

Math. Control Signals Syst. (2017) 29:16 DOI 10.1007/s00498-017-0202-0

ORIGINAL ARTICLE

Comments on 'On Hadamard powers of polynomials'

Stanisław Białas¹ · Leokadia Białas-Cież²

Received: 10 February 2017 / Accepted: 21 August 2017 / Published online: 10 September 2017 © The Author(s) 2017. This article is an open access publication

Abstract Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with real positive coefficients and $p \in \mathbb{R}$. The pth Hadamard power of f is the polynomial $f^{[p]}(x) := a_n^p x^n + a_{n-1}^p x^{n-1} + \cdots + a_1^p x + a_0^p$. We give sufficient conditions for $f^{[p]}$ to be a Hurwitz polynomial (i.e., to be a stable polynomial) for all $p > p_0$ or $p < p_1$ with some positive p_0 and negative p_1 (without any assumption about stability of f). Theorem 5 by Gregor and Tišer (Math Control Signals Syst 11:372–378, 1998) asserts that if f is a stable polynomial with positive coefficients then $f^{[p]}$ is stable for every $p \ge 1$. We construct a counterexample to this statement.

Keywords Hadamard powers of polynomials · Hurwitz matrix · Stability of polynomials

Mathematics Subject Classification Primary 11C08 · Secondary 26C10

1 Introduction

For a positive integer number n we consider

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 with $a_0, \dots, a_n > 0$. (1)

The work of Leokadia Białas-Cież was partially supported by the NCN Grant No. 2013/11/B/ST1/03693.

Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland

 [□] Leokadia Białas-Cież leokadia.bialas-ciez@uj.edu.pl

The School of Banking and Management, Armii Krajowej 4, 30-150 Kraków, Poland

Let $\mathbb{R}^+[n]$ be the family of all polynomials of the form (1). The polynomial

$$f^{[p]}(x) := a_n^p x^n + a_{n-1}^p x^{n-1} + \dots + a_1^p x + a_0^p$$
 (2)

where $p \in \mathbb{R}$ is called the *p*th *Hadamard power* of $f \in \mathbb{R}^+[n]$. We say that the polynomial f with real coefficients is *stable* (f is a *Hurwitz polynomial*) if every zero of f has strictly negative real part. A necessary condition for a polynomial f with real coefficients to be stable is that f has all coefficients of the same sign. Let H_n be the family of all stable polynomials of degree n with positive coefficients.

In 1996 J.Garloff and D.G.Wagner proved in [1] that $f \in H_n$ implies $f^{[p]} \in H_n$ for all $p \in \{1, 2, 3, \ldots\}$. The natural question arises of a set of real numbers p for which $f^{[p]}$ is stable where $f \in \mathbb{R}^+[n]$. We give some conditions on p and on f for $f^{[p]}$ to belong to H_n . Moreover, we show that $f^{[p]}$ does not need to be stable for a stable polynomial f and an exponent p > 1, contrary to Theorem 5 in [2].

Observe that if n=1 or n=2 then $f^{[p]}$ is stable for every $p \in \mathbb{R}$ and for all polynomials $f \in \mathbb{R}^+[n]$. The case of $n \geq 3$ is much more complicated, e.g., for $f(x) = x^3 + x^2 + x + 1$ we have $f^{[p]} \notin H_n$ for any $p \in \mathbb{R}$. Therefore, we will consider only the case $n \geq 3$.

1.1 Basic information

For relevant background material concerning Hurwitz polynomials and related topics see [5, Sec.11]. We list below selected theorems that will be useful in the paper.

The *Hurwitz matrix* H(f) associated to the polynomial $f \in \mathbb{R}^+[n]$ is given as follows

$$H(f) := \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ 0 & a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_0 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Denote by $D_i(p)$ for $i=1,\ldots,n$ the *i*th leading principal minor of the Hurwitz matrix $H(f^{[p]})$, i.e.,

$$D_1(p) = a_{n-1}^p$$
, $D_2(p) = \det \begin{bmatrix} a_{n-1}^p & a_{n-3}^p \\ a_n^p & a_{n-2}^p \end{bmatrix}$, ..., $D_n(p) = \det H(f^{[p]})$.

To simplify the writing, we put $D_i := D_i(1)$.

Theorem 1 Routh-Hurwitz criterion

If
$$f \in \mathbb{R}^+[n]$$
 then $f \in H_n$ if and only if $D_i > 0$ for all $i = 1, ..., n$.

Theorem 2 (see [3, Th.2 and (1.10)])

If $f \in H_n$ with n > 3 then

$$\det \begin{bmatrix} a_{n-i} & a_{n-i-2} \\ a_{n-i+1} & a_{n-i-1} \end{bmatrix} > 0 \quad \text{for all } i = 1, \dots, n-2.$$

Theorem 3 (see [4])

Let $f \in \mathbb{R}^+[n]$ with $n \ge 5$ and γ be the unique real root of the equation

$$\gamma(\gamma+1)^2=1.$$

If $\gamma \ a_{n-i} \ a_{n-i-1} > a_{n-i+1} \ a_{n-i-2}$ for every i = 1, ..., n-2 then $f \in H_n$.

1.2 Counterexample

Theorem 5 in [2] asserts that if $f \in H_n$ then $f^{[p]} \in H_n$ for all $p \ge 1$. We construct below a counterexample to this statement.

For a fixed polynomial $f \in \mathbb{R}^+[n]$ with $n \geq 3$ consider the following decomposition

$$f(x) = g(x^2) + x h(x^2)$$
, where g and h are polynomials of positive coefficients (3)

It may be worth reminding the reader that g and h are called *interlacing* if

- all zeros of g and h are real, negative and distinct,
- between every two zeros of g there exists a zero of h and vice versa.

Among variants of Hermite–Biehler theorem we will apply the following one to construct a counterexample.

Theorem 4 (see [5, Chapter 6.3]) Every polynomial $f \in \mathbb{R}^+[n]$ decomposed as in (3) is stable if and only if g and h are interlacing.

Counterexample 1 Let

$$g(t) = t^4 + 46t^3 + 791t^2 + 6026t + 17160 = (t+10)(t+11)(t+12)(t+13).$$

Y. Wang and B. Zhang considered g in [6] and observed that for p=1.139 the polynomial $g^{[p]}$ has two nonreal zeros: $-16.0617\pm0.178468i$ (approximated value). Take now

$$h(t) = t^3 + 34.5 t^2 + 395.75 t + 1509.375 = (t + 10.5)(t + 11.5)(t + 12.5)$$

and put

$$f(x) = g(x^2) + xh(x^2)$$

= $x^8 + x^7 + 46x^6 + 34.5x^5 + 791x^4 + 395.75x^3$
+6026 $x^2 + 1509.375x + 17160$.

It is easy to verify that f is stable (e.g., by the Routh–Hurwitz criterion). We have $f^{[p]}(x) = g^{[p]}(x^2) + x h^{[p]}(x^2)$ and thus, by Theorem 4 the polynomial $f^{[p]}$ is not stable for p = 1.139. By means of Wolfram Mathematica 10.4 we found two zeros of $f^{[1.139]}$ that have positive real part: $0.00179025 \pm 4.01279 i$ (approximated value).

2 Main results

Now we will state and prove some sufficient conditions for $f^{[p]}$ to be a Hurwitz polynomial for all $p > p_0$ or $p < p_1$ with some positive p_0 and negative p_1 depending only on coefficients of f. The polynomial f is assumed to be of the form (1) but need not to be stable. We will discuss separately three cases: n = 3, n = 4 and $n \ge 5$. We start with a lemma and some necessary conditions for the Hurwitz stability.

2.1 Notations and preliminary results

For a fixed polynomial $f \in \mathbb{R}^+[n]$ with $n \geq 3$ and $p \in \mathbb{R}$ we put

$$w_i(p) := a_{n-i-1}^p a_{n-i}^p - a_{n-i-2}^p a_{n-i+1}^p, \quad i = 1, \dots, n-2.$$
 (4)

Moreover, for ease of notation, throughout the paper we write w_i for $w_i(1)$. Let

$$\begin{split} \overline{d} &:= \max_{1 \leq i \leq n-2} \frac{a_{n-i-2}a_{n-i+1}}{a_{n-i-1}a_{n-i}}, \\ \underline{d} &:= \min_{1 \leq i \leq n-2} \frac{a_{n-i-2}a_{n-i+1}}{a_{n-i-1}a_{n-i}}. \end{split}$$

It is worth noticing that

- if $w_i > 0$ for all i then $\overline{d} < 1$,
- if $w_i < 0$ for all i then d > 1.

Lemma 1 Let $\lambda \in (0, 1)$ and $f \in \mathbb{R}^+[n]$ with $n \geq 3$. Put

$$p_0 := \frac{\log \lambda}{\log \overline{d}}, \quad p_1 := \frac{\log \lambda}{\log \underline{d}}.$$

1. If $w_i > 0$ for all i = 1, ..., n-2

then
$$\lambda a_{n-i-1}^p a_{n-i}^p - a_{n-i-2}^p a_{n-i+1}^p > 0$$
 for all $i = 1, ..., n-2$ and $p > p_0 > 0$.

2. If $w_i < 0$ for all i = 1, ..., n-2

then
$$\lambda a_{n-i-1}^p a_{n-i}^p - a_{n-i-2}^p a_{n-i+1}^p > 0$$
 for all $i = 1, ..., n-2$ and $p < p_1 < 0$.

Proof Firstly we show statement 1. Since $w_i > 0$ for all i, it follows that $\overline{d} < 1$ and hence for a fixed $p > p_0$ we have $\overline{d}^p < \lambda$. From the definition of \overline{d} we can easily conclude that $\overline{d}a_{n-i-1}a_{n-i} \ge a_{n-i-2}a_{n-i+1}$ for all i and so

$$0 \, \leq \, \overline{d}^{p} a_{n-i-1}^{p} a_{n-i}^{p} - a_{n-i-2}^{p} a_{n-i+1}^{p} \, < \, \lambda a_{n-i-1}^{p} a_{n-i}^{p} - a_{n-i-2}^{p} a_{n-i+1}^{p}.$$

In an analogous manner we can prove statement 2. Indeed, in this case we have $\underline{d} > 1$ and $\underline{d}^p < \lambda$ for $p < p_1$. From the definition of \underline{d} we get $\underline{d} \ a_{n-i-1} \ a_{n-i} \le a_{n-i-2} \ a_{n-i+1}$ for all i. Hence

$$0 \leq \underline{d}^{p} a_{n-i-1}^{p} a_{n-i}^{p} - a_{n-i-2}^{p} a_{n-i+1}^{p} < \lambda a_{n-i-1}^{p} a_{n-i}^{p} - a_{n-i-2}^{p} a_{n-i+1}^{p}$$

and the proof is completed.

We give below some sufficient conditions for $f^{[p]}$ not to be stable. This is a direct consequence of Theorem 2.

Theorem 5 Let $f \in \mathbb{R}^+[n]$ with $n \geq 3$.

- 1. If $w_i \geq 0$ for some $i \in \{1, ..., n-2\}$ then $f^{[p]} \notin H_n$ for all $p \leq 0$.
- 2. If $w_i \leq 0$ for some $i \in \{1, ..., n-2\}$ then $f^{[p]} \notin H_n$ for all $p \geq 0$.

2.2 Case n = 3

In this subsection we consider $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$ with positive coefficients a_3 , a_2 , a_1 , a_0 . For n = 3 the family of w_i 's [see (4)] is reduced to the unique element $w_1 = a_1 a_2 - a_0 a_3$.

Theorem 6 For any polynomial $f \in \mathbb{R}^+[n]$ with n = 3 we have

- 1. If $w_1 > 0$ then $f^{[p]} \in H_3$ for all p > 0.
- 2. If $w_1 < 0$ then $f^{[p]} \in H_3$ for all p < 0.

Proof In order to prove statement 1, we observe that $w_1 > 0$ implies $w_1(p) = a_1^p a_2^p - a_0^p a_3^p > 0$ for every p > 0. By the Routh–Hurwitz criterion we get the stability of $f^{[p]}$ for p > 0, because

$$D_1(p) = a_2^p > 0$$
, $D_2(p) = w_1(p)$ and $D_3(p) = a_0^p w_1(p)$.

In an analogous manner we can prove statement 2.

2.3 Case n = 4

We start this subsection with a simple characterization of stable polynomials of degree 4 with positive coefficients.

Proposition 7 Let $f \in \mathbb{R}^+[n]$ with n = 4. The polynomial f is stable if and only if

$$\frac{a_1 \, a_4}{a_2 \, a_3} + \frac{a_0 \, a_3}{a_1 \, a_2} \, < \, 1. \tag{5}$$

Proof It is easily computed that

$$D_1 = a_3$$
, $D_2 = a_2 a_3 - a_1 a_4$, $D_3 = a_1 a_2 a_3 - a_0 a_3^2 - a_1^2 a_4$, $D_4 = a_0 D_3$.

By the Routh-Hurwitz criterion, $f \in H_4$ implies $D_3 > 0$, i.e.,

$$a_1a_2a_3 > a_0a_3^2 + a_1^2a_4.$$

Dividing by a_1 a_2 a_3 we obtain inequality (5).

For the reverse implication, we can conclude from (5) that

$$\frac{a_1 a_4}{a_2 a_3} < 1$$

and hence $D_2 > 0$. Moreover, an immediate consequence of (5) is $D_3 > 0$, and so $D_4 > 0$. Once again we use the Routh–Hurwitz criterion and get the stability of f.

Note that for n = 4 and any function $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ we have only two w_i 's defined by (4):

$$w_1 = a_2a_3 - a_1a_4, \quad w_2 = a_1a_2 - a_0a_3$$

and

$$\overline{d} := \max \left\{ \frac{a_1 a_4}{a_2 a_3}, \ \frac{a_0 a_3}{a_1 a_2} \right\} \qquad \underline{d} := \min \left\{ \frac{a_1 a_4}{a_2 a_3}, \ \frac{a_0 a_3}{a_1 a_2} \right\}.$$

It is worth recalling from the beginning of Sect. 2.1 that for f with positive coefficients we have $\overline{d} < 1$ if all w_i 's are positive and $\underline{d} > 1$ whenever all w_i 's are negative.

Theorem 8 Let $f \in \mathbb{R}^+[n]$ with n = 4 and

$$p_0 := \frac{\log 0.5}{\log \overline{d}}$$
 $p_1 := \frac{\log 0.5}{\log \underline{d}}$.

- 1. If w_1 , $w_2 > 0$ then $f^{[p]} \in H_4$ for all $p > p_0 > 0$.
- 2. If w_1 , $w_2 < 0$ then $f^{[p]} \in H_4$ for all $p < p_1 < 0$.

Moreover, the constants p_0 and p_1 are the best possible, i.e., for p_0 it means that there exists a polynomial f of degree 4 with positive coefficients and $w_1, w_2 > 0$ such that $f^{[p]}$ is not stable for every $p < p_0$.

Proof For the proof of statement 1, we use Lemma 1. For $\lambda = 1/2$ and $p > p_0$ we have

$$\frac{1}{2} a_2^p a_3^p - a_1^p a_4^p > 0, \qquad \frac{1}{2} a_1^p a_2^p - a_0^p a_3^p > 0.$$

Consequently,

$$\frac{a_1^p \ a_4^p}{a_2^p \ a_3^p} < \frac{1}{2}$$
 and $\frac{a_0^p \ a_3^p}{a_1^p \ a_2^p} < \frac{1}{2}$

and therefore,

$$\frac{a_1^p a_4^p}{a_2^p a_3^p} + \frac{a_0^p a_3^p}{a_1^p a_2^p} < 1. (6)$$

By Proposition 7 we get the stability of $f^{[p]}$ for $p > p_0$. Statement 2 can be proved in an analogous fashion.

By Example 2 given below we show that the constants p_0 and p_1 cannot be improved.

Example 2 Consider the polynomial

$$f(x) = 2x^4 + x^3 + 5x^2 + x + 2.$$

In this case we have

$$w_1 = 5 \cdot 1 - 1 \cdot 2 = 3 > 0,$$
 $w_2 = 1 \cdot 5 - 2 \cdot 1 = 3 > 0$

and

$$\overline{d} = \max\left\{\frac{2}{5}, \frac{2}{5}\right\} = 0.4, \qquad p_0 = \frac{\log 0.5}{\log 0.4}.$$

Fix $p \le p_0$. By Proposition 7, $f^{[p]} \in H_4$ if and only if inequality (6) holds. We calculate

$$\frac{a_1^p a_4^p}{a_2^p a_3^p} + \frac{a_0^p a_3^p}{a_1^p a_2^p} = \left(\frac{a_1 a_4}{a_2 a_3}\right)^p + \left(\frac{a_0 a_3}{a_1 a_2}\right)^p = (0.4)^p + (0.4)^p$$
$$= 2 \cdot (0.4)^p > 2 \cdot (0.4)^{p_0} = 2 \cdot 0.5 = 1.$$

We see that inequality (6) does not hold and consequently $f^{[p]}$ is not stable. Additionally, we can easily verify by Proposition 7 that polynomial f is stable.

Corollary 9 If $f \in H_4$ then $f^{[p]} \in H_4$ for all $p \ge 1$.

Proof Since $(t^p + s^p)^{1/p} \le t + s$ for all $s, t \ge 0$ and $p \ge 1$, we have

$$\frac{a_1^p a_4^p}{a_2^p a_3^p} + \frac{a_0^p a_3^p}{a_1^p a_2^p} \le \left(\frac{a_1 a_4}{a_2 a_3} + \frac{a_0 a_3}{a_1 a_2}\right)^p < 1$$

the last estimate being a consequence of the stability of f and Proposition 7. Once again we use Proposition 7 and we get the stability of $f^{[p]}$.

2.4 Case $n \geq 5$

The main result of this subsection will be based on Theorem 3 that deals with n > 5. We remind the reader that γ denotes the unique real root of the equation $\gamma(\gamma + 1)^2 = 1$. One can verify that $\gamma \in (0.4655, 0.466)$. Quantities w_1, \dots, w_{n-2} and \overline{d} , d have been defined in the beginning of Sect. 2.1.

Theorem 10 Let $f \in \mathbb{R}^+[n]$ with $n \geq 5$ and

$$p_0 := \frac{\log \gamma}{\log \overline{d}}$$
 $p_1 := \frac{\log \gamma}{\log \underline{d}}$.

- 1. If $w_1, \ldots, w_{n-2} > 0$ then $f^{[p]} \in H_n$ for all $p > p_0 > 0$. 2. If $w_1, \ldots, w_{n-2} < 0$ then $f^{[p]} \in H_n$ for all $p < p_1 < 0$.

Proof Take $p > p_0$ in the case of $w_1, \ldots, w_{n-2} > 0$ or $p < p_1$ in the case $w_1, \ldots, w_{n-2} < 0$. In both cases, by Lemma 1 used for $\lambda = \gamma$, we have $\gamma a_{n-i-1}^p a_{n-i}^p - a_{n-i-2}^p a_{n-i+1}^p > 0$ for all i = 1, ..., n-2. Thanks to Theorem 3 we obtain the stability of $f^{[p]}$ and the proof is completed.

Let us observe that p_0 and p_1 in Theorem 10 are not far from being optimal as evidenced in the next example.

Example 3 Consider the polynomial

$$f(x) = x^5 + 5x^4 + 2x^3 + 5x^2 + x + 1.$$

We have

$$w_1 = a_3 a_4 - a_2 a_5 = 5 > 0$$
, $w_2 = a_2 a_3 - a_1 a_4 = 5 > 0$, $w_3 = a_1 a_2 - a_0 a_3 = 3 > 0$

and

$$\overline{d} = \max \left\{ \frac{a_2 \, a_5}{a_3 \, a_4}, \frac{a_1 \, a_4}{a_2 \, a_3}, \frac{a_0 \, a_3}{a_1 \, a_2} \right\} = \max \left\{ \frac{1}{2}, \frac{1}{2}, \frac{2}{5} \right\} = \frac{1}{2}.$$

$$H(f) = \begin{bmatrix} 5 & 5 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 5 & 5 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 5 & 5 & 1 \end{bmatrix}.$$

The leading principal minors are

$$D_1 = 5$$
, $D_2 = 5$, $D_3 = 5$, $D_4 = -1 < 0$, $D_5 = -1 < 0$

and therefore, by the Routh–Hurwitz criterion, f is not stable.

Now take $p \in \mathbb{R}$ and compute the 4th leading principal minors of $H(f^{[p]})$:

$$D_4(p) = 50^p + 5^p - 25^p - 25^p - 20^p - 1 + 5^p + 10^p.$$

If we take p close to 1 then $f^{[p]}$ is not stable because of the continuity of exponential functions and since $D_4(1) < 0$.

On the other hand, by Theorem 10, $f^{[p]}$ is stable for all $p \ge 1.1032$ as

$$p_0 = \frac{\log \gamma}{\log \overline{d}} = \frac{\log \gamma}{\log 0.5} < \frac{-\log 0.4655}{\log 2} \approx 1.10315 < 1.1032.$$

We conclude that the quantity p_0 given in Theorem 10 is close to the value, where the stability of $f^{[p]}$ changes.

The above example shows also that Theorem 8 proved for n=4 cannot be applied for polynomials of degree 5, because by Theorem 8 we get $f^{[p]} \in H_n$ for all $p>\frac{\log 0.5}{\log \overline{d}}$. However, for the polynomial f considered in Example 3 we have $\frac{\log 0.5}{\log \overline{d}}=1$ and we see that $f^{[p]}$ is not stable for p close to 1.

We can show by the next example that the constant γ in Theorem 3 is close to the optimal one.

Example 4 Let

$$f(x) = x^5 + 5x^4 + \left(3 - \frac{2}{\sqrt{5}}\right)x^3 + 5x^2 + x + 1.$$

Observe that f has all positive coefficients and for

$$\lambda = 0.475 > \frac{1}{3 - \frac{2}{\sqrt{5}}} \approx 0.47493$$

that is close to $\gamma \in (0.4655, 0.466)$, we have

$$\lambda a_3 a_4 - a_2 a_5 = \lambda \left(3 - \frac{2}{\sqrt{5}} \right) \cdot 5 - 5 > 0,$$

$$\lambda a_2 a_3 - a_1 a_4 = \lambda \cdot 5 \left(3 - \frac{2}{\sqrt{5}} \right) - 5 > 0,$$

$$\lambda a_1 a_2 - a_0 a_3 = \lambda \cdot 5 - \left(3 - \frac{2}{\sqrt{5}} \right) > \frac{5}{\left(3 - \frac{2}{\sqrt{5}} \right)}$$

$$- \left(3 - \frac{2}{\sqrt{5}} \right) = \frac{12}{5 \left(3 - \frac{2}{\sqrt{5}} \right)} (\sqrt{5} - 2) > 0.$$

By Theorem 3 analogous inequalities satisfied for γ (instead of λ) imply the Hurwitz stability of f. However, in the considered case we get

$$D_4 = \det \begin{bmatrix} 5 & 5 & 1 & 0 \\ 1 & 3 - \frac{2}{\sqrt{5}} & 1 & 0 \\ 0 & 5 & 5 & 1 \\ 0 & 1 & 3 - \frac{2}{\sqrt{5}} & 1 \end{bmatrix} = 0$$

and therefore, by the Routh–Hurwitz criterion f is not stable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Garloff J, Wagner DG (1996) Hadamard products of stable polynomials are stable. J Math Anal Appl 202:797-809
- Gregor J, Tišer J (1998) On Hadamard powers of polynomials. Math Control Signals Syst 11:372–378
- 3. Kemperman JHB (1982) A Hurwitz matrix is totally positive. SIAM J Math Anal 13:331-341
- 4. Lipatov AV, Sokolov NI (1978) On some sufficient conditions for stability and instability of linear continuous stationary systems. Avtomatika i Telemekhanika 9:30-37 (translated in: Automat Remote Control (1979) 39:1285-1291)
- 5. Rahman QI, Schmeisser G (2002) Analytic theory of polynomials, london mathematical society monographs, vol 26. Oxford University Press, Oxford
- 6. Wang Y, Zhang B (2013) Hadamard powers of polynomials with only real zeros. Linear Algebra Appl 439:3173-3176

