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Abstract:

During social evolution, the ovary size of reproductively specialized honey bee queens has
dramatically increased while their workers have evolved much smaller ovaries. However, worker
division of labor and reproductive competition under queenless conditions are influenced by
worker ovary size. Little comparative information on ovary size exists in the different honey bee
species. Here, we report ovariole numbers of freshly dissected workers from six Apis species
from two locations in Southeast Asia. The average number of worker ovarioles differs
significantly among species. It is strongly correlated with the average mating number of queens,
irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and
very large worker ovaries. The relation between queen mating number and ovary size across the
six species suggests that individual selection via reproductive competition plays a role in worker
ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may
bear a fitness cost at the colony level.
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Article:

Introduction

Lifetime egg production varies drastically among insect species, with maximum estimates in the
reproductive queen caste of some eusocial insects. These specialized reproductives act as
universal stem cells of their colonies, producing the colony workforce and new sexuals of the
next generation. In several taxa of social insects, the reproductive specialization of queens has
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increasingly led to enlarged ovaries with numerous ovariole filaments while workers have
comparatively small or no ovaries (Bourke 1999).

In the Western honey bee, Apis mellifera, queen ovaries regularly exceed 140 ovarioles, while
worker ovaries contain generally less than 12 ovarioles (Snodgrass 1956). However, the ovariole
number of A. mellifera workers is highly variable, varying among (Ruttner and Hesse 1981) and
within populations (Linksvayer et al. 2009; Phiancharoen et al. 2010). This variability may be
due to selection: On the one hand, variation in worker ovary size is part of the pollen-hoarding
syndrome, influencing multiple aspects of the division of labor among workers (Page and
Amdam 2007). For example, workers with experimentally enlarged ovaries initiate foraging
earlier (Wang et al. 2010). On the other hand, workers with relatively larger ovaries have a
reproductive advantage when the queen is absent, and workers compete for individual
reproduction because workers with more ovarioles activate their ovaries faster and produce more
offspring (Makert et al. 2006). The reproductively active A. mellifera capensis workers also have
more ovarioles than workers of other subspecies (Phiancharoen et al. 2010).

In queenright colonies, workers normally cooperate, and colony-level selection acts to increase
the efficiency of the division of labor among all workers (Oster and Wilson 1978). Genetic
variation in worker ovary size may be maintained by colony-level selection on the division of
labor (Graham et al. 2011). In addition, selection at the colony level against large worker ovaries
is expected because large ovaries are physiologically costly to build and sustain. Conversely,
queenless workers compete for individual reproduction, and selection at the individual level is
predicted to favor large worker ovaries that lead to a fast activation and more egg production
(Makert et al. 2006). This individual-level selection becomes more intense with the presence of
multiple patrilines per colony because workers are three times more related to male offspring
produced by their full sisters (within one patriline) than to male offspring produced by their half-
sisters (from a different patriline).

Thus, we hypothesize that worker ovary size is subject to conflicting selection pressures at the
colony and individual levels and that the evolutionary outcome is influenced by the amount of
reproductive conflict among workers. Therefore, a positive correlation between worker ovary
size and the number of patrilines is predicted. We decided to test this prediction in the genus
Apis, because all honeybees share a relatively similar biology (Oldroyd and Wongsiri 2006),
reducing confounding factors that vary among taxa, such as trophic egg production by workers
(Khila and Abouheif 2008). However, few data on worker ovaries exist except for A. mellifera:
A limited study has indicated that Apis cerana workers have typically five to eight ovarioles per
ovary and Apis dorsata have an average of 24 (Velthuis et al. 1971). Thus, we have determined
worker ovary sizes for all accessible six Apis species from two biogeographic areas and
correlated it to the average queen mating number of these species.

Methods and materials



Worker honeybees from multiple colonies of six species (Apis florea, Apis andreniformis, A.
cerana, A. mellifera, Apis koschevnikovi, and A. dorsata) were collected from the vicinity of the
Agricultural Research Station Tenom (Sabah, Malaysia: 5.4° N/115.6° E) or the Ratchaburi
(13.4° N/99.4° E), Tak (16.9° N/99.1° E), and Chiang Mai (18.9° N/99.1° E) provinces in
Thailand (see Electronic Supplementary Material). Adult worker bees were randomly sampled
from colonies, except for the "Tak" samples of A. florea and A. dorsata, which consisted of
newly emerged workers. Bees were euthanized by cooling before both ovaries were dissected out
of the detached abdomen and mounted on a microscope slide for counting of the ovarioles under
a compound microscope. Ovary size was computed as the average of the ovariole counts from
the left and right ovary. If ovariole number could only be determined on one side, this value was
used. Asymmetry (Table 1) was calculated as the difference between the two ovaries divided by
their sum.

Ovary size was also evaluated relative to worker body size, estimated as the species' average
forewing length given by Oldroyd and Wongsiri (2006). For A. mellifera, the average forewing
length of European races (Daly and Balling 1978) was used because European populations are
presumably the source of Thai A. mellifera (Suppasata et al. 2007). We compared original and
body-size-adjusted ovary size to the average observed mating number of the respective species
(Tarpy et al. 2004). The small number of taxa precluded a meaningful adjustment of these
comparisons for a potential phylogenetic signal (Blomberg et al. 2003). Non-parametric statistics
were employed, using the computer program PASW 18.0, and uncorrected p values are presented
throughout.

Results

The ovariole number of 596 worker honey bees from 37 colonies of six species was determined,
with values ranging across species from one to 44 per ovary. No significant difference between
the number of ovarioles of the left and right ovary was detected in A. florea (sign test, N =35,
p=0.719), A. andreniformis (N =32, p=0.571), A. cerana (N =90, p =0.368), A. koschevnikovi
(N=33,p=0.281), and A. dorsata (N =20, p = 1.0), indicating the absence of directional
asymmetry. No data were available to test directional asymmetry in A. mellifera.

Table 1
Species means of ovary size and asymmetry with standard errors

Species Number of workers assessed Ovary size Ovary asymmetry

A. florea 47 35+0.2 0.17+£0.02



Species Number of workers assessed Ovary size Ovary asymmetry

A. andreniformis 77 4.8+0.2 0.18+0.02
A. cerana 161 52+02 0.21+0.01
A. mellifera 60 43+0.2 0.21+0.02
A. koschevnikovi 59 6.7+0.3 0.17+0.02
A. dorsata 192 22.6+0.4 0.09+0.01

Species differences in ovary size were significant at both locales (Malaysia, H=257.4, df =3,
N =350, p<0.001; Thailand, H=150.1, df =3, N =246, p<0.001). In Malaysia, post hoc tests
indicated that all species are significantly different from each other, except the A. cerana and A.
andreniformis pairing. In Thailand, all pairwise comparisons indicated significant species
differences except for the differences between A. florea and A. mellifera and between A.
mellifera and A. cerana (see Electronic Supplementary Material). Within species, differences
between the two locales were significant in A. dorsata (U =2,456, N=192, p <0.001) but not in
A. cerana (U=3,622, N=161, p=0.194).

Across species, the average queen mating number was significantly correlated with the average
ovariole number (Fig. 1; Spearman's rtho = 0.94, N =6, one-sided p = 0.0025). The data also
indicated a tentative correlation between body size and ovary size, although this was not
significant (rtho =0.66, N =6, p=0.156). Body size adjustment weakened the correlation
between worker ovary size and queen mating number (rho =0.77, N =6, one-sided p=0.036). In
both locales, significant species differences in relative ovary size were found (Malaysia,
H=251.9, df=3, N=350, p<0.001; Thailand, H=144.5, df =3, N =246, p <0.001) which was
due to the significantly larger values of A. dorsata relative to all other species (all pairwise
comparisons, p<0.001): The body-size-adjusted ovary size of A. dorsata workers was on
average 2.7-3.8 times larger than that of other species at both locations.

Figure 1 is omitted from this formatted document.

Discussion

The results confirm the predicted positive correlation between the average number of ovarioles
in workers and the average mating frequency of queens across six honey bee species,
independent of worker body size. This finding supports the hypothesis that worker ovary size
may be influenced by individual-level selection due to the positive associations between ovary



size, ovary activation, and individual reproduction of workers under queenless conditions
(Makert et al. 2006). Individual selection for reproduction predicts an increase of ovary size with
the number of patrilines per colony due to the increasing number of competitors that are half-
sisters. In contrast, we cannot explain our result based on colony-level selection. The
exceptionally large worker ovaries of A. dorsata strengthen our interpretation further because
very few workers assume a reproductive role under queenless conditions in this species (Velthuis
et al. 1971) which intensifies the individual reproductive competition. The strength of the
correlation between worker ovary size and queen mating number, the specific comparisons
discussed below, and the sampling of all three major clades of the genus bolster our main
conclusion, although a meaningful correction for a potential phylogenetic bias in the overall
correlation is precluded by the small number of honey bee taxa (Blomberg et al. 2003). In
addition, ovary size did not strictly correlate with phylogeny or with the fact that some species
nest in the open while others nest in cavities.

The exceptionally large worker ovaries of A. dorsata cannot be explained by body size or a
general increase in ovary size in this species because queen ovaries are relatively small (Velthuis
et al. 1971). However, A. dorsata has an exceptionally high queen mating number compared with
other Apis species (Wattanachaiyingcharoen et al. 2003), which could select for larger ovaries
via worker reproductive conflict. A general reproductive role of these large ovarioles can be
excluded because there is no genetic evidence for A. dorsata worker reproduction under
queenright conditions (Wattanachaiyingcharoen et al. 2002), and accordingly, none of our
investigated worker ovaries showed any sign of reproductive activation. An alternative
explanation that cannot be ruled out might be the role of the large worker ovaries in nutrient
storage (Amdam and Omholt 2002; Martins et al. 2008) to facilitate the species' migratory
behavior (Itioka et al. 2001).

Among the tree-cavity-nesting species, A. koschevnikovi had the largest worker ovaries
followed by A. cerana, and then A. mellifera. No information on worker reproduction is
available in A. koschevnikovi, but A. cerana workers are reported to activate their ovaries more
readily than A. mellifera under queenright and queenless conditions (Oldroyd et al. 2001; Tan et
al. 2009), which may be the reason for their larger worker ovary size. Alternatively, the
relatively small worker ovaries in A. mellifera could also result from artificial selection for
increased honey yield during domestication due to the association between small ovaries and
nectar collection in honeybee workers (Amdam et al. 2006; Rueppell et al. 2008).

The smallest ovaries were found in the dwarf honey bee, A. florea. This species is similar in
body size and biology to A. andreniformis (Hepburn et al. 2005; Higgs et al. 2010), but A.
andreniformis has relatively large ovaries, compared to its body size (see Electronic
Supplementary Material). We were unable to compare the two species in the same environment,
but between the two locations, A. florea had significantly smaller ovaries than A. andreniformis
with or without body size correction. The significance of this difference is unclear because
worker reproduction in mixed species colonies was not biased towards A. andreniformis



(Wongvilas et al. 2010), and natural rates of worker reproduction in both species are unknown.
Yet, the larger worker ovaries coincide with a higher number of matings in A. andreniformis
relative to A. florea, supporting our main conclusion.

For each species, only a limited number of colonies could be sampled. However, colony
differences were only significant in A. dorsata (see Electronic Supplementary Material).
Although this colony effect was significant, changes of its magnitude of +4 ovarioles would not
affect any of our conclusions. Population differences were also indicated only in A. dorsata.
Therefore, we combined the data from colonies and treated worker ovary size as a species-
specific trait, irrespective of sampling location. Our study was most severely limited by the
number of species available because none of the remaining three to four Apis species was
available from our study sites and has a known queen mating frequency. This resulted in a
limited power of our analysis which allowed us to only detect the very strong correlation
between ovary size and mating frequency, while the correlation between body size and ovary
size remained suggestive. Therefore, we analyzed both body-size corrected and uncorrected
ovary sizes.

Directional asymmetry for ovary size has been reported in A. mellifera (Chaud-Netto and Bueno
1979), but we could not confirm this result in five other Apis species. The degree of asymmetry
differed significantly between A. dorsata and all other species, but the direction depended on the
specific asymmetry metric used (see Electronic Supplementary Material). Thus, the differences
largely result from differences in ovary size, and therefore, we conclude in general that there is
little evidence for size-independent evolutionary divergence in ovary asymmetry among the six
investigated Apis species.

In sum, we found a strong, positive correlation between worker ovary size and queen mating
number that we had predicted based on individual-level selection for reproduction under
queenless conditions. Together with previous studies (Makert et al. 2006; Page and Amdam
2007), this suggests that the honeybee worker ovary is under contrasting, multi-level selection.
Thus, worker ovary sizes that are individually selected for may be sub-optimal at the colony
level. This suggests a possible fitness cost of multiple mating at the colony level because the
impact of the individual level of selection increases with multiple mating.
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Electronic Supplementary Material

Single colony data are presented in Table S1. However, colony identity (Figure S1) showed only
a significant effect on worker ovary size in Apis dorsata in Malaysia (H = 32.6, df =2, N = 132,
p <0.001) and Thailand (H = 18.4, df =2, N = 60, p < 0.001). No significant colony effect was
detected in A. cerana in Malaysia (H = 9.2, df =6, N = 82, p = 0.163), A. koshevnikovi (H = 4.8,
df =5, N =59, p=0.441) and A. florea (H = 9.1, df = 4, N = 82, p = 0.059) before Bonferroni
correction, and in Thai A. cerana (H =9.6, df =3, N =79, p =0.022), A. andreniformis (H =
14.5,df =5, N =77, p=0.012), and A. mellifera (H = 6.8, df =2, N =60, p = 0.033) after
Bonferroni correction. Therefore, we conducted all species comparisons with non-parametric
tests without taking the colony level into account. However, a parametric, generalized linear
model, nesting “locale” within “species”, and “colony” within “locale”, confirmed the results of

significant species differences (p < 0.001) and colony level effects in A. dorsata (p < 0.001).

The two dwarf honeybees could only be compared between locales: A. andreniformis
workers had significantly more ovarioles per ovary than workers of A. florea (U =980, N = 124,
p <0.001). This difference was not affected by body size correction (U = 1131, N =124, p <
0.001). The other pair of closely related species that could only be compared between the two
different locales consisted of the cavity breeders A. koshevnikovi and A. mellifera. In this case, A.
koshevnikovi workers displayed larger absolute (U = 2795, N =119, p < 0.001) and relative (U =
2883, N =119, p < 0.001) ovary sizes (Figure S2). Relative to forewing length, A. mellifera



workers had the smallest ovaries of all species (Figure S3), which is not due to exceptionally

long forewings in this species (compare data in S1)

Species also significantly differed in the asymmetry between the ovaries on both sides of
the workers, measured as the ratio (H = 81.6, df =5, N =579, p <0.001), the absolute difference
(H=91.9,df =5, N =579, p <0.001), or the relative difference (H = 81.6, df =5, N =579, p <
0.001) of the two sides. Post-hoc tests indicated that only A. dorsata was significant (p < 0.002)
from all other species, but the direction of this difference depended on the asymmetry
measurement (A. dorsata showed the largest absolute difference but smallest ratio and relative
difference).

Supplement References:

S1: Oldroyd B.P., Wongsiri S. 2006 Asian Honey Bees: Biology, Conservation and Human
Interactions. Cambridge: Harvard University Press.



Figure S1: Ovary size distributions across all 37 colonies from the six investigated Apis species
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Figure S2: Species averages of worker ovary size in the locales “Thailand” and “Malaysia”
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Figure S3: Species averages of worker ovary size relative to their forewing length.
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Table S1: Sampling information of the workers included in the study and basic results

Average # of Ovary asymmetry
. . Worker . .
Location Species Colony Ovarioles per (relative)*
number
Ovary*

Malaysia A. cerana 1 34 45 (3.8-5.3) 0.25(0.18-0.31)
(Tenom) 2 2 5.8 (-22.8 - 34.3) 0.20 (-0.48 - 0.88)
3 10 6.1(3.9-8.2) 0.09 (0.05-0.13)
4 4 41(2.1-6.1) 0.16 (0.04 — 0.28)
5 10 45 (3.6 -5.3) 0.13 (0.08 — 0.18)




6 12 6.1 (4.9-7.3) 0.14 (0.11 - 0.18)
7 10 5.1(4.0-6.1) 0.15 (0.08 - 0.21)
Malaysia | A. andreniformis 1 26 4.3(3.7-4.8) 0.20 (0.13-0.27)
(Tenom) 2 9 3.8(3.0-4.7) 0.19 (0.09 — 0.28)
continued 3 10 5.3(4.1-6.5) 0.25 (0.12 - 0.37)
4 11 5.5 (4.8 - 6.3) 0.11 (0.05 - 0.16)
5 10 5.4 (4.2 - 6.6) 0.15 (0.09 - 0.21)
6 11 5.5(4.2-6.7) 0.16 (0.12 — 0.20)
A. koshevnikovi 1 7 75(3.2-11.8) 0.29 (0.05 - 0.53)
2 12 7.4(6.1-8.7) 0.18 (0.09 - 0.26)
3 7 6.8 (3.8-9.8) 0.19 (-0.02 — 0.40)
4 11 6.3(5.3-7.3) 0.13 (0.09 - 0.18)
5 11 5.7 (4.6 — 6.8) 0.11 (0.07 — 0.16)
6 11 7.1(6.0-8.2) 0.15 (0.10 — 0.19)
A. dorsata 1 4 19.5 (11.6 — 27.4) 0.06 (0.02 - 0.10)
2 108 24.7 (23.7 - 25.6) 0.09 (0.07 - 0.10)
3 20 18.3 (17.1-19.5) 0.10 (0.08 - 0.12)
Thailand A. florea 1 8 2.3(1.3-3.3) 0.56 (n=1)
(Tak) 2 4 2.9 (-0.7-6.5) 0.09 (n=1)
A. dorsata 1 20 19.2 (17.8 - 20.6) 0.11 (0.07 - 0.14)
2 20 18.2 (16.2 — 20.3) 0.10 (0.08 - 0.13)
3 20 23.9 (21.6 - 26.1) 0.09 (0.05 — 0.13)
Thailand A. cerana 1 19 45 3.7-5.2) 0.29 (0.19-10.39)
(Chiang 2 20 5.0(4.0-5.9) 0.26 (0.18 — 0.34)
Mai) 3 20 5.5 (4.6 - 6.3) 0.17 (0.09 - 0.26)
4 20 6.5 (5.4 - 7.6) 0.25 (0.17 — 0.34)
A. mellifera 1 20 49(4.1-5.7) 0.24 (0.14-0.33)
2 20 4.4 (3.6-5.1) 0.15 (0.09 — 0.21)




3 20 3.6 (2.6-4.7) 0.24 (0.19 - 0.29)

Thailand A. florea 1 11 3.8(3.0-4.6) 0.17 (0.11-0.23)
(Ratcha- 2 12 41(3.2-5.1) 0.17 (0.11 - 0.23)
Buri) 3 12 3.8(3.2-4.3) 0.15 (0.09 - 0.21)

* Averages are reported with 95% confidence intervals.
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