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Regular Approximations through

Labeled Bracketing (revised version)
ANSSIYLI-JYRA

15.1 Introduction

Regular approximations for context-free languages have a wide use as lan-
guage models in natural language and speech processing. Since the famous
work by Pereira and Wright (1991), several approximation methods have be-
come available (cf. Nederhof 2000). However, there are further approxima-
tion methods fosstructured languagewhose strings indicate the constituent
structure by means of brackets. Such methods may have a wide application
area because of the recently renewed interest in structured languages in for-
mal language theory (e.g. Kappes 1998), in XML document processing (e.g.
Berstel and Boasson 2000), in finite-state methods in NLP (Roche 1996, Yli-
Jyra 2003a), and in dependency syntax (Ylial2003b).

A good regular approximation for context-free grammars should have at
least the following properties: (i) Itis well understood. (i) It admits a compact
representation that is so small that it can be stored into realistic computers (a
compact representation consists of sub-automata that are combined lazily).
(iii) It assigns bracketings with an accuracy that is practically sufficient for
replacing the original parsing grammar. (iv) Its representation is easy to in-
spect and to modify (Nederhof 1997). (v) Parsing with the approximation
does not lead to a combinatorial explosion from the compact representation.

The exactness up to any predefined center-embedding depth is an im-
portant property when we measure accuracy of approximations that assign
bracketings. Schematically, in a phraseiy], the substring3 is a center-
embeddingif « # X\ andv # A. Thecenter-embedding deptheasures how
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many phrases are nested as center-embeddings into each otludaseX (su-
perset) approximatioifNederhof 2000) is said to bexact up to any given
center-embedding depthf it rejects (accepts) a string only if w is rejected

(accepted) by the original grammar or if the center-embedding depthiof
beyond the bound.

A paradox in the earlier approximation methods is that they fail to com-
bine a small compact representation with a sufficient exactness. For exam-
ple, the approximation by Mohri and Nederhof (2001) admits a very compact
representation, but it is a very coarse superset approximation for parsing pur-
poses. The approximation by Johnson (1998) is exact up to any given depth
of center-embedding, but the size of its compact representation grows very
fast compared to the number of rules in the source grammar (Nederhof 2000:
Figure 12: the methods LC2,LC3,LC4). Nevertheless, it would be interesting
to find regular approximations that combine a small compact representation
with a sufficient bound for exactness. Such grammars would be sufficient
for context-free parsing under a reasonable performance restriction for the
center-embedding.

This paper presents an approximation method that is based on @epew
resentation theorerfor context-free languages. According to it, any context-
free language can be represented as a homomorphic image of an intersection
of a set ofconstraint languageslefining properties of valid labeled brack-
etings. The intersected languages of the new theorem differ from the ones
used in the famous theorem by Chomsky andisdnberger (1963). If these
constraint languages are restricted to make them regular, we obtain a new
kind of compact representation for regular approximations. The resulting ap-
proximation can be chosen to be either a subset or a superset of the original
context-free language.

The subset and superset approximations obtained in this paper solve the
paradox between the practical size of the representation and the sufficient
bound for exactness. The approximations have properties (i) — (iv). As to
property (v), we do not know yet how the current approximation behaves.
The compact representations for the approximations constitute a subclass of
finite-state intersection grammars (FSI®) general, FSIGs have a danger of
combinatorial explosion during parsing (Tapanainen 1997), but it is tantaliz-
ing to see whether the currently presented subclass admits parsing algorithms
that eliminate the problem.

The paper is structured as follows. In Section 15.2, we will introduce
context-free bracketing grammars (CFBGSgction 15.3 discusses a constraint-
based approach to language specification. This approach gives filse to
CFBGs which are introduced in Section 15.4. Section 15.5 contains a repre-
sentation theorem that connects flat CFBGs with CFBGs. In section 15.6, we
will explain how various regular approximations can be obtained from a flat
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CFBG. We conclude in Section 15.7.

15.2 Generating Labeled Bracketings
15.2.1 Extended Context-Free Grammars

We have chosen extended context-free grammars (ECFGs) as the starting
point, because this leads to wider applicability of the results. ECFGs were
introduced by Thatcher (1967). It is well known that they generate exactly
the context-free languages. Furthermore, it could be shown that for any stan-
dard context-free grammar there exists a strongly equivalent ECFG. Formally,
ECFGs are defined as follows:

Definition 1 If E is aregular expressior{Salomaa 1973), itfanguageis
denoted with’.(E'). The empty string is\. WhenL is a language, expression
L? denotes the languadeU {\}.

Definition 2 Extended  context-free grammaris a  quadruple
G = (Vn,Vp,P,S), whereVy is called nonterminal alphabetnd Vi
terminal alphabetS € Vy is called thestart symboland P is a finite set
of production schemas- one for each nonterminal; the alphab&ts and
Vr are finite and disjoint and their unidii = V U Vi is called thetotal
alphabet each production schema is of the fotkh — Ex, whereX is in
VN andEx is a regular expression over the alphaliet

Let w andw’ be strings ovel’. We say thatw ¢ w’ or w’ is directly
derivable fromw in grammarG if there are strings:, v,z € V*, a non-
terminal X € Vy and a production schem& — FEx € P such that
w = uXv, w = urvandz € L(Fx). ThelanguageL(G) generated by
Gis{w|w €V}, 83 Tw}, wheres + denotes the transitive closure of the
relation & .

15.2.2 Context-Free Bracketing Grammars (CFBGS)

We want to encode constituent structures by means of labeled bracketing.
For standard CFGs, this could be accomplished with CFGs that generate the
structured context-free language$ Ritchie and Springsteel (1972). How-
ever, we defineontext-free bracketing grammabgcause this new class of
grammars gives us more flexibility.

Definition 3 A context-free bracketing grammar (CFBG)an ECFGG =
(Vn,Vr, P, S), where
* Vy contains three disjoint subsets:

* N is thgset obasic nonterminals
» N ={X|X € N} is the set ofeft-branching nonterminals

- N = {)_()|X € N} is the set ofight-branching nonterminals
= V7 is the set of terminal symbols containing five disjoint subsets:
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* B ={[x|XeN}andBr ={]x | X €N} are, respectively, the set
of left square bracketand the set ofight square brackets
» Bi={(x|XeN}andB, ={)x | XN} are, respectively, the set
of left angle bracketand the set ofight angle brackets
. EZVT—(BLUBRUBIUBT)
= P contains three disjoint sets of production schemata:

{(X—  Eg)x|X e NandL(Eg) C (N?)(SUN)*  }U
(X =[x Ex]x|X € N andL(Ex) C (N?)(SUN)*(N?)} U
(X— (xBx |XeNandL(Ex)C  (SUN)*(N?)L

CFBGs generateontext-free bracketing languages (CFBLshich are
properly included into the context-free languages.

Definition 4 LetGy = (N, %, Py, S) be an ECFG. Without loss of genericity
we can assume that for eveky € N there are new symbol?, f, [x,]x, (x,
and) x such that they do not belong fé U X.

The canonically obtained CFBGY = (V, Vr, P, S) is constructed as
follows: The set of basic nonterminalé fixes, by Definition SN, ﬁ, By,
Bg, B,andB,. NowVy = NUN U N andVy = XU By UBRrU B, UB,.
Let the set of production schem#sbe {X — [xEx]x | X — Ex €
PU{X = 0x | XeNIU{X — (x0| X € N}

Let h; be the homomorphisrh; : Vi — ¥* such thathy(a) = a for
everya € ¥, andhy (Vp — X) = A

Theorem 1 Every context-free languagg’ is a homomorphic image of a
CFBL generated by a canonically obtained CFBG.

Proof. Let Gy be an ECFG generating/, andG the CFBG canonically ob-
tained from grammaf,. Obviously,L’ = hy(L(G)). O

Recognition of bracketed strings with a CFBG is easy: the process
reduces to validation of the constituent structure indicated by the bracket-
ing. However, in many practical settings, the strings are not bracketed in ad-
vance. All the labeled bracketings for an unbracketed striage obtained by
computingL(G) N ki ' (w). The resulting language is context-free, because
hi'(w) is aregular language and the context-free languages are closed under
intersection with regular languages (Harrison 1978).

Historical note 1 Other kinds of grammars that generate structured languages
have been defined in the literature. So-caltedcketed context-free gram-
mars(Ginsburg and Harrison 1967) differ from CFBGs in two ways: in them,
(i) the rules are productions rather than production schemata (i.e. the right-
hand sidew of each grammar rul& — w is a string rather than a regu-

lar expression), (ii) there may be several productions for each nonterminal;
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they are identified with different brackets. Other structured grammars include
the Chomsky-Sditzenberger grammaxgf. Berstel and Boasson 2000gry
simple grammargKorenjak and Hopcroft 1966parenthesis or parenthe-
sized grammar@McNaughton 1967, Salomaa 1978)ulti-parenthesis gram-
mars (Ginsburg et al. 1975)generalized parenthesis grammdmakahashi
1975), bracketing transduction grammaf$Vu 1995),bracketed contextual
grammars(Kappes 1998) andML grammargBerstel and Boasson 2000).

15.2.3 CFBGs that Generate Reduced Bracketing

In canonically obtained CFBGs, the brackets occurring on both sides of each
phrase force all the embedded phrases to constitute a center-embedding.
These extra center-embeddings involve a disadvantage from the practical
point of view, especially when the language is approximated through push-
down automata whose storage size is restricted.

Definition 5 In full bracketing no bracket is shared by nested constituents.
In reduced bracketinga bracket symbol is never repeated, and two kinds
of brackets are used; square brackets are balanced while the angle brackets
aren’t. The following two lines illustrate the two formats for bracketed strings:

[[[[[a]o]c]d][e][[f1] glhlé[[i (k[ ml]]In]]]
[ a)b)e)d)[e][(f ] g(h{i([j(k({{m |n ]

A repeated square bracket on the upper line corresponds to only a single
square bracket on the lower line. To maintain the balanced square bracketing
on the lower line, some of the remaining brackets have been changed to angle
brackets. The important thing is that the format of the upper line is easily
restorablefrom the lower line (using a deterministic linear-time algorithm).

So, we can say that the two bracketings denote the same constituent structure.

Definition 6 Define rational transductionst : V* — V* as follows:

s(w) = 3—(@, if w= XvforsomeX € N,veV*;
w, otherwise

Hw) = v)—(>, if w=vX forsomeX € N,v e V*;
~ |lw, otherwise

Theorem 2 For every canonically obtained CFB& = (Vi,Vr, P, S)
there exists a CFBG = (V, Vr, P’, S) that uses reduced bracketing so
that L(G) is restorable fromL(G").

Proof. For every production schem@& — [xFEx]x € P, let E’y E'; and
E’)_() be regular expressions denoting, respectively, the languages's;))),
s(t(L(Ex))) andt(L(E<))). The set of production schematd is con-
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structed as follows:
P'={X—~ E.x|XeN}u
{X - [XEY]x | X eN}U
-
{X*)<XE/)—(> | X € N}
Itis easy to see that the phrases that immediately contain square brackets dis-
allow repeating square brackets in those immediate constituents that are in the
outermost positions inside the local brackets; in the outermost positions the
immediate constituents switch to “widow” angle brackets. Thus, the resulting
bracketing is reduced.
Finally, it remains to be shown that the full bracketing is easily restorable
in each string. For each angle bracket, the respective pair should be inserted
next to the square bracket that embraces the angle-bracketed constituent. It

is easy to see that this can be done for each bracketed string by means of a
deterministic linear-time algorithm. a

Historical note 2 The historical roots of the reduced bracketing goes back
to the ideas of Krauwer and des Tombe (1981) or even further (cf. Chom-
sky 1963: Section 4). According to Nederhof (2000), similar ideas have been
put forward by Langendoen and Langsam (1987), Pullman (1986), Black
(1989), Johnson (1996). The method by Johnson (1996) applies only to bi-
nary context-free productions, while our method is more general and applies
to production schemas.

15.3 A Language Representation via Intersection

Our goal is to eliminate rewriting that is based on rewriting rules and to de-
fine a new representation for CFBLs using the intersection operation. One
technique for representing context-free languages by means of intersection is
given by the Chomsky-Sétizenberger Theorem.

Definition 7 The Dyck languagdi.e. semi-Dyck languagaccording to Har-
rison (1978))D,, over the alphabet,,U R,,, whereL,, = {[, [z, .-, [»} @and

R, ={]1,]2,---,|n} is the language generated by the context-free grammar
S—=A[SS[ LS| [2Sl2] - | [nS]n-

Theorem 3 (Chomsky and Schitzenberger 1963) Every context-free lan-
guagelL is a homomorphic image of the intersection of a Dyck langu@ge
and a regular languagé®.

If a grammarG is in the Chomsky normal form, it is easy to construct
an equivalent representatiéa(D N R). The homomorphisni, substitutes
brackets either with or with the letters of.. The strings ofD N R are brack-
eted so that each bracket indicates either a terminal symbol or a production.
Intuitively, the regular languag® takes care of local properties. The Dyck
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languageD, in turn, takes care of non-local properties. A detailed proof can
be found e.g. in Salomaa (1973).

The Chomsky-Sdiitzenberger representation eliminates the need for lan-
guage specific rewriting rules. It describes all the properties of the context-
free language using constraints on strings. However, in order to imple-
ment parsing of CFBG in this way, we have to use two morphisims,
and hq, which results in an unnecessarily complex formula{D N R N
hy ! (hy (w)))

Definition 8 Given an alphabet” and language€’, Lc, Re C V*, thecon-
text restriction constrainC' = Lc¢ _ Re (Koskenniemi 1983) denotes the
language/* — (V* = V*Le)CV*UV*C(V* — ReV™)).

Let the homomorphisms : (L, U R,,)* — {[1,]1)* be defined in such a
way thaths(L,) = {[1 }andh3( ») = {]1}. Denote the inverse homomor-
phic imageh; ' (D) with D.

Theorem 4 (Wrathall 1977) Any Dyck language,, equals to an intersec-
tion of D andn context restriction constrainfs = |[; D A1 <i<n.

Wrathall's theorem demonstrates that bracket labels can be matched using
distributed constraints instead 6f,. In the following section, we use other
kinds of distributed constraints to achieve the same effect.

15.4 Flat CF Bracketing Grammars (FCFBGS)

The Chomsky-Sditzenberger theorem involves a hidden structured lan-
guage. There is, however, a direct way to represent CFBL by means of
constraint languages.

Definition 9 Let the homomorphismy : V3t — {[1,]1 }* be defined in such
away thathy(Br) = {[1}, ha(Bgr) = {]1}, andhs(X U B; U B,) = {\}.
The languagé, ' (D, ) is denoted withD’. Substitutionf; is a mapping from
(V U{A})* to subsets of* defined so that it replaces the special symhol
with the languageD’.

Given an alphabeVl” and regular expressiorfsc, Re, C over V U {A},
the bracketing restriction constraingLc¢ _ Rc# = C denotes the lan-
guageL(#Lc _ Re# = C) = {v | v € D'A Vz(x € D' Av €
fi(L(Le)x L(Re)) = = € f1(L(C)))}. When L(Lc) = V*Lb and
L(Rc) = RbV*, such thatl.b C (B, U B;) andRb C (Bgr U B,.), the con-
straint#Lc _ Re# = C can be written more conveniently 46 _ Rb = C.

A flat CFBGis a tripleG = (N, Vr, K), whereN is a finite set obracket
labels Vr is a finite alphabet, and’ is a finite set oforacketing restriction
constraints AlphabetV contains five disjoint subset®;, = {[x|X € N},
Br = {]X|X S N}, B, = {<X|X S N}, B, = {>X|X € N}, and

= Vpr — (Br U BR U B; U B,.). The languagd.(G) C V;: described
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byG is mKIEKL(Kz)
— —
In the following, we assume that alphabéts, Vo, N, N, N, By, Bp,
By, B, ¥ are defined by the context.

Definition 10 Substitutionf, is a mapping fron to (V U{A})* defined as

follows: . —
A>X if X € N;

[x Alx If X eN;
(xA  ifXeN,;
X otherwise
The mappingf is extended to regular expressions as folloyfisg\) = X;

f20) =0; fa(zy) = fa(@) f2(y); f2(a7) = fa(2)"; fa(aly) = fa(2)|f2(y)-

A canonically obtained flat CFBG" = (N, Vr, K) is associated with
every CFBGG = (Vw,Vr, P, S) as follows: N is the basic nonterminal
alphabet of7. Let

K={ #_# = f2(5)} U

{ [X,]X :>f2(Ex) |X€N7X—> [XEX]X S P}U

{Br _)x = fo(Bg) | X€EN,X— Eg)x € P}U

{(x_Br= fo(Bg) | XeN,X— (xBx € P}
Example. Let G; be a CFBG with the start symbgé! and the following set
of production schemata:

S — [¢NP VP|g

VP — [wViw][wV NPy
NP — [wpJim]ne | [np Suenp
V. — [vranly

These production schemata and the start symbgile rise to the following
set of bracketing restriction constraints:
#_# = [A]s
s _ls = [npAlnplvpAlve
ve_lve = [VAJv | [VA]v[neAlne
[Ne_I]ne = Jim|Sue
v_Jv = ran

fa(X) =

15.5 Representing CFLs with FCFBGs

Lemma5 The languagesD’ and L(# _ # = f»(S)) are generated
by ECFGs. Furthermore, for each bracket lah®l € N, the language
L([x _]x = f2(Fx)) is generated by an ECFG.

Proof. Let Ex = Uxyven xzv[xA Jy. D’ is generated by an ECFG
Gp = ({A}, Vr, Ppr, A),wherePp = {A — A\AA|X|B;|B,|BLABRr}.
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L(# _ # = f2(9)) is generated by an ECFG4 = ({S, A}, Vp,Py,S),
WhereP# = { S — [SA]SH A — /\‘AA|E|B[‘B,|BLABR } L([X _ ]X
= f2(Fx)) is generated by an ECFGx = (N U {A},Vr, Px,A),
wherePy = {A — )\|AA|E|B[|BT‘E¢|N} U {X — [XEX]X} U {Y —
[vAly | Y €N, Y # X}. 0

Lemma6 Let G = (N,Vr,K) a flat CFBG canonically obtained from
a CFBGG = (Vw,Vr, P, S) that is canonically obtained from an ECFG.
L(G") = L(G).

Proof. We first show that the languadgG’) is generated by an ECFG. By
Lemma 5, each constraiif([x _ ]x = f2(Ex)) is generated by an ECFG
Gx. The intersectiomx ey L(Gx) is generated by an ECFGy = (VN U
{A}, Vp, Py, A), wherePy = {A — ANAA|X|B|B,;|Ex|N} U{X —
[xEx]x | X € N}. The intersectiorl(G’) of L(Gn) andL(Gy) is gener-
ated by a CFB@Y" = (Viy, Vp, P', S), whereP’ = {X — [xEx|x | X €
NIU{X—->0x|Xe€ <N}U{X —(x0| X € ﬁ}. Becaus&:” = G, it
holds thatZ.(G’) = L(G). O

Theorem 7 Every context-free languagl’ is a homomorphic image of an
intersection of bracketing restriction constraints.

Proof. Let Gy be an ECFG generatingy’ andG the CFBG canonically ob-
tained fromGy. By Theorem 1,L’ is a homomorphic image of &4(G). A
flat CFBG G’ canonically obtained fronds is equivalent toG by Theorem

6. So, the languagé&(G) equals to an intersection of bracketing restriction
constraints. O

15.6 Obtaining Approximations from FCFBGs

FCFBGs have the advantage that they allow us to define useful regular ap-
proximations simply by altering the language denoted\oyf a regular lan-
guage is substituted fak, then the whole grammar becomes regular.

We define approximations fob’ by restricting the number of nested
brackets. The series of subset approximatidgsA;, As, ... is defined in-
dUCtively as fO”OWS:AQ = (ZUB[ UBT)*, A; = Aifl(BLAileR Aifl)*,
fori = 1,2,.... A schema of the finite automaton that accegpisis shown
in Figure 1a. In NLP, a plausible setting féris probably near to 5 (John-
son 1998). It is also possible to define a series of superset approximations
Ap, A, A, ... the schema of the automaton that acceffsis shown in
Figure 1b.

It is possible to analyze the descriptive complexity of the resulting ap-
proximations.Generalized regular expressioase regular expressions with
the complement operation. Languages like A, A,, ... are captured with
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B.BY s, B.X B, B.X B, B,X B, BYX  B,BY B,,B.X.By,Bg

FIGURE1 A schematic representatlon of automata,hrandA;.

generalized regular expressions without Kleene's @Barozowski and Knast
1978, Yli-Jy 2003a). In addition to this, the bracketing restriction con-
straints can be written with star-free generalized regular expressions. Thus,
the whole approximation reduces to a star-free regular language. Our conjec-
ture is that thelot-depthof this language is decidable, although, in general, it

is an open problem to decide whether a regular language has the dotadepth
(Pin 2003).

The bracketing restriction constraints of a FCFBG correspond to gener-
alized regular expressions in the approximation. Delbe the approximated
language used fab’. Substitutionfs is a mapping fron{Vy U{A})* to sub-
sets ofl/; defined so that it replaces the special symhakith the language
D. Mapping f; is extended to regular expressions in the same manngr as
(Page 8). The subset approximation of the bracketing restriction constraint
#Lc _ Re# = f2(F) can be compiled using the following formula:

D — Le(D — f5(f2(E)))Re

This compilation formula can be varied in many ways. When= Ay,
the constrainfLb _ Rb = f»(F), whereL(Lb) C By, andL(Rb) C Bg,
is equivalent tody, — Vi Le(Ax—1 — f3(f2(F)))RcV. Furthermore, if we
intersect the language of each bracketing restriction constraint with context
restriction constraintéb = A _ ApRbandRb = LbA; _ X over the alpha-
betVr, we get smaller constraint languages and smaller finite automata. This
does not affect the language of the whole grammar. In addition to this, equiv-
alent but substantially more efficient ways to compile bracketing restriction
constraints exist but they are not reported here.

For any regular languagg/, its state complexitys the size of the min-
imal deterministic finite automaton that recognizg&s On the basis of our
initial experiments, we have reached to the following generalization for the
state complexity of bracketing restriction constraints: If a bracketing restric-
tion constraint is of the forniy _ |x = f2(F), L(E) C N*, m is the state
complexity of L( f2(E)) andt is the number of transitions in the minimal au-
tomaton accepting (E), then the state complexity(k) of the approximated
constraint language

L(Ax = Vr [x (Ax — f3(f2(E)) ) ]x Vr)n
(x=A_Afx) N (Jx = [xA
is estimated inductively as follows(0) = 1, s(1) = 2, ands(k) in O(s(k —

X A)
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1) + ts(k — 2) +m). For example, it = {YZ} andY, Z # X, we obtain
m="71t=2,5(2) =8,s(3) =16, s(4) = 36, s(5) = 72 etc. We can also
obtain a state complexity that is quadraticirif we split each constraint into

k sub-constraints so that each sub-constraint checks one nesting level only;
each sub-constraint will have a linear state complexity accordiig to

Certain computationally cheap changes in the formula improve the ac-
curacy of the resulting constraint languages. If we use the forrila-

Le(Ar — f3(f2(F)))Re, the constraint languages become larger, but this
does not affect the language of the whole grammar. The accuracy of the
whole grammar can be improved if the constraint languages are compiled so
that they have different depth bounds for nested self-embeddings and nested
center-embeddings. gelf-embeddings a center-embedding, where a phrase

is center-embedded into a phrase of the same category.

The standard compact representations are based on lazy substitution of
transitions with sub-automata (Mohri and Pereira 1998, Nederhof 2000).
Their primary purpose is to improve efficiency of off-line construction of fi-
nite automata. However, the compact representation may also be used on-line
for processing of input (Mohri and Nederhof 2001). Our compact represen-
tation is used on-line, but it is different: the sub-automata accepting the indi-
vidual constraint languages argersectedather than substituted. Parsing in
our representation is based on satisfiability of all the finite-state constraints
at the same time. The approach is open to extensions where the domain of
constraints is not necessarily restricted to local phrase structures.

When the approximation is derived from a FCFBG that uses reduced
bracketing, we gain an essential advantage over regular approximations
that assign full bracketing to the strings. For example, a small-scale reg-
ular approximation (available upon request) analyzed PP-attachment more
efficiently and accurately using reduced bracketing.

15.7 Conclusion

We have suggested a new constraint-based representation for context-free sets
of bracketed strings. The new representation lends itself for a direct construc-
tion of some regular approximations.

The obtained regular approximations have a number of favorable prop-
erties: (i) they admit a small compact representation, (ii) they handle tail-
recursion appropriately and they are exact up to a predefined depth of center-
embedding, and (iii) they can be represented by means of simple regular ex-
pressions.

The compact representation has been implemented and tested successfully
in practice. Parsing with full-scale grammansyrequire special intersection
algorithms to avoid combinatorial explosion.
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