatorial). 
For example, the faster algorithm for computing 
smallest enclosing balls uses Welzl's move-to-front 
variant for small problem instances, and a farthest-
point heuristic for large instances. Given a candi¬ 
date ball which is not yet enclosing, the algorithm 
searches for the «worst outlier» and uses it to deter
mine a better candidate ball [3]. 

The disadvantage of such geometric heuristics is 
that they do not generalize to more abstract settings. 
One particular such setting is that of LP-type prob
lems due to Matousek, Sharir and Welzl [6]. Es
sentially, an LP-type problem is an optimization 
problem over an abstract set of constraints H (points 
in the case of smallest enclosing ellipsoids and 
balls). Given the optimal solution subject to a subset 
G of the constraints, the LP-type framework only 
requires a test whether this solution violates a given 
constraint h H\G (test whether a point is outside 
the smallest enclosing ellipse/ball of a subset); there 
is no abstract notion of «how much» a constraint is 
violated. 

The class of LP-type problems includes a large 
number of practically relevant geometric optimiza¬ 
tion problems [6]. Given just two problem-specific 
primitive operations, the randomized algorithm of 
Matousek, Sharir and Welzl can be used to solve 
every LP-type problem in expected linear time (lin¬ 
ear in the number of constraints H, given that the 
combinatorial dimension of the problem is fixed; 
see [6] for details). 

The generic LP-type algorithm is actually an im¬ 
provement of the above algorithms of Seidel [9] and 
Welzl [10]; it still works for smallest enclosing el¬ 
lipsoids and balls but also (and this is its main 
strength) for other problems with somewhat less 
structure. 
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Just like Welzl's algorithm, the generic LP-type 
algorithm can typically be improved in practice, at 
the cost of losing the theoretical guarantees. For 
smallest enclosing ellipsoids and balls, this has in¬ 
dependently been done by Lyashko, Petunin and 
Rublev [7, 8, 5] and Friedman [2]; on the level of 
LP-type problems, both approaches coincide. Here 
is the overview of their approach (described for el¬ 
lipses in dimension 2): maintain a set B of at most 
five points along with their smallest enclosing el¬ 
lipse E. Then iterate through the remaining points, 
and whenever a point p outside E = E(B) is found, 
update E to and reset B to the set of 

boundary points of this new ellipse. Computation of 
the smallest enclosing ellipsoid can be 
done for example with Welzl's algorithm as a sub¬ 
routine. As long as at least one update took place 
during the iteration, continue with another iteration 
through the points. Upon termination, this method 
has computed the smallest enclosing ellipse of the 
whole point set. 

In this paper, we show that this method can fur¬ 
ther be improved for many inputs. Namely, before a 
point p is tested for containment in E = E(B), we test 
whether it is contained in the convex hull of the set 
B. If so, we can be sure that p will not contribute to 
the final ellipse and can therefore be removed alto
gether. The benefit is that all subsequent iterations 
won't see p anymore. We call this the convex hull 
heuristic, and it is obviously valid for all convex 
bounding volumes. 

Whether this is effective largely depends on the 
distribution of input points, and on the cost of the 
test «p E(B)». At this point, we would like to 
make it clear that we are mainly interested in exact 
computations that deliver the mathematically cor¬ 
rect result and not an (more or less meaningful) ap¬ 
proximation of it. This is exactly the realm of CGAL, 
the Computational Geometry Algorithms Library 
(www.cgal.org). In case of smallest enclosing el¬ 
lipses, the exact test «p E(B)» is fairly involved, 
since E(B) may have irrational coordinates and is 
therefore not explicitly computed. 

Even if containment tests are relatively cheap 
(like for smallest enclosing balls of points or other 
balls), it may pay off to switch on the convex hull 
heuristic. 

From a theoretical point of view, the most inter¬ 
esting feature of the convex hull heuristic is that it 
can be generalized to arbitrary LP-type problems, 
and that it can be incorporated into existing algo¬ 
rithms without affecting the theoretical guarantees. 
We will get to this in the Section 3.3 of this paper. In 
a nutshell, the generalization (which we call the 
domination heuristic) is this: a constraint h H is 
called dominated by B H if the following holds: 
whenever h is violated by the optimal solution sub¬ 
ject to some subset G of constraints, then this solu-

tion also violates an element of B. Under this defini
tion, a point inside the convex hull of other points is 
dominated by these points with respect to smallest 
enclosing ellipses, say. 

The domination heuristic (which is strictly com¬ 
binatorial) simply throws away constraints that have 
been identified as being dominated during the com¬ 
putations. It depends on the concrete LP-type prob¬ 
lem whether an efficient domination test is available 
at all, and whether it will actually remove con¬ 
straints. But in any case, the expected runtime will 
asymptotically not increase. 

The remainder of the paper is organized as fol¬ 
lows. In Section 2, we review the algorithms of 
Welzl [10] and of Rublev [7, 8] for smallest enclos¬ 
ing ellipsoids, and we enhance them with the con¬ 
vex hull heuristic; we provide test results that show 
the performance gain (or sometimes loss) under 
various input distributions. 

In Section 3, we present the generalization to 
LP-type problems. We review the generic (recur¬ 
sive) LP-type algorithms of Matousek, Sharir and 
Welzl [6], and the simple iterative one resulting 
from generalizing the methods of Rublev [7, 8] and 
Friedman [2]. We show that even when the algo¬ 
rithm of Matousek, Sharir and Welzl is equipped 
with the domination heuristic, the expected com¬ 
plexity of O(n) still holds. 

As an example of practical usefulness and ease 
of use of the general domination heuristic in Section 
4 we describe its application to smallest enclosing 
sphere of spheres problem. 

2 Smallest Enclosing Ellipses 

We start from Welzl's algorithm 1 for computing 
smallest enclosing ellipses, written down formally 
[10]. As a subroutine, it needs to solve the constant-
size problem of computing the smallest ellipse E0(S) 
with a set S of at most 5 points on its boundary. The 
algorithm returns a basis S, with the 
property that E0(S) = E(P, R). To compute E(P), we 
call the algorithm with R = 

http://www.cgal.org
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One problem that leads to poor performance of 
this algorithm in practice is that the recursive call 
throws away the ellipse computed so far and starts 
from scratch, only exploiting the additional infor¬ 
mation that p has to lie on the boundary. Rublev's 
algorithm [7, 8] tries to reuse the ellipse so far: 
whenever a point is found to be outside, the working 
basis S and the corresponding ellipse E0(S) are up¬ 
dated to also cover this point. 

The pseudocode is given in Algorithm 2. The 
proof of correctness can be found in [7, 8]. 

containment tests are the most frequent operations, 
but on the other hand, exact containment tests are 
not easy because the involved ellipse E will in gen¬ 
eral have irrational coordinates [4]. 

Therefore, reducing the necessary number of 
containment tests will lead to an immediate speedup 
of the algorithm. Here is the simple but crucial ob¬ 
servation: 

Observation 1 If during Algorithm 1 or 2, the 
considered point p is contained in the convex hull of 
the working basis S, then p can be removed from 
further consideration. 

The convex hull of S is the smallest convex set 
that contains all points from S. The ellipse E(P\{p}, 
R) (for Algorithm 2, R = is some convex set that 
contain S (because of S and therefore it 

also contains p. It follows that E(P\{p}, R) = E(P, R), 
meaning that p can be ignored without changing the 
output of the algorithm. 

The convex hull computation introduces at most 
constant overhead, since it involves at most five 
points; it has the potential, though, of removing 
many points. We will refer to resulting variant of 
Welzl's method as Algorithm 3. 

Obviously, there are inputs for which Algorithm 3 
will not improve over Algorithm 1, for example 
points in convex position. For points randomly dis¬ 
tributed within a square or disk, through, major sav¬ 
ings can be expected (see the benchmark section 
below). 

In the same way, we can enhance Rublev's Al¬ 
gorithm 2, which will be refered as Algorithm 4 with 
the convex hull heuristic. 

2.3 Benchmarks 

Algorithms described above were implemented 
using the package of CGAL li¬ 
brary as a base. Hence all implementations share the 
same primitive operations, perform exact computa¬ 
tions and only differ by the core algorithm itself. To 
ensure thorough testing several distributions of ran¬ 
dom points were chosen: uniform in unit square, 
uniform in unit disk, uniform on unit circle, uniform 
on the integer rectangular grid (lots of duplicates). 
Also small and large synthetic cocircular sets were 
used to check behavior of algorithms in extreme 
(mostly theoretical) cases. 

In Table 1 we provide the averaged runtimes for 
over about 100 random sets of N = 10 000 points for 
each distribution. Because absolute runtimes don't 
provide a lot of useful information we organized ta¬ 
ble as following: the actual runtime of base imple¬ 
mentation only is provided, for 
other implementations we specify the relative speed 
up multiplier (the bigger is the multiplier, the faster 
is the implementation). 

2.1 Computational Complexity 

For both algorithms, the runtime is dominated 
by the number of containment tests «p E». For 
Algorithm 1, the expected number of such tests is 
O(n), where n = In contrast, we have no good 
bound for Rublev's algorithm. 

One might be tempted to think that every itera¬ 
tion of the main loop in Rublev's algorithm adds one 
element of the final basis to the working basis S, but 
this is not true. In fact, experiments show that points 
from the final basis could be added and removed 
from the working basis several times. It remains an 
open problem whether there exists any nontrivial 
bound on the number of outer loop iterations. 

2.2 The Convex Hull Heuristic 

Like in many other geometric algorithms, cor¬ 
rect results can only be guaranteed for Algorithms 1 
and 2 if multiprecision arithmetic is used. In fact, 
the package in the CGAL library 
implements the (faster) move-to-front variant of 
Algorithm 1 [10], using exact arithmetic. It turns out 
that the containment tests «p E» are the major bot¬ 
tleneck. This is on the one hand due to the fact that 
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in unit square in unit disk on unit circle on grid small cocircular large cocircular 

Algorithm 1 22021ms 8155ms 7205ms 2743ms 272ms 597ms 

Algorithm 3 8.3x 2.3x 0.9x 2.8x 0.7x 0.7x 

Algorithm 2 2.3x 1.8x 1.7x 0.6x 0.5x 0.5x 

Algorithm 4 10.7x 2.7x 1.5x 1.5x 0.4x 0.4x 

Table 1: Smallest enclosing ellipse implementations 

3 An Abstract Framework 

This section discusses how the convex hull heu¬ 
ristic described in the previous section can be gener¬ 
alized to the whole abstract class of LP-type prob¬ 
lems. This class includes the smallest enclosing el¬ 
lipse problem but also many other geometric opti¬ 
mization problems [6]. 

3.1 LP-type Problems 

Let us consider abtract optimization problems 
specified by pairs (H, w), where H is a finite set, and 
w: is a function with values in a 
linearly ordered set the value 
(standing for 'undefined') preceding all values in W. 
The elements of H are called constraints, and for 
G H, w(G) is called the (optimal) value of G. The 
goal is to compute the value w(H) of H, using cer¬ 
tain primitive operations to which we get below. 

(H,w) is called an LP-type problem if the follow
ing two axioms are satisfied. 

lem. A basis is a subset B H such that w(B\{h}) 
< w(B) for all h B. This means, a basis is an in
clusion-minimal set defining a certain value. Now, 
the maximum cardinality of any basis is called the 
combinatorial dimension of (H,w), and is denoted 
by δ = δ ( H w ) . For any smallest enclosing ellipse 
instance, we have δ < 5. 

Solving an LP-type means to find a basis B 
such that w(B) = w(H). In general, a basis of 
G H is a basis B G with w(B) = w(G). From 
such a basis, the value w(G) is usually easy to 
compute. We assume that the following primitive 
operations are available: 

Violation test 
Given a basis B and a constraint h B, 
decide whether 

Basis computation 
Given a basis B and a violating constraint 
h, compute a basis of 

3.2 LP-type Algorithms 

In the abstract setting of LP-type problems, 
there is no notion of «fixing points on the bound-
ary» like it is employed in Welzl's algorithm 1. 
Consequently, this algorithm does not generalize 
to the LP-type setting. But Rublev's Algorithm 2 
has an immediate LP-type counterpart, see 
Algorithm 5. 

If w(G) < w(G {h}), we say that constraint h is 
violated by G. Monotonicity is a natural require¬ 
ment when we are talking about minimization prob¬ 
lems: adding more constraints cannot decrease the 
optimal value. Locality essentially says that there 
are no local optima: an equivalent formulation is 
that whenever w(F) < w(G) for F G, then there is 
h G such that the value of F can locally be im¬ 
proved by switching to 

When we write the smallest enclosing ellipse 
problem as an LP-type problem, the set of con¬ 
straints is the set of input points, and the value of a 
subset is the volume of its smallest enclosing ellipse 
(value arises if the affine hull of the subset is not 
the whole plane). A constraint (point) is violated by 
a subset if it lies outside its smallest enclosing el¬ 
lipse. Uniqueness of the smallest enclosing ellipse 
[10] is easily seen to imply the locality property. 

The fact that makes Welzl's method efficient is 
that the smallest enclosing ellipse is determined by 
no more than five points. The abstract counterpart is 
the combinatorial dimension of an LP-type prob-

But there is also an algorithm in the LP-type 
setting that comes with theoretical runtime guar¬ 
antees, and this is Algorithm 6 due to Matousek, 
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The following has been shown by Matousek, 
Sharir and Welzl[6] 

Theorem 1 Given an LP-type problem (H,w) with 
=n and fixed combinatorial dimension δ, 

Algorithm 6 requires an expected number of 

O(n) primitive operations to solve it. 

If δ is fixed, each primitive operation takes con
stant time (even if done in a brute-force fashion), so 
that the algorithm takes expected linear time. For a 
number of concrete LP-type problems, this was the 
first known linear-time algorithm. 

3.3 The Domination Heuristic 

In this section, we want to generalize the convex 
hull heuristic of Section 2.2 to the abstract setting of 
LP-type problems. Assume that a point p is in the 
convex hull of a set S. The convex hull heuristic 
works for the following reason: whenever p is out¬ 
side the smallest enclosing ellipse of some subset, 
then there is also some point from S that is outside 
(an immediate consequence of convexity of el¬ 
lipses). This leads us to the abstract concept of dom¬ 
ination. 

In order to be able to execute Algorithm 7, we 
need to stipulate a new primitive, namely (h, B). 
Having an exact such primitive may be difficult; 
even in the case of smallest enclosing ellipses, we 
don't get this: the fact that p is in the convex hull of 
S is a sufficient condition for p being dominated by 
S, but not a necessary condition. But the following 
conservative primitive can be implemented and is 
enough to ensure correctness of Algorithm 7. 

Domination test Given a basis B and a constraint 
h B, (h, B) returns true only if h is do
minated by B; if (h, B) returns false, 
h may or may not be dominated by B. 

This primitive can of course always be imple¬ 
mented (simply return false), but it makes sense 
only if it can actually «recognize» some domina¬ 
tions. 

3.4 Complexity Analysis 

We want to argue that Algorithm 7 still requires 
only O(n) primitive operations for constant combi¬ 
natorial dimension. This seems intuitively clear 
(how can the removal of a dominated constraint 
generate more work?), but we are not aware of any 
direct argument along these lines. After all, the re¬ 
moval of a constraint may have the effect that the 
algorithm «goes along a different path» in the fu¬ 
ture, and this path may take longer. 

In order to argue formally, we have to go into the 
analysis of Algorithm 6 and show that this analysis 
still works for Algorithm 7. We only provide a 
sketch here. 

Hidden dimension. Given a pair (G, B) where 
B G is a basis, we call h B enforced in (G, B) if 

Sharir and Welzl [6]. The algorithm is randomized 
and recursive; given a pair (G, B), where B G is a 
basis (not necessarily of G yet), the algorithm com
putes a basis of G. To start off, it requires some ini¬ 
tial basis (B = will do). 

since h is dominated by B, h cannot violate G\{h}, 
either. 

This lemma implies the correctness of Algori¬ 
thm 7 which is Algorithm 6, enhanced with the do¬ 
mination heuristic. Here, (h, B) is a shorthand 
for «h is dominated by B». 

Again, it easily follows that dominated elements 
can be removed without changing the result. 



T. Galkovskyi, B. Gärtner, B. Rublyov. The Domination Heuristic For LP-Type Problems 9 

w(B) > w(G\{h}), i.e. if B already has higher value 
than G\{h}. If h is enforced in (G, B), this implies 
that h will be contained in every basis encountered 
during the call to (G, B). The hidden dimension 
of (G, B) is δ (combinatorial dimension) minus the 
number of enforced elements in (G, B). 

Let T(n, k) denote the maximum expected 
number of violation tests of a call to (G, B), 
where G has size at most n, and (G, B) has hidden 
dimension at most k. Matousek, Sharir and Welzl 
prove that T(n, k) = O(n) for fixed k, by exhibiting a 
suitable recurrence relation for T(n, k). The nontriv¬ 
ial part is the analysis of the recursive call for which 
it is shown that on average, the hidden dimension 
goes down substantially (if the call takes place at all 
which happens with small probability only, just like 
in Welzl's algorithm). 

Adding the domination heuristic. Consider the 
point in Algorithm 7 at which the last constraint h is 
being added. (Note that the distribution of h is uni¬ 
formly random in G.) At this point, we have com
puted a basis of some set F G\{h} with w(F) = 
w(G\{h}), because we have removed only domi¬ 
nated elements, see Lemma 1. (In Algorithm 6, we 

have F = G\{h}.) 
The fact that w(F) = w(G\{h}) implies that the 

probability for a second recursive call is still at most 
k/n, where k is the hidden dimension of (G, B): the 
recursive call only happens for elements h that vio¬ 
late G\{h} (equivalently F, by locality), and by defi¬ 
nition of hidden dimension, there are at most k of 
them in G\B. 

A similar argument shows that the decrease in 
hidden dimension (when we move to (F, B) in the 
recursive call) is at least what it would be in 
Algorithm 6. Since also at this point, it fol¬ 
lows that the recurrence relation that bounds T(n, k) 
for Algorithm 6 is also valid for Algorithm 7. 

Summarizing, we obtain 

Theorem 2 Given an LP-type problem (H,w) with 
= n and fixed combinatorial dimension δ, 
Algorithm 5 requires an expected number of 
O(n) primitive operations to solve it. 

4 Smallest Enclosing Sphere of Spheres 

So far, we have shown (Section 2.3) that the 
domination heuristic can be very effective for small¬ 
est enclosing ellipses where it assumes the form of 
the convex hull heuristic. In this final section, we 
want to examine another LP-type problem, namely 
finding the smallest enclosing sphere of a set of 
spheres. This problem is relevant for bounding vol¬ 
ume heuristics, and it is theoretically interesting be¬ 
cause it can (maybe surprisingly) not be solved by 
Welzl's algorithm [1]. For this problem, we need the 
general LP-type techniques. 

The CGAL library has code also for this prob¬ 
lem, and we have integrated a suitable domination 
heuristic into this code. Ideally, we would like to 
test whether a given sphere is contained in the con¬ 
vex hull of a set of other spheres, but this is not a 
cheap operation. Since we are allowed to use a con¬ 
servative (but possibly less effective) domination 
test: assume that sphere to check is actually a small¬ 
est box, that encloses that sphere, with sides orient¬ 
ed along the axes; and instead of the convex hull of 
the spheres we use a convex hull of the centers of 
spheres. Then if box (sphere) box actually passes 
containment test inside decreased convex hull, it is 
also guaranteed to lie inside the bigger convex hull 
of spheres. Thus we get the sufficient condition 
which can be used as domination test. 

4.1 Benchmarks 

Testing was done for planar case only. The same 
technique and parameters were used to gather run¬ 
times of implementations for smallest enclosing 
sphere of spheres problem as in Section 2.3. Because 
new random variable (sphere radius) should be gen¬ 
erated Table 2 represents running times of imple¬ 
mentations on the tests where spheres radiuses were 
exponential distributed (i. e. lots of relatively small 
spheres and small number of large). On the other 
hand 3 represents running times of implementations 
on the tests where all spheres have equal very small 
radius. 

in unit 
square 

in unit 
disk 

on unit 
circle on grid 

CGAL 9551ms 17066ms 18687ms 8876ms 

CGAL with 
heuristics 1.9x 2.2x 2.1x 2.0x 

Rublev 1.7x 1.7x 1.6x 1.7x 

Rublev with 
heuristics 2.4x 2.3x 2.4x 1.7x 

Table 2: Smallest enclosing sphere of spheres imple¬ 
mentations (radiuses are exponentially distributed) 

in unit 
square 

in unit 
disk 

on unit 
circle on grid 

CGAL 3569ms 6425ms 6108ms 823ms 

CGAL with 
heuristics 1.2x 1.2x 0.8x 0.7x 

Rublev 1.8x 1.8x 1.7x 0.6x 

Rublev with 
heuristics 1.6x 1.6x 1.4x 0.5x 

Table 3: Smallest enclosing sphere of spheres imple¬ 
mentations (radiuses are equal and very small) 

We didn't use the default geometric heuristic of 
the package during 
testing to show effect of domination heuristics. 
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Галковський Т. О., Гартнер Б., Рубльов Б. В. 

ЕВРИСТИКА ПЕРЕВАГИ ДЛЯ ЗАДАЧ 

ЛІНІЙНОГО ПРОГРАМУВАННЯ 

Деякі задачі геометричної оптимізації, наприклад пошук найменшого покриваючого еліпса мно
жини точок, можуть бути розв'язані за лінійний час, використовуючи нескладні випадкові (чи 
складні детерміновані) комбінаторні алгоритми. На практиці ці алгоритми поліпшуються чи за
міняються варіантами евристик, що працюють швидше, але теоретичні оцінки часу роботи для 
них не доведені. У цій статті ми пропонуємо нову прискорюючу евристику, що може бути легко 
застосована до відомих лінійних алгоритмів, без зменшення їх швидкості у найгіршому випадку. Ми 
показуємо, що ця евристика може бути визначена для будь-якої задачі з добре відомого класу задач 
лінійного програмування. Її ефективність на практиці залежить від того, чи можлива, і якщо мож¬ 
лива, то наскільки швидкою виявиться реалізація предиката для конкретної задачі. Ми наводимо 
результати експериментів, які показують, що для двох задач нова евристика може значно приско¬ 
рити існуючі реалізації алгоритмів (з бібліотеки геометричних алгоритмів CGAL). 

Being quite effective that heuristics performs well 
on all tested algorithms, making their running times 
mostly equal. 

5 Conclusion 

In this paper, we have developed a heuristic 
that can speed up the existing linear-time algorithm 
for LP-type problems in practice, while it at the 
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