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 A recently isolated natural compound, Petaslignolide A, from the leaves of 

Petasites japonicas, has shown to be an effective neuroprotecting agent because of its 

antioxidant and anti-seizure activity. Recent studies have shown that the anti-seizure 

activity is dependent upon a metabolite of the natural product, 9-hydroxypinoresinol. 

Thus, the first total biomimetic synthesis was proposed to obtain 9-hydroxypinoresinol 

while employing metal-free organocatalysis. The synthesis utilizes the known 

Sonogashira Coupling reaction followed by hydrogenation using Lindlar’s catalyst, 

epoxidation with mCPBA then ending with the highly complex step of metal-free 

organocatalysis to obtain 9-hydroxypinoresinol. Preliminary research in the use of metal-

free organocatalysis approach were unsuccessful, thus a revised biomimetic synthesis was 

proposed. Previous reactions yielding the epoxide is further tosylated followed by 

coupling with 1-phenyl-3-butene-1-ol utilizing alkylation conditions. Further oxidation of 

the alkene using ozonolysis conditions then ends with metal-free organocatalysis. This 

revised synthesis provides promise to understanding the structure-activity relationship of 

the analogs to 9-hydroxypinoresinol and in turn, elucidating the mechanism of activity. 

The first total synthesis of 9-hydroxypinoresinol will allow the creation of a class of new 

novel anti-epileptic pharmaceuticals.
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CHAPTER I

BACKGROUND

I. A Natural Products and Drug Discovery1-15

	

 Research in the chemical and biological make up of natural compounds is 

continually growing for the purpose of advancing knowledge in the realm of medicinal 

cures, environmental benefits, aiding of chemical research and economic demands. 

Natural products as the source for drug discovery are increasingly attractive to 

pharmaceutical companies due to the vast number of compounds that have been shown to 

be biologically active.1 Before pharmaceutical companies started, people relied solely on 

plants and animals for food and medicine. Reports of traditional medicine systems start 

dating back to 2900-2600 BCE where in Mesopotamia, the people used oils such as 

cedar, cypress, liquorice, myrrh, and poppy juice for medicinal purposes. Traditional 

Chinese medicine has reports dating back to 1100 BCE where they document using 52 

prescriptions and through the years increase to 850 drugs around 659 CE. Indian 

medicine starts reporting at 1000 BCE with using around 516 drugs for medicinal 

purposes. Greeks and Romans report using herbs as drugs dating back to 460-377 BCE. 

9It is in this time of Hippocrates, who is considered the “father of medicine”, where they 

report using 400 drugs which were all plant-based mixtures. All those previous reports 

are using the natural compound obtained from the biological source.9 It wasn’t until much 
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later that chemists started looking into the biosynthesis and mechanism of action of those 

natural products. 


 In the time frame of 1803-1805, European chemists revolutionized drug discovery 

development by looking further into the pharmacology of different compounds.9 Looking 

at alkaloids in particular, plant-derived alkaloids became of interest when morphine was 

isolated from the opium plant in 1817. Isolation of other well-known plant compounds 

such as caffeine in 1819, quinine in 1820 and codeine in 1833 were considered the start 

of pharmacology research into plants. Antibacterial agents such as penicillin and 

streptomycin were isolated toward the end of World War II in the 1940‘s. While 

amphotericin B was isolated 1950 as an antifungal agent. Nucleosides were found in 

1950 that derivation was possible for differing antiviral agents. Antitumor agents were 

discovered in 1950, and came from pure microbial sourced compounds or modified 

microbial sourced compounds.9 For a long time, plant compounds were used in many 

different medicine sources because of their exceptional biological specificity and “ready 

to use”  availability.17 Although, now plant compounds are targeted as starting reagents/

structural base for the synthesis of other compounds.9 

	

 According to a recent review, in the last 15 years research by pharmaceutical 

companies into natural products has declined. In particular, between 2001 and 2008, the  

number of natural products that were being looked into for possible drugs declined by 

30%.1 One of the main reasons for that decline was due to a higher demand for 

“blockbuster”  drugs that produce strong benefit to cost ratios.1 Pharmaceutical companies 
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have always had the paradigm “one drug-one target-one disease”9 so there is not just a 

demand for the “blockbuster”  drugs but for any drug which can be made quickly and 

bring profit. From the perspective of drug companies, the incentives push research 

towards  quick development to get into the revenue stream as early as possible. Even if 

the impact of more long term natural product research has strong benefits from a societal 

perspective it struggles to align with the incentives pharmaceutical companies face 

because it is “not very amenable to rapid high-throughput screening (HTS).”1

	

 The process of going from the natural product to a possible pharmaceutical drug, 

includes obtaining the biological resource, screening of the biological activity, structural 

analysis, design of structure-related analogs and ending with large scale production of the 

drug.1,5 The process can be prolonged during screening of the natural product extracts 

against other compound libraries because there are thousands of structures in the 

database.13,15 Moreover, the process can be drawn-out when access to the resources, such 

as plants, microorganisms and algae are limited. The demand for a total synthesis is due 

to the lack of resources and allows for an easier approach to obtaining the compound. 

Furthermore, a synthesis could provide structures of analogs from the natural product that 

are unavailable in the isolation process. In the process of designing a drug, a synthesis 

aids in the research of understanding the biological mechanism as well as adds another 

resource in validating the structure of the natural product. 
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I. B Natural Products Classification2-14

	

 Natural products are split into two main categories: primary metabolites and 

secondary metabolites. Primary metabolites are present in all cells and are directly used 

in the metabolism and reproduction of cells. Known primary metabolites include amino 

acids, nucleic acids, carbohydrates and sugars. Secondary metabolites are defined as 

compounds that affect the primary metabolites and other organisms which vary between 

species.2 The secondary metabolites are of interest and are classified into five main 

classes. These classes are based on structural differences determined by their 

biosynthesis: polyketides, terpenoids/steroids, phenylpropanoid compounds, alkaloids 

and a few special carbohydrates. The class of phenylpropanoid compounds contains 

coumarins, lignans, flavanones, anthocyanins, flavones, isoflavanoids, stillbenes and 

lignins.6 The compound of interest, 9-hydroxypinoresinol (Figure 1) is classified as a 

lignan. 

Figure 1. 9-hyroxypinoresinol
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 Lignans are described as a dimer of two phenylpropanoids (derivatives of 

phenylalanine) linked together by their central atoms which bear the side chain for each. 

The lignan class can be further split into many subclasses: furofurans, tetrahydrofurans, 

dibenzylbutanes, dibenzocyclooctadienes, etc.6 Specifically, furofurans are considered to 

be one of the largest subclasses of natural product classification.5,6 Since they are 

derivatives of phenylalanine, which is an amino acid, there is a biosynthesis for each 

furofuran lignan. A generalized biosynthesis starts with oxidative coupling of two 

phenylpropanoid compounds (ex. confieryl alcohol) by free-radicals (Figure 2).12,14 

Following the radical dimerisation, which builds the bridge of the two central rings, the 

radical intermediates are internally “trapped or captured” by the dirigent protein. The 

dirigent protein formulates the stereochemistry so the synthesis occurs in a regio- and 

enantioselective manner to give the furofuran structure (ex. (+/-) pinoresinol). 5,6,10,11,12 

 5



HO

O

OH

Coniferyl Alcohol

O

O

OH

Coniferyl Alcohol Radical

O

O

O

O

HO

O

O

OH

HO

O

OH

O

(+/-)-pinoresinol

(+)-pinoresinol

Dirigent 
ProteinOxidase

Figure 2. Generalized Biosynthetic Pathway of Lignans. Dirigent is Latin for 
“dirigere: to guide or align”.14 The dirigent protein serves as a common name since it can 
vary among different plants depending upon the enantioselectivity of the natural product.

 
	

 The previously described biosynthesis (Figure 2) seems to be the consensus found 

in literature but there are other view points. A second example includes a route proposed 

by Dr. Mitchell Croatt which starts with oxidation of coniferyl alcohol to yield the 

coniferyl alcohol radical intermediate (Figure 3). Instead of oxidative coupling of two 

coniferyl alcohol intermediates (Figure 2), rather one radical intermediate attacks the 

alkene of an unoxidized coniferyl alcohol molecule and produces a benzylic radical. Now 

the compound is a dimer of two coniferyl alcohol compounds. The benzylic radical is 

then oxidized to form a cation and the alcohol of the first coniferyl alcohol molecule 

(blue) nucleophilically attacks the cation and forms the first tetrahydrofuran ring. In the 
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final step, the alcohol of the second coniferyl alcohol (brown) attacks the alkene and 

completes the second tetrahydrofuran ring to yield (+/-)-pinoresinol. 
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Figure 3.  A second route to describe the Biosynthetic Pathway of Lignans

	

 Looking further into the structural diversity of the furofuran lignans, some known 

furofurans will be discussed based upon their structural differences/commonalities in 

comparison to 9-hydroxypinoresinol. Pinoresinol, (+)-sesamin and (+)-eudesmin 

structures are as shown in Figure 4 as examples of furofuran lignans. Pinoresinol is the 

closest structure to 9-hydroxypinoresinol (Figure 1), only lacking the hydroxy group at 

the C9 position. It is found in the plant Forsythia europaea as the (+) form while the (-) 

form is found in Daphne tangutica.5 (+)-Pinoresinol is found to be an antinociceptive 

agent which acts when painful stimuli is introduced by reducing the sensitivity.13
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 Sesame seeds come from Sesamum indicum and contain (+)-sesamin.5,13 In 

comparing the structures, sesamin differs in the substituents on the phenyl rings, having 

dioxolane rings and also lacking the hydroxy group at the C9 position. Sesamin is known 

as an antitubercular agent which is used in the treatment of tuberculosis.13 Tuberculosis is 

an infectious bacteria-related disease which affects the lungs and sometimes other parts 

of the body. Eudesmin is found in the plant Araucaria angustifolia and is known to be a 

neuroprotective compound by inhibiting tumor necrosis factor-α production and T-cell 

proliferation.5,10,13

O

O

O

O

O

O
O

O

H H

H H

H H

(+)-sesamin
OH

O

HO

O

O

O

O

O

(+)-eudesmin

(+)-pinoresinol

O

O

Figure 4. The structures of (+)-pinoresinol, (+)-eudesmin and (+)-sesamin

 Many previous syntheses are known for all three of the compounds.3,4,10 Andrew 

Pelter and his group  show two very different routes to achieve pinoresinol, sesamin, 

eudesmin and other structurally unique lignans (Figure 5). The first route is an overall six 
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step synthesis producing the isomeric lignans via their corresponding dioxo-diesters.8 The 

second route is considered the first “unambiguous synthesis” because it does not contain 

ring-opening intermediates which are common to previous syntheses. The synthesis is 

only two steps starting with oxidative coupling of ferulic acid derivatives with aqueous 

Iron (III) chloride to yield the dilactones. Further reduction of the dilactones with 

DIBAL yields the corresponding lignans.7 

Figure 5. Andrew Pelter et al. routes to obtaining furofuran lignans. First route is in 
red and the second route is in blue. 
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I. C Background & Significance of Petaslignolide A18-25

 Petaslignolide A was isolated from the leaves of Petasites japonicas which are 

native to Japan and Korea.19 Originally, the plant served a wide variety  of purposes in 

traditional oriental medicine such as treatment for asthma, oxidative stress and stomach 

ulcers.19 Research on the Petasite plants has been ongoing for many years during which 

time many different compounds have been isolated with varying biological activity  and 

molecular structure. An example is from Petasites formosanus, which contains S-Petasin, 

a sesquiterpene that is effective for use in treating hypertension.13 Compounds in the 

extracts from the leaves of Petasites japonicas have been identified as polyphenolic due 

to the large number of (-OH) groups and aromatic rings present in the structure as shown 

in Figure 6.18 Another term in the literature used to describe the structure of this type of 

compound is a lignan. 
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Petaslignolide A 9-hydroxypinoresinol

Figure 6. The structures of Petaslignolide A and 9-hydroxypinoresinol. Isolation yield 
from Petasites japonicas leaves of Petaslignolide A was 88 mg from 1.5 kg (0.0059%). 
Enzymatic deglycosylation with naringinase yields 9-hydroxypinoresinol with a purity  of 
>90%. 
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 Since the discovery of Petaslignolide A in 200519, which labeled the compound 

with antioxidant and anti-seizure activities, biological studies have been preformed to 

fully  understand the mechanism of action. Originally, Petaslignolide A showed effective 

antioxidant activity in the DPPH radical scavenging activity, in vitro as well as in vivo 

against kainic acid neurotoxicity  in mice. Results indicated that the antioxidant/anti-

seizure activity was dependent upon the structural changes that take place during 

metabolism, in vivo, during which the glucose moiety  was removed to yield 9-

hydroxypinoresinol. Kainic acid is a central nervous system excitotoxin which produces 

seizures and sometimes can lead to neuronal death. 

 In 2007, the following report21, antioxidant studies, in vitro, such as DPPH radical 

scavenging assays and Low density lipoproteins (LDL) incubated with Cu2+ were tested  

using the metabolized analog, 9-hydroxypinoresinol. Neuroprotection action using kainic 

acid induced neurotoxicity, in vivo were tested using 9-hydroxypinoresinol and 

Petaslignolide A. Antioxidant activity results indicated 9-hydroxypinoresinol was 4-fold 

more potent at preventing oxidation of the low density lipoproteins. Also, was 4.5-fold 

more effective at removing the oxidant radicals in the DPPH radical scavenging assays. 

Results of the neuroprotective action against kainic acid indicated 9-hydroxypinoresinol 

was more effective at delaying the onset time of the seizure, after kainic acid injection, 

than in comparison to Petaslignolide A. Mice were injected intraperitoneally  with 9-

hydroxypinoresinol, at different  intervals of 2 hours, 24 hours and 3 days, prior to 

intraperitoneal injection of kainic acid. At every time interval, the onset time of the 
 11



seizure was increased, comparing to the control mice with no 9-hydroxypinoresinol.  

Longer pre-treatment, or multiple administrations, of 9-hydroxypinoresinol showed to 

further increase the onset time of the seizure in comparison to the single administration. 

An example of a single administration (30 mg/kg) at 24 hours before kainic acid 

injection, showed the time at which the seizure occurred was 22.0 ±  2.2 minutes. Multiple 

administrations (20 mg/kg) over 3 days before kainic acid injection, showed the time at 

which the seizure occurred was increased to 28.4 ±  3.1 minutes. These results indicate the 

build up  of 9-hydroxypinoresinol in the body is important for more neuroprotective 

action to be seen. The effective dose of 9-hydroxypinoresinol was 10-20 mg/kg which is 

shown to be more efficient in comparison to reseratrol, curcumin, and naringenin. The 

metabolic pathway of 9-hydroxypinoresinol, in vivo, was unclear and obtaining structure-

related analogs could help in determining the neuroprotective mechanism of action. 

I. D Biomimetic Synthesis

 A biomimetic synthesis was proposed to obtain 9-hydroxypinoresinol, and 

through structural modification of defined R-groups, obtain other analogs. Developing a 

synthesis would help  provide a way to elucidate the mechanism of activity  and create a 

class of new novel anti-epileptic pharmaceuticals.  Retrosynthetically, the synthetic plan 

proposes that 9-hydroxypinoresinol can be made in only a few steps. Metal-free 

organocatalysis would be employed in the final step  to combine the epoxide and an α, β- 

unsaturated aldehyde to form two tetrahydrofuran rings which are the core structure of 9-

hydroxypinoresinol (Figure 7).
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Figure 7. Retrosynthetic Design

I. E Organocatalysis and Proposed Mechanism26-31

	

 Organocatalysis is of growing interest in organic chemistry, particularly in the 

synthesis of natural products and other chiral compounds in an enantioselective fashion. 

One of the main reasons it is of growing interest is because the catalysts are amino-acid 

derived, usually L-proline, and contain no inorganic metals. Metal-free catalysts can be 

less harmful, produce less toxic waste and be less expensive compared to organomettalic 

catalysts commonly used in organic synthesis. Popularity has grown due to the demand of 

enantiomerically pure drug compounds. Mechanistic properties of the organocatalysts 

vary depending on the substituents on the catalyst and substrates in the reaction 

conditions. Some known ways that the catalyst can act is as a Lewis acid/base (iminuim/
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enamine) or as a Brønsted acid/ base. In the proposed retrosynthetic pathway, (Figure 7) 

the last step of the reaction goes through an organocatalyzed “iminuim-enamine” 

mechanism.31

	

 The proposed “iminium-enamine”  mechanism starts out with the organocatalyst  1 

replacing the carbonyl oxygen of the aldehyde 2 and generating an iminium species 3 

(Figure 8). The kinetics of the first step is very fast and in equilibrium with the starting 

reagents. The second step follows with a nucleophillic addition of the primary alcohol 4 

to the electrophillic β-carbon 3 which generates an enamine species. The alcohol group in 

compound 4 is a reasonably good nucleophile and we propose equilibrium will proceed 

to the next step. After enamine species 5 is formed, the now nucleophillic α-carbon 

attacks the epoxide which opens it  and concurrently forms the first tetrahydrofuran ring 

in 6. Hydrolysis of the second iminium species 6 results in regeneration of the catalyst 1. 

Hemi-acetal formation in 7, from the alcohol to the aldehyde would yield the second 

tetrahydrofuran ring in 8. 
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Figure 8. Proposed Organocatalysis Mechanism

 In the scope of the proposed mechanism, it is also possible that after the enamine 

species is formed, the following mechanistic steps are highly  kinetically controlled. This 

hypothesis is based on reactions that will be discussed in the results which show the time 

required for the reaction is not affected, even when temperature is increased. In 

accordance with this hypothesis and the proposed mechanism of action, various 

characterization techniques such as 1H NMR and 13C NMR will be used to help  verify the 

mechanism and validate the structure.
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CHAPTER II

EXPERIMENTAL

 All reagents are commercially available and characterization by NMR was 

recorded on the Bruker AVANCE DRX 300 and JEOL ECA 500 MHz spectrometer at 

room temperature. For all the  reaction procedures, optimum conditions are indicated 

after various trials of differing solvents, temperatures and reaction times were employed. 

Thin layer chromatography (TLC) in 50% EtOAC: 50% Hexane with vanillin staining 

was used in all procedures to determine completion of the reaction. 

II. A 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenol25

	

 In a 25 mL flask, Pd(PPh3)Cl2 (52.1 mg, 0.0742 mmol, 0.0251 eq.) and CuI (20.8 

mg, 0.101 mmol, 0.0350 eq.) were added to a solution of 4-bromo-2-methoxyphenol 

(623.8 mg, 3.07 mmol, 1 eq.) in NEt3 (5 mL). After stirring for a few minutes, propargyl 

alcohol (0.300 mL, 5.12 mmol, 1.6 eq.) was slowly added to the solution. The solution 

was allowed to stir at 80℃ for 3 hours. The catalyst was filtered over a celite pad and 

concentrated under vacuum. Yield: 30% as an orange oil. 

1H NMR (300 MHz, CDCl3): δ = 2.06 (s, 1 H), 2.68 (d, J = 6.4 Hz, 1 H), 3.89 (s, 3 H) 

4.29 (d, J = 2.5 Hz, 2 H), 6.80 (d, J = 8.3 Hz, 1 H), 6.96 - 7.02 (m, 2 H).
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Figure 9. Sonogashira Coupling Reaction

II. B (Z)-3-phenyl-2-propen-1-ol22,23

	

 In a 10 mL round bottomed flask, Lindlar’s catalyst (101.4 mg, 0.905 mmol, 0.25 

eq.) followed by quinoline (42 𝜇L, 0.355 mmol, 0.1 eq.) was added to the solution of 3-

phenylpropargyl alcohol (498.2 mg, 3.76 mmol, 1 eq.) in MeOH (5 mL) and placed under 

a hydrogen atmosphere. The reaction was stirred for 4 hours at room temperature. The 

catalyst was filtered off through a Celite pad two times and the resultant solution was 

concentrated under vacuum. Spectra was confirmed to be (Z)-3-phenyl-2-propene-1-ol in 

comparison to literature data.  Yield: 95% as a pale yellow oil.

1H NMR (300 MHz, CDCl3) δ = 2.29 (br s, 1 H), 4.48 (d, J = 1.0 Hz, 2 H), 5.82 - 5.98 

(m, 1 H), 6.58 (d, J = 11.7 Hz, 1 H), 7.19 - 7.24 (m, 1 H), 7.26 - 7.40 (m, 3 H), 7.41 - 

7.50 (m, 1 H).       

Br

OH

HO

O
OH

HO

O
Pd(PPh3)2Cl2
CuI, NEt3
3h 80o C

 17



Figure 10. Hydrogenation Reaction

II. C cis-3-phenyl-2-oxiranemethanol24

	

 To a stirred solution of 3-phenyl-2-propen-1-ol (225.9 mg, 1.68 mmol, 1 eq.) in 

THF (2.5 mL) in a 10 mL round bottom flask, mCPBA (387.7 mg, 2.25 mmol, 1.1 eq.) 

was added followed by an equivalent amount of THF (2.5 mL) until mCPBA was 

observed to have completely dissolved. The reaction was stirred at room temperature 

under argon for 24 hours until completion of the reaction as indicated by TLC. The 

reaction was quenched by the addition of an aqueous solution of Na2S2O3 and allowed to 

stir for an additional 30 min. After the additional stirring, the solution was washed with 

saturated sodium bicarbonate, brine and DI water followed by extraction of the aqueous 

layers with ethyl acetate. The organic layers were dried over sodium sulfate, filtered and 

concentrated under vacuum. Purification by chromatography, on silica gel with EtOAc/

Hexane (1:1) as the eluent, was completed two times. Spectra was confirmed to be the 

cis-epoxide 3-phenyl-2-oxiranemethanol in comparison to literature spectra. Yield: 35% 

as a colorless oil.  

1H NMR (300 MHz, CDCl3): δ = 2.10 (br s, 1 H), 3.41 - 3.61 (m, 2 H), 4.21 (d, J = 3.9 

Hz, 2 H), 7.18 - 7.25 (m, 1 H), 7.29 - 7.43 (m, 4 H). 

OH

OH

H2, Lindlar's catalyst
quinoline, MeOH
4h, r.t.
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13C NMR (126 MHz, CDCl3): δ = 57.2 (s, 1 C), 58.85 (s, 1 C), 60.5 (s, 1 C), 126.3 (s, 1 

C), 128.0 (s, 2 C), 128.4 (s, 2 C), 134.7 (s, 1 C).

O

OH
HH

OH

mCPBA (70-75% purity)
THF, 24 h, r.t.

90-95% (+/-)

Figure 11. Epoxidation Reaction

	

 For the organocatalytic reaction, various reaction conditions were tested using 

different catalysts (Catalysts I, II, III), temperatures, solvents, acid/base additives and 

time lengths. The experimental procedure for each of the varying reactions serves as a 

general guideline for set up and reagent equivalents. Based on the change in conditions, 

the general procedure was altered. All reactions were monitored by TLC in 50% EtOAc: 

50% hexane with vanillin staining.
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Figure 12. Structures of the varying catalysts for the organocatalysis reaction

II. D 9-hydroxypinoresinol analog (31) using Catalyst I

	

 In a 10 mL round bottomed flask, 3-phenyl-2-oxiranemethanol (20 mg, 0.133 

mmol, 1 eq.) and trans-cinnamaldehyde (25 µL, 0.199 mmol, 1.5 eq.) in the solvent (0.6 

mL, 0.25 M) were allowed to stir for a few minutes following addition of Catalyst I (4 

µL, 0.0133 mmol, 0.1 eq.). After further stirring of the reaction for a few minutes, acetic 

acid (0.8 µL, 0.0133 mmol, 0.1 eq.) was added. The reaction was allowed to stir at room 

temperature under argon until TLC indicated the starting epoxide was gone. The reaction 

was quenched with brine and allowed to stir for 10 min. After stirring, the solution was 

washed with excess brine and deionized water followed by extraction of the aqueous 

layers with EtOAc. The combined organic layers were dried over sodium sulfate, filtered 

and concentrated under vacuum. Purification was attempted by chromatography on silica 

gel with EtOAc/Hexane (1:1) as the eluent but the product was not obtained. 

diphenyl[(2S)-2-pyrrolidinyl]methyl trimethylsilyl ether

Catalyst I

N
H

OSiMe3

Piperidine

Catalyst II

Pyrolidine

Catalyst III

N
H

N
H
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Figure 13. Catalyst I with 3-phenyl-2-oxiranemethanol and trans-cinnamaldehyde

II. E 9-hydroxypinoresinol analog (31) using Catalyst II

	

 In a 10 mL round bottom flask, a solution of 3-phenyl-2-oxiranemethanol (20mg, 

0.133 mmol, 1 eq.) and trans-cinnamaldehyde (25 µL, 0.199 mmol, 1.5 eq.) in piperdine 

(0.6 mL, 6.07 mmol, 45 eq.) were allowed to stir at room temperature under argon until 

TLC indicated the starting epoxide was completely gone. The reaction was then 

concentrated under vacuum to yield a thick orange oil. Purification was attempted by 

chromatography on silica gel with EtOAc/Hexane (1:1) as the eluent but the product was 

not obtained.

Figure 14. Catalyst II with 3-phenyl-2-oxiranemethanol and trans-cinnamaldehye
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H H O

O OH

HH
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OH

H H O

O OH

HH

Solvent, Acid/Base additive

Catalyst II
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II. F 9-hydroxypinoresinol analog (26) using Catalyst II

	

 The same procedure was employed as shown in II. E but with a different aldehyde 

reagent and catalyst.                     

Figure 15. Catalyst II with 3-phenyl-2-oxiranemethanol and 4-hydroxy-3-
methoxycinnamaldehyde

II. G 9-hydroxypinoresinol analog (26) using Catalyst II or III

	

 In a 10 mL round bottom flask, a solution of 3-phenyl-2-oxiranemethanol (21.8 

mg, 0.145 mmol, 1 eq.), 4-hydroxy-3-methoxycinnamaldehyde (36.5 mg, 0.205 mmol, 

1.5 eq.) and catalyst II or III (0.5 mL, 5.76 mmol, 40 eq.) in CDCl3 (4 mL) was allowed 

to stir at room temperature for 5-10 min then immediately characterized by 1H and 13C. 

NMR spectra were recorded at 5 min, 10 min and 25 min. Purification was attempted by 

chromatography on silica gel with EtOAc/Hexane (1:1) as the eluent but the product was 

not obtained. 

O

OH

H H

Solvent

O

H

HO

O

O

O OH

HH
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Figure 16. Catalyst II or Catalyst III with 3-phenyl-2-oxiranemethanol and 4-
hydroxy-3-methoxycinnamaldehyde

II. H (3-phenyloxiran-2-yl)methyl 4-methylbenzenesulfonate12

	

 In a 10 mL round bottom flask a solution of 3-phenyl-2-oxiranemethanol (19.38 

mg, 0.129 mmol, 1 eq.) and p-toluenesulfonyl chloride ( 26.31 mg, 0.138 mmol, 1 eq.) in 

pyridine (0.140 mL, 1.74 mmol, 13.4 eq.) was allowed to stir at -15℃ for 48 h. 

Temperature was controlled through the use of a CRYOTROL apparatus in an 

isopropanol bath. Due to the large staining of pyridine with vanillin, potassium 

permanganate stain was used instead for TLC. After 48 h, the reaction was quenched with 

excess aqueous ammonium chloride and the p-toluenesulfonyl chloride was filtered off. 

The solution was washed with deionized  H2O and extracted with DCM (3x). The 

combined organic layers were dried over sodium sulfate, filtered and concentrated under 

vacuum. Purification by chromatography on silica gel with EtOAc/Hexane (1:1) as the 

eluent was attempted. Yield 71% as a pale yellow oil.

1H NMR (500 MHz, CDCl3): δ = 2.44 (s, 3 H) 3.42 - 3.58 (m, 2 H) 3.82 - 3.90 (m, 2 H) 

7.15 - 7.18 (m, 5 H) 7.26 - 7.37 (m, 4 H).

O

OH

H H
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O

H

HO
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Figure 17. Tosylation Reaction
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CHAPTER III

RESULTS AND DISCUSSION

III. A Original Biomimetic Synthesis Design

 In the first step of the synthesis, the Sonogashira coupling reaction is used to 

couple propargyl alcohol (2) with 4-bromo-2-methoxyphenol (1) in order to achieve 3 

which contains the appropriate substituents as shown in the desired parent compound 

(Figure 18). Steps two and three employ the previously described hydrogenation (Figure 

10) and epoxidation reactions (Figure 11) to obtain the derivative of 3-phenyl-2-

oxiranemethanol (5) to be used in the final step. The final step of the synthesis 

demonstrates high complexity because it utilizes a metal-free organocatalyst that is 

proposed to proceed through “iminium-enamine”  catalysis (Figure 8), to form the final 

product.
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Figure 18. Original Synthetic Design

III. B Sonogashira Coupling Reaction

	

 In the first step of the synthetic route the well-known Sonogashira coupling 

reaction is used to couple propargyl alcohol with 4-bromo-2-methoxyphenol in order to 

achieve the appropriate substituents as shown in the desired parent compound. Many 

reactions were attempted but were not easily reproducible possibly due to impurities in 

the starting materials. Proceeding on with the substrate in the subsequent steps was not 

attempted due to insufficient material. 

	

 Sonogashira coupling is defined through the use of a Pd0 catalyst and a CuI co-

catalyst to couple terminal alkynes with aryl halides. The mechanism, as shown in Figure 
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19, starts first with Pd0 catalyst undergoing oxidative addition into the aryl bromide 

compound. In addition, deprotonation of the terminal alkyne and addition of the copper 

(I) iodide co-catalyst results in creation of the “Cu-acetylide species”. Trans-metallation 

between the “Pd-halide species”  and the “Cu-alkyne species”  followed by reductive 

elimination, completes the coupling.

Figure 19. Sonogashira Coupling Mechanism
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III. C Hydrogenation Reaction

	

 The following steps of the synthesis (Steps 2-4) were established using a 

derivative of 9-hydroxypinoresinol. This approach was used in order to determine the 

optimum conditions in a quick timeline using low-cost reagents. 

	

 As stated previously, 3-phenylpropargyl alcohol was partially hydrogenated, to 

give the cis-alkene. Normal hydrogenation of an alkyne will give the alkane product   

through the use of Pd/C but using Lindlar’s catalyst (Pd/C “poisoned”  with Pb) allowed 

the reaction to stop at the alkene. Monitoring by TLC was simplified with the alkyne and 

alkene each staining a different color with vanillin. The alkyne stained green while the 

alkene stained purple. The reaction was very successful with high percent yields so 

purification was not needed and could be easily scaled up from milligrams to 2 grams 

scale.

III. D Epoxidation Reaction

	

 As stated previously (Z)-3-phenyl-2-propen-1-ol was oxidized to yield the cis 

epoxide, cis-3-phenyl-2-oxiranemethanol, using mCPBA. After a few attempts, it was 

discovered that one of the mCPBA reagent bottles had been reduced and was not working 

in the reaction. The percent yields were generally good but ranged from 35% to 85%. The 

reaction was easily scaled up to a 2 gram scale. It was seen that upon scaling up, more 

basic washing was needed in order to completely remove the mCPBA or 3-chlorobenzoic 

acid. Monitoring by TLC was simplified with the alkene and epoxide each staining 

different colors with vanillin. The alkene stained purple while the epoxide stained 
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turquoise. TLC indicated the alkene and epoxide co-spotted in the same area, so 

purification by column chromatography was difficult. After purification was completed, 

1H NMR indicated separation was achieved thus the epoxide was ready to move on with 

the last step. 

	

 Epoxidation of an alkene and mCPBA (meta-chloroperoxybenzoic acid) proceeds 

through a concerted mechanism in which the alkene acts as the nucleophile and mCPBA 

is the electrophile. Hydrogen bonding between the hydrogen on the -OH and the carbonyl 

oxygen makes the -OH oxygen more electrophilic thus attracting the alkene resulting in 

the formation of an epoxide and 3-chlorobenzoic acid.

III. E Organocatalysis Reaction

	

 Catalyst I (diphenyl 2-pyrrolidinyl methyl trimethylsilyl ether), is well known 

throughout organocatalysis literature and, when used, often gives successful results. 

Upon comparing the literature to this project, our reaction showed its uniqueness because 

there is no literature reference indicating use of an epoxide in this type of organocatalysis 

reaction. Catalyst II  (piperidine) and III (pyrrolidine) are common cyclic amine sources, 

so it was proposed they would react similarly and serve as a possible catalyst. All 

experimental 1H NMR and 13C NMR were compared to the original paper by Min et al.19 

in which 1H and 13C NMR peak data are given for 9-hydroxypinoresinol.   

	

  In trial one, as seen in Table 1 using the known Catalyst I, many reaction 

conditions were tested under varying solvents, (toluene, H2O, MeOH, THF, CHCl3) and 

temperatures (r.t., 50℃) with reaction times varying from one week to three weeks. 
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Results of those various trials indicate that neither solvent nor heat had a major effect on 

the progression of the reaction. Acid/base additives such as acetic acid and sodium 

acetate were added to change the conditions of the solution, based on the proposed 

mechanism, but results indicated the desired product was not obtained. Analysis of the 

NMR results show only starting materials (Figure 20). Due to the unsuccessful results, 

piperidine was tried as another catalyst.

Figure 20. Substrates used in Trial 1
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Table 1. Trial 1: varying reaction conditions with Catalyst I

Entry Solvent--Additive Temperature 
[℃]

Reaction Time 
[days]

Results

1 Toluene/H2O--NaOAc r.t. 8 No reaction

2 Toluene/H2O--NaOAc 50 23 No reaction

3 MeOH/H2O--NaOAc r.t to 50 15 No reaction

4 MeOH r.t. 15 No reaction

5 MeOH--Acetic Acid r.t. 7 No reaction

6 THF--NaOAc 50 12 No reaction

7 CHCl3--NaOAc r.t. 12 No reaction

	

 In trial 2, as seen in Table 2, piperidine (Catalyst II) was used (Figure 21). In this 

trial, piperidine served as both the catalyst and solvent thus varying temperature and 

presence of acid/base additive was attempted. Results indicated that for the piperidine 

reactions in which an additive (acid/base) was present, there was no presence of the 

desired product being formed, only starting material remained. On the other hand, the 

piperidine reaction without an additive showed a possibility of product formation, but it 

was very hard to analyze the crude reaction by 1H NMR. Attempt at column 

chromatography only yielded the product decomposing and recovering starting materials. 

Since the reactions indicated that neither solvent nor temperature had an effect, the next 

attempt was to change the aldehyde source. 
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Figure 21. Substrates used in Trial 2
        

Table 2. Trial 2: varying reaction conditions with Catalyst II and trans-
cinnamaldehyde  

Entry Solvent--
Additive

Temperature 
[℃]

Reaction Time 
[days]

Results

1 Piperidine--
NaOAc

r.t. to 50 11-13 No reaction

2 Piperidine--
Acetic Acid

r.t. 3-51 No reaction

3 Piperidine 100 4 Decomposition

4 Benzene reflux 1 No reaction

	


	

 A cinnamaldehyde derivative, 4-hydroxy-3-methoxycinnamaldehyde, was chosen 

because it had the appropriate aryl groups which match the desired product. It can be 

theorized that the electron-donating effect of those groups could possibly change the 

outcome of the reaction. In trial 3, Catalyst II was tested with 4-hydroxy-3-

methoxycinnamaldehyde (Figure 22). As seen in Table 3, various solvents and 

O

H

O

OH
H H

N
H

Acid/Base additive
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temperatures were screened with each having varying reaction times. Crude 1H NMR 

indicated a reaction was taking place, different from trial 2, but still not the desired 

product formation. Purification by chromatography was attempted to discover other 

possible products, but was unsuccessful with decomposition and recovery of starting 

materials. Each of the reactions were concentrated under vacuum before obtaining an 1H 

NMR and being placed on the column, which could have played a role in the reason for 

decomposition.        

Figure 22. Substrates used in Trial 3
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Table 3. Trial 3: varying reaction conditions with Catalyst II and 4-hydroxy-3-
methoxycinnamaldehyde   

Entry Solvent Temperature 
[℃]

Reaction Time 
[days]

Results

1 MeOH r.t 7 Decomposition

2 THF 85-90 to r.t. 17-21 Decomposition

3 Acetonitrile 85 10 Decomposition

	

 Even though the previous trials were unsuccessful in obtaining the desired 

product formation, 1H NMR still showed possible product formation other than what was 

intended. In order to look further into the possible products, trial 4 employs CDCl3 as the 

solvent and all reactions were run at room temperature (Figure 23). Trial 3 showed more 

promise than trial 2 with possible product formation in solution, thus the decision to 

continue using 4-hydroxy-3-methoxycinnamaldehyde as the aldehyde source seemed 

logical. Catalyst II and Catalyst III were both used in order to continue investigating new 

catalyst sources. In trial 4, 1H NMR was obtained at 5, 10 and 25 minutes and 13C NMR 

was obtained at 25 minutes. The 1H NMR showed changes in chemical shifts over time 

but the 13C NMR indicated no change in the chemical shift of the starting material. Some 

of the 1H NMR showed an absence of the alkene peaks resultant from the aldehyde 

source which were positive results, but after immediate column purification there were 

only starting materials. 2D NMR was obtained but the results were inconclusive due to 

the low concentration and poor 1H and 13C NMR data. 
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Figure 23. Substrates used in Trial 4

	

 In summary of trials 1, 2, 3 and 4, Catalyst I showed no results regardless of 

solvent or temperature. Catalyst II and III gave promising results of possibly confirming 

the proposed mechanism, independent of temperature. All attempts at isolation of the 

product were unsuccessful. After many unsuccessful reactions were run this step of the 

synthesis was finally put aside and a new synthesis was developed. 

III. F Revised Biomimetic Synthesis Design

	

 The revised synthesis (Figure 24) remains the same as the original design (Figure 

18) in the beginning with employing hydrogenation and epoxidation reactions to yield 

cis-3-phenyl-2-oxiranemethanol (5) to be used in the subsequent steps. Step three 

introduces a tosylation reaction in which a tosyl group replaces the hydrogen on the 

terminal alcohol to serve as a better leaving group for the following step. The next two 

steps were designed to build part of the compound that is based off the pathway of the 

proposed mechanism. Alkylation reaction serves to couple the tosylated epoxide 11, with 

commercially available 1-phenyl-3-butene-1-ol 9, together to form the coupled product, 
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12. The terminal alkene on 12 is then oxidized to the aldehyde under ozonolysis 

conditions to form 13. The resultant compound 13, mimics the final intermediate in the 

proposed mechanism, so the final step again employed the organocatalytic reaction in 

order to achieve a derivative of 9-hydroxypinoresinol. 
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Figure 24. Revised Synthetic Design

III. G Tosylation Reaction

	

 As stated previously, tosyl chloride was used to tosylate cis-3-phenyl-2-

oxiranemethanol. Analysis by proton NMR was hard due to the small reaction scale and 
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possible impurities in the epoxide starting material. Although, in comparison to literature 

data the spectra indicated that the reaction was successful. This route will be explored by 

future researchers. 

III. H Alkylation and Ozonolysis Reactions

	

 The alkylation mechanism of the tosylated epoxide 11, with 1-phenyl-3-butene-1-

ol 9, starts with deprotonation of the alcohol group on 9 resulting in anion formation 

which then attacks the electrophilic carbon containing the tosylate group. The tosylate 

group leaves and results in toluene sulfonate and the compound 12 (Figure 25).

Figure 25. Alkylation Mechanism

O
O

H
H

OH

NaH

O
S

O

O

O

O

O

HH

S

O

O

12

9

37



	

 Ozonolysis of 12 will be used to oxidize the alkene to the aldehyde to give 

compound 13 which will be subjected to the final organocatalysis step. The mechanism 

of the reaction undergoes 1,3-dipolar cyloaddition between O3 and the terminal alkene 

resulting in 5-membered ring called a molozonide. Retro-1,3-cycloaddition happens 

immediately due to the unstable molozonide, to give an aldehyde and a carbonyl oxide. 

The two products then recombine through a 1,3-dipolar cycloaddition to form a second 

ozonide. Reductive cleavage of the ozonide by CH3SCH3 yields the aldehyde of 13, and a 

second aldehyde (Figure 26). 

Figure 26. Ozonolysis Mechanism
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 In the revised synthesis (Figure 24), the last two steps needed to make compound 

13, were not attempted. If the project is carried on further in the research group, the 

reactions could be attempted using the previously made tosylated epoxide compound 11 

with the commercially available compound, 1-phenyl-3-butene-1-ol 9. 

III. I Analog Diversification

	

 If future researchers continue this project and successfully synthesize 9-

hydroxypinoresinol, then the next step in the process of natural products to drugs will be 

structure-related analog diversification. Further use of the revised synthesis will be used 

to modify the substituents of aryl groups to obtain a class of structurally-diverse analogs 

which may potentially posses the same or better anti-seizure activity.

	

 As shown in Table 4, only compounds 19 and 5, from the proposed synthesis 

(Figure 7), are needed to be altered at specific positions (R-R3) to obtain a class of twelve 

different analogs. The derivatives of reagents 19 (19-23) and 5 (5, 7, & 25) were chosen 

based on the analog products being structurally different/unique, possessing the same bio-

functionality as 9-hydroxypinoresinol and being easily accessible through commercial 

availability. 
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Table 4. List of structural analogs
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 Upon comparison of the various derivatives of the aryl halide source, changes are 

shown in all compounds (21-24) in whether or not the alcohol, on the R2 position, plays a 

significant role for biological activity. Starting with 21 as the first derivative would be 

beneficial because it is already similar to the preliminary data as well as there are no 

substituents in both the R2 and R3 positions. Due to this, 21 could serve as a good control, 

along with 19, when comparing the other derivative compounds 22 and 23. Compound 22 

is of interest because it is similar to 19 but only slightly different in the replacement of 

the alcohol group with a methoxy-group. Structural differences in the size and position of 

the oxygen substituent are seen in 23 and 24; comparing the R2 position (22 &  24) versus 

the R3 position (23). This will be significant when looking at the reaction reactivity and 

overall biological activity of the other analogs. 

	

 Upon comparison of the derivatives of the aldehyde source, only two compounds 

(7, 25) are shown due to the lack of commercial availability and similar structure 

relationship. Changes in the R and R1 positions are seen in the presence of no substituents 

in both (7), and the presence of the alcohol group only in the R position along with no 

substituent in the R1 position (25). These two derivatives (7, 25), along with 5, will 

provide evidence to what literature has already stated, indicating the alcohol group in the 

R position (5, 25) is needed for the biological activity.19,21 Therefore, if biological testing 

against kainic acid is performed on these analogs, then it is hypothesized that 26-29 and 

35-39 should possess some, if not potentially improved, biological activity in comparison 

to the parent compound 2.      
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CHAPTER IV

CONCLUSION

	

 The first total synthesis of 9-hydroxypinoresinol was proposed consisting of 

known organic reactions with a highly complex step utilizing metal-free organocatalysis 

to form the two tetrahydrofuran rings of the core structure thus achieving the desired 

product in only four steps. After the synthesis was attempted, steps 1-3 were successfully 

completed but unsuccessful organocatalysis results indicated the need for a revised 

synthesis. The revised synthesis was designed to add onto the original design by pre-

building a part of the compound which mimicked the proposed organocatalytic pathway. 

The revised synthesis was only increased to seven steps in comparison to four steps from 

the original synthesis. All of the reagents were commercially available and are easily 

altered through the aryl groups to obtain a class of structurally-diverse analogs. This 

synthesis could serve as a tool for further understanding the chemical, structural and 

biological properties of the compound as well as facilitate the progression of 

understanding the importance of 9-hydroxypinoresinol for future drug discovery leads as 

an anti-seizure drug.
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APPENDIX A

NMR SPECTRA OF COMPOUNDS

Sonogashira Coupling Reaction: 1H NMR
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Hydrogenation Reaction: 1H NMR
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Epoxidation Reaction: 1H NMR
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Epoxidation Reaction: 13C NMR
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Tosylation Reaction: 1H NMR
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