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ABSTRACT 

In this paper, we examine temporal properties of 11 natural resource real price series from 1870 

to 1990. Recent studies by Ahrens and Sharma [Trends in natural resource commodity prices: 

deterministic or stochastic? J. Environ. Econom. Manage. 33(1997)59–74], Berck and Roberts 

[Natural resource prices: will they ever turn up? J. Environ. Econom. Manage. 31(1996)65–78], 

and Slade [Grade selection under uncertainty: least cost last and other anomalies, J. Environ. 

Econom. Manage. 15(1988)189–205], among others, find that many non-renewable resource 

prices have a stochastic trend. We revisit this issue by employing a Lagrangian multiplier unit 

root test that allows for two endogenously determined structural breaks with and without a 

quadratic trend. Contrary to previous research, we find evidence against the unit root hypothesis 

for all price series. Our findings support characterizing natural resource prices as stationary 

around deterministic trends with structural breaks. We additionally show that both pre-testing for 

unit roots with breaks and allowing for breaks in the forecast model can improve forecast 

accuracy. Overall, the results in this paper are important in both a positive and normative sense; 

without an appropriate understanding of the dynamics of a time series, empirical verification of 

theories, forecasting, and proper inference are potentially fruitless. 
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1. INTRODUCTION 

An important literature has developed recently that empirically examines non-renewable natural 

resource price paths and investigates whether they are trend- or difference-stationary. For 

example, Ahrens and Sharma [2] use annual data on 11 commodity price series ranging from 

1870 to 1990 and conclude that six of these series are stationary around a deterministic trend, 

while the remaining five display stochastic trends implying a unit root. In a related paper, Berck 

and Roberts [5] use a subset of the same data and find overwhelming support for non-stationary 

unit roots. Slade [32] and Abgeyegbe [1], among others, find similar overwhelming support for 

non-stationary natural resource prices. A consistent theme across much of this literature is that 

most natural resource prices are non-stationary. 

Our motivation in this paper is to further the boundaries of econometric methodologies and 

provide new insights into natural resource price time paths. Previous empirical work on natural 

resource prices typically neglects possible structural change in the time series. Since the 

seminal work of Perron [25], it is well known that ignoring structural change in unit root tests will 

lead to a bias against rejecting the unit root null hypothesis when it should in fact be rejected 

(e.g., see also [3]). In this study, we advance the literature on time paths of natural resource 

prices by endogenously determining structural breaks and extending the two-break Lagrangian 

multiplier (LM) unit root test of Lee and Strazicich [16] to include a quadratic trend. Given that a 

quadratic trend might exist in some natural resource price series we believe that allowing for a 

quadratic trend in conjunction with structural breaks may provide additional insights. 

Understanding the nature of resource price time paths is important for several reasons. 

Theoretically speaking, Ahrens and Sharma [2, p. 61], for example, note that in regards to both 

a simple and more general Hotelling [11] model as described in Slade [32], “price movement is 

still systematic and may be modeled appropriately as a deterministic trend.” In contrast, in a 

world with uncertainty “in which speculative motives drive the behavior of extracting firms or 

unanticipated events largely characterize the market, resource prices may be generated by a 

random walk process” [2, pp. 61–62]. Thus, knowing the correct time series behavior of natural 

resource prices can be vital to distinguish among theories that most accurately describe 

observed behavior. 

Knowledge of the time series properties of natural resource prices is also important for proper 

econometric estimation. For example, Ahrens and Sharma [2] and Labson and Crompton [14] 

note that conventional regression analysis and hypothesis testing cannot be correctly 

undertaken without first understanding characteristics of the time series. Otherwise, results from 

estimating regression models may be rendered invalid. Several additional examples can be 

found in the literature (see, e.g., [9]). 

Finally, given that good policymaking typically depends on sound economic forecasts, 

appropriately modeling the nature of the time series can be invaluable to forecasters [8]. This 

task recently came to hand in Berck and Roberts [5], who did not consider structural breaks. 

They found that each commodity price series had a unit root and hence initially paid more 

credence to their ARIMA forecasts. Berck and Roberts [5], however, found that their ARMA 

forecasts outperformed their ARIMA counterparts. In the later part of our paper, we investigate 



whether pre-testing for unit roots with structural change can help to identify the most accurate 

forecasting model. This question has not been previously examined in the literature. 

Our investigation begins by examining annual data comprised of 11 fuel and metal real price 

series ranging from 1870 to 1990.1 After including structural breaks, we find evidence against a 

unit root in each of the 11 series. We then estimate different forecasting models and find that 

ARMA models with breaks generally outperform ARIMA models with breaks, which is consistent 

with our pre-test expectations. These results help to solve the puzzling results noted by Berck 

and Roberts [5], and demonstrate the importance of considering structural breaks in economic 

forecasting. A second major finding is that our unit root test results are robust-with or without 

quadratic trends natural resource prices are stationary around deterministic trends with two 

structural breaks in intercept and trend slope. Thus, while nonlinear time trends are important in 

certain price series, rejection of the underlying unit root hypothesis and support for trend-break 

stationary price series does not depend on inclusion of such trends. Finally, we find that both 

pre-testing for unit roots and including structural breaks can improve the accuracy of forecasting 

natural resource prices. 

The remainder of the paper is structured as follows. Section 2 provides a brief background on 

unit root tests and further describes the importance of understanding the time-series properties 

of exhaustible resource prices. Section 3 describes our empirical methodologies. Section 4 

presents our empirical results. In Section 5, we examine how structural breaks affect the 

accuracy of forecasts. Section 6 concludes. 

 

2. BACKGROUND 

Recent years have witnessed an explosion of research that examines the time-series properties 

of economic data. An important stimulant in this time-series renaissance was Nelson and 

Plosser's [21] study, which applied unit root analysis to test for the stationarity of 

macroeconomic and financial time series. Since this seminal study, many authors have 

analyzed data ranging from stock prices to air pollutant emissions, with the bulk of research 

having clear implications theoretically as well as from a policy perspective (see, e.g., [18]). 

Certainly, the empirical results from many of these studies have broad implications in numerous 

areas of research. 

Within the natural resource literature, Slade [32], Berck and Roberts [5], and Ahrens and 

Sharma [2], among others, discuss the notion that exogenous shocks can affect the time path of 

natural resource prices. These studies use a variety of unit root tests to examine time paths of 

commodity prices. Rejection of the unit root null supports the alternative hypothesis of a mean 

or trend reverting stationary series, implying that shock effects are transitory. Alternatively, 

failure to reject the unit root null implies a non-stationary series in which shocks have permanent 

effects; following a shock there is no tendency for commodity prices to revert to a stable mean 

or trend. The most recent of these studies [2] assumes one known or exogenously given 

structural break common to all commodity price series in 1929, 1939, or 1945; the other studies 

mentioned do not consider structural breaks. 

http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0095069605000914#fn1


Natural resource theory has stark predictions on the time pattern of resource prices. In fact, in 

his treatise on the economics of exhaustible resources, Hotelling [11] predicts that, under 

certain assumptions, the price of an exhaustible resource will rise at the rate of interest. But a 

quick glance at the majority of mineral commodity price series suggests that relative commodity 

prices have declined, rather than increased, for long periods of time. Barnett and Morse [4], who 

observed this seemingly anomalous pattern, concluded that scarcity was not a real problem. 

Although these particular results are crucial evidence against the original premise of Hotelling, 

modifications of the simple Hotelling model can produce predictions of falling or stagnant prices 

over time. For example, environmental constraints and natural resource abundance may induce 

price declinations [2]. Resource prices may also decrease when a backstop technology is 

introduced, causing an inward shift in the demand for natural resources (e.g., [10]). Technical 

change and an endogenous change also could produce decreasing, or U-shaped paths for 

relative prices (e.g., [31]). Finally, modifications of initial informational assumptions, such as 

knowledge of the original resource stock, can induce the model to predict price decreases (see 

[28], for one scenario). 

 

3. A NEW MODELING APPROACH 

In this paper, we begin our testing approach by employing the recently developed two-break LM 

unit root test of Lee and Strazicich [16]. One important advantage of the LM unit root test is that 

it is free of spurious rejections. Nunes et al. [23] and Lee and Strazicich [15] showed that the 

endogenous break ADF-type unit root tests are subject to spurious rejections in the presence of 

a unit root with break.2 Because these tests assume no breaks under the null and derive their 

critical values under this assumption, rejection of the null need not imply rejection of a unit root 

per se, but may imply rejection of a unit root without break. As such, researchers may 

incorrectly conclude that a time series is (trend) stationary with break(s) when in fact the series 

is non-stationary with break(s). In contrast, rejection of the null using the LM test is unaffected 

by breaks. Thus, rejection of the null using the LM test unambiguously indicates a trend-

stationary series with break(s).3 

To illustrate the underlying model and LM testing procedure, we consider the following data-

generating process (DGP): 

(1) 

yt=δ
′Zt+et,yt=δ′Zt+et, 

(2) 

et=βet-1+ut,et=βet-1+ut, 

where yt is the commodity price in period t, δ is a vector of coefficients, Zt is a matrix of 

exogenous variables, and ut is an error term. We define Zt=[1, t, D1t, D2t, DT1t, DT2t] to allow for a 

constant term, linear time trend, and two structural breaks in level and trend, where TBj denotes 

the time period of the breaks. Under the trend-break stationary alternative, the Djt terms 

http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0095069605000914#fn3


describe an intercept shift in the deterministic trend, where Djt=1Djt=1 for t⩾TBj+1t⩾TBj+1, 

j=1,2j=1,2, and zero otherwise; DTjt describes a change in slope of the deterministic trend, 

where DTjt=tDTjt=t for t⩾TBj+1t⩾TBj+1,j=1,2j=1,2, and zero otherwise. 

While Berck and Roberts [5] considered an LM unit root test with quadratic trend, they did not 

consider structural breaks. Ahrens and Sharma [2] advance the literature by considering one 

structural break that is given a priori. To further advance the literature, we consider two 

structural breaks that are endogenously determined by the data. In addition, we extend the two-

break LM unit root test to allow for a quadratic trend. Defining Zt appropriately, the DGP in (1) 

with quadratic trend and two breaks in intercept and trend slope can be described by Zt=[1, t, t2, 

D1t, D2t, DT1t, DT2t]. To the best of our knowledge, this is the first paper in any field of research 

to consider a quadratic time trend in an endogenous break unit root test.4 

Test statistics for the LM unit root test are obtained from the following regression: 

(3) 

  

where S˜t-1=yt-ψ˜x-Ztδ˜, t=2,…,T, and 

ψ˜x=y1-Z1δ˜. S˜t is a detrended series of yt using the coefficients in δ˜, which are estimated 

from the regression in first differences of Δyt on 

ΔZt=[1,ΔD1t,ΔD2t,ΔDT1t,ΔDT2t]ΔZt=[1,ΔD1t,ΔD2t,ΔDT1t,ΔDT2t]. This procedure follows from the 

LM (score) principle, which imposes the null restriction. Subtracting ψ˜x makes the detrended 

series begin at zero so that S˜1=0. This detrending method based on δ˜ differs from 

that adopted in the DF type tests, where the parameter δ is estimated from the regression of yt 

on Zt in levels. Vougas [33] has shown that the LM type test using the above detrending method 

is more powerful than the DF type test. 

Under the null hypothesis of a unit root φ=0φ=0, and under the alternative φ<0φ<0. The LM unit 

root test statistic is denoted as 

(4) 

  

The search for two breaks (λj=TBj/T, j=1,2j=1,2) that minimize τ˜ can be described by a grid 

search as follows:5 

(5) 

 

Correction for autocorrelated errors in (3) is accomplished by including augmentation terms 

ΔS˜t-j,j=1,…,k, as in the standard ADF test. To determine k we follow the 

“general to specific” procedure described in Perron [25]. Beginning with a maximum number of 



ΔS˜t-i terms, max k=8, we examine the last augmented term ΔS˜t-8 for significance 

at the 10% level (asymptotic normal critical value is 1.645). If insignificant, the last augmented 

term is dropped from the regression and the model is re-estimated using k=7k=7 terms, etc., 

until the maximum lagged term is found or k=0k=0, at which point the procedure ends. We 

repeat this procedure at each combination of two break points λ=(λ1,λ2)
′λ=(λ1,λ2)′ over the time 

interval [0.1T, 0.9T] (to eliminate end points).6 

 

4. EMPIRICAL RESULTS 

Our data, generously provided by W. Ashley Ahrens and Vijaya Sharma, are annual real price 

series for 11 fuels and metals. The series are typically available from 1870 to 1990 and include 

aluminum, bituminous coal, copper, iron, lead, nickel, petroleum, natural gas, silver, tin, and 

zinc.7 To allow a direct comparison with previous research, we use commodity price series 

similar to those examined in Slade [32] and Berck and Roberts [5], and, of course, identical to 

the data used in Ahrens and Sharma [2].8 Visual inspection of each time series in Fig. 1 

suggests that most are stationary with one or two structural breaks. In a few series, there is 

evidence suggesting a possible nonlinear (quadratic) trend. Curvature of trend would be 

consistent with Hotelling's basic premise. Yet, in Fig. 1, the trends are not typically convex with 

a positive first derivative—a majority of the figures show that relative commodity prices have 

declined rather than increased. This finding matches results in previous studies and casts doubt 

on some predictions of the simple Hotelling [11] model. 

 



 

Fig. 1. Plot of data with structural breaks and fitted trends. 

 

Although casual inspection of Fig. 1 provides some insights, formal econometric tests are 

necessary to determine the properties of each time series. In our analysis, we strive for the most 



general results possible. Accordingly, we employ five different unit root tests to analyze each 

price series. Our first test, also employed by Berck and Roberts [5], is the no-break LM unit root 

test of Schmidt and Phillips [29, SP hereafter] with an added quadratic time trend. Our second 

test is the two-break LM unit root test developed in Lee and Strazicich [16]. To check the 

robustness of our findings, and more clearly examine the effect of including two breaks instead 

of one, in our third test we utilize the one-break minimum LM unit root test of Lee and Strazicich 

[17]. In our most general empirical model we extend the two-break LM unit root test to include a 

quadratic time trend. Finally, we extend the one-break LM test to include a quadratic trend. Our 

combination of testing procedures permits us to compare our findings with previous studies, 

while simultaneously allowing us to isolate effects of allowing for breaks. 

 

4.1. QUADRATIC TREND WITH NO BREAK 

Test results using the no-break SP LM unit root test with linear and quadratic time trends are 

presented in the fourth column of Table 1. The second column provides the sample size and the 

third column notes the starting year. Details of all other estimated results including estimated 

parameters, quadratic trend terms, the number of lagged terms included to correct for serial 

correlation, and critical values can be found in Table A1 in the on-line Appendix at 

http://www.aere.org/journal/index.html. Overall, the no-break LM test results indicate that five of 

the 11 real price series reject the unit root null at the p<.05p<.05 level (coal, iron, lead, gas, and 

zinc). Interestingly, four of these five series (all except lead) have a quadratic time trend that is 

significantly different from zero at conventional levels, whereas the six series that do not reject 

the unit root have insignificant quadratic time trend terms. Thus, non-rejection of a unit root 

hypothesis for these six series may be due to lower power caused by including an insignificant 

quadratic time trend, or to bias from omitting breaks. Consistent with Ahrens and Sharma [2, 

Table 4], our results reject the unit root in nearly half the series; but our rejections do not overlap 

completely. One explanation for this finding is our inclusion of a quadratic time trend—[2] do not 

include a quadratic trend in their ADF tests. Ahrens and Sharma [2] also employ the test 

suggested by Ouliaris et al. [24, OPP hereafter], which includes a quadratic time trend but no 

structural break. Our results still do not exactly replicate their findings. One possible 

explanation, which is noted by Ahrens and Sharma [2], is that the OPP test is plagued by size 

distortions. Fortunately, similar size distortions do not occur in the no-break SP LM test and may 

help to explain the difference in results. 

 



 

 

Comparing our results with those in Berck and Roberts [5], which use the same no-break SP LM 

test with quadratic trend, we find that inferences across the two sets of empirical results differ 

significantly. Whereas we reject the unit root in five price series, they cannot reject the unit root 

in any of their nine series at the 5% level. This difference in results is most likely due to the 

longer time series in our tests, leading to greater power to reject the null—whereas we make 

use of the entire data set, Berck and Roberts [5] use two smaller subsets of the data (i.e., 1940–

1976 and 1940–1991). Using these shorter time series, we were able to replicate the results in 

Berck and Roberts [5]. We should note that replication was achieved even though they used a 

transformed test based on estimating the long-run variance, whereas we employed an 

augmented version of the no-break SP LM unit root test. This provides evidence that the 

difference in results is not due to different methods of correcting for autocorrelated errors. 

 

4.2. Two endogenous breaks with a linear trend 

Moving to our more flexible models, we next examine empirical results from the two-break LM 

unit root test with linear trend in column five of Table 1. Details of other estimated results for the 

two-break LM unit root test can be found in Table A2 of the on-line Appendix. The empirical 

results using the two-break test may well reflect the reduction in bias from including variables to 

model structural change. Compared to the no-break SP LM test results, we find significantly 

more rejections of the unit root null. Whereas the no-break model (column four) rejects the unit 

root null in five of 11 series at the p<.05p<.05 level, the two-break model rejects the unit root 

null in eight of 11 series at p<.05p<.05. If one considers a slightly less stringent p<.10p<.10 test, 

the two-break model rejects the unit root null in all 11 series. These findings provide the 

strongest evidence to date against the unit root process as a description of natural resource 

prices. 



Overall, our two-break test results in column five of Table 1 strengthen the findings of Ahrens 

and Sharma [2], and differ from the conclusions of Agbeyegbe [1], Berck and Roberts [5], and 

Slade [32], among others. Whereas Ahrens and Sharma [2] allow for one known break in 1929, 

1939, or 1945 and reject the unit root in five of eight price series, after allowing for two 

endogenously determined breaks we reject the unit root in all 11 series. By including one 

(known) structural break Ahrens and Sharma [2] can be seen as an extension of Berck and 

Roberts [5], while our tests can be seen as a further extension to a more general model.9 

To further examine the effect of allowing for two breaks instead of one, we next test all price 

series using the endogenous one-break LM test with linear trend. The results are displayed in 

column six of Table 1.10 Compared to the two-break results in column five, we find fewer 

rejections of the unit root using the one-break test (seven of 11 series reject the null at 

p<.05p<.05 and p<.10p<.10). This difference in results is likely due to bias from omitting the 

second break variable, and demonstrates the impact of allowing for two breaks instead of one.11 

The estimated break years are summarized in Table 2. Comparing the breaks identified by the 

two-break LM tests with linear trend to those in Ahrens and Sharma [2], only one of our 

estimated break years (1945, lead) coincides exactly with an assumed break year selected by 

Ahrens and Sharma [2]. However, five additional breaks identified by our two-break tests (1928, 

1932, 1942, 1943, and 1944) are close to one of their assumed breaks (1929, 1939, and 1945). 

Overall, our identified break years are intuitively appealing as they broadly correspond to years 

associated with World War I, the Great Depression, World War II, and the energy crisis of the 

early 1970s. Thirteen of the twenty-two breaks (59%) identified with the two-break test in 

column two correspond to these time periods, with the most common time period for breaks in 

the early 1970s. Besides these obvious breaks, we identify three other breaks in column two 

that are associated with relevant important historical events. In 1896 a structural break occurs 

for petroleum during the major depression of 1893–1897. In 1902 we identify a structural break 

for coal prices. This year coincides with the 150,000 United Mine Workers strike that crippled 

coal production in the USA for five and one-half months. In 1961 a structural break occurs for 

lead, which coincides with the Lead and Zinc Stabilization Program of the same year. 

 



 

 

4.3. Two endogenous breaks with a quadratic trend 

In column seven in Table 1 we present results from our most general model, the two-
break LM unit root test with a quadratic time trend. Since this test is new to the 
literature, we follow the procedure of Lee and Strazicich [16] and simulate critical 
values, which are available along with other estimated results in Table A4 in the on-line 
Appendix.12 Compared to the two-break test results in column five, which include only a 
linear trend, we report a few significant differences. Whereas exclusion of the quadratic 
time trend leads to rejection of the unit root at the 10% level in all 11 series (eight of 11 
at p<.05p<.05), after including quadratic time trends, unit roots are not rejected (at the 
10% level) for aluminum and petroleum. However, the results for aluminum should be 
interpreted with care, as the coefficient on the quadratic time trend is not significantly 
different from zero at conventional levels, suggesting the linear time trend specification 
is more appropriate. Although we find that the quadratic time trend is significant at the 
10% level in five of the 11 price series (coal, copper, lead, gas, and petroleum), other 
results are qualitatively unchanged. Overall, at the 5% level, the results in Table 1 of the 
two-break test with quadratic trend suggest that we should reject the unit root in nine of 
the 11 series, providing additional evidence that commodity prices are stationary around 
a breaking deterministic trend. 



To further examine the effect of allowing for two breaks instead of one, we additionally 
test all price series using an endogenous one-break LM test with quadratic trend.13 The 
unit root test results are displayed in column eight of Table 1.14 Compared to the two-
break with quadratic trend results in column seven, we find the same number of 
rejections of the unit root null (nine of 11 series reject the null at p<.05p<.05 and 
p<.10p<.10). The only notable difference in results is with regards to the two series that 
do not reject the unit root. In the two-break quadratic trend results in column seven, 
aluminum and petroleum did not reject the unit root, but in the one-break test results of 
column eight petroleum rejects the unit root (at p<.05p<.05) while silver does not. The 
difference in results for silver is likely due to bias from omitting the second break 
variable. The difference for petroleum may be due to including an unnecessary break in 
the two-break quadratic trend model, which would be expected to reduce power. 

The estimated break years for the two-break test with quadratic trend are summarized 
in column four in Table 2. The majority of identified breaks again correspond primarily to 
the two World Wars, the Great Depression, and the 1970s energy crisis. As in the two-
break model with linear trend, 13 of the 22 breaks (59%) correspond to these time 
periods with the most common time period during the energy crisis of the early 1970s. 
Other important events noted in column four include a major silver miners strike in 1892, 
a break for copper during the depression of 1893–1897, and a break for lead during the 
Lead and Zinc Stabilization Program of 1961. 

The most appropriate model in the literature to compare our results is, again, Ahrens 
and Sharma's [2] OPP test, which allows for a quadratic trend but no structural break(s). 
Using the OPP test, Ahrens and Sharma [2] reject the unit root null in five of eight series 
at p<.05p<.05 while using the two-break LM test with quadratic trend we reject the unit 
root in nine of 11 series at the 5% level. This difference is likely due to allowing for 
structural breaks. 

To examine further the effects of allowing for breaks, we present plots showing each 
commodity price series in Fig. 1. Each panel shows the actual commodity price series 
as well as fitted values from a linear time trend regression connecting the two breaks in 
intercept and trend slope identified in Table 2 (column two). The plots in Fig. 1 suggest 
that most price series are trend-stationary around a small number of breaks. More 
importantly, a visual inspection indicates that it may be more appropriate to specify the 
model with discrete shifts in a deterministic linear trend rather than a quadratic trend. 
Even in some series for which a quadratic trend appears to fit, the linear trend model 
with two structural breaks also appears to fit the data well. Overall, seven of the 11 
series have downward trends in the most recent period. 

In sum, the above results provide the strongest evidence to date against the unit root 
hypothesis and suggest that natural resource price series are stationary around 
deterministic trends with occasional changes in intercept and trend slope. Our findings 
are at odds with those in previous studies. In addition, our findings strengthen those of 
Ahrens and Sharma [2], who concluded that the majority (six of 11) of natural resource 
price series reject the unit root hypothesis. In certain respects, our unit root test results 



are consistent with the scores of theoretical models that suggest resource price paths 
are deterministic, but downward or U-shaped. In the next section, we examine how 
structural change affects forecasting. 

 

5. FORECASTING ISSUES 

As aforementioned, we view one contribution of the above analysis as informing the 
forecaster. Whether, and to what extent, structural change in natural resource prices 
influences the selection and performance of forecasting models is largely unknown, 
however. In this section we fill this void by exploring whether pre-testing for a unit root 
with structural change and inclusion of breaks in the forecast model can lead to more 
accurate forecasts. Diebold and Kilian [7] previously examined whether pre-testing for 
unit roots matters for forecasting, given that a priori information on the properties of a 
time series is not available. The issue that we examine is similar in spirit, yet we 
consider structural breaks. One may argue that allowing for breaks when pre-testing for 
unit roots can give potentially different results, since a unit root process with breaks can 
sometimes be viewed as observationally equivalent to, or hardly distinguishable from, a 
trend stationary process with breaks. Intuitively speaking, this can be the case because 
structural change implies persistent effects similar to those in a unit root process. Since 
the pioneering work of Perron [25], however, it is well known that inference in unit root 
tests will be adversely affected by ignoring structural change. Under the alternative 
hypothesis of a trend-break stationary series, structural change would be described by 
occasional predetermined large shocks that permanently alter the level and slope of the 
deterministic trend. This is the common view in the literature as consistently advocated 
in numerous theoretical and empirical papers. Following this view, the existence of 
structural change is not considered to be sufficient support for the unit root hypothesis. 

In this section, we seek to determine how structural change will affect the selection and 
accuracy of forecasting models when we do not know a priori if a time series is (trend) 
stationary (with breaks) or non-stationary (with breaks). Several authors have noted the 
deleterious effects of ignoring structural breaks in forecasting models (see, e.g., [27], 
[26] and [6]). However, these previous papers deal with mostly stationary data and do 
not address the question of whether forecasts in levels perform better than forecasts in 
differences in the presence of breaks. 

We begin our investigation by conducting Monte Carlo simulations to study the role of 
structural breaks in selecting and estimating the most accurate forecasting model. To do 
so, we compare the unconditional prediction mean squared error (PMSE) of the 
following five strategies: 

(M1) Difference the data and include two breaks in intercept and trend slope. 

(M2) Analyze the data in levels and include two breaks in intercept and trend 
slope. 



(M3) Pre-test with unit root tests that allow for two breaks in intercept and trend 
slope and proceed as follows: if the unit root null is rejected, then select M2; if we 
cannot reject the unit root, then select M1. 

(M4) Difference the data and do not allow for breaks. 

(M5) Analyze the data in levels and do not allow for breaks. 

Note that models M1–M3 are conditional on the existing breaks, while M4 and M5 are 
not. Thus, we can compare the performance of pre-testing for a unit root in addition to 
the effect of including known breaks in the forecasting model. In general, when 
comparing the accuracy of forecasts with different models the common approach is to 
compare out-of-sample forecasts. We follow this approach.15 

For simplicity, we restrict our simulations to AR(1) or ARI(1,1) models as in Diebold and 
Kilian [7]. Thus, M1 is an ARI(1, 1) model with two breaks and can be described as 
follows: 

(6) 

Δyt=μ+bΔyt-1+d1B1t+d2B2t+d3D1t+d4D2t+vt,Δyt=μ+bΔyt-1+d1B1t+d2B2t+d3D1t+d4D2t+vt, 

where Bjt=1Bjt=1 for t=TBj+1t=TBj+1, j=1,2j=1,2, and zero otherwise. Note that M1 uses 

differenced data with two one-time break dummy variables (Bjt) and two level shift dummy 

variables (Djt). In contrast, M2 is an AR(1) model in levels with two breaks in level and trend as 

follows: 

(7) 

yt=c+byt-1+d1D1t+d2D2t+γt+d3DT1t+d4DT2t+wt,yt=c+byt-1+d1D1t+d2D2t+γt+d3DT1t+d4DT2t+wt, 

where Djt and DTjt denote the level and trend shift dummy variables, respectively. Note that M2 

also includes a time trend, which is differenced away in M1. M3 would be either M1 or M2 as in 

the model in (6) or (7) depending on the results from pre-testing for a unit root (with two breaks). 

On the other hand, M4 and M5 do not allow for structural breaks. M4 uses the differenced data 

without breaks in the forecasting model, while M5 uses the level data without breaks. Thus, M4 

and M5 can be described by (6) and (7), respectively, without the dummy variables describing 

the breaks. We will now examine these different forecasting models by using simulations. 

To generate simulated data we use the following equation, which is similar to the DGP 
in (1): 

(8) 

(yt-c-γt-d1D1t-d2D2t-d3DT1t-d4DT2t)=β(yt-1-c-γ(t-1)-d1D1,t-1-d2D2,t-1-d3DT1,t-1-d4DT2,t-1)+ut.(yt-c-γt-

d1D1t-d2D2t-d3DT1t-d4DT2t)=β(yt-1-c-γ(t-1)-d1D1,t-1-d2D2,t-1-d3DT1,t-1-d4DT2,t-1)+ut. 



With (8), we can generate both stationary and non-stationary data with and without breaks. To 

generate non-stationary data we let β=1.0β=1.0, while to generate stationary data we let 

β=0.95β=0.95 and β=0.5β=0.5. We can control the magnitude of the breaks by varying the 

coefficients of the dummy variables. To generate the data without breaks, we set the break 

coefficients in (8) equal to zero. One interesting question is how big should structural breaks be 

to be recognized as such? We will examine this question by varying the magnitude of the break 

coefficients:  

d=(d1,d2,d3,d4)=(0,0,0,0),(2,2,0.2,0.2),(6,6,0.6,0.6)d=(d1,d2,d3,d4)=(0,0,0,0),(2,2,0.2,0.2),(6,6,0.6

,0.6), and (10, 10, 1.0, 1.0). To abbreviate in Table 3, we will denote these break magnitudes as 

d=0d=0, d=2d=2, d=6d=6, and d=10d=10, respectively, where d=0d=0 indicates the model 

without breaks. All break sizes are described using standardized units. We additionally consider 

different break locations at TB1/T=0.3TB1/T=0.3 and TB2/T=0.6TB2/T=0.6. Other parameter 

values are held fixed in all cases; we let c=0c=0, γ=0.1γ=0.1, and σu2=1. 

 

 

 

To undertake our comparisons we examine the recursive one-step ahead predictions of yT+h at 

forecast horizons h ranging from 1 to 100 periods, and employ a sample size of T=100T=100.16 

Pre-testing is performed using the two-break LM unit root test and critical values at the 5% level 

http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0095069605000914#fn16


of significance. To compare the forecast accuracy of each model, we calculate the ratio of the 

PMSE for each h in each model relative to the PMSE of the reference pre-test strategy M3. The 

calculated ratios are denoted as M1/M3, M2/M3, M4/M3, and M5/M3. For the models estimated 

in first-differences, the forecasted values are converted to levels prior to calculating their mean 

squared error. The forecast error is calculated as the difference between the (simulated) data 

and the predicted values (in levels), or yT+h-y^T+h, h=1,…,100. 

Thus, PMSE(h)=h-1∑j=1h(yT+j-y^T+j)2 using forecast errors 

through t=ht=h. When the selected forecasting model is more accurate than the model 

suggested by pre-testing, then the ratio will be less than one and vice versa. For parsimony, we 

report only the summary results for selected values of h. 

We first examine the simulation results using non-stationary data (β=1.0β=1.0) in Table 3. When 

the DGP is non-stationary, the differencing strategy of M1 (ARI with breaks) has the lowest 

PMSE in nearly all cases. There are only very small differences in some cases. In nearly all 

cases the best model (M1) is also the model that is selected by the pre-testing. Any differences 

are approximately zero, and the results are unaffected by the size of the breaks. Overall, these 

results clearly support the use of pre-testing for a unit root and including structural breaks. For 

the case of no breaks there is a small gain from omitting the breaks in the (differenced) 

forecasting model (M4). For the case of small breaks (d=2d=2), the results demonstrate little 

difference between including breaks (M1) and omitting breaks (M4). Thus, as one might expect, 

small breaks have only minimal effects on the PMSE and can be hardly considered as structural 

breaks. However, as the size of the breaks increases the benefit of including breaks increases 

especially at longer forecast horizons. 

We next examine the simulation results using stationary data in Table 3. When the DGP is 

clearly stationary (β=0.5β=0.5), the model in levels with breaks (M2) is superior in virtually all 

cases. Any differences are so small that they are approximately zero and can be ignored. In 

addition, M2 is the model that is selected with pre-testing in nearly every case. Again, any 

differences are quite small, and the results are unaffected by the break size and forecast 

horizon. When β=0.95β=0.95 and the unit root null is more difficult to reject, the most accurate 

forecasting model is in differences (M1) instead of levels (M2). However, the difference model is 

also the model most frequently selected by pre-testing. Thus, pre-testing for a unit root with 

breaks is again the preferred method to select the most accurate forecasting model. As in the 

non-stationary case, including breaks when they exist is always beneficial. Fig. 2 and Fig. 3 

summarize the simulation results by displaying spectrum with varying sample sizes of 

T=20nT=20n, n=1,…,50, over the continuum of forecasting horizons 

h=1,…,100. These figures generalize the results in Table 3 and are consistent 

with the above discussion. 

 



 

Fig. 2. Comparison of forecast accuracy using different strategies (DGP: β=1β=1, d=6d=6): (a) 

difference with breaks (M1/M3); (b) level with breaks (M2/M3); (c) difference without breaks 

(M4/M3); (d) level without breaks (M5/M3). 

 

 

Fig. 3. Comparison of forecast accuracy using different strategies (DGP: β=0.5β=0.5, d=6d=6). 



To further our investigation, we next examine and compare the accuracy of the different 

forecasting strategies by using actual data on natural resource prices. To perform our 

investigation, we utilize more recent data on eight natural resource real prices (aluminum, 

copper, iron, lead, nickel, silver, tin, and zinc). These data come from the US Geological Survey 

[13], and are available annually from 1900 to 2002 in real (1998) dollars per ton.17 

Our testing procedure is as follows. We first perform pre-testing for each real price series as 

before using the two-break LM unit root test with linear trend. In nearly all cases (except for 

nickel), the unit root null is rejected at the 10% level of significance. We also perform pre-testing 

using the two-break LM unit root test with quadratic trend and reject the unit root in all cases at 

the 10% level of significance.18 Next, we estimate four forecasting models for each series with a 

linear trend as in (6) and (7) (M1, M2, M4, and M5), and then with a quadratic trend (M1Q, M2Q, 

M4Q, and M5Q). 

Instead of the AR(1) and ARI(1, 1) models (with and without breaks) considered in the 

simulations of Table 3, we consider more general ARMA(p,q) and ARIMA(p, 1, q) models that 

might be more realistically considered in applications. To determine the order p and q of each 

ARMA and ARIMA model, and the location of two breaks, we utilize the SBC statistic. We 

consider all combinations of p and q over the range 0–5 at each combination of two breaks to 

find the model with the lowest SBC. As such, our estimation procedure allows for the location of 

breaks to be jointly determined with the best fitting model. In each case, we estimate the 

forecasting model using data from 1900 to 1990 and generate out-of-sample forecasts in levels 

for 1991–2002.19 Then, the out-of-sample forecasts are compared to the actual data to calculate 

the relevant PMSE. To test the statistical significance of the break variables in the models that 

include breaks, F-tests were performed to test for the significance of the breaks. In each case, 

the null hypothesis that break coefficients are jointly equal to zero was rejected at the 1% level 

of significance. These results provide additional evidence that structural breaks are important. 

The PMSE are displayed in Table 4 for each model type at forecast horizons h=1h=1, 3, 5, 8, 

and 12. The number in bold denotes the model with the most accurate forecasts (smallest 

PMSE), which is shown separately for the models with linear and quadratic trends. At each 

forecast horizon (h), the best overall model is denoted with an asterisk (*). Given that pre-testing 

implied that price series are trend-break stationary, we expect that M2 (ARMA model in levels 

with breaks) will have the lowest PMSE in nearly all cases. 

 



 

 

We now examine the results in Table 4. Except for tin, and to a lesser extent iron, we see little 

evidence that including a quadratic trend improves the accuracy of the forecast, as the best 

model has a linear trend in all other cases. For aluminum, copper, and lead our pre-test 

expectations are realized as the most accurate model in every case but one (lead, h=1h=1) is 



the ARMA model in levels with breaks (M2). While iron selects the quadratic trend model at 

three of the five forecast horizons, three of its five best models are in levels with breaks (M2, 

M2Q) as suggested by the pre-test. For the other four price series the results are mixed. In all 

cases but one (h=1h=1), the best forecasting model for nickel is the ARMA model in levels 

without breaks (M5). For silver, the results are unexpected as four of the five best models are in 

differences (M1, M4), and three of these are without breaks (M4). Tin is the series where the 

quadratic trend model is most often selected (four of five best models). Although including a 

quadratic trend provides better forecasting accuracy for tin, the best model chosen in all cases 

is in differences and without breaks (M4, M4Q). Finally, zinc selects an ARMA model in levels in 

all cases as predicted by pre-testing, but the best model is without breaks (M5). 

Overall, the results in Table 4 using actual natural resource data present a less clear picture 

than our simulation results in Table 3. However, as expected, the most consistently selected 

model is the same as selected in the pre-test; in four of the eight series the ARMA model with 

breaks (M2 or M2Q) is the most accurate in nearly all cases. For the other four series the results 

are less clear. In some of these cases, the best model is in levels as expected, but without 

breaks. In other cases the superior model is in differences. Thus, while the model selected by 

pre-testing is not always the best model it appears that pre-testing for a unit root and 

considering breaks are important. The gain from considering breaks is most obvious when 

comparing the PMSE of those superior models that include breaks to the other models. 

In general, as is well known, forecasting future values out-of-sample is a difficult task. 

Therefore, it may not be desirable to draw any generalized conclusions regarding forecasting 

strategies from a particular data application to a particular out-of-sample period. Choosing 

different data and different out-of-sample periods may lead to different conclusions. Thus, we 

give stronger credence to our simulation results as a guide to more accurate forecasting. We 

conclude that it is better to follow a forecasting strategy of pre-testing for a unit root with breaks 

and to include existing breaks in the forecast model. 

 

6. CONCLUDING REMARKS 

Without an appropriate understanding of the dynamics of a time series, empirical verification of 

theories, forecasting, and proper inference are potentially misleading. In this paper, we examine 

temporal properties of 11 non-renewable natural resource real price series from 1870 to 1990. 

Previous efforts largely suggest that these series are difference-stationary with stochastic 

trends. We re-examine these data and advance the literature by considering unit root tests with 

two structural breaks that are endogenously determined by the data. In addition, we consider 

models with linear and quadratic trends. 

Overall, we find evidence to indicate that natural resource prices are stationary around 

deterministic trends with structural breaks in intercept and trend slope. In particular, after 

controlling for breaks, the previous empirical findings of Agbeyegbe [1], Berck and Roberts [5], 

and Slade [32] are essentially reversed. Our findings strengthen those of Ahrens and Sharma 

[2], who allowed for one known break and concluded that the majority of natural resource price 



series (six of 11) reject the unit root. Following our unit root tests, we examined forecasting 

models with breaks by employing both simulated and actual natural resource price data. We 

conclude that pre-testing for a unit root with breaks selects the best forecasting model. 

Given that accurate forecasting and empirical verification of theories can depend critically on 

understanding the appropriate nature of time-series, our results should have important 

implications for academics and policymakers alike. With the proliferation of environmental and 

natural resource data having a temporal dimension, researchers interested in dynamic issues as 

broad as environmental quality expenditures, environmental degradation, species extinction 

rates, and land-use patterns should have a firm grounding in time-series analysis. We hope that 

our paper will further the development of this literature. 

 

NOTES 

1. This data was utilized to most accurately compare our empirical findings to the previous 

works. In Section 5, we estimate a variety of forecasting models with updated data through 

2002. 

2. The endogenous break ADF-type unit root tests include the one-break minimum test of Zivot 

and Andrews [34] and two-break minimum test of Lumsdaine and Papell [19]. These tests have 

been popular in the literature. However, as shown in Lee and Strazicich [16] and [17], these 

tests tend to estimate the break point incorrectly at one period prior to the true break(s) where 

bias in estimating the unit root test coefficient is greatest. The outcome is a size distortion that 

increases with the magnitude of the break. Due to a different detrending procedure in the 

endogenous break LM test, this type of size distortion does not occur. 

3. As is common practice in the literature, we refer to a time series that is stationary around a 

breaking trend as “trend-break stationary.” 

4. There are technical difficulties in obtaining relevant asymptotic distributions and 

corresponding critical values of endogenous break unit root tests with three or more breaks. 

However, for our purposes, including three or more breaks does not appear necessary. First, 

visual inspection of the data reveals that more than two breaks are unlikely. Second, the two-

break test is found to have sufficient ability to reject the unit root in all cases. 

5. Note that the break locations and unit root test statistic are jointly estimated in the minimum 

LM unit root test. Critical values were derived given this joint estimation [16]. 

6. This “general to specific” procedure has been shown to perform well as compared to other 

data-dependent procedures in selecting the optimal number of augmented terms (see, e.g., 

[22]). 

7. Price series for aluminum, iron, and petroleum are available through 1984, 1973, and 1989, 

respectively. Aluminum, gas, nickel, and tin begin in 1895, 1919, 1913, and 1885, respectively. 



8. These data were previously converted to real prices by deflating with the producer price index 

(1967=100). Most of the data comes originally from Manthy [20] and Schurr [30]. 

9. An anonymous referee notes that the shorter time span (1940–1991) examined in Berck and 

Roberts [5] can be viewed as allowing for a structural break in 1940. However, as our results will 

demonstrate, while World War II is one of the major structural breaks identified by our tests, 

there are other breaks that we identify. By considering a longer time span of data, our testing 

procedure should benefit from greater power and a reduction in bias from including additional 

breaks. It is also possible that failure to reject the unit root null in Berck and Roberts [5] might be 

due to their inclusion of a quadratic trend. If a quadratic trend does not occur, especially in the 

post-1940 time period, then inclusion would lower power. We thank an anonymous referee for 

noting this possibility. 

10. Details of other estimated results and critical values are in Table A3 in the on-line Appendix. 

11. For comparison purposes, we also performed unit root tests using the ADF-type one-break 

Zivot and Andrews [34] test and two-break Lumsdaine and Papell [19] test. While these tests 

tend to over-reject the null, their results are similar to ours. The two-break LP test rejects the 

null at the 10% level for all series except for gas and petroleum. Details of these results are 

available upon request. 

12. Since the two-break LM unit root test with quadratic trend is a new test, we derive critical 

values by generating pseudo-iid N(0, 1) random numbers using the Gauss (version 6.0.5) 

RNDNS procedure. Critical values are derived using 5000 replications involving a grid search of 

all combinations of the endogenous break points for minimum statistics in samples of 

T=100T=100. The asymptotic distribution of the two-break minimum LM test with quadratic trend 

can be shown by a simple modification of the expression for that of the two-break minimum LM 

test with linear trend. The expression of the demeaned and de-breaked Brownian bridge 

V(r,λ) in Lee and Strazicich [16, Eq. (6c), Appendix A.6] must be changed to incorporate 

a detrended p-level Brownian bridge as given in SP [29, Eq. (40)]. This expression is described 

as a residual process projected onto the subspace generated by 

dz(λ,r)=[1,r,d1(λ1,r),d2(λ1,r)]. The trend function is given 

as r={rj,j=0,1,…,p-1}, where dj(λj,r)=1dj(λj,r)=1 if r>λjr>λj, for 

j=1,2j=1,2, and 0 otherwise. 

13. We thank an anonymous referee who suggested this robustness check. 

14. Details of other estimated results and critical values are in Table A5 in the on-line Appendix. 

15. There does not appear to be a unanimous consensus on this issue, however. Inoue and 

Kilian [12] suggest that comparing in-sample tests of forecast accuracy are more reliable than 

out-of-sample tests. The underlying issue is potential data mining or un-modeled structural 

change. Also, the accuracy of out-of-sample forecasts can depend on the selection of the 

holdout period. 



16. Simulation results for sample sizes T=500T=500 are available in Table A6 in the on-line 

Appendix. 

17. We would have preferred to update our data, but the new data uses a different PPI to 

deflate and different units of measurement. In addition, the new data is only available for eight of 

our previous 11 natural resource price series. However, besides using more recent data (past 

1990), the new data has the advantage that each series is available for the same time period. 

18. These results are available upon request. 

19. As noted in footnote 15, the out-of-sample PMSE results might vary depending on how we 

define the out-of-sample period. We also considered 1996 as a starting period for the out-of-

sample forecasts, but the main conclusions did not vary. 
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