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Abstract

Planetary Science belongs to the so-called fundamental sciences, which do not have
to have immediate practical applications or implications. The recent decades have
however shown that the study of asteroids may have direct implications on our life.
Studies of asteroid dynamics have shown that some of those objects can collide
with the Earth. Studies of asteroid mineralogy suggest that some of them contain
minerals and elements important for industry. For both of those topics, determining
physical and dynamical properties is crucial.

Markov-chain Monte Carlo methods and algorithms such as the Metropolis-
Hastings algorithm are growing in popularity and becoming important tools in de-
riving model parameters in many branches of science today. In this thesis, Bayesian
statistics along with the above-mentioned numerical methods have been used to
infer dynamical and physical properties of asteroids.

First, a new Markov-chain Monte Carlo ranging method is developed for comput-
ing asteroid orbits. The method is applicable for asteroids with short observational
time intervals and/or small number of observations. The method is particularly use-
ful in deriving orbits for new asteroid discoveries and computing collision probabili-
ties for such objects. The Markov-chain Monte Carlo ranging method is applied to a
number of asteroids including a recent Earth impactor - asteroid 2008 TC3. Markov-
chain Monte Carlo ranging is available through the open-source orbit-computation
package called OpenOrb and is implemented into the Gaia satellite data processing
pipeline, where it will be heavily used in the daily data processing.

Second, Markov-chain Monte Carlo and Monte Carlo methods are used to assess
phase curve photometric parameters and their uncertainties. Absolute magnitudes
and photometric parameters are derived for half a million asteroids by fitting phase
curves to the Lowell Observatory photometric database. Asteroid phase curves
depend on physical properties of regolith and absolute magnitudes are useful in
computing sizes and albedos. Fitting the phase functions to a large number of
asteroid families suggests homogeneity of photometric parameters in asteroid fami-
lies. The derived photometric parameters are also found to correspond to asteroid
taxonomic complexes and colors.
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1 Introduction

1.1 Discovery of asteroids

Today we know over half a million asteroids (MPC accessed 2012), orbiting the
Sun. However the history of asteroid discovery begins back in the 16th century,
when Johannes Kepler, discovered the laws of planetary motion. Kepler’s laws are
(Shu 1982):

• The orbit of a planet forms an ellipse with the Sun at one focus.

• The Sun-planet radius vector sweeps out equal areas in equal times.

• The square of the period of revolution of a planet is proportional to the cube
of the semimajor axis of its elliptical orbit.

Kepler’s laws are restricted to so-called two-body motion (two point-like sources
not affected by gravity of other planets), which is a useful first approximation to
calculating the orbits and positions of planets and small bodies. Kepler’s laws led
the past astronomers to realize that the distance between Mars and Jupiter is not
proportional to distances between other planets and that there must be another,
yet undiscovered planet between the orbits of Mars and Jupiter. The hypothesis of
a new planet was additionally strengthened by the discovery of an empirical law by
Johann Titius (Jaki 1972). The law describes the planetary distances as a series of
numbers:

y = 0.4, 0.4 + (0.3× 2n), (1)

where n = 0, 1, 2, 3, .... The resulting y values give the approximate heliocentric
distances of the major planets in Astronomical Units (AU). The first planet is
Mercury at 0.4 AU. The law was then popularized by J. E. Bode and quickly
became the ”Titius-Bode law”. Discovery of Uranus with semimajor axis at 19.2
AU in the 18th century by William Herschel seemed to confirm the empirical law
and strengthen the belief in the existence of the yet undiscovered planet between the
orbits of Mars and Jupiter. Inspired by the discovery of Uranus (Alexander 1965)
and the Titius-Bode law astronomers began a search for the new planet near 2.8 AU.
Finally, Giuseppe Piazzi discovered (now a dwarf planet) Ceres on 1 January 1801
(Serio et al. 2002). The discovery was then published in the September 1801 issue of
the Monatliche Correspondenz, but by this time Ceres moved into conjunction with
the Sun making it impossible to observe. By the end of the year the new planet
should have been visible again, but after such a long time it was impossible to predict
its exact position with the methods available at that time. To recover Ceres, C.
F. Gauss developed an orbit-computation method based on three observations and
succesfully predicted the position of Ceres (Teets & Whitehead 1999). Subsequent
observations were made to improve the orbit of Ceres and allow for more precise
follow-up. In 1802, H. W. M. Olbers found a second moving object in the vicinity
of Ceres, later named Pallas (Lardner & Dunkin 1860). Pallas posed a potential
problem since now there were two objects where the Titius-Bode law predicted only
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one. J. F. W. Herschel computed sizes of Ceres and Pallas and showed that they are
much smaller than any of the other planets (Bus 1999). Herschel proposed a new
class of objects called asteroids (star-like) (Armitage 1962) and hypothesized that
they are fragments of a planet that broke into pieces and suggested that additional
fragments might be found. As predicted, soon asteroid Juno was discovered in 1804
by K. L. Harding and (Lardner 1854) by Olbers. By the end of 1890, over 300
asteroids were known, and the region was called the ”asteroid belt” (now known as
the asteroid main belt). One of the asteroids from the main-belt is pictured in Fig.
1.

Figure 1: Asteroid (4) Vesta as seen by NASA’s Dawn spacecraft. Source: http:

//dawn.jpl.nasa.gov/

The next big revolution in the discovery of asteroids happened with the dis-
covery of photographic techniques, which allowed for more efficient searches and
more precise and accurate positional measurements. Some progress was made with
improving photographic emulsions, light amplification etc., but starting in 1970s
after the invention of the CCD, photographic plates have given way to electronic
imaging in professional observatories (Bus 1999). Development of CCD techniques,
giant multi-mirror, segmented mirror telescopes, adaptive optics and space-based
telescopes led to a great improvement in the asteroid research field. Today asteroids
are considered to be remnants of the protoplanetary disk, and they are not only
found in the asteroid belt, but also in other parts of our Solar System.

1.2 Dynamical populations of asteroids

The vast majority of asteroids orbit the Sun in the asteroid main-belt (located be-
tween the orbits of Mars and Jupiter between 1.8 and 4.5 AU from the Sun). Those
asteroids are often referred to as main belt asteroids or objects (MBAs or MBOs).
They are believed to be remnants of the proto-planetary disc prevented from ac-
creting to a planet by gravitational perturbations from Jupiter. Large numbers of
MBAs are grouped in so-called asteroid families. An asteroid family is a population
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of asteroids sharing similar dynamical properties. Members of asteroid families are
believed to be fragments of a larger parent body disrupted in a collisional break-up
event (Marzari et al. 1999). The existence of asteroid families was first suggested
by Kiyotsugu Hirayama (Hirayama 1918, 1928, 1933), who identified the first few
asteroid families in 1918. Currently there are at least 64 statistically significant
families (Zappalà et al. 1995, Morbidelli et al. 1995). Some of the most prominent
asteroid families include the Flora, Eunomia, Koronis, Eos, and Themis families.

Family membership is usually derived based on statistical cluster analysis in
the proper orbital elements (proper semimajor axis, proper eccentricity, proper in-
clination) phase space. The two most common methods include wavelet analysis
method (WAM) and hierarchical clustering method (HCM) (Zappalà et al. 1995).
In agglomerative hierarchical clustering, each data point is first considered as its
own cluster, in next steps clusters are combined into higher-order clusters based on
a measure of dissimilarity (usually using some metric, for example, a measure of
distance between pairs of data). Wavelet analysis method relies upon examination
of densities in some parameter space. Until recently asteroid families were only
derived based on dynamical classification (using proper orbital elements). However,
recent developments suggest that physical classification can also be very helpful. In
some cases physical classification is the only way to separate intermixed families
such as the Nysa-Polana family (Parker et al. 2008, Oszkiewicz et al. 2011). For
example, Parker et al. (2008) showed that based on the Sloan Digital Sky Survey
(SDSS) colors it was possible to split the Nysa-Polana group into two separate fam-
ilies. Figure 2 shows the separation of the Nysa-Polana family into two physically
distinct groups. Most of the other asteroid families seem to be quite homogeneous
when it comes to their physical properties, such as spectral properties (Mothé-Diniz
et al. 2005), color indices (Ivezić et al. 2001, Jurić et al. 2002), and photometric
parameters (Oszkiewicz et al. 2011).

Asteroids in the main belt are considered the main source of near-Earth asteroids
(NEAs). NEAs are asteroids that have orbits that pass close to that of the Earth
(perihelion distance q < 1.3 AU and aphelion distance Q > 0.983 AU). NEAs are
usually discussed in the light of possible Earth impacts that may result in more
catastrophic consequences than any other known natural disasters (Schulte et al.
2010). An asteroid impact is considered the most probable cause for the extinction
of dinosaurs and many other species (Schulte et al. 2010).

Some NEAs are also of high interest as they could potentially be explored due
to their low relative (to the Earth) velocity and as potential sources of valuable
minerals, limited on our planet. NEAs are traditionally subdivided into Apollos
(a ≥ 1.0 AU; q ≤ 1.0167 AU), Atens (a < 1.0 AU; Q ≥ 0.983 AU) and Amors
(1.0167 AU < q ≤ 1.3 AU). Most Atens and all Apollos have orbits that cross the
Earth’s orbit, posing a possible impact threat to the Earth on their current orbits.
Amors do not cross the Earth’s orbit but their orbits may evolve into Earth-crossing
orbits in the future. Among mechanisms bringing asteroids in the vicinity of the
Earth are mean-motion and secular resonances (Morbidelli et al. 2002), encounters
with planets (mainly Jupiter), collisions and the Yarkovsky effect (which affects
asteroids below few meter size). It was shown that about 23% of NEAs come from
the 3:1 resonance, 25% from the intermediate Mars-crossers population (asteroids
crossing the orbit of Mars), 37% from the ν6 secular resonance, 8% from the outer
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Figure 2: Distribution of proper elements for asteroids in the Nysa-Polana region,
color coded according to the SDSS a∗ color (left) and the photometric parameter
G12 (right). The sizes of the points correspond to the errors in G12 and SDSS a∗.

main belt and about 6% from the transneptunian region (Bottke et al. 2000).

Transneptunian objects (TNOs) are orbiting the Sun at a greater average dis-
tance than Neptune. The first discovered TNO was the dwarf planet Pluto. TNOs
are often divided into two large groups: the Kuiper-belt objects (roughly between 30
AU and 55 AU) and scattered-disc objects (roughly beyond 55 AU). The Kuiper-
belt objects have also been subdivided into smaller dynamical groups: resonant
KBOs (in mean motion resonance with Neptune, the most occupied ones are 3:2
– with prime example being Pluto – 2:1, and 5:2), Centaurs (non resonant objects
whose perihelia lie inside the orbit of Neptune), classical KBOs (non-resonant, non-
planet-crossing objects), scattered KBOs (non-classical, non-resonant objects whose
perihelion distances remain outside the orbit of Neptune).

Some other asteroid populations worth mentioning are the so-called trojans.
Trojans are asteroids locked in one of the two Lagrangian points of stability, L4
and L5 which lie approximately 60◦ ahead of and behind a larger body. Trojans of
Jupiter, Neptune and Mars have been observed. Recently the first candidate for an
Earth trojan (Connors et al. 2011) has been found.

1.3 Physical properties

Large-scale exploration of asteroid physical properties began in the modern era of
automated sky surveys and space missions. Ground-based surveys such as for ex-
ample the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) and the SDSS
(Ivezić et al. 2002) provided taxonomic classification for a few thousand and colors
for some hundreds of thousands of asteroids. Several space-based missions, such as
for example the Infrared Astronomical Satellite (IRAS) (Tedesco 1989), the Spitzer
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Space Telescope (Trilling et al. 2007), and WISE (Wright et al. 2010) delivered col-
ors and geometric albedos (and subsequently sizes) for some hundreds of thousands
of asteroids. The distribution of asteroid proper elements color-coded with geomet-
ric albedo extracted from the WISE mission is shown in Fig. 3. The visible clumps
of distinct albedo correspond to asteroid families. Much more: masses, sizes, spins,
shapes, and classifications are expected from the upcoming Gaia mission (Mignard
et al. 2007).

Figure 3: Distribution of asteroid proper elements color-coded with geometric
albedo (extracted from WISE), for all asteroids with albedo below 0.5 (there are
less than 300 asteroids in the dataset with higher albedo).

Asteroid soil and meteorite samples are also available. Tiny regolith parti-
cles from asteroid Itokawa were brought to the earth by the Hayabusa mission
(Tsuchiyama et al. 2011). Some meteorites have been reported linking to particular
asteroids (for example (Binzel & Xu 1993) or (Burbine et al. 2002)). However, to
what extent are they representative of asteroids is still under question (Farinella
et al. 1993). Beside Earth contamination, processes such as collisional metamor-
phosis and space weathering could have affected the meteorite samples traveling
through space making them less representative of their origin.

About a dozen asteroids have been visited by spacecraft: (951) Gaspra (1991,
Galileo), (243) Ida/Dactyl (1993, Galileo), (254) Mathilde (1997, NEAR), (9969)
Braille (1999, Deep Space 1), (443) Eros (2000, NEAR), (5535) Annefrank (2002,
Stardust), (25143) Itokawa (2005, Hayabusa), (2867) Steins (2008, Rosetta), (21)
Lutetia (2010, Rosetta), (4) Vesta (2011, Dawn). These visits and flybys have re-

5



vealed a variety of surfaces, structures, and geological processes on asteroids. The
first asteroid satellite (named Dactyl) was discovered by the spacecraft Galileo visit-
ing asteroid (243) Ida on its way to Jupiter. Varying asteroid structures from mono-
lithic through fractured to so-called gravitational aggregates were revealed together
with processes such as impact communition, impact melting, formation of aggluti-
nates, solar-wind sputtering, impact vaporization, impact-vapor condensation, and
shock and thermal welding of grains, thermal fatigue or surface refreshing.

For most of the asteroids, however, we still need to rely on the observations
made from Earth-based observatories. Asteroid spins and shapes are mostly derived
based on lightcurve inversion techniques (some other are derived based on radar
observations or satellite fly-bys). Masses are determined based on observations of
an asteroid’s gravitational effect on another body. Diameters are mostly derived
based on albedo and absolute magnitudes.

The main physical parameters discussed in this thesis are the absolute magni-
tude, the photometric parameter(s), and the albedo. The absolute magnitude for an
asteroid is defined as the apparent V -band magnitude that the object would have
if it were 1 AU from both the Sun and the observer and at zero solar phase angle.
The absolute magnitude relates directly to asteroid size and is useful in computing
the geometric and Bond albedos. The geometric albedo of an object is the ratio of
its actual brightness at zero phase angle to that of an idealized flat, fully reflect-
ing, diffusively scattering (radiation is reflected isotropically with no memory of the
location of the incident light source) Lambertian disk with the same cross section.
The Bond albedo (A) is related to the geometric albedo (p) by A = pq where q is
the phase integral:

q = 2

∫ π

0

I(α)

I(0)
sinα dα, (2)

where I(α) is the directional scattered flux (averaged over all wavelengths and
azimuthal angles) and α is the phase angle. The diameter of an asteroid (D) can
be computed using:

D =
1329
√
p

10−0.2H . (3)

Albedos are available for a few thousand asteroids from missions such as IRAS
(Tedesco 1989), the Spitzer Space Telescope (Trilling et al. 2007), and WISE (Wright
et al. 2010). Asteroid albedos vary depending on taxonomic type (Thomas et al.
2011). Also, asteroid color indices are shown to correspond to asteroid taxonomy.
Based on SDSS data, Ivezić et al. (2002) showed that asteroid families tend to have
similar optical colors which could indicate chemical composition. Surface color
homogeneity of asteroids in families supports the idea of common origin of those
groups. This has also been confirmed by the discovery of photometric parameter
homogeneity in asteroid families (Oszkiewicz et al. 2011). Photometric parameters
of the phase curves relate to the physical properties of an asteroid’s surface, such as
porosity, roughness, and grain size distribution. Steep phase curves are characteris-
tic of bodies with an exposed regolith. The steepness of the phase curve also relates

6



to asteroid composition (Oszkiewicz et al. 2012). Most asteroids seem quite homo-
geneous (Degewij et al. 1979) when it comes to their physical properties over the
surface such as for example aldebo, color indices and spectra. In particular, most
asteroids display no or very small (comparable with the noise level) variations in
spectrum or albedo during their rotational cycles (Degewij et al. 1979). Some slight
color variations with rotation have been noted for several large asteroids. Asteroid
(4) Vesta shows variations in both spectra and polarization with rotation. Those
variations were attributed to changes of albedo with rotation (Degewij et al. 1979).

1.4 Gaia mission and asteroids

Gaia is an astrometric space mission (ESA) and a successor to the Hipparcos mis-
sion (Perryman et al. 1997). It will be launched in 2013, and will operate around the
Sun-Earth L2 Lagrangian point. Gaia will deliver a catalogue of approximately one
billion stars down to magnitude 20. It is going to obtain astrometric observations,
determine the positions, distances, and proper motions of stars (Perryman et al.
1997) with an accuracy of about 20 µas at 15 mag, and 200 µas at 20 mag, spec-
trophotometric observations, and radial velocity observations spanning over 5 years.
The main objective of Gaia is to create an extremely precise three-dimensional map
of stars throughout the Milky Way galaxy (and beyond), and map their motions
in order to provide insights to the origin and evolution of the Galaxy. The spec-
trophotometric observations performed by Gaia will provide luminosity, effective
temperature, gravity and elemental composition of each star observed. However, a
large number of other objects like quasars, galaxies, extrasolar planets and Solar
System bodies will be observed as well (Mignard et al. 2007).

Assuming the limiting magnitude V = 20 mag and estimating the completeness
level of the current sample of asteroids, it has been evaluated that Gaia will observe
about 3× 105 asteroids (Mignard et al. 2007). Most of those objects will be known
by the time of Gaia launch, but there exists a small possibility for the satellite
to discover asteroids with orbits lying in a region that is difficult to observe for
Earth-based telescopes (heliocentric distances less than 1 AU) (Mignard 2002). The
limiting solar elongation for Gaia is 45◦, and for ground-based surveys it is around
60◦. The Gaia spacecraft will therefore be ideally situated to probe the asteroid
blind spot between the Sun and the Earth and discovering so-called inner Earth
objects (orbiting the Sun between Earth’s orbit and the Sun). Gaia will scan solar
elongations from approximately 45◦ to around 140◦.

The Gaia data-processing pipeline will deliver the physical and dynamical prop-
erties of the observed small Solar System objects (SSOs) (Mignard et al. 2007). It
will obtain sizes of about 1000 objects (currently well known for about 500 objects),
masses of about 150 (currently well known for about 40 objects), spin and shapes
of more than 10000 objects (currently well known for about 200 objects), derive im-
proved orbits for many more and devise a Gaia-based asteroid taxonomy (Mignard
et al. 2007). The final results will also include direct measurements of tiny radiative
effects on small bodies, in particular of the Yarkovsky effect acting on near-Earth
objects, and the measurement of tiny relativistic effects on the motion of some of
these bodies. An impressive improvement of orbital accuracy for know objects will
also become possible (by at least two orders of magnitude). Additionally improved
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stellar catalogues will lead to improvements in differential astrometry and photom-
etry. Exact impact of the Gaia mission on Solar System science is hard to predict,
but it will definitely be a major science inspiration for the upcoming years if not
decades.

1.5 Outline of this work

This thesis presents new findings on asteroid dynamical and physical properties
based on Markov-chain Monte Carlo (MCMC) methods. Chapter 2 describes the
inverse problem theory and numerical methods used in deriving dynamical and
physical properties of asteroids. A particular attention is put to the Metropolis-
Hastings algorithm which is then applied in deriving asteroid orbits, computing
Earth-impact probabilities and asteroid photometric properties. Chapter 2 also de-
scribes the advantages and disadvantages of the methods used. Chapter 3 provides
an introduction to the asteroid-orbit-computation problem and outlines the new
MCMC ranging orbit-computation technique applicable to asteroids having short
observational time intervals and/or small numbers of observations. Orbits obtained
from the method can then be used in a variety of other dynamical problems such as
for example computing collision probabilities. Chapter 4 gives an overview of phase
functions and methods for deriving asteroid photometric properties (absolute mag-
nitudes and photometric parameter(s)). A short introduction to obtaining phase
curve data is also given. Chapter 5 describes importance of this thesis for the Gaia
mission. Chapter 6 describes the main scientific findings of this work and provides
a summary of the attached articles.
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2 Inverse problems theory

2.1 Bayesian solution to inverse problems

Inverse problems arise in many branches of today’s science, and particularly astron-
omy. As emphasized by Brown (1995) ”Astronomy is by its very essence an inverse
problem and can be regarded as the ultimate one, both in scale and difficulty, in the
sense that astronomers are attempting to determine the structure of the universe
from data arriving at one point in it”. This thesis deals with much smaller scales
than the Universe, nevertheless the key properties of our observations remain the
same. That is most of our data are remotely sensed and the whole process of data
collection is restricted to passive observation (except few special cases where labo-
ratory experiments are possible). Usually the properties of observed objects cannot
directly be observed/measured and have to be inferred from the observational data.

In general, in inverse problems, the values of model parameter(s) must be in-
ferred from the observed data (Tarantola 2005). The physical relation between the
model parameters and the data can be expressed as:

ψ = f(P) + ε, (4)

where ψ are the observations or measurements, P are the unknown model param-
eters, f is a function returning theoretical computed values of observations for a
given P, and ε denotes the observational errors. Because each observation can
contain systematic and random errors, our measurement is just one possible out-
come of an observation. Observations can therefore be treated as random variables
(Lehtinen 2010, Menke 1989). What follows is that the model parameters must also
be treated as random variables following an unknown distributions of our interest.
Many inverse problems concern ill-posed models, where the solution to the problem
is not unique, and there might exist a large (or even infinite) number of solutions.
Inverse problems can be defined using the Bayesian formulation (Tarantola 2005).
A Bayesian solution to an inverse problem is expressed as a conditional a posteriori
probability density function (p.d.f.) which combines a priori information on model
parameters and the physical relation between the data and model parameters in the
form of a likelihood function:

pp(P) = C ppr(P)︸ ︷︷ ︸ pε(∆ψ(P))︸ ︷︷ ︸,
a priori likelihood

where P denotes the unknown model parameters, pε(∆ψ(P)) is the likelihood func-
tion, dependent on observed-minus-computed residuals ∆ψ. The likelihood func-
tion is often assumed to be Gaussian, i.e., pε ∝ exp (−1

2
χ2(P)), where χ2(P) =

∆ψT (P)Λ−1∆ψ(P), Λ is the covariance matrix for the observational errors, ∆ψ(P)
is a vector of observed-minus-computed residuals. The normalization constant C is
computed as

C = (

∫
p(P, ψ)dP)−1.

The physical relation between the data and the model parameters is present in
the observed-minus-computed residuals ∆ψ, as is needed to obtain the theoretical
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computed values of the data given some specific values of model parameters. That
relation solves the so-called forward (prediction) problem of computing/predicting
the data given some particular values of the parameters. The a priori p.d.f. ppr(P)
can be chosen for example based on previous knowledge on the model parameters or
some physical constrains. One convenient choices for the a priori p.d.f. is Jeffreys’
a priori pJ , which has the property of keeping the a posteriori p.d.f. invariant in
transformations between different model parameters sets (Jeffreys 1946):

pJ(P) ∝
√

det Σ−1(P),

Σ−1 = Φ(P)TΛ−1Φ(P),

where Σ−1 is the information matrix evaluated for local parameters P, Λ is the
covariance matrix for the measurement errors, and Φ is the partial derivatives ma-
trix, containing derivatives of observed quantities with respect to model parameters.
Jeffreys’ a priori belongs to the so-called weakly informative priors (not supplying
substantial information) as opposed to the so-called informative priors (supplying
crucial information that might come from previous knowledge such as for example
earlier data analysis, expert knowledge or some physical constraints) and so-called
non-informative priors (when we know very little and require only the data to drive
the a posteriori p.d.f.).

The total a posteriori p.d.f. can then be expressed as:

pp(P) = C ppri(P)
√

det Σ−1(P) exp (−1

2
χ2(P)), (5)

where ppri(P) is an informative a priori. An analytical solution to the above equation
is however rarely found. In fact, only a limited number of simple mathematical
problems have an analytical a posteriori p.d.f. . Thus, Monte Carlo algorithms
are often used to obtain a numerical solution (more in Sec. 2.3). In this kind of
treatment, instead of a unique solution, we arrive at a large number of discrete
estimates, each of which is probable and yields observed-minus-computed residuals
which lie within the observational error ε.

2.2 Advantages of Bayesian method

Bayesian methods and the deterministic (classical) approach to inverse problems
both have some advantages and disadvantages. Bayesian methods allow for the
incorporation of past information on the parameters in the a priori p.d.f.s. and are
proven to deal well with nonlinear or poorly constrained cases. Other advantages of
the probabilistic approach include the possibility of dealing with noise assumptions
other than Gaussian. Bayesian analysis can estimate any functions of the model
parameters directly from the distributions of the parameters.

In the classical approach usually a single-point estimate together with some error
is computed. In the probabilistic approach this is equivalent to the situation when
the solved p.d.f. is summarized with some parameters describing the distribution
obtained (Virtanen 2005) (for example, the maximum a posteriori point, moments,
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confidence intervals etc.). In many cases the two approaches are equivalent and
produce the same results, for example in the cases of well-constrained p.d.f.s.

The situation changes for problems with complicated and not-well-constrained
p.d.f.s. In such cases the classical approach may fail (for example resulting in a
non-physical solution or no solution at all). There might be too few or too noisy
observations for a classical approach to return meaningful results. The solution
might not be unique. The Bayesian approach can deal with some of these problems.

There are also disadvantages, for example there is no rule for choosing the a pri-
ori p.d.f. and it has to be possible to translate the past information on parameters
into mathematical formulations. In some cases, Bayesian analysis can produce pos-
terior distributions that are influenced by the priors and the methods are sometimes
computationally expensive. A complete discussion of statistical versus deterministic
inversion methods can be found in for example Virtanen (2005).

2.3 Markov-chain Monte Carlo technique for solving in-
verse problems

Markov-chain Monte Carlo (MCMC) algorithms are a set of methods used to ap-
proximate a desired distribution of unknown model parameters. The main idea
relies upon constructing a Markov chain (chain of consequent samples that may be
correlated and having so-called Markov property — the next state depends only on
the current state and not on the past states), which converges to the desired target
distribution as it reaches the equilibrium (stationary) state starting from any point
in the parameter phase space. When reaching the stationary distribution, the cur-
rent state no longer depends on the initial starting point. After this first, so-called
burn-in phase the chain will eventually end up sampling the same parameter sub-
space, no matter what the starting point was. The resulting sample solutions are
identically (each state has the same probability distribution as the others), but not
independently, distributed according to the target density. A proof of convergence
can be found for example in Roberts & Rosenthal (2004).

The key characteristic of Markov chains ensuring stationarity is reversibility on
a phase space with respect to a probability distribution. If X is the phase space
and π the probability distribution, P is a transition probability, then

π(dx)P (x, dy) = π(dy)P (y, dx) ,where x, y ∈ X (6)

is the reversibility condition (also called detailed balance condition or detailed bal-
ance criteria). If a Markov chain is reversible with respect to π, then π is stationary
for this chain. This can be shown mathematically as (Roberts & Rosenthal 2004):∫

x∈X
π(dx)P (x, dy) =

∫
x∈X

π(dy)P (y, dx) = π(dy)

∫
x∈X

P (y, dx) = π(dy). (7)

Other important characteristics are reducibility, periodicity, recurrence and er-
godicity. A Markov chain is said to be irreducible if it is possible to get to any state
from any other state, i.e., there is non-zero probability that a chain started from any
point in the phase space will transit to any other point in that state at some time
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(Roberts & Rosenthal 2004). A chain is called periodic when any return to state
i must occur in multiples of k time steps. Recurrence (Roberts & Rosenthal 2004)
refers to the idea of a transient state, that is a state with a non-zero probability
of returning to that state, given that we have started the chain in that state. The
markov chain is called ergodic if it is aperiodic, irreducible, and positive recurrent.

MCMC gained popularity in 1990s, and currently various algorithms relying on
Markov chains exist. The most commonly used are the Metropolis-Hasting algo-
rithm (based on the proposal probability density and acceptance criteria), Gibbs
sampling (requires knowledge of conditional distributions), slice sampling (based on
uniform sampling of regions under p.d.f.), multiple-try Metropolis (used in prob-
lems with large number of dimensions). More sophisticated algorithms include for
example successive over-relaxation, hybrid Monte Carlo, Langevin MCMC, and re-
versible jump. The Metropolis-Hastings (M-H) algorithm is the most widely used.
M-H was invented by Nicholas Metropolis in 1950s and then further developed by
W. Keith Hastings. The M-H algorithm relies upon drawing samples from the
so-called proposal distribution Pc(P) (other names: candidate, transit, jump dis-
tribution), which can be arbitrary and depends only on the current (last accepted)
sample in a chain. However, the closer the proposal distribution is to the unknown
target parameter distribution, the faster the algorithm converges to the stationary
state. In each iteration new candidate parameters P′ are proposed to be added to
the chain with the help of the transition probability. Those candidate parameters
are next accepted or rejected from the chain based on the acceptance criteria:

If a ≥ 1, then Pt+1 = P
′
.

If a < 1, then

{
Pt+1 = P

′
, with probability a,

Pt+1 = Pt, with probability 1− a,
(8)

where

a =
pp(P

′)

pp(Pt)

Pc(Pt | P′)
Pc(P′ | Pt)

(9)

and Pt denotes last accepted parameters and Pc(Pt | P′), Pc(P′ | Pt) are transition
probabilities from parameters P′ to Pt and in the reverse direction, respectively.
The posterior probabilities pp(P

′), pp(Pt) are defined as in Eq. 5. If a symmetric
proposal density is used (such as the Gaussian density) the acceptance coefficient a
is simplified to:

a =
pp(P

′)

pp(Pt)
. (10)

In practice, the candidate parameters are always accepted if they produce a
better fit to the data than the last accepted ones in the chain. The trial parameters
are sometimes accepted if the fit is worse than the last accepted solution. If we have
a choice between jumping to ’bad fit’ and a ’very bad fit’, the ’bad fit’ jump is more
probable. If candidate parameters are rejected, then the last accepted solution is
repeated in a chain.

If the size of the proposal distribution differs significantly from the size of the
target distribution the chain might mix (sample the stationary distribution) slowly.
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If the selected proposal distribution is too small (small step size), the chain accep-
tance ratio will be high, but the chain will not sample the entire phase space in
a reasonable time. If the size is too large, the acceptance ratio will be very small
and it might take a long time to reach the steady-state distribution. Both of those
problems may be identified through convergence diagnostics.

Based on MCMC sampling of a one-dimensional Gaussian distribution, it was
shown that an ideal acceptance ratio is around 50%. This theoretical value de-
creases with increasing dimensions and complexity of considered problems. For
very complex and multi-dimensional problems the acceptance ratio may be low.

The initial phase of the sampling, the burn-in phase relates to the fact that the
chain has to take some time before it starts sampling the target distribution (if
started in a random spot in the phase space). The samples drawn in the burn-in
period have to be removed from the resulting chain(s). To shorten the burn-in
phase a non-random point (based on expert knowledge, previous results, etc.) in
the parameter phase-space can be selected as a starting point. To find a reasonable
proposal density and avoid manual tuning, some ’pre-runs’ to actual MCMC can be
run. Haario et al. (1999) recommend an adaptive MCMC sampling method, which
does not require pre-runs and tunes the proposal during the sampling, not affecting
the Markov property of the chains.

2.3.1 Convergence diagnostics

Convergence diagnostics is a critical part of all MCMC algorithms and includes
testing the equilibrium of the sampled distribution. The M-H algorithm converges
to the stationary distribution (equilibrium) given large enough number of samples
Roberts & Rosenthal (2004). In practice, we are limited by the number of iterations
and time, and thus we need to perform additional checks on obtained samples to
make sure that the convergence was reached. Typical approaches include monitoring
”stability” of a single long chain and/or number of shorter chains.

The most common convergence testing methods found in the literature include
history plots (plot of sampled parameters against number of iterations, also called
trace plots), kernel plots, and correlograms. Gelman & Rubin (1992) proposed
a statistical indicator, so called ”shrink factor” R, involving the average within-
chain variances, and the variance between the means obtained from m parallel over-
dispersed chains. Once convergence is reached, the between and within variances
should be approximately the same. Raftery & Lewis (1992) proposed a method for
estimating the total numbers of iterations of the burn-in period based on chosen
quantile, required accuracy, required probability to obtain specified accuracy and
convergence tolerance. Gewke (1992) indicated the use of methods from spectral
analysis in testing for convergence. The method is graphical and based on running
means of parameters and can be used in, for example, checking for the length of
the burn-in period. Zellner & Min (1995) proposed a criterion based on conditional
probability to test for convergence to a correct distribution. Extensive reviews of
MCMC convergence diagnostics methods can be found in, for example, Mengersen
et al. (1999) and Cowles & Carlin (1996).
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2.3.2 Markov-chain Monte Carlo vs. Monte Carlo

Monte Carlo (MC) is based on random sampling and MCMC on Markov chains. The
goal of MC is to sample a multidimensional region uniformly and then summarize
the posterior using the resulting samples and normalized a posteriori p.d.f. as
weights. The goal of MCMC is not to sample uniformly, but to visit a point x in
the parameter phase space X with certain probability. The resulting samples have
equal weights. Additionally, some of the samples might be repeated in a chain.

One of the advantages of MCMC is that the normalization constant in Eq. 5
does not have to be known or computable to obtain information about the resulting
a posteriori p.d.f. and model parameters. Another advantage is that in MCMC
there are proportionally more samples in high a posteriori p.d.f. regions than in low
a posteriori p.d.f. regions. This is especially important for high-dimensional, com-
putationally expensive problems, where MCMC often proves to be more efficient.
Furthermore, in MC, one usually has to specify the domain of possible parameter
inputs, whereas in MCMC, such a specification is not necessary, as MCMC can
move freely through the parameter phase space. Additionally MCMC comes with
vast convergence diagnostics methods.
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3 Application: Asteroid orbits

3.1 Brief history of orbit computation

From the beginning of the 19th century, when the first asteroid was found, as-
teroid discovery methods have dramatically improved; particularly encouraged by
the era of space exploration. With the technical improvements and development
of observation techniques came a corresponding improvement in orbit computation
methods. An increasing number of space and ground-based surveys have resulted
in an exponential growth in the number of discoveries. The need to search for new
asteroids has recently been strengthened by the awareness of the possibility of Earth
impacts by these objects. Asteroid surveys discover a great number of asteroids,
for which an initial orbit computation is needed in light of the collision probability
problem. Conventional, deterministic methods of preliminary orbit computation
often come with vast restrictions for their usage (for example, number of requested
observations), are based on many assumptions (for example, observations made in
perihelia) and can still simply fail to produce results for the object. Therefore a
need for novel, reliable and fast methods has become apparent.

Orbit determination has a long history, starting with the discovery of the planets
and the following attempts to predict their motions (Dubyago 1961). The first
insight into the orbit computation problem appeared with Kepler’s laws describing
planetary motion and later Newton’s law of gravitation. However, the first correct
orbit determination and subsequent recovery attempts were made much later.

The first analytical comet orbit computation method was proposed in 1744 by
Euler (Dubyago 1961). The method required a minimum of four observations. At
the end of the 18th century, Lagrange proposed an orbit determination method
relying on the condition that the three observations of the position of the object
have to be situated in one plane with the Sun (Dubyago 1961). Lagrange’s ideas
were later further developed in the method proposed by Gauss (Dubyago 1961).
Gauss’s method became invaluable to the recovery of Ceres, which would have
been essentially lost otherwise. It is worth mentioning that Gauss also introduced
the method of least squares, which allowed the first statistical treatment of orbit
computation. Among other methods known at the time was also the one by Olbers
solving the equations for geocentric distances by means of trials (Dubyago 1961).
Various new methods were developed afterwards, most of them based on previously
known principles.

In the more recent decades novel methods were also developed. For example
methods of Marsden (Marsden 1985, 1991), GEM (Gauss-Encke-Merton), MVC
(Moulton-Väisälä-Cunningham). New, more reliable methods of orbit computation
have also been developed for asteroids with small numbers of observations and short
observational arcs. Two-observation methods by Väisälä (1939) and Orlov (1939)
follow the assumption that new asteroids are often discovered near perihelion. These
methods also require the specification of either geocentric distance or eccentricity.

Use of maximum likelihood and Bayesian solution-like methods was suggested
in the beginning of the 1990s (Kristensen 1992) by various authors (Muinonen &
Bowell 1993, McNaught 1999, Tholen & Whiteley 1998, Chodas & Yeomans 1996).
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McNaught (1999) and Tholen & Whiteley (1998) developed methods of deriving
a set of possible orbits from two observations. A large set of different methods
were subsequently invented, most of which are based on Monte Carlo sampling of
the orbital element phase space. However, the majority of these methods cannot
be readily applied to asteroids having sparse observational data or short arcs as
the linearization of the inversion is usually inappropriate. Nonlinear methods for
orbital uncertainty were considered by, for example, Milani (1999), Milani et al.
(2004) and Chesley & Milani (1999) towards the end of 1990s and start of 2000s. In
late 1990s, Virtanen et al. (2001) and Muinonen et al. (2001) presented the method
of statistical ranging, for the treatment of poorly observed asteroids. Their method
follows from the statistical inversion theory outlined by Lehtinen (2010) and Menke
(1989). In 2009, Oszkiewicz et al. (2009) further developed the ranging method
introducing Markov chains. A variation of the MCMC ranging method was later
utilized in linking of geosynchronous orbital debris tracks (Schneider 2011).

3.2 Orbital inverse problem

Orbital inversion comprises a problem of computing orbital parameters from astro-
metric observations. An orbit can be described using different parameter sets P (for
example, Keplerian, Cartesian, or Delaunay orbital elements). The most commonly
used are the Keplerian elements:

• semi-major axis a - half the major axis of an orbit’s ellipse,

• eccentricity e - describes the ellipticity of the orbit and can be expressed as

e =
√

1− b2

a2
,

• inclination i - angle between the orbital plane and the ecliptic plane,

• argument of pericenter ω - the angle from the ascending node to the object,
measured in the orbital plane,

• longitude of the ascending node Ω - angle between the line of nodes and the
reference direction (equinox point),

• mean anomaly M - angle describing position of an object in the orbital plane.

The inclination i, argument of the pericenter ω and the longitude of the ascend-
ing node Ω are illustrated in Fig. 4. The reference plane is the plane of the ecliptic
and the zero point of longitude is the equinox point. All the different orbital pa-
rameter sets are equivalent and can be transformed into each other. For example,
the transformation between the Keplerian elements and the Cartesian elements can
be found in Vallado & McClain (2001). Given the orbital parameters, an asteroid’s
future position can be predicted.

To find the orbital parameters, first the orbital inverse problem has to be solved
for the given astrometric positions ψ = (α1, δ1; ...;αN , δN)T . The solution to the
orbital inverse problem can be written as an a posteriori probability, using Bayes’
theorem:

pp(P) = C ppr(P) p(ψ | P) = C ppr(P) pε(∆Ψ(P)), (11)
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Figure 4: Illustration of Keplerian elements. Source: http://scienceworld.

wolfram.com

where:

• ppr(P) is the a priori probability density function,

• pε(∆Ψ(P)) is the observational error p.d.f. (usually being assumed Gaussian),
evaluated for the observed-minus-computed (O-C) residuals ∆Ψ(P),

• C = (
∫
p(P, ψ)dP)−1 is a normalization constant,

• P denotes osculating elements (x, y, z, ẋ, ẏ, ż)T or (a, e, i,Ω, ω,M0)
T at epoch

t0,

• ψ denotes a set of astrometric observations, consisting of R.A., Dec. pairs:
ψ = (α1, δ1; ...;αN , δN)T .

Extensive review of the orbital inverse problem can be found in Virtanen (2005),
Virtanen et al. (2001), and Muinonen et al. (2001). To solve the inverse prob-
lem expressed in terms of Eq. 11, Markov-chain Monte-Carlo methods are used.
The resulting distributions of orbital elements can then be summarized in terms
of maximum-likelihood orbital parameters and corresponding non-symmetric error
estimates.

3.3 MCMC ranging technique

MCMC ranging is a non-linear orbital sampling technique originating from the
statistical ranging technique which was developed at the University of Helsinki
(Virtanen et al. 2001, Muinonen et al. 2001). In MCMC ranging, a pair of spher-
ical coordinates, that is R.A.s, Dec.s, and topocentric distances (ranges) Q =
(ρA, αA, δA, ρB, αB, δB) at two chosen observation dates A and B are used as in-
version parameters. Next with the help of a multivariate Gaussian proposal dis-
tribution pt(Q

′,Qt) centered on the last accepted spherical coordinates Qt, new
candidate spherical coordinates Q′ are iteratively sampled producing candidate or-
bital solutions. Each candidate orbit is accepted or rejected based on the M-H
acceptance criteria (Eq. 8), where the acceptance coefficient is defined as:

a =
pp(P

′)

pp(Pt)

| Jt |
| J ′ |

. (12)
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J ′ and Jt are the Jacobians from topocentric coordinates to orbital parameters for
the candidate and the last accepted sample, respectively. P′ and Pt denote a set
of orbital elements, and pp is the a posteriori probability density function. The
generation of sample orbits is repeated until the initial starting point is ”forgotten”
and no longer influences the chain (the burn-in phase). The samples obtained in
the burn-in period are then removed from the final set. To shorten the burn-in
phase the starting orbit is picked to produce a good fit to the data (for example
least square orbit or MC orbit with a high p.d.f. value). In order to have better
chances of recovering multi-modal distributions, it is recommended to run more
than one Markov chain. Convergence diagnostics are performed after the sampling
is completed to ensure that the steady-state distribution has been reached. To
avoid manual tuning of the proposal density covariance, we have implemented an
automated version of the MCMC algorithm. In the automated version, we first run
’pre-runs’ (which could be considered as a burn-in phase) to the actual sampling, in
order to find adequate proposal density. That proposal density is computed based
on empirical samples from the pre-runs, and then updated in a manner similar to
that described in Haario et al. (1999):

p
(i)
t (Q′ | Q1, ...,Qn) ∼ N(Qt, c

2
dR

(i) + c2dεI), (13)

where R(i) is the empirical 6× 6 covariance matrix obtained from pre-run i from n
samples Q1, ...,Qn; c2d = 2.4/

√
d is a scaling factor that depends on the number of

dimensions d in the problem, and in our case d = 6, cd ≈ 0.97. This scaling factor
is optimized for M-H in the case of Gaussian targets and Gaussian proposals, for
more details see Gelman et al. (1996).

Convergence diagnostic have to be performed after the sampling is completed to
ensure that the steady-state distribution has been reached. Some additional checks,
e.g., difference in the maximum likelihood value obtained or in the obtained covari-
ance matrices between subsequent pre-runs can also be carried out. Convergence
diagnostics were designed to detect possible problems with the convergence to the
stationary distribution. It is recommended to proceed with caution and remember
that convergence diagnostics may detect possible problems but cannot guarantee
that the convergence has been reached.

3.4 Selected results

MCMC ranging was applied to a number of asteroids (paper I), and also used in
Earth impact probability computation (paper V). As an example application of the
method in Fig. 5 we plot the time evolution of the collision probability computed
based on short observational time intervals (maximum 6 astrometric positions, 0.6
day observational time interval) for asteroid 2008 TC3. Asteroid 2008 TC3 impacted
the Earth on October 7, 2008 and was the first asteroid to be observed and tracked
before the impact. We used the MCMC method to obtain orbital element distri-
butions for sets of observations with increasing observational time intervals (that is
including subsequently from 2 to 6 observation in a set). The collision probability
was then computed as:

Pc(τ) =

∫ R

0

dρ pp(ρ, τ), (14)
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where R is the radius of the planetary body and pp(ρ, τ) is defined as:

pp(ρ
′, τ) =

∫
dPpp(P)δD(ρ′ − ρ(P, τ)), (15)

where ρ(P, τ) is the minimum distance of the small body from the center of the
large (planetary) body, δD is Dirac’s function, P denotes orbital elements, pp is the
a posteriori p.d.f. of the orbital elements leading to a collision. τ is the impact in-
terval (time interval when collisions are possible) – here we used an impact interval
of Oct. 6-8, 2008. Including more than 6 observations led to collision probability
essentially equal to 1.0. The MCMC ranging led to obtaining very high impact
probabilities for the Earth-impactor 2008 TC3 based on very few observations and
a short time interval. The MCMC ranging method was further extended to sample
the astrometric noise together with the orbital elements for cases where the observa-
tional uncertainty is not known or cannot be assumed. The extended method allows
for treating each of the astrometric positions and relating uncertainties individually
and could be utilized in deriving astrometric biases of individual observatories in the
future. The improved method for collision-probability estimation could potentially
become useful in monitoring the Earth-impact probabilities for new discoveries.

Figure 5: Time evolution of collision probabilities for 2008 TC3 using MCMC rang-
ing generated orbits with Jeffreys’ a priori (n-body approach).

The MCMC ranging method was next implemented into OpenOrb package (pa-
per II). The average computing time for a set of orbits using the MCMC ranging
method on an ordinary dual core laptop is of the order of a few to a few tens of
minutes. The computation of collision probability is a bit more computationally
expensive and may take up to few days on an ordinary dual core laptop. This is
however not a problem given the modern technology and the possibility to perform
computation on small to medium computer clusters.

MCMC ranging is now also a part of the Gaia satellite data processing pipeline
(more in Sec. 5). In Fig. 6 the MCMC ranging method was used to illustrate the in-
fluence of the extreme Gaia accuracy on the resulting orbital-elements distributions.
We have selected a part of simulated observations (one transit data) for asteroid (4)
Vesta to demonstrate the collapse of orbital-element distributions with increasing
accuracy. As expected, the resulting orbital element p.d.f. collapses with improving
accuracy of the astrometric positions. A variation of the MCMC ranging method
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Figure 6: Sets of distributions each composed of 5000 possible orbit solutions for
the main-belt object (4) Vesta obtained from simulated Gaia data for epoch 2010
August 5.0 TDT. The distributions were obtained using 4 observations from a single
scan (observational time interval of 0.32 d). Different colors correspond to different
assumptions about the observational error (red σα,δ = 1.0 arcsec, green σα,δ = 0.1
arcsec, blue σα,δ = 0.01 arcsec and black σα,δ = 0.001 arcsec). The yellow dot
indicates the end-of-mission least-squares solution computed with the expected Gaia
data astrometric accuracy.
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was also utilized in the linking of geosynchronous orbital debris tracks (Schneider
2011).
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4 Application: Asteroid photometric parameters

4.1 Obtaining phase curves from traditional observations

An asteroid’s photometric parameters can be obtained from its phase curve. The
phase curve describes an asteroid’s apparent V magnitude at a distance of one as-
tronomical unit from the Earth and the Sun (also called the reduced magnitude) as
a function of solar phase angle α (the Sun-object-observer angle). The phase curve
is mostly linear, except at small phase angles, where the so-called opposition effect
occurs. At small phase angles, pores and pits introduce constructive interference in
multiple scattering among regolith particles, which results in brightness enhance-
ment due to coherent backscattering. Fitting a phase function to a set of reduced
apparent magnitudes and corresponding phase angles results in the determination
of the absolute magnitude and photometric parameter(s). The absolute magnitude
is the reduced magnitude at zero solar phase angle, and the photometric parameter
describes how steep the phase function is. The absolute magnitudes and photo-
metric parameters are connected to a number of other parameters such as asteroid
diameter, taxonomic type (Harris 1989, Lagerkvist & Magnusson 1990), geomet-
ric albedo, porosity, packing density, particle size distribution, and other physical
properties of the surface. The phase curve can therefore be useful for characterizing
an object’s regolith or atmosphere. Given an asteroid’s absolute magnitude, slope
parameter(s), and observing geometry, the apparent magnitude can be calculated.

Obtaining a phase curve is both time-consuming and complicated. It requires the
determination of an asteroid’s rotational lightcurves over a wide range of solar phase
angles (this typically means tens of observational nights spread over two months
(Buchheim 2010)) with high photometric accuracy (typically ±0.03). Moreover, the
data reduction process requires linking of an asteroid’s brightness between observing
nights (linking of comparison stars or all sky photometry) (Buchheim 2010). Broad
and dense phase-curve coverage is not easy to obtain. Ground-based observatories
are limited in the possible phase-angle α ranges. Main-belt asteroids do not reach
solar phase angles greater than 20–30◦, Jupiter Trojans display an even smaller
range of phase angles and Kuiper-belt objects are only observable at phase angles
smaller than 2◦ (Buchheim 2010). Asteroids possible to observe at large phase
angles are the NEAs during their close approaches to the Earth. Also satellites can
provide observations at large phase angles. The brightness of an asteroid is affected
by the phase angle, the asteroid’s shape, rotation and distances to the Earth and
the Sun. To obtain the phase curve influence of the shape and distances has to be
removed. The influence of distances can be removed by using the reduced magnitude
(Buchheim 2010):

V (α) = V − 5 log(RSunREarth), (16)

where V (α) is the reduced magnitude, and RSun and REarth are the asteroid-Sun and
asteroid-Earth distances. Those distances change very slowly and can be assumed
constant for a single observational night. The most significant changes in asteroid
brightness during a single observation night come from irregular asteroid shape and
its rotation. As the asteroid spins, it reflects different amounts of sunlight, to a
large part due to different cross-sections exposed to the observer. To remove the
influence of asteroid shape and rotation a single averaged measurement is reported
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for each observing night. The asteroid lightcurve is obtained using the technique of
differential photometry.

4.2 Calibration of Minor Planet Center photometry

We have made use of Minor Planet Center (MPC) photometry. MPC contains
sparse photometry in various filters. Most of the photometric data are of low preci-
sion (generally rounded to 0.1 mag) and low accuracy (rms magnitude uncertainties
of ± 0.3 mag are typical). The MPC data comprise photometric observations from
many sources (each having different systematic and random errors, sometimes vary-
ing with time). The photometric data are very numerous: about 73,000,000 individ-
ual, largely independent brightness measurements exist. For most asteroids there
exist hundreds of photometric measurements at different phase angles, geometries,
and rotational states.

The photometric data from ten observatories have been calibrated using accurate
broad-band photometry of asteroids observed in the course of the Sloan Digital Sky
Survey (SDSS) (Ivezić et al. 2001). The SDSS data were converted to the V -band
using equations derived by Rodgers et al. (2006). Most photometric observations
have been reported in the V and R bands. The latter can be converted, with
good accuracy using a mean V −R color index for asteroids (of +0.4 mag). Other
observations, such as those reported in Rodgers et al. (2006) cannot be so accurately
converted to the V band without knowledge of asteroids’ spectral characteristics.
By adopting mean color index corrections, we have introduced small systematic
errors into some of the photometric observations.

SDSS spans the brightness range 15 mag < V < 21 mag. Therefore photom-
etry of bright asteroids has not been calibrated as well as photometry of fainter
objects. Also, observations made near the magnitude limit of telescopes will tend
to be made when asteroids are brighter than average. In other words, asteroids
exhibiting significant lightcurve variation might only be observed near maximum
brightness. Because such observations also tend to be made when an asteroid is far
from opposition (and near the largest observable phase angle), some of the phase
curves we compute could be less steep than the true phase curves. We noted that
photometric observations from a given observatory exhibited time-dependent shifts,
sometimes exceeding 1 mag, that have probably arisen from programmatic changes
in brightness calibration methods. After correction of this effect, we computed O-C
magnitude residuals as functions of magnitude and rate of sky-plane motion. For
each of the observations, we established relationships between the O-C magnitude
residuals and the accurate V -band measurements (derived from SDSS). Then we
applied corrections to the raw data to place them on the accurate V -band system.
The procedure was iterated to convergence.

Hitherto, photometric observations have not been weighted. However, it is clear
that different observers achieve different photometric accuracy, and that photo-
metric accuracy declines as a telescope’s limiting magnitude is approached. To
compound the problem, it is known that small asteroids tend to be less spherical
than large ones, and thus exhibit lightcurves having greater amplitudes. Using the
large quantity of data we have in hand, it will be possible to separate the compo-
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nents of the photometric error budget, and thereby assign a realistic weight to each
observation. In this work we fitted phase functions to calibrated MPC photometry
for about half a million asteroids.

4.3 Phase functions

A number of different mathematical formulations for asteroid phase curves have
been developed. The H,G phase function was developed by Bowell et al. (1989)
and adopted by the International Astronomical Union in 1985.

In the H,G magnitude phase function, the reduced apparent magnitudes can be
obtained from:

10−0.4V (α) = a1Φ1(α) + a2Φ2(α)

= 10−0.4H [(1−G)Φ1(α) +GΦ2(α)] ,

(17)

where α is the phase angle, and V (α) is the reduced magnitude. The basis functions
Φ1, Φ2 are defined in terms of trigonometric functions:

Φ1(α) = w

(
1− 0.986 sinα

0.119 + 1.341 sinα− 0.754 sin2 α

)

+ (1− w)

(
exp(−3.332 tan0.631 1

2
α)

)
,

Φ2(α) = w

(
1− 0.238 sinα

0.119 + 1.341 sinα− 0.754 sin2 α

)

+ (1− w) exp

(
− 90.56 tan1.218 1

2
α

)
,

w = exp

(
− 90.56 tan2 1

2
α

)
. (18)

The coefficients a1 and a2 are estimated from observations using linear least squares.
The absolute magnitude H and slope parameter G, can then be obtained from:

H = −2.5 log10(a1 + a2), (19)

G =
a2

a1 + a2
. (20)

The H,G phase function is not valid for phase angles greater than 120◦. Different
authors criticized the H,G system for its inability to accurately describe asteroid
phase curves for low and high albedo asteroids (Belskaya & Shevchenko 2000).
Couple of other, less popular phase functions were developed, for example Akimov
(1988) and Shevchenko (1996) (Belskaya & Shevchenko 2000).

Two new phase functions (H,G1,G2 and H,G12) were developed recently by
Muinonen et al. (2010) to better fit asteroid phase curves and better predict appar-
ent magnitudes. H,G1,G2 is targeted at very accurate phase curves, and H,G12 can
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be used for asteroids with noisy photometric data. It was also shown in our treat-
ment of half a million asteroids (paper IV), that the H,G1,G2 often fails for noisy
data. The H,G1,G2 function will however be very useful for example for the Gaia
satellite, which will produce highly accurate asteroid photometry. Fitting H,G12

phase function is a robust method for obtaining absolute magnitude and slope pa-
rameter(s) for noisy data. Both of those functions give equal or better fits to the
data than the H,G function. In the H,G1,G2 magnitude phase function, the reduced
apparent magnitudes V (α) can be obtained from (Muinonen et al. 2010):

10−0.4V (α) = a1Φ1(α) + a2Φ2(α) + a3Φ3(α)

= 10−0.4H [G1Φ1(α) +G2Φ2(α) + (1−G1 −G2)Φ3(α)] ,

(21)

where the absolute magnitude H and slope parameters G1, and G2 are:

H = −2.5 log10(a1 + a2 + a3), (22)

G1 =
a1

a1 + a2 + a3
, (23)

G2 =
a2

a1 + a2 + a3
. (24)

The coefficients a1, a2, a3 are estimated from the observations using linear least
squares. The basis functions Φ1(α), Φ2(α), and Φ3(α) are defined as:

• For 0◦ < α ≤ 7.5◦:

– Φ1(α) = 1− 6
π
α;

– Φ2(α) = 1− 9
5π
α;

– Φ3(α) is defined using a cubic spline as defined in Table 2.

• For 7.5◦ < α ≤ 30◦:

– Φ1(α) is defined using a cubic spline as defined in Table 1;

– Φ2(α) is defined using a cubic spline as defined in Table 1;

– Φ3(α) is defined using a cubic spline as defined in Table 2.

• For 30◦ < α ≤ 150◦:

– Φ1(α) is defined using a cubic spline as defined in Table 1;

– Φ2(α) is defined using a cubic spline as defined in Table 1;

– Φ3(α) = 0.

The first derivatives (per radian) at the ends of splines are: Φ′1(
π
24

) = − 6
π
,

Φ′1(
5π
6

) = −9.1328612× 10−2, Φ′2(
π
24

) = − 9
5π

, Φ′2(
5π
6

) = −8.6573138× 10−8, Φ′3(0) =
−0.10630097, Φ′3(

π
6
) = 0.

In the H,G12 magnitude phase function, the G1 and G2 from the three-parameter
phase function are replaced by a single slope parameter G12 which relates to the G
slope parameter in the H,G system (though there is not an exact correspondence).
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Table 1: Knots for splines used in Φ1 and Φ2.
α (deg) Φ1 Φ2

7.5 7.5 ×10−1 9.25 ×10−1

30.0 3.3486016 ×10−1 6.2884169 ×10−1

60.0 1.3410560 ×10−1 3.1755495 ×10−1

90.0 5.1104756 ×10−2 1.2716367 ×10−1

120.0 2.1465687 ×10−2 2.2373903 ×10−2

150.0 3.6396989 ×10−3 1.6505689 ×10−4

Table 2: Knots for spline used in Φ3.
α (deg) Φ3

0.0 1
0.3 8.3381185 ×10−1

1.0 5.7735424 ×10−1

2.0 4.2144772 ×10−1

4.0 2.3174230 ×10−1

8.0 1.0348178 ×10−1

12.0 6.1733473 ×10−2

20.0 1.6107006 ×10−2

30.0 0

The reduced flux densities can be obtained from (Muinonen et al. 2010):

10−0.4V (α) = L0(G1Φ1(α) +G2Φ2(α) + (1−G1 −G2)Φ3(α)) (25)

where:

G1 =

{
0.7527G12 + 0.06164, if G12 < 0.2;
0.9529G12 + 0.02162, otherwise;

G2 =

{
0.9612G12 + 0.6270, if G12 < 0.2;
0.6125G12 + 0.5572, otherwise;

(26)

H = −2.5 log10 L0; (27)

and L0 is the disk-integrated brightness at zero phase angle. The basis functions are
as in the H,G1,G2 magnitude phase function. Coefficients L0 and G12 are estimated
from observations using non-linear least squares. Phase curve fitting for H,G1,G2

and H,G phase functions can be reduced to linear least square fitting via shifting
to a flux domain. The flux for the ith observation is computed using:

Li = 10−0.4Vi ,

σ
(L)
i = Li(100.4σ

(V )
i − 1), (28)

where σ
(V )
i are the standard deviations of the magnitude measurements. The χ2-

value to be minimized here with respect to the parameters a is

χ2(a) =
N∑
i=1

[Li − Li(αi, a)]2

[σ
(L)
i ]2

. (29)
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The computed disk-integrated brightnesses are expressed via Na basis functions
Φ1(α),Φ2(α), . . . ,ΦNa(α):

Li(αi, a) =
Na∑
l=1

alΦl(αi). (30)

In the case of H,G12, fitting cannot be reduced to linear least squares and nonlinear
techniques have to be employed.

4.4 MC and MCMC error computation

Errors in the absolute magnitude and slope parameters are known to be non-
Gaussian. Absolute magnitude and slope parameter(s) error estimation in the case
of H,G and H,G1,G2 is carried out using Monte-Carlo sampling. Equations 17 and
21 are linear with respect to a1, a2, or a1, a2, a3 and result in Gaussian errors in
those parameters. Converting it to absolute magnitude and slope parameters with
the help of non-linear Eqs. 19, 20, 22, 23, 24 results in non-linear errors in the H,G
or H,G1,G2 parameters. The least squares solution and error covariance matrix of
the parameters a can be utilized to obtain errors in the H,G or H,G1,G2 parameters.

With the help of multi-normal distribution with a mean equal to the previously
obtained a parameters and covariance equal to error covariance of a parameters
from the least squares solution, we generate a sample of a1, a2 or a1, a2, a3 using
a multi-normal random number generator. The ai samples are then converted to
H,G or H,G1,G2 samples using either Eqs. 19 and 20 or 22, 23 and 24. Next, the
samples are ordered in descending goodness of fit and then 68.27% (equivalent to
1-σ) and 99.73 % (equivalent to 3-σ) error cut-offs are computed, resulting in a list
of subsamples. The limiting (maximum and minimum) H,G or H,G1,G2 parameters
are selected from that list and the two-sided errors are computed.

To estimate absolute magnitude and slope parameter errors in the case of H,G12,
we use a Markov-chain Monte Carlo method. General Monte Carlo is not applicable
here as Eq. 25 is non-linear and the errors in the fitted parameters, that is in this
case of L0 and G12 cannot be assumed Gaussian. We start a single Markov chain
in the least-squares point for L0, G12, and make use of a multivariate Gaussian
proposal distribution, where an error covariance matrix for L0, G12 is taken from the
least-squares solution. After obtaining a substantial number of different solutions,
two-sided errors are computed based on the equivalents of the 1-σ and 3-σ cut-offs
as in the H,G and H,G1,G2 phase functions.

4.5 Selected results

Markov-chain Monte Carlo and Monte Carlo methods were used to assess phase
curve photometric parameters and their uncertainties. Absolute magnitudes and
photometric parameters were derived for half a million asteroids by fitting phase
curves to Lowell Observatory photometric database. The Lowell Observatory pho-
tometric database contains the largest set of asteroid phase curves currently known.
Phase curves are fitted to all the data available without making an assumption on
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any of the photometric parameters (in other databases slope parameter G is often
assumed to be G = 0.15 or G = 0.18). In particular we made use of the novel phase
functions, which are an improvement over the old H,G phase function. Fitting
the phase functions to a large number of asteroid families suggests homogeneity of
photometric parameters in asteroid families. This is yet another piece of evidence
(next to color and taxonomic homogeneity) supporting the idea of asteroid families
originating from homogeneous parent bodies disrupted by collisions. One exception
from this rule is the Nysa-Polana family, which was previously indicated to be com-
posed of two different classes of asteroids, perhaps originating from different parent
bodies. In the current analysis, the Nysa-Polana family also shows separation into
two distinct groups (see Fig. 2).

Figure 7: Proper elements for main-belt asteroids color-coded with the G12 param-
eter.

Figure 7 presents the distribution of proper elements for the main-belt asteroids
color-coded with the G12 parameters. The visible clumps correspond to asteroid
families, which tend to have similar G12 photometric parameters.

The derived photometric parameters are also found to correspond to asteroid
taxonomic complexes and colors. This correlation is investigated and suggest that
some C-complex asteroid families can be identified using this correlation and Bayesian
statistics. As an example, we indicate the Dora family having the mean G12 = 0.7
and standard deviation σG12 = 0.18, which results in a high C-complex preponder-
ance probability. The distribution of the photometric parameter G12 for the Dora
family is plotted in Fig. 8. The over plotted probability functions correspond to
C, S, and X taxonomic complexes. Most of the Dora family asteroids must have
originated from the C-complex distribution. It is clear that phase curve parameters
correspond to many of an asteroid’s surface properties. The correlations between
those parameters are however poorly known today and will have to be investigated
further in the future.

The H,G1,G2 and H,G12 are to be proposed to the IAU to replace the H,G
function together with a list of absolute magnitudes and slope parameters for half
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Figure 8: Distribution of the G12 photometric parameter for the Dora family.

a million asteroids. We have also developed an online open-use Java applet, named
”Asteroid Phase Function Analyzer” computing absolute magnitudes and slope pa-
rameter(s) of all the three phase functions. This software will be further developed
for the Gaia processing pipeline.
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5 Relevance to Gaia mission

The MCMC ranging described in Chapter 3 has been implemented into the Gaia
data-processing pipeline. The method is applicable to poorly observed, single-
apparition asteroids (for example, new discoveries) and will be used in short-term
processing of the Gaia data. Gaia will provide sparse high accuracy data sets re-
quiring orbital analysis based on Bayesian statistics in the early processing. The
end-of-mission (after 5 years of operation) average number of observations per aste-
roid is going to be around 60, each single scan containing 3-4 observations. Extreme
Gaia astrometric accuracy (20 − 200 µas compared to current ground based accu-
racy of 0.5 as) will lead to much improved orbits. For single-scan observations, it
has been shown that Gaia observations will lead to a substantial collapse of orbital-
element p.d.f.s based on methods such as MCMC ranging. MCMC ranging also has
a potential of contributing to other problems such as for example performing dy-
namical classification, identifying asteroids, and aiding the recovery of lost objects
after the mission is over. For extensively observed asteroids during the course of
the Gaia mission (long-term processing), the standard linear approximation based
on nonlinear least squares will provide the differentially corrected orbital elements
and their covariance matrices based on partial derivatives. It is expected that Gaia
will produce around hundred times better orbits than currently available leading to
end-of-mission semimajor axis accuracy as good as σa = 10−9 AU.

The photometric phase curves and software described in chapter 4 will be utilized
in the Gaia pipeline. The H,G1,G2 function will be very useful for the Gaia satellite,
which will produce highly accurate asteroid photometry. Expected phase angle
coverage for Gaia is from about 8◦ to 36◦ for the main-belt objects and from 8◦ to
90◦ for the near-Earth objects. This should result in a decent phase curve coverage
and estimation of photometric parameters especially for the NEAs. Most probably
the sparse photometry (corresponding to random points on asteroids lightcurve)
obtained by Gaia will require simultaneous spin, shape, and phase curve modeling.
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6 Summary of papers

6.1 Paper I: Oszkiewicz D. A., Muinonen K., Virtanen J.,
Granvik M., Asteroid orbital ranging using Markov-
Chain Monte Carlo. Meteoritics & Planetary Science 44,
1897-1904 (2009)

In paper I, we introduce a new orbital inversion method, based on the Metropolis-
Hastings algorithm. Similarly to MC ranging, the method is targeted at asteroids
with short observational arcs (such as for example new discoveries) and two or more
observations. The basics of orbital inverse problem expressed in Bayesian statistics
are reviewed. The method is then applied to three objects from different dynamical
groups, near-Earth, main-belt, and transneptunian objects. Possible issues related
to tuning the algorithm are also described. We compare effectiveness of MCMC
ranging versus MC ranging method. The method is specially important for NEAs
requiring impact probability computation based on short observational arcs.

6.2 Paper II: Granvik M., Virtanen J., Oszkiewicz D. A.,
Muinonen K., OpenOrb: Open-source asteroid orbit
computation software including statistical ranging. Me-
teoritics & Planetary Science 44, 1853-1861 (2009).

Paper II introduces an open-source orbit computation package called OpenOrb.
The tool includes the MCMC ranging method.

6.3 Paper III: Oszkiewicz D. A., Muinonen K., Bowell E.,
Trilling D., Penttilä A., Pieniluoma T., Wasserman L.
H., Enga M.-T., Online multi-parameter phase-curve
fitting and application to a large corpus of asteroid pho-
tometric data. Journal of Quantitive Spectroscopy & Radia-
tive Transfer 112, 1919-1929 (2011)

Paper III introduced an online java applet called Asteroid Phase Function Analyzer
for computing absolute magnitudes and slope parameters using three different phase
functions: the H,G phase function, the H,G1,G2 phase function, and the H,G12

phase function. The tool also includes non-Gaussian error analysis using Monte
Carlo methods. We give an overview of phase functions, and describe numerical
methods used for the Least Squares solution and Monte-Carlo error estimation. We
describe the software and subsequent packages. We apply the software to about half
a million of asteroids. We report photometric parameters for the first ten numbered
ones and show typical phase curves obtained from the Lowell Observatory data set.
We discuss possible homogeneity of slope parameters within dynamical families and
taxonomic classes. We find a correlation of family derived slope parameters G1 and
G2 with median family albedo. We plan to present the obtained list of absolute
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magnitudes and slope parameters for the half a million of asteroids to the IAU at
the General Assembly. The results will also be made publicly available at that time.

6.4 Paper IV: Oszkiewicz D. A., Bowell E., Wasserman L.
H., Muinonen K., Trilling D., Penttilä A., Pieniluoma
T., Asteroid taxonomic signatures from photometric
phase curves. Icarus 219, 283-296 (2012)

Paper IV investigates the correlation of the photometric parameter G12 and tax-
onomy. Photometric parameters computed in paper IV are used along with spec-
tral classification of asteroids to derive G12 distributions for the main taxonomic
complexes (C, S, and X). Based on the obtained G12 distributions for taxonomic
complexes and G12 values for individual asteroids, we compute probabilities of in-
dividual asteroids of belonging to C, S, and X complexes. Taxonomic complex pre-
ponderance in asteroid families is then predicted and compared to earlier findings
in the literature. We continue presenting compositional fractions of the taxonomic
complexes in the main belt. This paper constitutes the widest exploration of the
taxonomy-slope parameter correlation so far.

6.5 Paper V: Oszkiewicz D. A., Muinonen K., Virtanen J.,
Granvik M., Bowell E., Modeling collision probability
for Earth-impactor 2008 TC3. Planetary & Space Science,
in press.

In paper V, we further develop the MCMC method and propose an automatiza-
tion procedure for tuning of the proposal density. We review convergence statistics.
Further, we apply MCMC ranging method to asteroid 2008 TC3 to obtain a distri-
bution of possible orbital elements based on maximum 6 observations (0.06 day time
interval). Based on the orbits obtained, we study the evolution of the Earth-impact
probability with increasing observational arc and different assumptions for the ob-
servational noise. We conclude that we could predict the impact of 2008 TC3 aste-
roid with very high (approx. 95%) probability based on 6 observations and 0.5 arc
seconds noise assumption. We highlight the importance of the collision-probability
methods based on Bayesian statistics for asteroids with short observational arcs
and short impact notice. We investigate the sensitivity of our collision probability
computation to the noise assumption and propose a new sampling technique, which
includes astrometric uncertainty as an inversion parameter.

6.6 Author’s contributions

The author of this thesis developed the MCMC ranging technique originating from
MC ranging. The author investigated applications of this method (paper I and
V) to the orbital computation problem and collision probability estimation. The
author implemented the method first in Fortran95 in OpenOrb package (described
in paper II) and then initiated implementation in Java for the needs of the Gaia
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mission. In papers I and V, the author is responsible for the application of the orbit
computation techniques to the example cases of the selected asteroids as well as for
illustrating and describing the results. In paper III the author was responsible for
the implementation (Java) of the online software for fitting asteroid phase curves.
The author has also been responsible for applying the software and processing the
vast photometric database (containing data for about half a million of asteroids) at
96-core computer cluster ”Javelina” at the Northern Arizona University. In papers
III and IV, the author was also responsible for applying the software to asteroid
families and taxonomic classes. In paper IV the author performed the taxonomic
analysis of asteroid families based on the G12 slope parameters. The author is
responsible for performing the taxonomic complex probability computations, and
illustrating and describing the results. Papers I, III, IV, V were written by the
author except for section 5 (Photometric data and data calibration) and parts of
the conclusions in paper III.
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M., Hestroffer, D., Mouret, S., Thuilot, W. & Virtanen, J. (2007), ‘The Gaia
mission: Expected applications to asteroid science’, Earth Moon Planets 101, 97–
125.

Milani, A. (1999), ‘The asteroid identification problem. I. Recovery of lost asteroids’,
Icarus 137, 269–292.

Milani, A., Gronchi, G., Vitturi, M. & Knežević, Z. (2004), ‘Orbit determination
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