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DNA methylation in ELOVL2 and C1orf132 correctly predicted
chronological age of individuals from three disease groups
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Abstract Improving accuracy of the available predictive
DNA methods is important for their wider use in routine fo-
rensic work. Information on age in the process of identifica-
tion of an unknown individual may provide important hints
that can speed up the process of investigation. DNA methyl-
ation markers have been demonstrated to provide accurate age
estimation in forensics, but there is growing evidence that
DNA methylation can be modified by various factors includ-
ing diseases. We analyzed DNA methylation profile in five
markers from five different genes (ELOVL2, C1orf132,
KLF14, FHL2, and TRIM59) used for forensic age prediction
in three groups of individuals with diagnosed medical condi-
tions. The obtained results showed that the selected age-
related CpG sites have unchanged age prediction capacity in
the group of late onset Alzheimer’s disease patients. Aberrant

hypermethylation and decreased prediction accuracy were
found for TRIM59 and KLF14 markers in the group of early
onset Alzheimer’s disease suggesting accelerated aging of pa-
tients. In the Graves’ disease patients, altered DNA methyla-
tion profile and modified age prediction accuracy were noted
for TRIM59 and FHL2 with aberrant hypermethylation ob-
served for the former and aberrant hypomethylation for the
latter. Our work emphasizes high utility of the ELOVL2 and
C1orf132 markers for prediction of chronological age in fo-
rensics by showing unchanged prediction accuracy in individ-
uals affected by three diseases. The study also demonstrates
that artificial neural networks could be a convenient alterna-
tive for the forensic predictive DNA analyses.
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Introduction

Forensic intelligence throughDNA analysis is now achievable
when searching for an unknown individual in criminal, iden-
tification, or security cases. Wider use of the predictive DNA
analysis methods in forensic investigations depends largely on
their accuracy. Currently available predictive tests include bio-
geographic ancestry, pigmentation, hair loss and hair shape,
extreme stature, facial morphology, and age [1]. All these
methods are still being revised by using more advanced math-
ematical approaches, detailed studies of molecular mecha-
nisms involved in phenotype determination and selection of
additional predictors [2–6].

Age prediction has an important place in predictive DNA
analysis. Informative itself, it can also increase prediction ac-
curacy of several progressive physical appearance traits.
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Particularly, prediction of such appearance traits like hair
graying, baldness, or skin wrinkles can be feasible only if
biological age is included in prediction modeling.

Recent progress in epigenomics allowed identification of
multiple DNA methylation loci that can be useful for age
prediction [7–9]. Some of these markers have been used to
develop age prediction models that may have a practical value
in forensics [7, 10–13]. It has been shown that DNA methyl-
ation markers outperform the other types of potential age pre-
dictors including age-shortening telomeres, age-dependent
changes in T cells’ DNA, and age-altering mRNA level [14].
However, their use in routine forensic work still needs to be
confirmed since prediction outcome can potentially be influ-
enced by aberrations of DNA methylation patterns caused by
various factors. It is worth noting that many of the identified
DNA methylation markers used in age prediction are located
in genes with known functions in Alzheimer’s disease, cancer,
tissue degradation, DNA damage, and oxidative stress [8].
There is growing evidence that factors like tobacco, alcohol,
carcinogens, stress or infectious diseases, and even diet or
physical activity can influence DNA methylation [8, 15].
The potential age predictors may show different sensitivity
to the influence of environment, medical history, or life style
and thus show various capabilities to predict chronological
age. Notably, Marioni et al. showed that faster aging predicted
from DNAmethylation status is heritable and predicts mortal-
ity independently of environmental or genetic factors [16].
Further research should explain whether particular DNA
methylation markers might get misaligned as age predictors
in individuals suffering from particular diseases or other ex-
ternal factors and thus be less suitable for accurate prediction
of chronological age in diseased individuals. Indeed, it has
been shown that DNA methylation status in some loci may
depend on the number of cell divisions or can be influ-
enced by other factors [17]. Thus, studies aiming to iden-
tify all potential players influencing differences in DNA
methylation at particular loci between individuals at the
same chronological age are important for better under-
standing the correlation between DNA methylation and
age as well as for better accuracy of age prediction models.
Exploration of this issue is important for age prediction
reliability in routine forensic investigation.

In this study, we address the problem of age prediction
accuracy of DNA methylation markers. We test DNA

methylation status and prediction capacity of five litera-
ture age prediction markers studying three groups of in-
dividuals with different conditions including patients of
early onset Alzheimer’s disease (EOAD), late onset
Alzheimer’s disease (LOAD), and Graves’ disease (GD).
Our main motivation to study these groups was that all
three diseases might potentially be associated with accel-
erated aging and affect age prediction accuracy parame-
ters and thus perfectly fit with our aim to evaluate poten-
tial dysregulation of DNA methylation of markers used
for chronological age prediction.

Material and methods

Study samples and the protocol

Written informed consent was obtained from AD and GD
patients (or their legal representatives) and controls, according
to the Declaration of Helsinki (BMJ 1991; 302:1194). The
genetic study was approved by the Ethics Committee of the
CSK-MSW Hospital (Warsaw, Poland) in compliance with
national legislation and the Code of Ethical Principles for
Medical Research Involving Human Subjects of the World
Medical Association and at the Institute of Cardiology in
Warsaw, no. IK-NP-0021-79/1396/13. Peripheral blood col-
lected in EDTA-containing tubes was analyzed from 31
EOAD patients, 68 LOAD patients, and 91 GD patients.
Detailed information about the tested groups is given in
Table 1. Total DNA was extracted from the obtained blood
samples using standard salting out procedure [18], the phenol/
chloroform method [19], or PrepFiler kit according to the
manufacturer’s directions (Applied Biosystems, Foster City,
CA). The total number of five CpG sites in five genes
(ELOVL2, C1orf132, KLF14, TRIM59, and FHL2) were an-
alyzed in the three groups using pyrosequencing technology.
One to two micrograms of DNA was subjected to bisulfite
conversion using the EpiTect 96 Bisulfite Kit according to
the manufacturer’s protocol (Qiagen, Hilden, Germany), and
then, the previously applied PCR and sequencing protocols
were used to measure DNA methylation status of the studied
cytosines. In addition, DNAm data for 425 samples examined
in our previous study [11] were used as a training set (305
samples) and healthy controls’ testing set (120 samples).

Table 1 Characteristics of the
testing set groups Tested groups Number Mean Age ± SD Min age Max age Male (%)

Healthy controls [11] 120 41.1 ± 20.2 2 75 47.5

Late onset Alzheimer’s disease (LOAD) 68 70.9 ± 3.4 65 75 44.1

Early onset Alzheimer’s disease (EOAD) 31 44.2 ± 10.2 31 68 48.4

Graves’ disease (GD) 91 44.4 ± 22.1 12 76 34.1

2 Int J Legal Med (2018) 132:1–11



Statistics

DNAmethylation profile in individuals from the tested disease
groups

DNA methylation percentage measured for five age-related
CpG sites (ELOVL2 c7, C1orf132 c1, FHL2 c2, TRIM59
c7, KLF14 c1) was compared between individuals from three
disease groups and matched healthy controls using indepen-
dent sample Student’s t test. Because of the known differences
in DNAm age correlation and age prediction accuracy be-
tween younger and older individuals [e.g., 11, 13], patients
were divided into age group categories and calculations were
performed for each age group separately. EOAD patients were
divided into younger EOAD group (age 31–44) and older
EOAD group (age 45–68); GD patients were categorized into
younger GD group (age 12–30) and older GD group (56–76),
while all LOAD patients accounted for only one age group
category (age 65–75). Age categories are different for partic-
ular diseases due to different numbers of individuals at partic-
ular ages in various disease groups. Sizes of particular age
group categories are provided in Table 2. The healthy controls
were selected from the available set of 120 controls taken from
our previous study [11] and matched separately for the partic-
ular groups of EOAD, LOAD, and GD patients using criteria
of mean age and age distribution between the compared
groups. A proper distribution of age in the disease groups
and healthy controls was confirmed with nonparametric
Kolmogorov-Smirnov test. Analyses were performed using
PS IMAGO 4 (IBM SPSS Statistics 24).

Validation of predictive capacity of single DNAm markers
in the tested disease groups

In order to evaluate the predictive capacity of particular age-
related DNAm markers in the tested disease groups, separate
prediction models for five selected CpGswere developed with
305 healthy individuals described in our previous study used
as a training set [11]. In the present study, artificial neural
network (ANN) approach was applied for prediction model-
ing instead of linear regression used before. ANN is a mathe-
matical representation of the human neural architecture. It is
composed of multiple nodes, called neurons, connected by
links, which have assigned weights expressing the strength
of the connections. Weights are adjusted in the process of
neural network learning [50]. ANN models were developed
in the form of multilayer perceptron (MLP) with one hidden
layer and an automatically selected number of neurons (be-
tween 1 and 50). The activation functions were hyperbolic
tangent for the hidden layer and identity for the output layer.
For the remaining settings, default initial parameters of IBM
SPSS Statistics were applied. The developed ANN prediction
models for single DNAmmarkers were tested using groups of

EOAD, LOAD, and GD patients and age-matched healthy
controls. Predicted age of individuals was compared with the
true chronological age of individuals for the calculation of
mean absolute error (MAE). Independent sample Student’s t
test was used to compare mean predicted age and MAE cal-
culated for the particular disease groups with age-matched
healthy individuals. All the analyses were performed using
PS IMAGO 4 (IBM SPSS Statistics 24).

Multivariate ANN prediction model

Finally, multivariate prediction model was developed based
on all five selected age-related DNAm markers. Similarly to
single CpG prediction models, 305 healthy individuals were
used as a training set [11] and neural network approach was
used for prediction modeling. Developed prediction model
was tested using the same disease groups and age-matched
healthy controls. Performance of the developed prediction
model was evaluated throughout the calculation of MAE of
predicted and chronological age and additionally percentage
of correct predictions. Predictions were considered correct
when the difference between actual and predicted age did
not exceed ±5 years. This cutoff value was set according to
the standard error of estimate calculated for the model to be at
the level of~4.5 years [11]. Analyses were performed using PS
IMAGO 4 (IBM SPSS Statistics 24).

Results

DNA methylation status and predictive capacity
of the single DNAm markers in the tested disease groups

Three tested disease groups comprising of 31 early onset
Alzheimer’s disease patients, 68 late onset Alzheimer’s dis-
ease patients, and 91 Graves’ disease patients (Table 1) were
used in this study to assess DNA methylation profile and
predictive performance of five selected age-related CpG sites
(ELOVL2 c7, C1orf132 c1, FHL2 c2, TRIM59 c7, KLF14
c1) in these disease groups. The results were compared to the
age-matched healthy controls. All the selected markers were
found to have unchanged DNA methylation status and age
prediction capacity in the group of late onset Alzheimer’s
disease patients (Table 2).

Early onset Alzheimer’s disease patients showed accelerat-
ed hypermethylation of TRIM59 c7 marker (P = 0.006), and
the effect was most significant in younger EOAD group
(P = 0.004). Aberrant hypermethylation of TRIM59 c7 led
to decreased age prediction accuracy in EOAD patients, and
again, the effect was most significant in younger EOAD group
with MAE = 12.2 calculated for patients and MAE = 5.7
assigned for age-matched healthy controls (P = 0.008).
When TRIM59 c7-based predicted age was compared,
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patients in younger EOAD group were found to have signif-
icantly increased age (9 years on average) when comparing to
age-matched healthy controls (P = 0.004, Fig. 1). Increased
methylation was also found in younger EOAD group for
KLF14 c1 (P = 0.013, Table 2). Although no prediction accu-
racy deviation expressed by MAE was observed (P = 0.096)
for patients included in younger EOAD group, they were
found to have significantly increased age (by 10.1 years) when

predicted age of patients and controls was directly compared
(P = 0.012, Fig. 1). Marginal deviation in MAE was observed
for older EOAD group (P = 0.035), but difference was insig-
nificant when predicted age was compared (P = 0.093).

Aberrant DNA methylation pattern was also observed in
the group of GD patients. Similarly to EOAD patients, accel-
erated hypermethylation was observed for TRIM59 c7. The
effect was significant in younger GD group (P = 0.0001,

Table 2 DNAmethylation status and age prediction accuracy of single age-related CpG sites measured in GD, EOAD, and GD patients compared to
age-matched healthy controls

Locus CpG site Disease group Age group No. of patients No. of controls Mean % of DNA methylation MAE of predicted and chronological
age

Patients Controls P value Patients Controls P value

ELOVL2 c7 GD Younger 44 39 60.34 57.59 0.055 3.918 3.861 0.935

Older 47 33 83.43 82.76 0.529 6.390 7.960 0.299

Total 91 72 72.26 69.13 0.136 5.195 5.740 0.522

EOAD Younger 17 27 74.18 70.96 0.137 7.704 7.330 0.877

Older 14 30 74.36 79.33 0.253 7.285 4.522 0.100

Total 31 57 74.26 75.37 0.566 7.530 5.852 0.237

LOAD Total 68 28 83.32 84.00 0.465 11.912 9.114 0.075

C1orf132 c1 GD Younger 44 39 81.89 81.33 0.633 3.704 4.935 0.159

Older 47 33 54.46 51.53 0.083 10.765 9.220 0.380

Total 91 72 68.20 67.33 0.732 7.351 6.899 0.672

EOAD Younger 17 27 68.94 68.26 0.772 7.833 6.498 0.472

Older 14 30 59.00 56.20 0.279 7.384 6.640 0.652

Total 31 57 64.45 61.91 0.236 7.631 6.573 0.387

LOAD Total 68 28 48.44 50.61 0.281 11.326 11.273 0.967

FHL2 c2 GD Younger 44 39 33.61 36.56 0.028 3.793 8.026 0.001

Older 47 33 56.98 57.70 0.586 8.031 8.023 0.994

Total 91 72 45.68 46.25 0.776 5.982 8.025 0.012

EOAD Younger 17 27 41.59 41.30 0.900 8.836 8.012 0.709

Older 14 30 48.57 51.93 0.119 9.047 5.539 0.215

Total 31 57 44.74 46.89 0.256 8.931 6.711 0.198

LOAD Total 68 28 60.60 60.43 0.889 10.243 8.357 0.060

TRIM59 c7 GD Younger 44 39 30.43 26.24 0.0001 8.609 4.944 0.003

Older 47 33 49.60 49.94 0.866 9.663 9.734 0.965

Total 91 72 40.33 37.25 0.132 9.153 7.170 0.056

EOAD Younger 17 27 40.76 35.00 0.004 12.176 5.653 0.008

Older 14 30 48.93 44.23 0.013 6.805 7.264 0.803

Total 31 57 44.45 39.86 0.006 9.751 6.500 0.023

LOAD Total 68 28 54.32 52.86 0.385 9.970 10.033 0.955

KLF14 c1 GD Younger 44 39 4.20 4.56 0.261 5.082 8.873 0.002

Older 47 33 10.11 11.18 0.083 12.101 10.751 0.414

Total 91 72 7.25 7.60 0.564 8.707 9.734 0.344

EOAD Younger 17 27 10.18 6.74 0.013 14.478 9.076 0.096

Older 14 30 8.07 9.43 0.206 14.366 9.714 0.035

Total 31 57 9.23 8.16 0.239 14.427 9.415 0.016

LOAD Total 68 28 13.24 11.89 0.102 13.247 12.234 0.653

Significant values marked with italics
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Table 2). Prediction analysis performed using TRIM59 c7
marker showed significantly decreased age prediction accura-
cy in younger GD group (MAE = 8.6) when comparing to
healthy controls (MAE = 4.9, P = 0.003) with younger GD
patients predicted to be 6 years older than controls
(P = 0.0001, Fig. 2). In contrast, decreased methylation was
noticed for younger GD group when FHL2 c2 marker was
analyzed (P = 0.028). Significant difference in MAE was ob-
served between younger GD group (MAE = 3.8) and controls
(MAE = 8, P = 0.001), and patients in this group were pre-
dicted 4.9 years younger than controls (P = 0.008, Fig. 2).
Ambiguous result was obtained for KLF14 c1 marker.
Although significantly decreased age prediction accuracy
measured by MAE was observed in younger GD group com-
paring to control group (P = 0.002), no significant difference
was observed in DNA methylation status (P = 0.261) and no
significant difference in mean predicted age was noted
(P = 0.224, Fig. 2).

Unchanged DNA methylation status and predictive perfor-
mance were detected for the two remaining markers,
ELOVL2 c7 and C1orf132 c1 in the three disease groups
and all age group categories.

Prediction modeling using five DNAm loci

In the next step, multivariate prediction model was developed
including all five age-related CpGs. Developed multivariate
ANN model predicted age of total EOAD patients with sig-
nificantly decreased accuracy (MAE = 7.1) when comparing
to the healthy control group (MAE = 3.8, P = 0.002, Table 3).
When different age categories were analyzed, this effect was

observed only in younger EOAD group (P = 0.011). The
number of correct predictions was also decreased in the total
EOAD group (38.7%) when comparing to the healthy controls
(70.2%), and again, the effect was noticeable particularly in
younger EOAD group (Table 3). On average, patients in the
total EOAD group were predicted to be 1.7 years older than
the chronological age of patients but 6.4 years older than the
chronological age of patients when only younger EOAD
group was taken into account (Fig. 3a). In contrast, healthy
controls were predicted to be on average 0.38 years younger
than the true chronological age of individuals, and prediction
accuracy did not dropped when only younger individuals (be-
low 45 years old) were taken into account (predicted
0.12 years younger than the true chronological age, Fig. 3a).
When predicted age was compared between patients and con-
trols, patients included in younger EOAD group were predict-
ed to be at significantly higher age (by 5.8 years) thanmatched
controls (P = 0.013, Fig. 3b).

No deviation inMAE and mean predicted age was noted in
the remaining study groups, that is LOAD and GD patients
when multivariate NN prediction model was applied
(Table 3).

Discussion

Difference between chronological and biological age of an
individual is important in medical and forensic studies.
Biological age is relevant for onset and progression rate of
many diseases. It has been suggested that delaying the rate
of biological aging may have a positive overall impact on

Fig. 1 Predicted age in younger
EOAD group and age-matched
healthy controls. Prediction anal-
ysis was performed with KLF14
c1 and TRIM59 c7 markers
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the life expectancy and quality [20, 21]. In forensics, predic-
tion of chronological and biological age is important. Besides
direct use of chronological age for intelligence purposes, in-
formation about biological age can strengthen prediction of
progressive appearance traits, which due to a recent progress
in genetics can be predicted from DNA left at the crime scene.
Differentiation between DNAmethylation markers, which de-
pend solely on the number of cell replications and those mod-
ified by other factors, may be important for developing more
accurate models predicting chronological age in forensics.
Evaluation of age markers may be accomplished by studying

their response to various environmental factors and diseases
that may change DNA methylation affecting accuracy of pre-
diction of calendar age. Such markers should be avoided in
prediction models aiming at prediction of chronological age.

Validation of age predictive markers

In this research study, three groups of patients, EOAD, LOAD,
and GD, were investigated using pyrosequencing technology
and ANN prediction model based on five previously selected
age-correlated CpG sites in ELOVL2, C1orf132, KLF14,

Fig. 2 Predicted age in younger
GD group and age-matched
healthy controls. Prediction anal-
ysis was performed with FHL2,
KLF14 c1, and TRIM59 c7
markers

Table 3 MAE and percentage of
correct predictions in EOAD,
LOAD, and GD patients
compared to age-matched healthy
controls

Disease group Age category Parameter Patients Controls P value

GD Younger MAE 2.5 2.7 0.595

Correct predictions (%) 93.2 (41/44) 87.2 (34/39)

Older MAE 6.1 4.4 0.106

Correct predictions (%) 55.3 (26/47) 60.6 (20/33)

Total MAE 4.4 3.5 0.146

Correct predictions (%) 73.6 (67/91) 75.0 (54/72)

EOAD Younger MAE 7.3 4.2 0.011
Correct predictions (%) 29.4 (5/17) 66.7 (18/27)

Older MAE 7.0 3.4 0.066
Correct predictions (%) 50.0 (7/14) 73.3 (22/30)

Total MAE 7.1 3.8 0.002
Correct predictions (%) 38.7 (12/31) 70.2 (40/57)

LOAD Total MAE 6.1 5.6 0.382
Correct predictions (%) 76.5 (52/68) 50.0 (14/28)

Prediction analysis performed with multivariate ANN model. Significant values marked with italics
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FHL2, and TRIM59. Significant differences of age prediction
capacity were noted for particular markers in the case of EOAD
and GD patients, and they influenced the overall age prediction
in EOAD group. The effects were more obvious in the younger
groups of investigated patients, and these may be caused by the
previously described general deregulation of age-related DNA
methylation markers in elderly individuals [11, 13].

The overall accuracy of multivariate ANN age prediction
model was significantly decreased in EOAD patients as mea-
sured by MAE and the number of positive predictions. The
mean predicted age of patients was higher than the true chro-
nological age of patients and higher than the mean age of age-
matched healthy controls. The remaining study groups of
LOAD and GD patients were predicted with accuracy ob-
served in the age-matched healthy controls when multivariate
ANN age prediction model was applied.

In order to get a better insight into age prediction accuracy of
the model, separate examination of prediction accuracy of sin-
gle five age predictors was undertaken in the three investigated
groups of individuals. The analysis disclosed significant loss of
accuracy as measured byMAE in the case of TRIM59, KLF14,
and FHL2. The changed prediction capacity was noted not only
in the group of EOAD but also in the younger individuals
suffering from GD. TRIM59 and KLF14 were found to be
hypermethylated in EOAD patients indicating older age of the
investigated individuals. Thus, the worse performance of the
overall prediction model was caused by deregulation of DNA
methylation in these two loci. Interestingly, TRIM59 was also
hypermethylated in patients included in the younger GD group,
but this effect was not observed when investigating the overall
performance of the model, because of the balancing influence
of hypomethylation in the FHL2 locus.

Alzheimer’s disease is the most common type of dementia
characterized bymassive neuronal loss caused by overproduc-
tion of β-amyloid and hyperphosphorylated microtubule-
associated protein tau accumulated into senile plaques and
neurofibrillary tangles, respectively. Senile plaques with min-
imal cortical tau pathology and no accompanying history of
cognitive decline are also hallmarks of pathological aging.
Moreover, β-amyloid accumulation in both conditions is re-
markably similar [22]. There are two main types of AD:
EOAD and LOAD. Familial EOAD represents 1–5% of all
cases of AD and in 40% is associated with mutations in the
genes PSEN1, PSEN2, and APP. The group of EOAD patients
studied here has been well characterized genetically [23–25].
The genetics of LOAD is still poorly understood, but signifi-
cant progress has been made by the GWAS analyses, which
have identified 25 genes to be associated with this type of AD
[26]. The involvement of DNA methylation in AD is still
under debate, especially its causal or subsequent role remains
unclear [27]. However, growing evidence shows AD as being
associated with DNA hypermethylation and histone
deacetylation, suggesting a general repressed chromatin state
and epigenetically reduced plasticity in AD [28]. Generally,
analysis of DNA methylation in AD patients revealed differ-
ences in brain tissue, but results for peripheral blood are con-
flicting [29, 30]. In a medical sense, our result on methylation
differences in aging markers further emphasizes differences
between the two groups of Alzheimer’s disease patients.

GD is an autoimmune disorder, which affects up to 2% of
the European population. Antibody-driven activation of the
thyrotropin receptor leads to hyperfunction of the thyroid
gland and thyroid enlargement and in consequence increased
production of the thyroid hormone [31]. Previous study

Fig. 3 Age prediction analysis in EOAD patients using multivariate
ANN model. a Predicted vs chronological age in total EOAD group

and age-matched healthy controls. b Predicted age comparison between
younger EOAD group and age-matched healthy controls
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investigated T cell receptor rearrangement excision circle
(sjTREC) concentration in Graves’ disease patients and re-
ported that although generally decreasing with age, it was
significantly higher in GD group compared with controls
[32]. Examination of the decrease in the number of sjTREC
molecules caused by thymus involution occurring in the
course of human life has a predictive capacity and has been
implemented in forensic age prediction [33]. Our investigation
of age predictive DNA methylation markers does not support
a conclusion that can be drawn from the study performed by
Strawa about younger age of GD patients [32]. A hypomethy-
lation of the FHL2 gene predicts younger age of patients, but
two other markers (TRIM59 and KLF14) have increased
methylation comparing to the controls, while ELOVL2 and
C1orf132 are unchanged.

The FHL2 encodes a multifunctional adaptor protein that is
involved in the regulation of gene transcription, signal trans-
duction, and cell proliferation and differentiation [34].
Interestingly, FHL2 may act depending on a tissue as an
oncoprotein or as a tumor suppressor [35]. It has been reported
that FHL2 is involved in colorectal, gastric, and pancreatic
cancer and hepatocellular carcinoma [36, 37]. The FHL2 pro-
tein was found to interact with presenilin 1 and presenilin 2,
both involved in AD [38, 39].

The TRIM59 gene was hypermethylated in both EOAD and
GD patients. This gene is involved in cancer that has been
suggested as multitumor marker detecting early tumorigenesis
[40]. TRIM59, which encodes an ubiquitin ligase, might be
involved in neurodegeneration process by affected proteostasis,
for instance by contribution to accumulation of neurofilament
light chain, similarly to TRIM2 [41]. Several data suggested
pro-apoptotic cooperation of p53 and TRIM59, and activation
of p53 signaling is commonly known to leading to death of
post-mitotic neurons in Alzheimer’s disease patients. A physi-
cal interaction of TRIM59 and p53 under TRIM59 upregulation
resulted with ubiquitination and degradation of p53 [42].

The methylation marker KLF14 was found to have de-
creased age prediction accuracy in EOAD and GD patients.
However, the results were ambiguous as no significant change
in DNA methylation was observed in particular age group
categories, and therefore, this effect needs to be further vali-
dated on a larger sample size. Loss of KLF14 in mouse was
shown to cause centrosome amplification and tumorigenesis,
and it has been suggested that reduction of KLF14 may in-
crease the risk of breast cancer and colon cancer [43]. KLF
family was found to be involved in transcriptional modulation
of neuronal genes, e.g., dopamine D2 receptor [44].
Importantly, KLF14 reduction was reported to be responsible
for aneuploidy and finally tumorigenesis [43]. It is very likely
that this could be linked with increased DNA damage stress
response, commonly observed in AD, that could be further
linked with p53-mediated post-mitotic apoptosis, as also pro-
posed by [45].

It is worth noting that age-associated changes in DNA
methylation patternsmay have regulatory role on gene activity
and developmental processes. Recently, it has been shown that
the mean age-associated DNA methylation patterns manifests
in early childhood (2–16 years) and the majority of age-
associated loci involved increased DNAmethylation resulting
in decreased gene expression [46]. Authors concluded that the
results could pinpoint genes susceptible to aging-related dis-
ease-associated epigenetic dysregulation.

Markers epigenetically regulated in diseases should be
avoided in prediction models developed for estimation of chro-
nological age. However, it seems that each DNA methylation
age predictor may have a unique sensitivity to various external
factors. Our recent study involving the same prediction model
discovered significantly lower predicted age of patients after
hematopoietic stem cell transplantation (HSCT) [47]. This re-
sult was discordant to the report of Weidner et al., and detailed
analysis of our results showed that the observed discrepancy is
caused by different sets of predictors used in both studies [48].
In particular, the effect observed in our study was a result of
hypermethylation of a single C1orf132 locus, while the remain-
ing loci included in the model did not show this pattern. It
means that in some cases, like HSCT, C1orf132, which encodes
for long noncoding RNA MIR29B2C, may not be a good pre-
dictor of chronological age.

However, in the present research study, C1orf132 and
ELOVL2 were found to be stable age markers in three groups
of patients. It is worth noting that HSCT is a very rare medical
treatment (~50,000 worldwide HSCTs in 2006), while the
incidence of GD is 20 to 50 cases per year, per 100,000 indi-
viduals [49, 50]. ELOVL2 is the most thoroughly validated
age marker [4, 8, 11, 51]. Horvath demonstrated that cell pas-
saging in general increases DNA methylation age, but he also
rejected the hypothesis that DNA methylation age is the same
as mitotic age (the number of cell divisions) as it tracks chro-
nological age in cell types which not proliferate. Therefore,
Horvath proposed that DNA methylation reflects rather the
work done by an organism to maintain epigenetic stability
[52]. On the other hand, Bacalini et al. have reported differ-
ences in age-associated methylation change schemes in two
known age predictors: ELOVL2 and FHL2. The study
showed that ELOVL2 methylation is a marker of cell divi-
sions occurring during human aging and not the senescence
[17]. Contrary, DNA methylation of the FHL2 gene was not
strictly associated to cell divisions in that research. This means
that DNA methylation in different loci may indeed depend on
various factors, and there is a chance that some predictors may
better measure chronological age (mitotic age) than the others.
The study of Bacallini shows that methylation of FHL2 can be
affected by other age-associated factors, that is also supported
by our study of GD patients. Our study may help in selection
of the most optimal marker set for chronological age predic-
tion in forensics, but due to a small number of samples in
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particular disease age groups, the findings need to be replicat-
ed. Overall, the study reinforces the significance of ELOVL2
and C1orf132 as predictors of chronological age in forensic
investigations. Further studies exploring other potential con-
founders of DNA methylation will be particularly interesting
in the case of C1orf132 that is a very powerful age predictor.
This locus encodes for a long noncoding RNA and may play a
role in epigenetic regulation. As mentioned earlier, our previ-
ous study demonstrated its potential involvement in graft
function after HSCT [47].

Prediction modeling using artificial neural network
approach

The artificial neural networks used in the study for prediction
modeling seem to be a good alternative for the traditional
parametric methods like linear regression. ANN can be a sim-
ple solution to eliminate a problem of nonlinear patterns that
can be attributed to particular DNAm markers [53]. Many
authors highlight different advantages of neural networks:
the ability to recognize and learn all types of relations, lack
of assumptions on the distribution of the input data, automatic
handling of variable interactions, or the high tolerance tomiss-
ing and noisy data [54–57]. We demonstrated its superiority
over regression methods in our previous reports on hair mor-
phology [2] and eye color prediction [3]. Recently, ANN has
also been shown to be more accurate in age prediction model-
ing [58, 59]. For comparison purposes, calculations in the
present study were performed with linear regression
confirming the general outcome of the study but demonstrat-
ing slightly lower prediction accuracy parameters when com-
paring to the neural networks approach (data not present).

Forensic impact of the study

The multivariate ANN age prediction model failed to predict
age accurately in case of EOAD patients. Since EOAD is a
very rare condition that affects merely 1–5% of AD patients,
this finding has a minor impact on forensic age prediction.
However, separate analyses of prediction capacity of five
markers included in the evaluated model clearly showed that
three markers—TRIM59, KLF14, and FHL2—revealed al-
tered DNA methylation patterns in EOAD and GD groups.
Although this finding does not disqualify the three markers as
predictors of chronological age, further studies shall investi-
gate their sensitivity to various factors affecting biological age
of an individual. Importantly, our study showed that the two
important age predictors—ELOVL2 and C1orf132—keep
their high predictive capacity in three groups of patients. Our
finding confirms conclusion from a recent study reporting
DNA methylation in ELOVL2 to depend solely on the num-
ber of cell divisions and FHL2 to depend on other age-related
factors [17]. This study shows that C1orf132, a very powerful

age predictor, may together with ELOVL2 comprise a good
foundation for prediction of chronological age in forensics,
although further studies are necessary especially for
C1orf132 since in our previous investigation, this locus
showed changed DNAmethylation in the group of individuals
after HSCT.
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