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2. Abbreviations 

ACD  Allergic contact 
dermatitis 

 DNFB  Dinitrofluorobenzene 

ACN  Acetonitrile  DT  Diphtheria toxin 

AD   Atopic dermatitis  ELISA  Enzyme-linked 
immunosorbent assay 

AMP  Antimicrobial peptide  EGFP  Enhanced green 
fluorescent protein 

APC Antigen presenting cell  FBS  Fetal bovine serum 

API Asthma predictive index  FITC  Fluorescein 
isothiocyanate 

ATP  Adenosine triphosphate  FLG  Filaggrin 

BAL(F)  Bronchoalveolar lavage 
(fluid) 

 Foxp3 Forkhead box 3 

BCR  B cell receptor  GM-CSF Granulocyte 
macrophage colony-
stimulating factor 

BSA Bovine serum albumin  H&E Hematoxylin-eosin 

cAMP  Cyclic adenosine 
monophosphate 

 HDM  House dust mite 

CD Cluster of differentiation  HRP Horseradish peroxidase 

cDNA  Complementary 
deoxyribonucleic acid 

 IDEC  Inflammatory dendritic 
epidermal cell 

CHS  Contact hypersensitivity  IDO  Indoleamine-2,3-
dioxygenase 

CLA  Cutaneous lymphocyte 
associated antigen 

 IFN Interferon 

CTLA-4 Cytotoxic T-lymphocyte 
antigen 4 

 IHC  Immunohistochemistry 

DAMP Danger associated 
molecular pattern 

 IL Interleukin 

DC   Dendritic cell  IPEX  Immune dysregulation, 
polyendocrinopathy, 
enteropathy, X-linked 

DDC  Dermal dendritic cell  iTreg  Induced regulatory T 
cell 

DEREG  Depletion of regulatory T 
cells 

 LC  Langerhans cell 

dLN  Draining lymph node  LLNA  Local lymph node 
assay 

DNCB  Dinitrochlorobenzene  LN  Lymph node 
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MC  Mast cell  TEM  Effector memory T cell 

2-ME 2-mercaptoethanol  mRNA Messenger ribonucleic 
acid 

mDC  Myeoloid dendritic cell  Tfh  T follicular helper cell 

MEST  Mouse ear swelling test  TGF Transforming growth 
factor 

MHC  Major histocompatibility 
complex 

 Th  Helper T cell 

NK   Natural killer cell  TLR  Toll like receptor 

NTC No template control  TMA  Trimellitic anhydride 

nTreg  Natural regulatory T cell  TNCB  Trinitrochlorobenzene 

OVA  Ovalbumin  TNF Tumor necrosis factor 

OXA   4-ethoxymethylene-2-
phenyl-2-oxazolin-5-one 
(Oxazolone) 

 Treg   Regulatory T cell 

PAMP   Pathogen associated 
molecular pattern 

 TSLP Thymic stromal 
lymphopoietin 

PAS  Periodic acid Schiff  WAO  World Allergy 
Organization 

PBS  Phosphate buffered saline  WT  Wild type 

PCR  Polymerase chain 
reaction 

   

pDC  Plasmacytoid dendritic 
cell 

   

PMA  Phorbol-12-myristate-13-
acetate 

   

PRR   Pattern recognition 
receptor 

   

RORγt RAR-related orphan 
receptor γt 

   

RNA   Ribonucleic acid    

SAg Superantigen    

SEB  Staphylococcal 
enterotoxin B 

   

sLe(x) Sialyl Lewis X    

Tc  Cytotoxic T cell    

TCM  Central memory T cell    

TCR  T cell receptor    

Teff  Effector T cell    
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3. Abstract 

Atopic dermatitis (AD) is an allergic skin disease, characterized by relapsing eczema, dry 

skin and chronic skin inflammation. In some western countries, the prevalence of AD is as 

high as 20 % in children and 1-3 % in adults. A large proportion of AD patients also 

develop asthma later in life. Allergic contact dermatitis (ACD) in turn, is one of the 

leading occupational diseases worldwide, being responsible for a loss of work-time and 

demands for re-education. Therefore, allergic skin diseases not only impair the quality of 

life of patients but cause a great economical burden for the society. This thesis investigates 

some of the mechanisms behind allergic skin diseases with the help of experimental 

animal models.  

 

In an AD-model, an AD-like skin inflammation was induced by mechanical skin injury 

and epicutaneous sensitization. This induced a Th2 cytokine dominated inflammatory 

response at the site of allergen exposure, and elevation of allergy-related IgE antibody 

levels in the serum. The effects of skin colonizing bacteria Staphylococcus aureus derived 

enterotoxin B (SEB) were evaluated on the inflammatory response in AD-model. SEB 

application significantly exacerbated the allergen induced inflammatory response in the 

skin, increasing cellular infiltration, enhancing Th2 cytokine production and provoking 

Th1 cytokine production. Furthermore, SEB induced the production of SEB-specific IgE 

antibodies and enhanced the production of OVA-specific IgE antibodies. These results 

demonstrate that bacterial skin colonization may both augment the inflammatory response 

in AD patients and play a role in the chronification of the disease. 

 

Although regulatory T cells (Treg) are known to prevent allergic responses, their role in 

AD is still not clear. We utilized DEREG mice, in which the Foxp3+ Treg cells can be 

transiently depleted, to study the role of Foxp3+ Treg cells in the AD-like skin 

inflammation. The epidermal barrier in AD patients is often damaged by scratching or 

genetic defect. We observed that in the absence of Foxp3+ Treg cells, the skin injury alone 

induced a stronger inflammation compared with WT, indicating that Foxp3+ Treg cells are 

crucial in controlling skin injury induced inflammation. However, the addition of allergen 

further enhanced the inflammatory response and especially increased the production of 
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Th2 cytokines, suggesting that Foxp3+ cells are also essential in controlling the allergic 

responses in the skin. In addition, when allergen was administered into the lungs at a time 

point when the Treg compartment had been restored, the changes observed in the immune 

system during skin sensitization were readily transferred to the lungs. These results 

demonstrate that impaired Foxp3+ Treg function in AD patients may affect the asthma 

responses possibly developing later in these patients. 

 

In the ACD-model, the skin inflammation was induced by epicutaneous application of 

oxazolone in two phases: sensitization, when memory cells against the hapten were 

generated, but no clinical symptoms were observed, and elicitation, when the same hapten 

was applied on a site distant from the original sensitization site, resulting in a clinically 

observed inflammatory response. The role of Foxp3+ Treg cells was studied in these two 

phases and also in the clearance of the inflammation. The absence of Foxp3+ Treg cells in 

the sensitization phase dramatically exacerbated the skin inflammation, whereas the 

absence in the elicitation phase had no effect on the inflammatory response during the first 

24 hours post challenge. Instead, both depletions severely impaired the resolution of the 

inflammation, most likely due to the impaired ability of restored Foxp3+ Treg cells to 

accumulate in the skin. These results reveal that Foxp3+ Treg cells are crucial during the 

sensitization phase in the LNs and during the resolution phase in the skin. 

 

CCR4 is a chemokine receptor which together with chemokine receptor CCR10 is 

involved in lymphocyte trafficking into the skin. The ACD response was examined in 

CCR4 knock-out mice and surprisingly inflammation was exacerbated in these mice as 

compared with WT. Treg cell recruitment into the skin in these mice was comparable with 

the WT as was the chemotactic response of T cells towards CCR10 ligand CCL27. 

Instead, when the inflammatory response was followed at different time points after 

sensitization and challenge, increased proliferation of CD4+ cells was observed in   

CCR4-/- mice, indicating that CCR4 is somehow involved in the regulation of CD4+ cells 

during ACD responses. 
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4. Introduction 

In allergy, an exaggerated inflammatory response is mounted against a harmless 

substance. The prevalence of allergic diseases has been increasing for several decades and 

although may have reached a plateau in some industrialized countries, the incidence rate is 

still high (Latvala et al., 2005; Williams et al., 2008). The genetic background is of 

relevance in the onset of allergy e.g. it can cause impairment of the barrier integrity of 

epithelia or alternatively induce allergy related Th2 responses instead of more appropriate 

ones (Barnes, 2010). However, the rapid increase in the prevalence of allergy cannot be 

explained by genetic factors only, in other words the environment also plays a significant 

role (Williams et al., 2008). The so called 'hygiene hypothesis', one of the most widely 

accepted theories explaining the increase in the prevalence of allergy, states that 

diminished microbial burden due to improved hygiene, vaccinations and usage of 

antibiotics, has lead to unwanted immune responses such as allergies and autoimmunity 

(Okada et al., 2010). 

 

Atopic dermatitis (AD) is a chronic, inflammatory skin disease manifested by dry and 

itchy skin with relapsing eczematous skin lesions. The lesional skin is occupied by an 

increased numbers of cells of the immune system, such as eosinophils, mast cells and T 

cells. Moreover, these patients have elevated serum IgE levels. In the acute phase of the 

disease, Th2 type cytokines are produced while during the course of chronification, the 

response switches towards the Th1 type. AD also predisposes to so called "atopic march" 

since over 60 % of the AD patients develop food allergy, allergic rhinitis or asthma later in 

life (Bieber, 2010; Spergel, 2010).  

 

Another allergic skin disorder, allergic contact dermatitis (ACD), is one of the most 

common occupational diseases worldwide which induces loss of work-time and often is 

responsible for a need for change of occupation (Coenraads and Goncalo, 2007). In ACD, 

a small hapten that can be a chemical or metal, induces the formation of hapten-specific 

memory T cells, which upon re-exposure to the same hapten, mount an inflammatory 

response manifested by edema and erythema together with vesicle formation and oozing 

phenomena in the acute phase. In the chronic phase, the skin becomes lichenified and 
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cracked. Usually the symptoms appear within 24-96 hours post exposure at the site of 

hapten exposure although they can propagate to distant sites (Saint-Mezard et al., 2004).  

 

Asthma in turn, is a common chronic disorder of the airways characterized by airflow 

obstruction, bronchial hyperresponsiveness and underlying inflammation. There are 

several different types of asthma, but in allergic asthma, an inflammatory response and 

bronchoconstriction occurs in sensitized individuals when the allergen enters the airways 

(Lötvall et al., 2011). The development of allergic asthma can be associated with AD 

(Boguniewicz and Leung, 2010). 

 

Allergy can severely impair the quality of life and sometimes even leads to a life-

threatening condition, anaphylaxis. In addition, it poses a great financial burden on society 

due to the costs of therapy, sick leaves or re-training. Understanding the mechanisms that 

initiate and maintain an allergic response is essential for treatment and prevention of these 

diseases. The aim of this thesis was to unravel some of the mechanisms underlying the 

pathophysiology of skin related allergies. It was decided to investigate the consequences 

of bacterial colonisation on the inflammatory response in AD as well as the role of 

regulatory T cells (Treg) in the control of AD-like skin inflammation. In addition, the 

effects of Treg deficiency during skin sensitization on the subsequent development of 

airway inflammation were studied. The role of Treg cells in ACD was studied by 

depleting Treg cells during the different phases of an ACD response. The final study 

examined how the absence of a skin-homing chemokine receptor, CCR4, could affect the 

outcome of an ACD response. 
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5. Review of the literature 

5.1 Immunity 

5.1.1 Innate immunity 

Innate immunity represents the first line of defence of an immune response. In addition to 

epithelial surfaces, such as the skin or mucosal membranes, innate immunity comprises of 

antimicrobial peptides, plasma proteins and several different cell types, such as 

macrophages, neutrophils, eosinophils, mast cells, basophils, natural killer cells (NK), 

NKT cells and dendritic cells (DC). Epithelial surfaces form the physical and chemical 

barrier that prevents the pathogen from invading the body. For example, the protein-rich 

cells in the uppermost layer of the skin (epidermis) together with lipid-rich intercellular 

domains and junction proteins form a very dense layer which protects the body from the 

'outside' but also has other properties, e.g. preventing excess water leakage from the 

'inside' (Proksch et al., 2008). In addition, secretion of microbicidial substances inhibit 

microbial growth on epithelial surfaces and the presence of mucus in the airways, impairs 

the adherence of micro-organisms to the epithelium (Fritz et al., 2008; Metz and Maurer, 

2009; Parker and Prince, 2011). However, if a pathogen is able to breach the epithelial 

barrier it is taken up by phagocytic cells, macrophages, neutrophils or DCs. These cells 

recognize pathogen-associated molecular patterns (PAMP) common to many different 

pathogens, such as bacterial cell wall components or viral RNA through their pattern 

recognition receptors (PRR). In addition, they recognize danger associated molecular 

patterns (DAMPs), like heat-shock proteins, which are released in cases of tissue injury, 

and participate in the clearance of damaged or apoptotic host cells (Bianchi, 2007; Savina 

and Amigorena, 2007). 

 

Macrophages are present in large numbers in the tissues and they are usually the first cells 

to recognize an invading pathogen, a dying cell or a foreign substance. After recognition, 
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the target is internalized by phagocytosis and destroyed in intracellular vesicles called 

phagosomes via several mechanisms e.g. by major pH drop or production of lytic enzymes 

or free radicals. Macrophages also release cytokines and chemokines which recruit 

neutrophils, other leukocytes and complement proteins to the site of infection and activate 

them to initiate the process called inflammation (Mosser and Edwards, 2008; Stuart and 

Ezekowitz, 2005). Neutrophils participate in phagocytosis and may be even more efficient 

in the process than macrophages (Nordenfelt and Tapper, 2011). Complement is a series 

of proteins that are distributed in blood and tissues and work in a cascade to amplify the 

initial signal. Complement is activated by various self and non-self structures, such as 

apoptotic cells, immune complexes, bacterial lipopolysachharides and viral proteins. In a 

process called opsonization, complement proteins cover the pathogen, foreign substance or 

apoptotic cell, leading to its enhanced recognition and engulfment by phagocytes. 

Complement proteins also act as chemoattractants and activators for the leukocytes. In 

addition, complement proteins can form pores on the bacterial cell membrane, leading to 

their death (Kojouharova et al., 2010; Sjoberg et al., 2009; Wallis et al., 2010). NK cells 

recognize infected cells e.g. through altered host cell surface structures and they release 

proteins from their cytotoxic granules which induce apoptosis in the infected cells 

(Lunemann et al., 2009). Mast cells and eosinophils, in turn, target mainly extracellular 

pathogens. Upon activation they release preformed effector molecules such as histamine 

or eosinophilic peroxidase from their cytoplasmic granules. In addition, they synthesize 

and release inflammatory cytokines and chemokines (Kalesnikoff and Galli, 2008; Neves 

and Weller, 2009; Ryan and Fernando, 2009).  

 

Due to their destructive nature, innate immune responses are tightly controlled. For 

example, eosinophil numbers and activation are regulated at several levels, such as 

production of eosinophils by bone marrow, recruitment of eosinophils into the tissue or 

production of eosinophil activating cytokines. In allergy, this regulation is usually 

dysfunctional (Dombrowicz and Capron, 2001; Nissim Ben Efraim and Levi-Schaffer, 

2008). When an infectious agent has been removed, the inflammatory response is actively 

terminated. However, sometimes the inflammation becomes chronic, with persistent 

infiltration of leukocytes to the site of inflammation and production of inflammatory 

mediators (Serhan and Savill, 2005). This type of sustained inflammation is usually 
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detrimental to the host, e.g. by inducing tissue remodelling or fibrosis which impairs the 

normal function of the tissue (Galli and Tsai, 2008; Nissim Ben Efraim and Levi-Schaffer, 

2008). If an infection cannot be eliminated by innate defence mechanisms, an adaptive 

immune response is initiated by the cells of the innate immunity in a process called 

antigen presentation (Bonilla and Oettgen, 2010) 

 5.1.1.1 Antigen presentation  

Antigen presenting cells (APC) are highly specialized cells that activate the cells of the 

adaptive immune system. The main APCs are DCs, macrophages and B cells and of these, 

DCs are most important in presenting antigens to T cells and initiating adaptive immune 

responses (Itano and Jenkins, 2003). DCs are a heterogeneous group of different types of 

cells and they are divided into two main groups, plasmacytoid DCs (pDC) and myeloid 

DCs (mDC). Plasmacytoid DCs respond to the microbial stimulus, develop into type I 

interferon producing cells and are especially important during viral infections. These cells 

are capable of antigen-presenting but they are not as important in that process as mDCs.  

Myeloid DCs, instead, are efficient antigen-presenting cells and they are either tolerance-

inducing DCs or inflammatory DCs (Bieber et al., 2010; Itano and Jenkins, 2003). 

Immature DCs reside in the tissues or lymphoid organs (lymph nodes, spleen or mucosa-

associated lymphoid tissues). The recognition of a microbial component through PRR, or 

signals derived from cytokines produced during inflammation, induce DCs to take up 

antigens, process them and attach to the antigen-binding groove of MHC molecules. These 

MHC:peptide complexes are then delivered to the cell surface (Neefjes et al., 2011; 

Savina and Amigorena, 2007). Antigen engulfment induces a maturation process in DCs, 

during which they upregulate their expression of costimulatory molecules, downregulate 

antigen uptake and stabilize MHC:peptide complexes. At the same time, DCs in the 

tissues start to migrate towards the nearest lymph node (LN), where they present the 

antigen to T cells. T cells circulate between the blood and LNs and interact constantly with 

DCs in the LNs to screen for the presence of a specific antigen. If an antigen is not 

present, T cells exit the lymphoid organ, enter the bloodstream and continue to circulate. If 

an antigen is recognized, the T cell forms a more stable contact with the DC and becomes 

activated through signals driven by antigen recognition and costimulatory molecules 



 
 
 
 

15

expressed on mature DCs. In addition, DC derived cytokines are needed to direct the 

differentiation of T cells (Curtsinger and Mescher, 2010; Itano and Jenkins, 2003; Marelli-

Berg et al., 2008).  

 5.1.1.2 DCs in the skin 

In the epidermal layer of the skin, a specialized subtype of DCs exists, called Langerhans 

cell (LC). LCs are recruited from the bone marrow as precursors during embryonic 

development, differentiate and then go through a proliferative burst early after birth, after 

which they replicate at a slow rate in the epidermis (Chorro et al., 2009; Vishwanath et al., 

2006). LCs are characterized by the presence of Birbeck granules (Birbeck et al., 1961), 

and the expression of langerin (CD207) (Valladeau et al., 2000). 

 

The dermis is occupied by dermal DCs (DDC). These can be langerin negative DCs that 

are either CD11b+ or CD11b- or langerin positive DCs that are either CD103+ or CD103- 

(Henri et al., 2010). In the absence of inflammation, both LCs and DDCs migrate from the 

skin to the draining LN (dLN) in order to maintain the tolerance to epidermal self-proteins 

(Bedoui et al., 2009; Steinman and Nussenzweig, 2002; Waithman et al., 2007). Although 

they express MHC molecules and costimulatory molecules, they do not produce IL-12 and 

thus do not activate T cells (Kissenpfennig et al., 2005; Stoitzner et al., 2005). In addition, 

both LCs and DDCs are able to provoke the generation of inducible regulatory T cells, a 

subtype of immunosuppressive cells (Guilliams et al., 2010; Loser et al., 2006). A subset 

of DDCs has been observed to activate memory T cells directly in the skin. At the same 

time, they activate regulatory T cells, most likely to inhibit excessive collateral damage to 

the skin (McLachlan et al., 2009).  

 

According to the Langerhans cell paradigm, LCs take up the antigens in the skin and 

migrate to the dLNs to present them to T cells in order to initiate adaptive immune 

responses. Recent advances in the field, however, have challenged this paradigm (Romani 

et al., 2010). For example, during inflammation, DDCs reach the dLNs faster than LCs, 

indicating that DDCs are able to initiate T cell responses (Kissenpfennig et al., 2005). In 

fact, in ACD, it appears that DDCs alone are sufficient to induce inflammation (Bennett et 
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al., 2005; Kissenpfennig et al., 2005), and in the absence of LCs, the inflammatory 

response can be even enhanced, pointing to a suppressive role for LCs in the skin (Bobr et 

al., 2010; Kaplan et al., 2005). However, LCs seem to be essential in inducing 

inflammation at low hapten doses or in situations where the antigen does not readily 

penetrate through the epidermis into the dermis (Kaplan et al., 2008; Wang et al., 2008). 

In addition, in some cases LCs are needed to transport antigens to dLNs, although the 

actual T-cell activation is achieved by LN residental DCs (Allan et al., 2006). 

 

Finally, another DC population, not found in the steady state, appears in the AD skin 

during inflammation. This subpopulation is called inflammatory dendritic epidermal cell 

(IDEC) and is characterized by expression of CD1alow, FcεRIhi and CD11bhi (Schuller et 

al., 2001; Wollenberg et al., 1996). In AD, IDECs invade the epidermis within 72 hours 

after the antigen challenge, and are sustained there also during the chronic state of the 

disease (Kerschenlohr et al., 2003). These cells express costimulatory molecules, CD80 

and CD86, in AD lesions, and they induce naive T cells to produce IFN-γ upon priming, 

suggesting that IDECs may play a role in the chronification of AD (Novak et al., 2004b; 

Schuller et al., 2001). 

5.1.2 Adaptive Immunity 

The adaptive immunity is responsible for antigen-specific immune responses and is 

mediated by lymphocytes, namely T cells and B cells. These cells recognize unique 

structural motifs, called antigens, through T cell (TCR) or B cell receptors (BCR), 

respectively. One cell carries receptors specific for one antigen and after recognition of 

their specific antigen, these cells become activated and start to exert their effector 

functions. B-cells produce antigen-specific antibodies, whereas T cells either kill infected 

cells or enhance the effector activity of other leukocytes. Adaptive immunity utilizes many 

of the same effector mechanisms as innate immunity, e.g. antibodies enhance the 

engulfment and destroyal of the pathogen by phagocytes. Whereas the innate immune 

responses do not evolve and always mount a similar kind of response upon subsequent 

encounters with the same antigen, T and B cells go through series of TCR and BCR 

rearrangements to improve their antigen specificities. In addition, long-lived memory cells 
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are generated with the first contact with the antigen, and these memory cells then respond 

rapidly when recognizing their cognate antigen upon re-infection. During these secondary 

infections, the infective agent is usually cleared before any disease symptoms are observed 

(Bonilla and Oettgen, 2010).  

 

Like the innate immunity responses, adaptive immunity also needs to be carefully 

controlled. During T cell development in the thymus, highly self-reactive T cells are 

deleted. However, sometimes this elimination fails and in addition, T cells responding 

only weakly or intermediately to self structures may escape thymic selection. The activity 

of these cells needs to be inhibited in the periphery in order to prevent their reactivity 

against self structures and the induction of autoimmunity. This is achieved through the 

induction of a state of unresponsiveness, anergy, in these cells, deletion of the cells or 

active suppression of their function. Some of the self-antigen recognizing clones 

differentiate into regulatory T cells with immunosuppressive properties (Jiang and Chess, 

2009; Pacholczyk and Kern, 2008). B cells also go through negative selection, during 

which the self reactive clones either undergo receptor rearrangements, deletion or 

induction of anergy (Grimaldi et al., 2005). Another kind of unwanted adaptive immune 

response is generated when lymphocytes mount an immune response against harmless 

antigens such as food proteins or pollen. This results in the development of 

hypersensitivity and it will be discussed in more detail later.  

 5.1.2.1 T cells 

T cells develop in the thymus after which they circulate between secondary lymphoid 

tissues and blood (Butcher and Picker, 1996). These cells are divided into two main 

groups, cytotoxic T cells (Tc) and helper T cells (Th). Tc cells express a surface marker 

CD8 and recognize antigens bound to the MHCI molecule which is expressed on the 

surface of almost all eukaryotic cells of the body. Th cells bear a surface marker CD4 and 

recognize antigens bound to MHCII molecules (Zamoyska, 1998). T cells that have never 

encountered their antigen are called naive T cells. The first contact with a specific antigen 

results in the activation of a naive T cell, which starts to proliferate and differentiate into 

effector T cell (Teff). This process is called priming. After several days of differentiation 
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and proliferation, an event known as clonal expansion, Teff cells enter the bloodstream 

and migrate into the site of infection. A Teff cell is then able to respond quickly when 

recognizes the same antigen on other cells without the need for co-stimulation (Bousso, 

2008; Croft et al., 1994)  

 

Tc cells are important in the defence against intracellular pathogens, especially viruses. 

Once activated, they induce apoptosis of the cells bearing the antigen. Apoptosis is 

achieved either by the release of preformed effector molecules, such as perforin, or 

through Fas-Fas ligand (FasL) interactions (Barry and Bleackley, 2002). In addition, Tc 

cells produce inflammatory cytokines, which can have various effects on the inflammatory 

response (Cerwenka et al., 1998). Virus-infected APCs can activate CD8 cells directly in 

some cases, but most often additional help from Th cells is needed, especially during 

secondary responses (Bennett et al., 1997; Buller et al., 1987; Janssen et al., 2003). 

 

In some situations Th cells can be cytotoxic (Appay et al., 2002), but mostly they help B 

cells to produce antibodies, activate Tc cells or infected macrophages and enhance 

neutrophil responses (Schepers et al., 2005). Th cells differentiate into various subsets, or 

lineages, distinguished by the cytokines they produce upon activation (Table 1). 

Development into a certain subtype depends on several factors, such as the type and dose 

of antigen, route of antigen delivery and the microenvironment during and before antigen 

presentation. The currently recognized effector Th lineages are Th1, Th2, and Th17. In 

addition, regulatory T cell (Treg) subtypes exist, which are involved in suppressing 

immune responses and will be discussed in a separate chapter below. Th9, Th22 and Tfh 

have been proposed to be potential new Th cell lineages, but since the cytokines they 

produce are produced also by Th1/Th2/Th17/Treg cells and no unique transcription factors 

have been described for these cells, it is possible that these lineages are subtypes of the 

four main lineages (Akdis et al., 2011; Veldhoen, 2009; Zhu and Paul, 2010). 

 

Th1 cells develop in the presence of IL-12 and IFN-γ, produce IFN-γ and are mainly 

targeting immune responses against intracellular pathogens. T-bet is a specific 

transcription factor for Th1 lineage. Instead, Th2 cells develop in the presence of IL-4, to 

produce IL-4, IL-5 and IL-13, express transcription factor GATA-3 and are necessary for 
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mounting immunity against extracellular pathogens. In allergy, Th2 cells dominate and 

Th2 cytokines, IL-4 and IL-13, induce the class switching to IgE in B cells. Th17 cell are 

generated in the presence of TGF-β, IL-6, IL-21 and IL-23, and produce IL-17A, IL-17F, 

IL-6, IL-8, TNF-α, IL-22 and IL-26. They are needed for immunity against extracellular 

pathogens and are involved in some autoimmune diseases. Some Th17 responses have 

been reported in allergies as well. RORγT is a Th17 lineage specific transcription factor. 

The possible Th9 lineage development is driven by IL-4 in the presence of TGF-β, leading 

to the production of IL-9 and IL-10. Th9 cells play a role in mucus production and tissue 

inflammation. Th22 cells need TNF-α and IL-6 for development, produce IL-22 and are 

involved in tissue inflammation. The development of T-follicular helper cells (Tfh) is 

induced by IL-21, which they also produce and these cells are needed to help B cells in 

antibody production (Akdis et al., 2011; Veldhoen, 2009; Zhu and Paul, 2010).  

 

During the first contact with the antigen, memory T cells are generated. They are long-

lived cells, which mount a rapid immune response upon subsequent challenges with the 

same antigen, due to lowered threshold for activation. For example, lower antigen doses 

and various types of APCs, such as B cells, macrophages or endothelial cells are able to 

activate memory T cells (Bushar and Farber, 2008). Originally, memory cells were 

divided into two main subsets, central memory T cells (TCM) that express CCR7 and then 

target and home in on lymph nodes and effector memory T cells (TEM) which do not 

express CCR7 and thus lose the ability to return to LNs, and circulate between blood and 

tissue. TEM cells are able to enter the tissues and rapidly evoke inflammatory reactions in 

response to pathogens. Instead, TCM cells home in on the lymphoid tissue and upon 

antigen recognition, stimulate B cells and generate new Teff cells (Sallusto et al., 1999). 

Nowadays it is recognized however, that both subsets are equally capable of exerting 

effector functions and that memory T cells may express a vast variety of different homing 

receptors (Bushar and Farber, 2008). 
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Table 1 Different Th cell lineages, cytokines needed for their differentiation, specific 

transcription factors, cytokines produced upon activation and the main effector functions 

of different lineages. 

 T cell 
lineage 

Inducing 
cytokines 

Lineage 
specific 
transcription 
factor 

Cytokines 
produced 
upon 
activation 

Effector functions

Th1 IL-12, 
IFN-γ 

Tbet IFN-γ Intracellular 
pathogens, 
apoptosis of tissue 
cells, autoimmune 
diseases 

Th2 IL-4 GATA-3 IL-4, IL-5, 
IL-13 

Extracellular 
parasites, allergic 
inflammation 

Th17 IL-6, 
TGF-β, 
IL-21,   
IL-23 

RORγT IL-6, IL-8, 
IL-17A,     
IL-17F,      
IL-22, IL-26 

Extracellular 
bacteria and fungi, 
autoimmune 
diseases 

nTreg IL-2 or 
IL-15, 
(TGF-β) 

Foxp3 TGF-β, IL-10 Immune 
homeostasis, 
control of 
inflammation 

Confirmed 
lineages 

Foxp3+ 
iTreg 

IL-2, 
TGF-β 

Foxp3 TGF-β, IL-10 Immune 
homeostasis, 
control of 
inflammation 

Th9 IL-4, 
TGF-β 

 IL-9 Mucus production, 
tissue 
inflammation 

Th22 TNF-α, 
IL-6 

 IL-22 Tissue 
inflammation 

Tfh IL-21  IL-21 Antibody synthesis
Th3 TGF-β, 

IL-4,  
IL-10 

 TGF-β Oral tolerance 

Potential 
new lineages 

Tr1 IL-10  IL-10 Immune 
suppression 

References: (Akdis et al., 2011; Curotto de Lafaille and Lafaille, 2009; Roncarolo et al., 
2006; Weiner, 2001; Veldhoen, 2009; Zhu and Paul, 2010) 
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 5.1.2.2 Regulatory T cells 

Regulatory T cells (Treg) control immune homeostasis (Fontenot et al., 2003; Hori et al., 

2003), prevent autoimmunity (Sakaguchi et al., 1995), suppress allergic responses 

(Karlsson et al., 2004; Ling et al., 2004), control immune responses against pathogens 

(Hesse et al., 2004; Powrie et al., 2003) and participate in the resolution of inflammation 

(Kearley et al., 2005; Leech et al., 2007). Treg cells can be roughly divided into two 

groups: natural Treg cells (nTreg) and induced Treg cells (iTreg). Natural Treg cells 

develop in the thymus, represent 10-15 % of the CD4+ T cells and although they are 

thought to mainly suppress self-reactive T cells (Hsieh et al., 2004; Sakaguchi et al., 

1995), they are able to recognize pathogen derived antigens and proliferate upon antigen 

encounter (Suffia et al., 2006). Natural Treg cells express many surface markers e.g. 

CD25 (Sakaguchi et al., 1995), CTLA-4 (Kingsley et al., 2002), GITR (Shimizu et al., 

2002), OX40 (Takeda et al., 2004), CD39, CD73 (Deaglio et al., 2007) and folate receptor 

4 (Yamaguchi et al., 2007)  in addition to transcription factor Foxp3, which is essential for 

their function and development (Fontenot et al., 2003; Hori et al., 2003; Khattri et al., 

2003). However, neither of these markers is strictly specific for nTreg cells in humans, 

since they can be transiently expressed also by activated Teff cells. In mouse, instead, 

Foxp3 is expressed exclusively by Treg cells (Belkaid, 2007; Vignali et al., 2008; Ziegler, 

2006). 

 
Induced Treg cells develop in the periphery from naive T cells e.g. in response to 

superantigen exposure or subimmunogenic doses of antigen (Apostolou and von Boehmer, 

2004; Grundstrom et al., 2003; Kretschmer et al., 2005). Some, but not all iTreg cells 

express the transcription factor Foxp3 (Chen et al., 2003; Stock et al., 2004; Vieira et al., 

2004). The inducible Treg cells include Foxp3- IL-10 producing Tr1 cells, Foxp3- TGF-β 

producing Th3 cells and Treg cells that are converted into Foxp3+ in the context of 

infection (Belkaid, 2007; Vignali et al., 2008). In vitro, the generation of iTreg cells is 

achieved through TCR engagement of naive T cells in the presence of TGF-β (Chen et al., 

2003; Fantini et al., 2004; Park et al., 2004). Interestingly, also fully differentiated 

memory T cells can be converted into Foxp3 expressing Treg cells in the presence of 

TGF-β, α-IL-4, α-IFN-γ, as well as retinoic acid, which is a booster of TGF-β signaling 

and rapamycin, an enhancer of Treg expansion (Kim et al., 2010).  
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In humans, mutations in the Foxp3 gene result in a fatal lymphoproliferative disease called 

IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked). Patients with 

IPEX suffer from severe autoimmune conditions as well as food allergies, persistent 

eczema and they have elevated serum IgE levels (Bennett et al., 2001). Similar effects are 

observed in mouse with deficient or attenuated Foxp3 protein expression (Lin et al., 2005; 

Wan and Flavell, 2007). Although essential for the function of the immune system, Treg 

cells can also be harmful by preventing immune responses against tumours or pathogens 

(Curiel et al., 2004; Hisaeda et al., 2004; Taylor et al., 2005; Walther et al., 2005) or by 

hindering efficient immunisation after vaccination (Moore et al., 2005; Toka et al., 2004). 

 
Treg cells utilize multiple different mechanisms by which they suppress immune cells 

(Fig. 1). They exert suppressive functions both at lymphoid organs as well as at the site of 

inflammation and the molecular mechanisms of suppression may differ depending on the 

localization of the Treg cells. Treg cells can suppress Teff cells either directly or through 

actions on DCs (Tang and Bluestone, 2008).  

 

One important mechanism of Teff targeted suppression is the production of suppressive 

cytokines IL-10, TGF-β and IL-35 by Treg cells (Asseman et al., 1999; Collison et al., 

2007; Nakamura et al., 2001). Treg cells can also kill Teff cells through secretion of 

cytolytic enzymes such as perforin or granzyme A and B (Cao et al., 2007; Gondek et al., 

2005; Grossman et al., 2004).  

 

IL-2 is an important cytokine for the proliferation and consumption of IL-2 through the 

CD25 receptor present on Treg cells has been considered to suppress proliferation of Teff 

cells (Pandiyan et al., 2007; Scheffold et al., 2005). However, a recent experiment by Tran 

et al. suggests that this is not a major mechanism of suppression. Their experiments 

utilized either human Treg cells together with mouse Teff cells or vice versa and they 

noted that human Treg cells were equally suppressive either with a functional CD25 

receptor or its blocked counterpart. On the other hand, mouse Treg cells were not able to 

suppress human responder cells although mouse Treg cells were capable of binding human 

IL-2, thus depriving human cells of IL-2 (Tran et al., 2009). Instead, Treg cells were able 

to downregulate the expression of IL-2 in Teff cells (Oberle et al., 2007; Thornton and 

Shevach, 1998). One mechanism to achieve this, is the transfer of cyclic adenosine 
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monophosphate (cAMP), a potent inhibitor of IL-2 synthesis and T cell proliferation, into 

Teff cells via gap junctions (Bopp et al., 2007). The absence of functional galectin-1 or 

OX40 from Treg cells impairs their ability to suppress Teff cell proliferation in vitro 

(Garin et al., 2007; Takeda et al., 2004) indicating a role for these molecules in the control 

of Teff cell activation and/or proliferation. 

 

Treg cells are also able to interfere with the maturation and/or function of DCs. CTLA-4- 

CD80/86 interactions between Treg cells and DCs induce the production of Indoleamine-

2,3-dioxygenase (IDO) from DCs. IDO catabolizes tryptophan into a toxic metabolite, 

which suppresses Teff cell functions (Fallarino et al., 2003). In addition, the CTLA-4-

CD80/86 interaction leads to downregulation of two costimulatory molecules, CD80 and 

CD86, on APC and the subsequent decline in the activation of Teff cells (Cederbom et al., 

2000; Onishi et al., 2008; Wing et al., 2008). Similarly, fibrinogen-like protein 2 (FGL2)-

FcγRIIB or LAG3-MHCII interactions between Treg cells and DCs, sustains DCs in their 

immature state (Liang et al., 2008; Shalev et al., 2008). IL-10 production, in turn, 

potentially interferes with the production of proinflammatory cytokines from DCs (Houot 

et al., 2006). Treg cells are also able to eliminate DCs through Fas-FasL interactions 

(Gorbachev and Fairchild, 2010; Stranges et al., 2007). 

 

Treg cells inhibit stable contacts between Teff cells and APCs and in that way interfere 

with Teff cell activation (Tadokoro et al., 2006). For example, in the absence of a 

proinflammatory stimulus, Treg cells undergo prolonged interactions with immature DCs 

through neuropilin (Nrp-1) expressed on Treg cells and this phenomenon possibly 

overrides the binding of naive Th cells with the same specificity (Sarris et al., 2008). 

 

Treg cells can cleave the endogenous danger signal, ATP, into immunosuppressive 

adenosine through actions of ectoenzymes CD39 and CD73 on the surface of Treg cells 

(Borsellino et al., 2007; Deaglio et al., 2007; Kobie et al., 2006). ATP drives the 

maturation of DCs (Schnurr et al., 2000) and cleavage of ATP removes this 

immunostimulatory agent from the environment. In addition, the cleavage product, 

adenosine, inhibits Teff cell functions, enhances the formation of iTreg cells and 

downregulates the expression of E- and P-selectin on endothelium, impairing the 
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recruitment of Teff cells into the tissue (Ring et al., 2009; Zarek et al., 2008). Treg cells 

can also have effects on other cells of the immune system, e.g. OX40-OX40L interactions 

between Treg cells and mast cells suppress IgE-induced activation of mast cells (Gri et al., 

2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1 Main mechanisms of Treg mediated suppression. Treg cells suppress Teff cells 
 directly or via DCs. Mechanisms targeted at Teff cells directly include production of 
 inhibitory cytokines, cytolysis through release of cytolytic enzymes, metabolic 
 disruption including secretion of galectin-1 or transfer of cAMP through gap 
 junctions. Galectin-1 and cAMP interfere with IL-2 production in Teff cells. 
 Ectoenzymes CD39 and CD73 convert ATP into adenosine with various 
 immunosuppressive effects. Mechanisms mediated through DCs involve sustaining 
 DCs in their immature state e.g. through FLG2/FcγRIIB or LAG-3/MHCII 
 interactions. The secretion of IL-10 potentially inhibits the production of 
 inflammatory cytokines from DCs. Interactions between CTLA-4 on Treg cells and 
 CD80 or CD86 on DCs, downregulate the expression of these costimulatory 
 molecules and induce the production of IDO which catabolizes tryptophan into an 
 immunosuppressive metabolite. Fas-FasL interactions induce apoptosis of DCs 
 (Garin et al., 2007; Gorbachev and Fairchild, 2010; Houot et al., 2006; Shalev et al., 
 2008; Stranges et al., 2007; Tran et al., 2009; Vignali et al., 2008) 
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The general view is that Treg activation requires stimulation through an antigen receptor 

(Thornton and Shevach, 2000), although there are some recent reports which indicate that 

Treg cells can be suppressive even in the absence of specific antigen or can be activated 

by ATP (Ring et al., 2010; Szymczak-Workman et al., 2009; Tomura et al., 2010). 

Nevertheless, antigen-specific Treg cells in some instances seem to be more effective in 

suppression than antigen non-specific cells (Tomura et al., 2010; Zuany-Amorim et al., 

2002) and at least in the case of Foxp3+ iTreg cells, antigen stimulation is needed to 

generate and maintain these cells (Haribhai et al., 2011). Once activated, Treg cells do not 

require further stimulation through TCR and they are able to suppress any cell nearby, also 

cells with different antigen specificities, through a mechanism called bystander 

suppression (Shevach, 2009; Szymczak-Workman et al., 2009; Thornton and Shevach, 

2000). In addition to natural and inducible Treg cells, subsets of CD8+ T cells, IL-10 

producing NK T cells, CD4-CD8- T cells or γδ T cells may have regulatory functions and 

participate in the suppression of immune responses (Tang and Bluestone, 2008). 

 5.1.2.3 B cells and IgE 

B cells are responsible for the production of antibodies, which in turn bind to and 

neutralize pathogens or facilitate their removal by phagocytic cells. B cells develop in the 

bone marrow and, like T cells, circulate between different lymphoid organs in search for a 

specific antigen. Binding of an antigen into a B cell receptor, induces the internalization 

and processing of the antigen and finally presentation to a Th cell, which has also become 

activated by the same antigen. The cytokines produced by activated Th cells and co-

stimulatory molecules on their surface induce proliferation of B cells and promote their 

differentiation into antibody producing plasma cells or memory B cells (Bonilla and 

Oettgen, 2010; Burton and Oettgen, 2011; Harwood and Batista, 2010; Tangye et al., 

2012). Some antigens, such as plant lectins, can activate B cells directly, without the help 

of T cells. In addition, long polysaccharide chains with repeating molecular patterns may 

cross-link the immunoglobulin receptors on the cell surface and together with DC derived 

signals induce T cell -independent activation of B cells (Bonilla and Oettgen, 2010).  

 



 
 
 
 

26

One B cell clone is able to produce antibodies of only one specificity, the same as the B 

cell receptor they express on their surface. Antibodies can be of different isotype, IgM, 

IgG, IgA, IgE or IgD, and each has own specific effector functions. When a B cell is first 

activated, it starts to produce the IgM isotype and to some extent IgD, but upon maturation 

and signals derived from Th cells, changes the isotype in a process called class-switching. 

IgG is the most common isotype, and has four distinct subtypes in human (IgG1, IgG2, 

IgG3 and IgG4) and mouse (IgG1, IgG2a, IgG2b, IgG3). IgA is an important secreted 

isotype in the epithelium of the intestinal and respiratory tracts, and has two subtypes in 

humans, IgA1 and IgA2 (Chen and Cerutti, 2010; Stavnezer, 1996). The function and 

relevance of IgD are unclear, but it has been shown that neutrophils and eosinophils can 

bind significant levels of IgD under certain pathological conditions, such as skin allergy 

and inflammation, and IgD has been found to be the predominant Ig class present on 

neutrophils in patients with ACD. Moreover, IgD may act as a chemotactic agent for 

neutrophils and eosinophils during ACD (Chen and Cerutti, 2010). 

 

IgE activates mast cells, basophils and eosinophils and plays an important role in the 

pathomechanisms of allergy. In contrast to the other antibodies, only some of the IgE can 

be found in the circulation where it is bound to the surface of basophils, eosinophils or 

circulating monocytes. Most of the IgE is localized in the tissues, bound to mast cells 

through high affinity receptor FcεRI. In addition, APCs such as dendritic cells and 

Langerhans cells express FcεRI and bind IgE antibodies (Johansson, 2011; Novak et al., 

2003). Production of IgE first requires development of Th2 cells from naive T cells, after 

which Th derived cytokines, IL-4 and IL-13 and costimulatory signals, such as CD40L, 

induce the class switching into IgE (Oettgen, 2000). Some individuals are genetically 

more prone to develop Th2 biased responses and IgE production (Brown and McLean, 

2009) and certain antigenic determinants, small antigen doses or the routes of antigen 

presentation may favour IgE production. Since IgE is thought to originally have developed 

to provide immunity against parasites, Th2 polarization is usually favoured at sites 

common for parasite entry, such as skin or mucosa-associated lymphoid tissues of airways 

and gut (Bannon and Ogawa, 2006; Nelde et al., 2001; Rajan, 2003). 
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5.1.3 Cytokines  

Cytokines are small proteins released by cells usually in response to a particular activating 

signal. Cytokines can act in an autocrine, paracrine or endocrine manner by binding to 

specific receptors on the surface of responder cells. Cytokines are a structurally diverse 

group of molecules and cytokine induced signalling provokes various responses in 

responding cells. As discussed earlier, Th cells can be divided into different subsets based 

on the cytokines they produce upon activation. Some cytokines such as IL-1 and TNF-α 

are considered as pro-inflammatory, since they strongly promote inflammatory responses, 

while other cytokines, like IL-10 and TGF-β, are anti-inflammatory and participate in the 

suppression or prevention of immune responses (Dinarello, 2000). However, depending on 

the context in which the cytokine is produced, or the cell type that responds to the 

cytokine, the same cytokine can possess both pro-inflammatory and anti-inflammatory 

properties. For example, TGF-β is needed for the induction of immunosuppressive iTreg 

cells and the maintenance of nTreg cells, but in the presence of IL-6, TGF-β promotes the 

development of Th17 cells. These cells participate in the inflammatory reactions as 

effector cells and may promote autoimmunity. A similar kind of pleiotropic role has been 

described also for IL-10 and IL-22 (Sanjabi et al., 2009). 

 
In terms of allergy, Th2 cytokines are especially important. These include IL-4, IL-5 and 

IL-13 which promote IgE production, suppress Th1 responses, enhance Th2 development 

and affect eosinophil recruitment and survival. The expression of these cytokines is 

upregulated during allergy (Akdis et al., 2011). In recent years, several other cytokines 

have also been shown to participate in allergic inflammation. For example, IL-25 is 

produced by Th2 cells, activated eosinophils and basophils and it enhances the production 

of Th2 cytokines and increases eosinophil survival and their expression of adhesion 

molecules (Cheung et al., 2006; Fort et al., 2001; Wang et al., 2007b). Furthermore, IL-25 

can inhibit filaggrin synthesis, an important molecule for skin barrier function. In AD 

patients, IL-25 is produced by dermal DCs, and may thus influence the pathophysiology of 

AD both by augmenting Th2 responses and impairing the barrier function of the skin 

(Hvid et al., 2011).   
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IL-31 is expressed by activated Th cells, especially of Th2 subtype and expression is 

upregulated in AD and ACD patients (Bilsborough et al., 2006; Neis et al., 2006). 

Furthermore, IL-31 is strongly associated with pruritus accompanying atopic lesions and 

may therefore augment the inflammatory response by inducing scratching, which then 

leads to further damage of the skin barrier (Dillon et al., 2004; Sonkoly et al., 2006). 

      

IL-33, in turn, signals through receptor ST2 and induces or enhances the production of 

Th2 cytokines both in vivo and in vitro (Schmitz et al., 2005). Increased numbers of IL-33 

positive epithelial cells has been detected in AD patients (Pushparaj et al., 2009).   

 

Although allergic reactions are generally considered to be Th2 mediated, also other 

cytokines play an important role. For example, in ACD, mice deficient of IFN-γ or IFN-γ 

receptor demonstrate strongly diminished ACD responses (Wakabayashi et al., 2005). 

Attenuated CHS responses are also observed in mice treated with neutralizing antibodies 

against IL-17 (He et al., 2006)  and increased levels of IL-17A have been reported in AD 

as well (Toda et al., 2003). Furthermore, elevated levels of IL-22 producing CD4+ and 

CD8+ cells have been detected in the AD lesions and their numbers correlate with the 

disease severity (Nograles et al., 2009). Increased numbers of IL-22+ T cells in the serum 

have been reported both in AD and in ACD (Eyerich et al., 2009). In addition to above 

mentioned cytokines, several other cytokines, such as IL-3, IL-6, IL-9, IL-15, IL-18, IL-19 

and IL-20, may participate in the development of Th2 biased responses by several 

mechanisms, like activating mast cells and eosinophils, suppressing Treg cells, enhancing 

the differentiation of Th2 cells and downregulating Th1 responses (Akdis et al., 2011). 

 

5.1.4 Chemokines 

Chemokines are cytokines which act as chemoattractants. In a similar manner to 

cytokines, chemokines bind to specific receptors and different cell types express different 

kind of receptors. Some chemokines are expressed in the absence of any specific stimulus 

and are termed 'homeostatic' whereas the expression of other chemokines is induced upon 

activation. These chemokines belong to the 'inflammatory' class. Depending on the 

chemokines produced at the site of inflammation, certain types of cells are recruited. At 
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the moment, at least 48 different chemokines have been identified and they are divided 

into different subclasses based on the cysteine residue composition near the N-terminal 

end of the corresponding chemokine. CC-chemokines have two adjacent cysteine residues, 

while CXC-chemokines have their cysteine residues separated by one amino acid. In 

addition to these two main classes, there are two members in the C-chemokine family 

which have only one cysteine residue, and one chemokine in the CX3CL - chemokine 

family, in which the cysteine residues are separated by three amino acids. Chemokine 

receptors are G-protein coupled seven-span transmembrane proteins. CC class chemokines 

bind to CC-receptors, of which ten are known at the moment and are designated as CCR1-

10. CXC chemokines bind to CXC receptors, designated as CXCR1-7. C-chemokines bind 

to receptor XCR1 and CX3CL chemokine to receptor CX3CR1 (Zlotnik et al., 2006).  

 

Chemokines can be released by several different cell types but they act mainly on 

leukocytes. The role of chemokines in cell recruitment involves two different stages: first, 

they trigger conformational changes in the integrins expressed on leukocytes as they roll 

along endothelium. These changes cause the rolling cells to stop and to adhere firmly to 

the endothelium. Second, once they have been extravasated into the tissue, leukocytes are 

guided to the site of inflammation by a chemotactic gradient formed by chemokines 

(Middleton et al., 2002). In addition to participating in recruitment of inflammatory cells, 

chemokines are also involved in the leukocyte development and activation as well as 

angiogenesis (Ono et al., 2003; Rosenkilde and Schwartz, 2004). 

 

There are many chemokines that are of special importance during allergic skin responses. 

For example CCL11, CCL24 and CCL26, also known as eotaxins, are involved in the 

recruitment of eosinophils (Owczarek et al., 2010). CCL17, CCL22 and CCL27 (Homey 

et al., 2002; Horikawa et al., 2002; Kusumoto et al., 2007), in turn, are essential for T cell 

homing into the skin (in more detail below). CXCL9 and CXCL10 are detected in the skin 

during ACD responses and participate in the T cell and monocyte recruitment (Vocanson 

et al., 2009). CCL1 is expressed on atopic lesions and is involved in the accumulation of 

memory T cells and LCs into the skin (Gombert et al., 2005). 
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 5.1.4.1 Skin-homing chemokine recptors and CLA  

CCR4 and CCR10 are two important chemokine receptors with regard to the homing of T 

cells into skin during skin inflammation. The absence of only one of these receptors can 

lead to diminished inflammatory responses in the skin (Campbell et al., 2007; Homey et 

al., 2002). However, CCR4 and CCR10 seem to have also overlapping functions since in 

some situations, the lack of one receptor can be compensated by the other and only 

simultaneous blockade of both receptors leads to impaired recruitment of inflammatory 

cells into the skin (Mirshahpanah et al., 2008; Reiss et al., 2001; Wang et al., 2009b).  

 

CCR4 is mainly expressed by Th2 cells (Bonecchi et al., 1998; Imai et al., 1999), 

although also other cell types, such as platelets and basophils have been reported to 

express CCR4 (Power et al., 1995a; Power et al., 1995b). In addition, Treg cells express 

CCR4 (Iellem et al., 2001) this being essential for efficient Treg entry into the skin in the 

steady state (Sather et al., 2007). In some inflammatory situations, CCR4 is also needed 

for Treg cell homing or retention in the lymph nodes and efficient regulatory function 

(Yuan et al., 2007). 

 

CCL17 and CCL22 are two ligands for CCR4 (Godiska et al., 1997; Imai et al., 1997; 

Imai et al., 1998). CCL17 is expressed by activated dermal DCs and cutaneous venules, 

where it is further upregulated during inflammation (Alferink et al., 2003; Campbell et al., 

1999). DCs produce CCL22 upon maturation (Nagorsen et al., 2004) and neutralization of 

CCL22 or blockade of CCR4 receptor greatly impairs the formation of stable contacts 

between DCs and T cells, pointing to an important role for CCL22-CCR4 interaction in T 

cell activation (Wu et al., 2001).  

 

The expressions of CCL17 and CCL22 are upregulated in the skin during experimental 

ACD (Kusumoto et al., 2007). In AD patients, CCL17 levels are elevated in the serum, 

and the extent of the increase correlates with the severity of the disease (Saeki and 

Tamaki, 2006; Shimada et al., 2004). In addition, monocyte derived DCs from AD 

patients produce more CCL22 than healthy controls (Hashimoto et al., 2006). 

Inflammatory responses are attenuated in CCL17 deficient mice, both in ACD and AD 

models (Alferink et al., 2003; Stutte et al., 2010).  
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CCR10 receptor has also two ligands, CCL27 and CCL28 (Homey et al., 2000; Wang et 

al., 2000b). CCR10 expression has been detected in most of the T cells infiltrating 

inflamed skin in AD, ACD and psoriasis, and neutralization of CCR10-CCL27 

interactions lead to impaired homing of T cells into the skin during allergen-induced skin 

inflammation (Homey et al., 2002). CCL27 is constitutively expressed by keratinocytes 

but is also associated with skin inflammation. In addition, CCL27 has been shown to 

attract skin homing cutaneous lymphocyte associated antigen (CLA) positive cells in vitro 

(Morales et al., 1999). CCL28 mRNA expression has been observed in the normal gut and 

lungs, but also in the context of inflammation (Wang et al., 2000b). 

 

Cutaneous lymphocyte-associated antigen (CLA), is not a chemokine receptor, but is an 

important skin-homing molecule for T cells (Picker et al., 1990a). CLA is expressed on 

10-15 % of circulating T cells and on 80-90% of T cells in the inflamed skin (Picker et al., 

1990b), and the expression of CLA is induced in naive T cells after they have been 

converted to memory T cells in skin draining LNs (Picker et al., 1993). The CLA structure 

is similar to the carbohydrate structure sialyl Lewis X antigen (sLe(x)) (Fuhlbrigge et al., 

1997). These carbohydrate structures are ligands for L-, P- and E-selectins, adhesion 

molecules that are expressed by leukocytes (L-selectin), platelets (P-selectin) or 

endothelial venules after stimulation with inflammatory agents (E- and P-selectin) 

(Bevilacqua et al., 1987; Gallatin et al., 1983; Hattori et al., 1989; Springer, 1994). CLA 

binds to E-selectin on the endothelium and treatment with anti-CLA antibody, HECA-452, 

can block this interaction (Berg et al., 1991). Binding initiates the tethering and rolling of 

T cells on the vascular endothelium, an event which eventually leads to extravasation of 

these cells into the skin. CLA+ T cells are of special importance in the pathomechanisms 

of AD and ACD since CLA+ T cells have been shown to be activated by antigens relevant 

to both of these diseases, such as house dust mite or nickel (Santamaria Babi et al., 1995).  

5.2 Allergy 

When an immune response is mounted against a harmless antigen or in an exaggerated 

form, the term hypersensitivity is used. Coombs and Gell divided hypersensitivity 
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reactions into four different subtypes (Gell and Coombs, 1963). The type I 

hypersensitivity reaction is an immediate response to a soluble antigen and is mediated by 

antigen-specific IgE on the surface of mast cells and basophils. Type II hypersensitivity is 

mediated by IgG antibodies which are directed against cell- or matrix associated antigens 

and results in tissue injury. Type III hypersensitivity reactions are also mediated by IgG 

antibodies, but are directed to soluble antigens, leading to formation of immune 

complexes that persist and deposit in the blood vessels, tissues or organs where they 

induce activation of leukocytes and complement and subsequently tissue damage. Type IV 

hypersensitivity, also called delayed type hypersensitivity, is mediated by allergen-specific 

T cells and usually occurs several hours or days after antigen exposure. Allergy is the most 

common type of hypersensitivity and although often equated with type I hypersensitivity 

reactions, it can have features of all these four types of reactions (Gell and Coombs, 1963; 

Rajan, 2003). In the context of AD and ACD, the inflammatory response is mediated 

mainly by type I and type IV hypersensitivity responses and they will be discussed in 

more detail later. 

 

An allergic reaction occurs in response to certain innocuous antigen, called allergen. 

Allergen is most often a highly soluble protein or a glycoprotein of relatively small size 

and the exposure occurs usually at very low doses. An individual can also become 

sensitized to chemicals, which are not immunogenic by themselves but which can trigger 

immune responses after binding to protein carriers. Usually the first encounter with an 

allergen does not lead to an allergic reaction but to the formation of allergen specific 

antibodies or memory T cells (Kimber et al., 2011; Platts-Mills and Woodfolk, 2011).  

 

Genetics are important factors in determining an individual's susceptibility to develop 

allergy. However, the rapid increase in the incidence of allergies cannot be explained by 

genetic factors alone and it has been estimated that environment and genetic variation each 

account for about 50 % of the risk of allergic diseases. Changes in hygiene, pollution, 

allergen levels and diets have been postulated to be responsible for the increased 

prevalence rates of allergy (Horner, 2006; Murphy et al., 2008; Rautava et al., 2005; 

Saxon and Diaz-Sanchez, 2005). One of the most widely accepted theories, however, is 

the hygiene hypothesis, which indicates that allergic diseases have become increased in 
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industrialized countries due to the reduced microbial burden (Wills-Karp et al., 2001) and 

may result in the lack of induction of regulatory T -cell populations during infection 

(Maizels, 2005). Treg cells are known to control Th2 responses (Lin et al., 2005) and e.g. 

Treg cells activated during helminth infection protect against subsequent airway 

inflammation (Wilson et al., 2005). 

5.2.1 Type I hypersensitivity 

A type I hypersensitivity reaction can be divided into immediate reactions occurring 

within seconds after antigen encounter, and late-phase responses emerging 8-12 hours 

later. In the immediate reaction, allergen induced cross-linking of FcεRI receptors on mast 

cells induces a process called degranulation, where preformed inflammatory mediators 

stored inside cytoplasmic granules of mast cells and also newly formed mediators are 

released. These mediators include histamine, tryptase, cytokines, chemokines and lipid 

mediators such as prostaglandins and leukotrienes. The release of these agents induces 

smooth muscle contraction, increased vascular permeability and secretion of mucus. In 

addition, it results in the recruitment of other inflammatory cells, such as eosinophils, 

basophils, T cells and DCs to site of antigen encounter and initiation of late-phase 

responses in half of the patients (Fig. 2). These events also underlie the development of T 

cell and eosinophil mediated allergic tissue inflammation which may develop into chronic 

allergic diseases like AD or asthma. Type I hypersensitivity reaction is usually a very local 

event, occurring at a small area around allergen encounter and mast cell activation. 

However, in some cases disseminated mast cell activation can occur, resulting in a life-

threatening systemic response, anaphylactic shock (Burton and Oettgen, 2011; Finkelman 

et al., 2005; Rajan, 2003). 
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Figure 2  Type I hypersensitivity reaction. (A) In the resting state, allergen specific IgE 
 molecules are bound to FcεRI on mast cells. (B) When an allergen enters the body, it 
 crosslinks FcεRI by binding to IgE molecules and leads to degranulation of mast 
 cells. In degranulation, preformed mediators are released and induce the hallmarks 
 of immediate type reaction such as itching, swelling, mucus production or 
 bronchoconstriction. In addition, in some patients inflammatory mediators released 
 by mast cells recruit other cells of the immune system to the site of allergen 
 encounter, resulting in the late-phase response characterized by infiltration and 
 activation of eosinophils, basophils and T cells.(Burton and Oettgen, 2011; Murphy 
 et al., 2008) 

5.2.2 Type IV hypersensitivity 

The evidence that type IV hypersensitivity is especially mediated by antigen-specific T 

cells, rather than antibodies, emerges from animal experiments where sensitivity to a 

certain antigen can be transferred from one sensitized animal to a non-sensitized 

counterpart through adoptive transfer of antigen-specific T cells but not by transfer of 

serum. The type IV hypersensitivity can be divided into the sensitization phase and the 

elicitation phase. In the sensitization phase, the allergen is taken up by APCs and 

presented to naive T cells in the draining LNs, where the activation of T cells eventually 

leads to the formation of antigen-specific memory T cells. These memory T cells then 

remain in the LNs, enter the bloodstream or migrate to the tissue. No clinical symptoms 

are usually observed at this point. Upon subsequent exposure to the same allergen, 
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memory T cells residing in the tissue or recruited from the blood and LNs are activated 

directly at the site of allergen exposure. In most cases, the activated T cells are CD8+ Tc1 

and CD4+ Th1 cells which, upon antigen recognition, trigger apoptosis of the tissue cells 

and release inflammatory cytokines such as IFN-γ and IL-17, which in turn activate the 

residential tissue cells. They further amplify the inflammatory response by releasing a set 

of cytokines and chemokines, including CXCL9, CXCL10, IL-1 and GM-CSF, that 

enhance vascular permeability and expression of adhesion molecules on endothelium, 

recruit monocytes and more T cells to the site of allergen encounter and contribute to 

monocyte maturation into macrophages. Since a fully mounted type IV hypersensitivity 

reaction takes 24-48 hours to develop, this type of response is also called delayed-type 

hypersensitivity reaction (Kalish and Askenase, 1999; Murphy et al., 2008; Roitt et al., 

1996; Vocanson et al., 2009) 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3 Type IV hypersensitivity reaction (A) During the sensitization phase, the allergen is 
 taken up and processed by dendritic cells. (B) Upon processing, dendritic cells 
 mature and migrate to draining lymph nodes where they present the antigen to naive 
 T cells (Tn). (C) Naive T cells become activated and generate memory T cells (Tm). 
 (D) Upon re-encounter with the same allergen, memory T cells are activated to 
 become effector T cells (Te) at the site of allergen exposure. Effector T cells induce 
 tissue damage and produce inflammatory cytokines that activate residential cells to 
 produce inflammatory mediators. These mediators then recruit other inflammatory 
 cells to the site of allergen encounter to further amplify the inflammatory response 
 (Kalish and Askenase, 1999; Vocanson et al., 2009).  
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5.3 Atopic dermatitis 

Atopic dermatitis is a chronic inflammatory skin disorder, characterized by itching, 

relapsing dermatitis and skin lichenification. The lesional skin is occupied by increased 

numbers of T cells, eosinophils and mast cells. Previously atopic dermatitis was divided to 

non-IgE associated (intrinsic) and IgE associated (extrinsic) form but the World Allergy 

Organization (WAO) has defined the term "atopy" to be used only in association with IgE 

sensitization (Johansson et al., 2004). However, non-IgE associated AD can be a transient 

phase in the development into IgE associated AD, especially in children (Bieber, 2010; 

Novembre et al., 2001). It also has to be noted that much of the research has been 

conducted on AD before WAO definition and therefore the AD-related findings described 

below do not necessarily always discriminate between IgE and non-IgE associated forms 

of AD. 

 

The inflammatory response can be triggered by many factors such as food, airway 

allergens, irritative substances and microorganisms (Werfel, 2009). The acute phase of the 

inflammatory response in the skin is dominated by Th2 cells but the chronic phase is 

maintained by Th1 promoting cytokines, IL-12 and IL-18, in addition to remodelling 

associated cytokines IL-11, IL-17 and TGF-β (Grewe et al., 1998; Toda et al., 2003).  

 

For unknown reasons, the prevalence of AD has been on the increase during the last 

decades, and the life-time prevalence in school-aged children in some western societies 

has been reported to be as high as 17 %. In almost half of the cases, AD develops during 

the first 6 months of life and in 85 % of the cases, the onset of AD occurs before the age of 

five (Bieber, 2010). In addition, over 60% of AD patients develop other allergies or 

asthma later in life (Boguniewicz and Leung, 2010; Spergel, 2010). 

5.3.1 Genetics 

Genetic factors play an important role in the onset of AD, as demonstrated in twin studies 

and family-based linkage studies that have reported a twofold incidence rate for AD when 

one of the parents is affected and threefold incidence rate when both parents have AD 
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(Dold et al., 1992; Schultz Larsen and Holm, 1985). Polymorphism in the genes 

controlling either skin barrier function or adaptive and innate immune responses has been 

observed in several genome-wide linkage studies in AD patients (Barnes, 2010). 

 

A chromosomal region including epidermal differentiation complex harbours over 50 

genes controlling epidermal homeostasis (Bieber, 2010). At the moment, one of the most 

extensively studied genes in this region is filaggrin-gene (FLG), and mutations within this 

gene has been shown to associate with AD in at least 20 different studies (Barnes, 2010). 

Loss-of-function mutation in the profilaggrin/filaggrin gene creates defects in the skin 

barrier function (Palmer et al., 2006) and not only facilitates the allergen penetration into 

the skin but might also render these patients more susceptible to suffer disseminated viral 

infections, which has consequences for the disease severity (Barnes, 2010; Spergel, 2010). 

Several studies have shown that approximately 30 % of the AD patients have at least one 

mutation in the filaggrin-gene (Marenholz et al., 2006; Palmer et al., 2006; Weidinger et 

al., 2006) and compared to AD patients without FLG mutation, these patients have an 

earlier onset, more severe and persistent form of AD (Henderson et al., 2008) and are 

more likely to develop asthma or other allergies later on (Marenholz et al., 2006; Palmer 

et al., 2006). However, not all the AD patients have filaggrin mutations, indicating that 

also other factors contribute to the defective skin barrier observed in the majority of AD 

patients. As mentioned above, several other skin barrier-related genes have still to be 

investigated and may prove to be important in the pathogenesis of AD. In addition, 

production of Th2 cytokines reduces filaggrin expression in keratinocytes (Howell et al., 

2007) and downregulates the expression of two other important proteins involved in 

epidermal differentiation, loricrin and involucrin (Kim et al., 2008), possibly inducing an 

impaired skin barrier function in patients with an inherited preference for Th2 polarization 

(Brown and McLean, 2009). It is also of interest that 40 % of people with null mutations 

in the filaggrin gene do not develop AD (Henderson et al., 2008), suggesting that 

polymorphism in other genes and/or the contribution of environmental factors are required 

for AD to develop (Barnes, 2010).  

 

In addition to genes controlling skin barrier functions, genes involved in immunological 

mechanisms are involved in the development of AD. Polymorphisms in the genes 
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encoding IL-4 (He et al., 2003; Kawashima et al., 1998), IL-4 receptor (Hosomi et al., 

2004; Oiso et al., 2000) or IL-13 (He et al., 2003; Liu et al., 2000; Tsunemi et al., 2002) 

have been observed in AD patients. In addition, defects in PRRs of the innate immune 

system, such as toll like receptors (TLR), may change the function of these receptors so 

that they are no longer protective against allergy. For example, polymorphisms in genes 

encoding TLR2 and TLR9 have been shown to associate with AD (Ahmad-Nejad et al., 

2004; Novak et al., 2007). Keratinocytes secrete TSLP, which instructs DCs to induce Th2 

responses. Elevated TSLP expression has been detected in the lesional AD skin (Ito et al., 

2005). In addition, polymorphism in the gene encoding mast cell chymase, an enzyme 

which increases vascular permeability and accumulation of inflammatory cells, correlates 

with the incidences of AD (Mao et al., 1996; Weidinger et al., 2005). 

 

Some of the AD patients display defects in anti-microbial peptide (AMP) expression 

which might be one explanation for the increased susceptibility for infections (Nomura et 

al., 2003; Ong et al., 2002) and subsequent exacerbated skin inflammation in AD patients. 

Decreased AMP production may be a secondary effect of Th2 dominated milieu in AD, 

since Th2 cytokines have been shown to downregulate the AMP expression from 

epidermal cells in vitro (Howell et al., 2006). Local and disseminated viral infections can 

even induce potentially life-threatening complications in AD patients (Peng et al., 2007; 

Vora et al., 2008). Enhanced susceptibility for viral infection can be partly due to an 

altered phenotype or lowered numbers of plasmacytoid DCs in AD lesions or decreased 

production of anti-viral cytokines by pDCs and mDCs (Lebre et al., 2008; Novak et al., 

2004a; Wollenberg et al., 2002). 

 

In addition to the above mentioned defects, many other factors, such as abnormally high 

expression of FcεRI on Langerhans cells and inflammatory dendritic epidermal cells 

(IDEC), elevated numbers of skin-seeking, CLA+, T cells or increased production of 

neuropeptides and neurotropins, which may enhance eosinophil survival and the 

chemotactic response, have also been shown to have possible effects in the 

pathomechanisms of AD (Bieber, 2010; Boguniewicz and Leung, 2010; Werfel, 2009).  
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5.3.2 Environment 

Although genetics are important risk factors for AD, the rapid increase of this disease 

indicates that environmental factors also play a crucial role. For example, rural versus 

urban living environment (von Mutius, 2002), diet (Rautava et al., 2005), exposure to 

pollutants (Saxon and Diaz-Sanchez, 2005) or infectious and non-infectious microbes 

(Horner, 2006) all have an effect on allergy risk. However, the ISAAC study demonstrated 

that within the same regions, changes in prevalence were different for asthma, allergic 

rhinitis and atopic eczema, suggesting that different allergic diseases might have different 

environmental risk factors (Asher et al., 2006).  

 

Foodborne allergens are important triggers of cutaneous responses, especially in children 

with AD. Often sensitization to food allergen occurs prior to ingestion, suggesting that an 

impaired skin barrier function might play a role. In addition, allergens in breast milk and 

enhanced antigen transfer through the gut barrier in AD patients are factors that probably 

contribute to the sensitization process (Hauk, 2008). 

 

Impaired skin barrier most likely plays a role also in the sensitization to airborne allergens, 

of which house dust mites, cockroach, pet dander, and different kind of pollens are most 

relevant for AD. They can contribute to the atopic inflammation either through their 

intrinsic proteolytic activity, activation of proteinase-activated receptor-2 (PAR-2), or IgE 

binding. The innate proteolytic activity can destroy epithelial tight junctions directly, 

participate in the degranulation of eosinophils and activate keratinocytes. These effects 

contribute to increased local inflammation, barrier impairment and delayed barrier 

recovery. The barrier impairment is also observed when airborne proteins bind to PAR-2 

and induce changes in keratinocyte calcium levels. In addition, PAR-2 activation is 

associated with chronic itch, leading to scratching and further impairment of the barrier. 

The binding of airborne allergens to IgE triggers the classical immediate type response 

(Hostetler et al., 2010).  

 

Finally, the toxins produced by skin colonizing bacteria, as well as viral infections, can 

trigger the inflammation in AD-patients (Werfel and Kapp, 1998).  
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 5.3.2.1 Superantigens 

Superantigens (SAg) are proteins produced by bacteria or viruses that activate T cells by 

binding to the MHC molecules outside their peptide-binding grooves and to T cell 

receptors outside their antigen recognition sites. This interaction is antigen non-specific 

and leads to massive proliferation of T cells. SAgs are able to stimulate simultaneously 5-

20% of the T cell population compared with 1 in 105-106 T cells during normal antigen 

presentation (Sundberg et al., 2002). The same bacteria can produce a variety different 

SAgs, e.g. the sequencing of the whole genome of Staphylococcus aureus has revealed at 

least 70 new virulence factors, many of which are most likely also to exert superantigenic 

properties (Kuroda et al., 2001). However, it is not known at the moment how invading 

pathogens benefit from overactivation of T cell responses.  

 

Superantigens have been shown to exacerbate skin inflammation in AD-patients through 

several mechanisms. First, they induce production of SAg-specific IgE (Laouini et al., 

2003; Leung et al., 1993). Second, they induce secretion of inflammatory cytokines, such 

as TNF-α, IL-17 and IL-22 (Miethke et al., 1992; Nograles et al., 2009; Wang et al., 

2009a). Third, they can activate large numbers of T cells in an antigen non-specifical 

manner (Hong et al., 1996; Kappler et al., 1994). Finally, superantigens inhibit the 

suppressive function of Treg cells (Cardona et al., 2006; Lin et al., 2011). 

 

5.3.3 Stress  

Stress can sometimes provoke or exacerbate eczema, and the connection between the skin, 

the immune system and the nervous system has attracted increasing interest in recent 

years. The innervation of the skin is very dense, and at least keratinocytes, skin dendritic 

cells and mast cells have been shown to have connections with nerve fibers and axons. In 

addition, certain neurotransmitters can be produced not only by nerve fibers but also 

keratinocytes, melanocytes and all cells of the immune system, and most cutaneous cells 

also express receptors for these neuromediators. Neuromediators can modulate the 

function of cutaneous cells and immune cells, such as Langerhans cells. During times of 

stress, release of neurotransmitters and nerve growth factors in the blood or skin is 
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increased and this can enhance the inflammation induced by immune cells. In AD lesions, 

various changes in skin neurobiology are observed, strongly suggesting that the nervous 

system plays a significant role in the pathomechanisms of AD (Misery, 2010). 

 
In summary, it is unlikely that a few dominant risk factors would explain the increase in 

AD rates, but instead, certain risk factors can be of different importance in distinct 

populations, depending on the environment and the genetic background of the particular 

population. It is also possible that AD is a group of several diseases sharing a common 

phenotype, and having various, possibly even opposing, risk factors (Williams et al., 

2008).  

5.4 Allergic asthma 

Atopic dermatitis in early childhood is often the first step in the so-called atopic march 

being followed by asthma or allergic rhinitis in majority of the patients (Spergel, 2010). 

Therefore, a link between skin sensitization and a subsequent asthma development has 

been studied in several experiments which demonstrate that epicutaneous or 

intracutaneous protein exposure induces airway hyperresponsiveness in mice when the 

same antigen is administered into the lungs (He et al., 2007; Lehto et al., 2005; Spergel et 

al., 1998).  

 

Asthma has been defined as "a chronic inflammatory disorder of the airways in which 

many cells and cellular elements play a role. The chronic inflammation is associated with 

airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, 

chest tightness, and coughing, particularly at night or in the early morning. These episodes 

are usually associated with widespread, but variable, airflow obstruction within the lung 

that is often reversible either spontaneously or with treatment" (GINA, 2011). Today, it 

has become more and more evident that asthma is rather several diseases occurring as a 

consequence of many different pathomechanisms, having various levels of severity and 

types of treatment responsiveness, with virtually the only common feature being airflow 

obstruction of variable magnitude (Lötvall et al., 2011). Several attempts have been made 

to define different types of asthma, and they are referred to as endotypes or phenotypes of 
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asthma. These definitions range from simple division into allergic and non-allergic asthma 

to more precise types, e.g. different endotypes/phenotypes are defined based on the 

triggers of the asthma response, clinical phenotype, type of inflammation etc. (Anderson, 

2008; Handoyo and Rosenwasser, 2009; Lötvall et al., 2011; Wenzel, 2006). 

 

This thesis will concentrate only on allergic asthma which in its simplest form refers to a 

response where airway exposure to an allergen triggers an immediate, type I, 

hypersensitivity response in a sensitized individual. Allergen-induced crosslinking of IgE 

molecules on mast cells triggers the release of preformed mediators, which induce 

bronchoconstriction, evoke mucus production and vascular leakage and initiate the 

recruitment of T cells. This early-phase asthmatic response is followed by a late-phase 

response several hours laters, which involves the influx and activation of eosinophils and 

T cells in the airways (Afshar et al., 2008). T cells of Th2 type are of special importance 

in allergic asthma, through the induction of eosinophilia and airway hyperresponsiveness 

(Brusselle et al., 1995; Foster et al., 1996; Wills-Karp et al., 1998), but also other T cell 

subsets, such as Th1 (Cembrzynska-Nowak et al., 1993; Medoff et al., 2002), Th17 

(Barczyk et al., 2003; Molet et al., 2001) and γδ T cells (Zuany-Amorim et al., 1998) may 

play a role. In addition, Treg cells are essential in controlling the airway inflammation and 

eosinophilia (Curotto de Lafaille et al., 2008; Kearley et al., 2005; Lewkowich et al., 

2005).  

5.5 Allergic contact dermatitis 

Allergic contact dermatitis is a type IV hypersensitivity reaction which develops in 

response to a hapten in sensitized individuals. A hapten is a low molecular weight 

molecule, such as a chemical or divalent cation, e.g. nickel. It is unable to provoke an 

immune response by itself, but once bound to self proteins, it generates antigenic 

determinants. Much of the knowledge of pathomechanism of ACD results from animal 

studies where the response is termed contact hypersensitivity (CHS). Thus, ACD and CHS 

are synonyms and define a hapten-specific T cell mediated skin inflammation. A fully 

developed ACD response requires two phases, sensitization and elicitation. Finally, a 

resolution phase occurs (Vocanson et al., 2009). 
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The general view is that the CHS response is mediated by CD8+ T cells while CD4+ cells 

mainly participate in the regulation and resolution of the inflammation (Akiba et al., 2002; 

Bour et al., 1995). However, with some haptens, such as fluorescein isothiocyanate 

(FITC), trimellitic anhydride (TMA) and oxazolone (OXA), CD4+ cells have also been 

shown to have effector T cell functions (Dearman and Kimber, 2000; Dearman et al., 

1996; Wang et al., 2000a). In addition, there is one report where the CHS response was 

mounted in RAG2-/- mice which are totally devoid of T- cells. In that experiment, the NK 

cells were identified as the effector cells (O'Leary et al., 2006).  

 

The sensitization phase occurs upon first contact with the hapten and results in the 

generation of antigen-specific memory T cells. Usually at this point, no clinical symptoms 

are observed. When the hapten first arrives at the skin, it forms complexes with epidermal 

proteins and evokes toxic/danger signals that induce innate immune responses in skin 

cells. The inflammatory mediators such as IL-1β and TNF-α released at this point initiate 

recruitment of leukocytes from the circulation, including monocytes, which develop into 

DCs. Inflammatory mediators activate these recruited DCs, Langerhans' cells and dermal 

dendritic cells to take up the hapten-protein complexes, process them and migrate to the 

draining LNs, where the hapten:peptide complex is presented to naive T cells, which then 

differentiate into memory T cells. Additional inflammatory events also can occur at distant 

sites from antigen encounter, e.g. NKT cells in the liver start to produce IL-4 and induce 

recruitment of B cells into the spleen which then start to produce hapten-specific IgM 

antibodies (Vocanson et al., 2009).  

 

If a sensitized individual is re-exposed to the sensitizing hapten, a CHS response occurs. 

This phase is called the elicitation or challenge phase. As in the sensitization phase, hapten 

again forms complexes with epidermal proteins and induces innate immune response 

similarly as in the sensitization phase. In addition, IgM molecules bind the hapten and 

activate complement which in turn stimulates mast cells and induces the production of 

inflammatory mediators such as IL-1β, IL-18 or histamine. This local inflammatory 

response and the release of IL-1β and TNF-α then efficiently recruits CD8+ T cells from 

the circulation into the skin. CD8+ cells become activated by MHC I expressing skin cells, 
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either epidermal DCs or keratinocytes or other residential skin cells, that have taken up the 

hapten and present it to CD8+ T cells (Vocanson et al., 2009). CD8+ cells start to secrete 

IFN-γ, IL-17 and TNF-α (He et al., 2007; Nakae et al., 2002; Wakabayashi et al., 2005) 

and induce keratinocyte apoptosis through the Fas/Fas-L or perforin pathways (Akiba et 

al., 2002; Kehren et al., 1999). At this point, residential skin cells release a new set of 

inflammatory mediators, such as chemokines CXCL9 and CXCL10, which recruit a 

second wave of leukocytes, especially neutrophils, monocytes and more T cells, including 

regulatory T cells. Eczematous lesions appear 24-48 hours post exposure (Vocanson et al., 

2009).  

 

In order to avoid excess damage to the tissue, the inflammatory response in CHS is 

carefully controlled. This suppression involves several different mechanisms such as 

elimination of antigen-loaded DCs, upregulation of regulatory ligands on tissue cells, 

downregulation of adhesion molecules E- and P-selectins on endothelial cells or activation 

of regulatory lymphocytes or mast cells (Grimbaldeston et al., 2007; Loser et al., 2006; 

Melrose et al., 1998; Ring et al., 2009; Yang et al., 2006). In addition, the inflammatory 

response is actively down-regulated by CD4+ T (Treg) cells during the resolution phase 

(Bour et al., 1995; Xu et al., 1996).  

 

Hapten induced skin irritation is essential for the development of the CHS response as 

demonstrated by Grabbe et al. who showed that co-application of a contact sensitizer 

2,4,6-trinitrochlorobenzene (TNCB) together with suboptimal doses of oxazolone was 

sufficient to elicit CHS in oxazolone sensitized mice (Grabbe et al., 1996). This finding 

was confirmed by Bonneville et al. who further demonstrated that the irritant effect is 

crucial for both the development and determining the severity of CHS responses 

(Bonneville et al., 2007).  

5.6 Animal models 

With the help of animal models, complex interactions occurring in the body during an 

allergic response can be studied in a way that would be impossible to examine with cell 

cultures or skin biopsy specimens. Although none of the experimental models can 
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completely mimic human disease, they always share many common features with them. 

Therefore animal models are of great importance in understanding the mechanisms of 

allergic diseases and consequently in designing therapeutic tools to combat these illnesses. 

 

5.6.1 AD-models 

Several models have been used for generating an AD-like skin inflammation in different 

species of experimental animals. However, mice are the most widely used, due to their 

low cost, fast reproducibility and minor variability in results since work can be done with 

inbred strains. In addition, with the help of modern gene-technology, different kinds of 

knock-out and knock-in strains can be generated, offering a vast array of possibilities to 

study the importance of different genetical factors in the pathomechanisms of AD. 

 

A few mouse strains have been described in the literature, which develop a spontaneous 

AD-like inflammation. These are Nc/Nga mice, (Matsuda et al., 1997), which have a 

mutation linked to an increase in IgE levels and Th2 responses (Matsumoto et al., 1999), 

DS-Nh mice which are susceptible for S. aureus colonization (Haraguchi et al., 1997), 

NC/F mice that develop AD-like skin inflammation and have positive patch tests to mites 

(Sugiura et al., 2004), NOA mice, that have increased mast cell numbers in the skin and 

elevated IgE levels, but lack the classical histological features of AD (Watanabe et al., 

1999) and the recently described mouse strain that carries a mutation in the Traf3ip2 

(Act1/CIKS) gene and exhibits elevated IgE levels (Matsushima et al., 2010). In addition, 

a mouse strain with the flaky tail (ft) mutation in chromosome 3, within the mouse 

epidermal differentiation complex, has reduced profilaggrin mRNA expression and 

abnormal levels of profilaggrin which is not processed to filaggrin monomers. These mice 

have a dry and flaky skin and develop eczematous lesions by the age of 32 weeks. In 

addition, they have significantly elevated serum IgE levels (Fallon et al., 2009; Lane, 

1972; Oyoshi et al., 2009). Due to the strong connection between AD and filaggrin 

polymorphism in humans (Palmer et al., 2006), these mice are considered as a useful 

model for studying effects of filaggrin deficiency in AD. 
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However, as mentioned earlier, AD is not induced by a single defect in a single gene but 

different genetical factors together with environment play a role in the development of the 

disease. Therefore a more generalized model is also of great importance when studying 

AD-like skin inflammation. One of the most widely used techniques is epicutaneous 

sensitization to protein allergen, ovalbumin (OVA), through tape-stripped skin (Spergel et 

al., 1998). The purpose of tape stripping is to disrupt the mechanical barrier and also 

mimic scratching occurring in AD patients due to itching. In this model, thickening of the 

epidermis and dermis is observed, CD4+ T cells and eosinophils infiltrate the skin and the 

expression of Th2 cytokines, IL-4, IL-5 and IL-13 is upregulated. In addition, elevated 

total and allergen specific IgE and IgG1 levels in the serum are detected. Epicutaneous 

protein allergen sensitization model has also been performed with house dust mite (HDM) 

allergen, Der p8 (Huang et al., 2003), resulting in similar clinical picture as sensitization 

with OVA. This model of sensitization is of special importance in a sense that clinical 

studies have detected an association between HDM exposure and AD (Kimura et al., 

1998). An AD-like allergic skin inflammation can be also induced by epicutaneous 

superantigen exposure (Laouini et al., 2003). 

 

Oxazolone and TNCB are common haptens used in contact hypersensitivity research and 

are known to provoke Th1 type responses (Bellinghausen et al., 1999; Dearman and 

Kimber, 1992). However, multiple challenges with these contact sensitizers skew the 

inflammatory response towards a Th2 type and induce an AD-like inflammation with 

increased numbers of Th2 lymphocytes, mast cells and eosinophils in the skin as well as 

elevated IgE levels in the serum (Man et al., 2008; Matsumoto et al., 2004). 

 

Finally, several genetically modified transgenic strains such as mice overexpressing IL-4, 

IL-31, TSLP, caspase-1, IL-18, stratum corneum chymotryptic enzyme (SCCE) or 

apolipoprotein C1 (APOC1) and mice deficient in RelB or cathepsin E have been shown 

to develop inflammatory responses with features of AD (Jin et al., 2009). In addition, 

there is one report about the development of AD-like skin lesions in mice after repeated 

intragastric exposure to common food allergens, cow's milk and peanut, together with 

cholera toxin adjuvant (Li et al., 2001). 
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5.6.2 Allergic asthma models 

Most of the asthma research is performed with mouse and the basic protocol of allergic 

asthma involves protein sensitization followed by airway challenge. Sensitization is 

usually done with ovalbumin, although house dust mite extracts and aspergillus have also 

been employed. In a typical experiment, mice are sensitized twice by intraperitoneal 

injections of protein in conjunction with an adjuvant. A resting period of one to two weeks 

is employed between two sensitizations. Approximately one week after last sensitization, 

mice are challenged with aerosolized allergen for three consecutive days and the 

inflammatory parameters are measured two days after last airway challenge (Bates et al., 

2009). Variations of this basic protocol occur; for example sensitization can be achieved 

also through epicutaneous, intracutaneous or intratracheal sensitization routes (He et al., 

2007; Lehto et al., 2005; Lewkowich et al., 2005; Spergel et al., 1998). In addition, the 

allergen can be administered in the challenge phase by inhalation, or the intranasal or 

intratracheal routes (Kaufman et al., 2011; Leech et al., 2007; Lehto et al., 2005). 

5.6.3 CHS models 

In the early days of contact hypersensitivity research, animal experiments were performed 

on guinea pigs (Landsteiner and Jacobs, 1936) and even nowadays, the skin sensitizing 

potentials of different chemicals are studied using guinea pigs. However, due to problems 

with interpretation of some of the results, testing is switching from guinea pigs to the 

mouse. For chemical risk assessment, mouse ear swelling test (MEST) and local lymph 

node assay (LLNA) are used (Basketter et al., 2008; Dearman and Kimber, 1999). In 

MEST, the skin sensitizing potential of a chemical is evaluated by its ability to induce ear 

swelling in previously exposed animals (Gad et al., 1986), whereas in the LLNA, the 

ability of a chemical to induce proliferative responses in the draining LN cells is measured 

(Kimber et al., 1994). When studying the mechanisms of CHS responses, strong 

sensitizers such as dinitrofluorobenzene (DNFB), dinitrochlorobenzene (DNCB), TNCB 

or oxazolone are commonly used (Vocanson et al., 2009). The basic protocol involves 

epicutaneous sensitization on the shaved back or abdomen followed by an epicutaneous 

challenge on the ear after a few days resting period. Ear swelling, cytokine production 

from the ear tissue and cellular responses in the dLN are most often analyzed. 
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6. Aims of the study 

Although the incidence rates for allergic diseases have been high for decades, the 

immunological mechanisms behind allergy have still not been completely clarified. The 

aim of this thesis is to unravel some of the pathomechanisms of allergic skin diseases and 

in this way to contribute to future attempts to manage allergic diseases. 

 
The specific aims were: 
 
1. To study how staphylococcal enterotoxin B modulates atopic dermatitis-like skin 
inflammation. 
 
2. To clarify the role of Treg cells in atopic dermatitis. 
 
3. To assess the importance of Treg cell function during sensitization, elicitation and 
resolution phase of contact hypersensitivity.  
 
4. To explore the effects of CCR4 deficiency in oxazolone induced contact 
hypersensitivity response. 
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7. Materials and methods 

7.1 Animal models 

7.1.1 Mouse strains 

In studies investigating the role of superantigen exposure during allergic skin 

inflammation (I), 6 week old Balb/c mice from Taconic M&B (Ry, Denmark) were used. 

The role of Treg cells in the AD and AD-Asthma model (II) was studied using DEREG 

(Depletion of Regulatory T cells) mice (a kind gift from Professor Tim Sparwasser, 

Hannover, Germany). DEREG mice were originally in the C57/Black background and 

were backcrossed to Balb/c mice from Scanbur (Sollentuna, Sweden) at least five times 

prior to the AD and AD-asthma studies. DEREG mice harbour enhanced green fluorescent 

protein (EGFP) and diphtheria toxin (DT) receptor under the control of Foxp3+ promoter, 

and Foxp3+ cells can be transiently deleted in these mice with DT-treatment. Mice were 

genotyped for the transgene and grouped into DEREG-mice and wild type (WT) mice. 

Due to the need for diphtheria toxin treatment, these mice were used at 10-14 weeks of 

age. In addition, C.Cg-Foxp3tm2Tch/J mice that express EGFP under the control of the 

Foxp3 promoter were obtained from The Jackson Laboratory (Bar Harbor, Maine, USA) 

and used at 10-14 weeks of age for Treg cell kinetic studies in AD model and for 

suppression assay (II).  

 

For Treg depletion studies in the CHS model (III) DEREG mice and their WT littermates 

were kept at C57/Black background and used at 10 weeks of age. The effects of CCR4 

deficiency during CHS (IV) were studied with B6;129P-Ccr4tm1Pwr-mice purchased from 

The Jackson Laboratory (Bar Harbor, Maine, USA), bred as heterozygote and genotyped 

for the CCR4 allele. Mice homozygous for the CCR4 knock-out allele were used in all 

studies with their WT littermates being used as controls. 
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7.1.2 AD-model and AD-asthma model 

The mice were sensitized epicutaneously as previously described (Spergel et al., 1998), 

and shown in figure 4. Briefly, while under isoflurane anesthesia, the backs of the mice 

were shaved with an electric razor, and the skin was tape stripped with an adhesive tape 

(Tegaderm, 3M, Health Care, St Paul, MN) for 2-4 times. A sterile patch (1 cm2) 

moisturized with 100 µl of PBS or ovalbumin (1 mg/ml, Sigma) in PBS, was attached to 

the tape stripped area with adhesive tape and left there until a subsequent similar treatment 

three days later. The patch was removed after first sensitization week. After a two-week 

resting period, a second similar kind of sensitization period was performed followed again 

by a two-week resting period after which a third sensitization week was applied. During 

the third sensitization week, the patch was attached for one additional time, 24 hours prior 

to sacrificing the mouse (Fig. 4).  

 
 

 
 

Figure 4  Basic AD-model with SEB. Mice were epicutaneously sensitized by attaching a patch 
moisturized with allergen/superantigen solution on the shaved and tape stripped skin. 

 
In Treg depletion and Treg kinetics study (II), the third sensitization week was omitted 

from the protocol, in order to avoid excess diphtheria toxin (DT) usage (Fig. 5a). As 

shown by Wang et al, an AD-like Th2 dominated response develops already after a two 

week sensitization period (Wang et al., 2007a). In the depletion studies, both WT and 

DEREG mice received DT (Calbiochem, La Jolla, CA) during the second sensitization 

week, simultaneously with patch attachment. The dosage of DT during the first treatment 

1st sensitization week 2nd sensitization week 3rd sensitization week

Day   1                   4                        22           25                     43                     46     49 50

2wk 2wk

Tape stripping and 100 µl of PBS, OVA, SEB or SEB/OVA Collect samples
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was 1 µg/mouse and during the second treatment, 0.5 µg/mouse. In the airway 

inflammation experiment with DEREG and WT mice (II), the mice were sensitized as 

above and DT was intraperitoneally injected during the second epicutaneous sensitization 

week. After the last patch treatment, the patch was left on for four days, and five days after 

patch removal, the mice were administered intranasally (i.n.) 50 µl PBS or OVA in PBS  

(1 mg/ml) on three consecutive days. Mice were sacrificed and samples collected 48 hours 

after the last i.n. treatment (Fig. 5b). 

 
 

1st sensitization week 2nd sensitization week

Tape stripping and 100 µl of PBS or OVA
(1mg/ml)

Day  1                    4                        22           25  26

Collect
samples

2wk

Diphtheria toxin

1st sensitization week 2nd sensitization week

50 µl of PBS or
OVA (1mg/ml) i.n. 

Tape stripping and 100 µl of PBS or OVA
(1mg/ml)

Day    1                    4                        22         25                  34 35 36    38

Collect
samples

2wk

Diphtheria toxin

A

B

 
 

 

Figure 5  Sensitization protocols for DEREG mice in AD-model and AD-related asthma 
 model.(A) Mice were epicutaneously sensitized in a two-week AD model and DT was 
 administered during the second sensitization week. (B) In the AD-Asthma model, the 
 sensitization and DT treatment was carried on as with AD model. The inflammation 
 was elicited in the airways by three intranasal administrations of OVA. 
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7.1.3 CHS-model 

The mice were anesthetized with isoflurane and the hair of the back was shaved and then 

50 µl of vehicle (acetone:olive oil; 4:1) or 10 mg/ml of 4-ethoxymethylene-2-phenyl-2-

oxazolin-5-one (oxazolone) was pipetted onto the shaved area. Five (III) or seven (IV) 

days later, the mice were again anesthetized, the ear thickness was measured and 25 µl of 

oxazolone-solution (3 mg/ml) was pipetted onto the dorsal side of both ears. The mice 

were sacrificed 24 hours later, ear thickness measured and samples collected. In Treg 

depletion studies (III), 1 µg of DT was intraperitoneally injected one day prior to 

sensitization or one day prior to elicitation (Fig.6). In studies of the kinetics of the 

inflammatory response after elicitation, the degree of inflammation was followed for 24, 

48 or 96 hours. In the kinetic experiments with CCR4-/- mice (IV), mice were sensitized 

as depicted. The mice were killed and samples collected 0, 2, 4 or 7 days after 

sensitization and 0, 4, 12 or 24 hours after elicitation. Ear swelling was measured at 0, 2, 

4, 6, 12 and 24 hours after elicitation.  

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Figure 6 Sensitization protocol in DEREG CHS model. DT was administered either (A) one 
 day prior to sensitization or (B) one day prior to elicitation. 
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7.2 RT-PCR 

For real-time PCR analysis, skin or lung samples were homogenized in Trizol™ 

(Invitrogen, CA, USA) or Trisure™ (Bioline, London, UK), RNA extracted according to 

the manufacturer's instructions and used as a template for cDNA synthesis. Real time 

quantitative PCR was performed using commercial or self-designed primers and probes 

with ABI PRISM 7700 Sequence Detector or 7500 Fast Real Time PCR-system (Applied 

Biosystems, CA, USA). Commercial primers and the probe for ribosomal 18S (Applied 

Biosystems, CA, USA) were used to ensure equal amounts of total RNA in each sample. 

The following sequences of self designed primers and probes were used: CCL4 forward 

primer 5'-TGC TCG TGG CTG CCT TCT-3', reverse primer 5'-CAG GAA GTG GGA 

GGG TCA GA-3' and probe 5'-TGC TCC AGG GTT CTC AGC ACC AAT G-3'. CCR4 

forward primer 5'-TCA TGA CTT CCG TGA CGC TTT-3', reverse primer 5'-GTT TTC 

TTC CTC AGA GCC CTG TT-3' and probe 5'-TCG CCT TGT TTC AGT CAG GGT 

GCC-3'. CCR5 forward primer 5'-TTG CAA ACG GTG TTC AAT TTT C-3', reverse 

primer 5'-TCT CCT GTG GAT CGG GTA TAG AC-3' and probe 5'-AGC AAG ACA 

ATC CTG ATC GTG CAA GCT C-3'. CCL11 forward primer 5'-ATG CAC CCT GAA 

AGC CAT AGT C-3', reverse primer 5'-CAG GTG CTT TGT GGC ATC CT-3' and probe 

5'- AGC ACA GAT CTC TTT GCC CAA CCT GGT-3'. Self designed primers for IFN-γ 

and CCL17 were used in one study (I), otherwise commercial primers and probes for IFN-

γ and CCL17 were used. IFN-γ forward primer 5'-AGC GCC AAG CAT TCA ATG A-3', 

reverse primer 5'-CGC TTC CTG AGG CTG GAT T-3' and probe 5'-ATC CGA GTG 

GTC CAC CAG CTG TTG C-3'. CCL17 forward primer 5'-CAG GAA GTT GGT GAG 

CTG GTA TAA G-3', reverse primer 5'-TGG CCT TCT TCA CAT GTT TGT CT-3' and 

probe 5'-TGT CCA GGG CAA GCT CAT CTG TGC-3'. The RU for each sample was 

calculated as follows: Cycle threshold value (CT) of a sample was determined according to 

the manufacturer’s instructions (Applied Biosystems, CA, USA). First, the CT of 18S 

rRNA sample was subtracted from the corresponding target cytokine CT to obtain the CT. 

Next, the average of 18S CTs of each sample was subtracted from the calibrator CT value 

obtained from "no template control" (NTC) to obtain the calibrator CT. The calibrator CT 

was subtracted from the CT of each experimental sample to obtain CT. Finally, the amount 

of target was normalized to an endogenous control, which was relative to the NTC 

calibrator, by equation 2– CT. 
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7.3 ELISA 

The standard sandwich ELISA was used to detect total and antigen-specific antibody 

levels in the serum. All the antibodies used in ELISAs were purchased from BD 

Pharmingen. Purified mouse IgE was used as a standard. Microtiter plates (Nunc, 

Roskilde, Denmark) were coated with rat anti-mouse IgE monoclonal antibody, serum 

dilutions were added and bound IgE detected with biotin-conjugated rat anti-mouse IgE, 

streptavidin-HRP (BD Biosciences, NJ, USA) and peroxidase substrate reagents 

(Kirkegaard & Perry Laboratories, Gaithersburg, MD). Absorbance was read at 405 nm 

with automated ELISA reader (Titertek Multiscan, Eflab, Turku, Finland). 

 

Ovalbumin-specific IgE or IgG2a were measured either by straight (I) or capture (II) 

ELISA. In the straight method, plates were coated with OVA in 0.05 M NaHCO3, pH 9.6 

and blocked with 3% BSA-PBS.  Diluted sera (1:300, 1:600, 1:1200, 1:2400) in 1 % BSA-

PBS were added and bound IgE/IgG2a was detected with biotin-conjugated rat anti-mouse 

IgE/IgG2a monoclonal antibody, streptavidin-HRP (1:4000) and peroxidase substrate. For 

measurements of SEB-specific IgE and IgG2a, plates were coated with 50 µl of SEB (1 

µg/ml) in 0.05 M NaHCO3, pH 9.6. In the capture method, the plate was coated with rat 

anti-mouse IgE/IgG2a monoclonal antibody in 0.05 M NaHCO3, pH 9.6. Diluted sera 

were allowed to bind to BSA-blocked plates overnight and bound IgE/IgG2a was detected 

with biotinylated OVA, Streptavidin-HRP and peroxidase substrate. Biotinylation of 

ovalbumin was conducted by incubating 1mg of ovalbumin with 411 µg NHS-LC-Biotin 

(Pierce) on ice for two hours. Unbound biotin was removed by centrifuging with 

Centricon-tubes (10 kDa cut off, 10 000 MWCO) at 3600 x g for 20 min, and diluting 

twice with PBS and centrifugation at 3600 x g for 40 minutes. The degree of biotinylation 

of OVA was assessed with liquid chromatography, using ACN gradient 0-100 %, for 30 

min. 

7.4 Histology 

Skin or lung tissue was fixed in 10 % formalin and embedded in paraffin. Multiple 4 µm 

thick sections were stained with Hematoxylin-eosin (H & E) for total cell, eosinophil, 
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lymphocyte and neutrophil counts, toluidine blue for mast cell count and periodic acid 

Schiff (PAS) for mucus producing cell count in lung tissues. BALF-samples were stained 

with May-Grünwald-Giemsa. 

In the immunohistochemical stainings, samples obtained from exposed skin were 

immersed in Tissue-Tek oxacalcitriol compound (Sakura Finetek, Alphen aan den Rijn, 

Netherlands) and frozen on dry ice and then 4-µm frozen sections were fixed with cold 

acetone and immunoperoxidase staining was used to detect CD3, CD4, CD8 (BD 

Biosciences, NJ, USA), Foxp3 (eBiosciences, San Diego, CA) or IL-10 (Abcam, 

Cambridge, UK). Biotin conjugated secondary antibody anti-rat IgG (H+L) was purchased 

from Vector Laboratories (Burlingame, CA). Biotin-conjugated monoclonal antibodies 

were used to stain Vβ8 and Vβ6 (BD Biosciences, NJ, USA) T cell receptors. For 

immunofluorescent staining of CCR4, frozen sections were stained with goat polyclonal 

anti-CCR4 (Abcam, Cambridge, UK) and Alexa Fluor®568rabbit anti-goat IgG (H+L) 

secondary antibody (Invitrogen, CA, USA). 

7.5 Chemotaxis assay (IV) 

For chemotaxis assay, lymph nodes cells of sensitized mice were enriched for CD4+ T 

cells using mouse CD4+ Tcell enrichment kit (StemCell Technologies, Vancouver, BC, 

Canada) and Robosep™. After enrichment, the cells were suspended in complete 

RPMI1640 with 1 % BSA. 100 nM of each chemokine, CCL17, CCL22 or CCL27 (R&D 

Systems), was added to the feeder well (Costar Transwell®, Corning, NY, USA) and one 

million cells were added to the insert with 5 µm pore size. Chemotaxis was allowed to 

proceed for 3.5 hours after which the number of migrated cells was counted and the 

chemotactic index was calculated by dividing the number of migrated cells with the 

number of cells that had migrated into the medium alone. 

7.6 Suppression assay (II) 

CD4+ cells were isolated from LN cell suspensions with the Robosep™ CD4+ cell 

positive selection kit (StemCell Technologies, Vancouver, BC, Canada), and sorted into 
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eGFP+ (~Foxp3+) and eGFP- (~Foxp3-) fractions with FACS Aria (BD Biosciences, NJ, 

USA). CD4+ Foxp3- cells from OVA treated mice were used as responder cells, seeded at 

3 x 104 cells per well in complete RPMI-1640 medium (Invitrogen Life Technologies, 

Carlsbad, CA, USA), and stimulated with α-CD3 (0.75 µg/ml) and α-CD28 (2.5 µg/ml) in 

the presence of CD4+ Foxp3+ cells from PBS or OVA treated mice at different ratios 

(responder:Treg cells; 1:0; 1:1 and 1:2). The cells were cultured in 37°C/5% CO2 for 72 h, 

and pulsed with 1 µCi [3H] thymidine per well (Amersham Biosciences Europe, Freiburg, 

Germany) for the last 18 h. Incorporated radioactivity was determined using a liquid 

scintillation counter (Trilux 1450 Microbeta, Wallac, Turku, Finland). The results are 

expressed as mean counts per minute of triplicate wells. 

7.7 Lymph node stimulations 

Cells from draining lymph nodes (axillar in AD and in CHS after sensitization or cervical 

in CHS after elicitation) were isolated by crushing the nodes, which were then filtered 

through a 100 µm strainer and washed with PBS.  

 

(I) Cell suspensions of pooled (4 mice per group) lymph node cells were prepared from 

sensitized mice in complete RPMI 1640 (5 % FBS, 1 mM sodium pyruvate, 50 µM 2-ME, 

100 U/ml penicillin 100 µg/ml streptomycin and 2 mM glutamate) medium (Gibco, 

Invitrogen Corp., UK). The cells were cultured in the medium at 5 x 106 cells/ml in 24-

well plates in the presence of SEB (1 µg/ml) or OVA (50 µg/ml) for six hours. 

Commercial mouse IL-13 (R&D Systems, Germany) and IFN-γ (eBioscience, San Diego) 

immunoassays were used to measure protein from cultured cell supernatants according to 

the manufacturer's instructions.  

 

 (II) LN cell suspensions were stimulated with α-CD3 and cytokine production was 

measured at 48 hours with commercial ELISA kits. OptEIA™Set Mouse IL-5 (BD 

Biosciences, San Jose, CA, USA) was used for detection of IL-5, Mouse IL-4 ELISA 

Ready-SET-Go! (eBioscience, San Diego, CA, USA) for IL-4 and Quantikine® M 

MURINE mouse IL-13 (R & D Systems, Minneapolis, MN, USA) for IL-13. For flow 
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cytometric analysis of intracellular IL-13 and IFN-γ production, cells were stimulated 

either with OVA (50 µg/ml) or with PMA (20 ng/ml) and ionomycin (1 µg/ml) in the 

presence of Brefeldin A (10 µg/ml) for 4 hours.  

 

(IV) In the intracellular cytokine analysis with flow cytometry, cells were stimulated with 

PMA (20 ng/ml) and ionomycin (1µg/ml) in the presence of Brefeldin A (10 µg/ml) for 5 

hours. A sample of stimulated cells were also lysed in Trizol™ (Invitrogen, CA, USA), 

RNA isolated as mentioned above and subjected to cDNA-synthesis and subsequent RT-

PCR analysis.  

7.8 Flow cytometric analysis of skin leukocytes and BALF (II, 

III, IV) 

A piece of inflamed skin was cut into very small pieces, passed through a 70 µm cell 

strainer (BD Biosciences, NJ, USA), centrifuged at 120 x g for 10 minutes, washed with 

PBS and filtered again through a 40 µm cell strainer (BD Biosciences, NJ, USA). BALF 

cells were used as such. Unstimulated cells were surface stained in different combinations 

with the following antibodies: Alexa Fluor™488 conjugated anti-CD3(eBiosciences, CA, 

USA), PE-Cy7™ conjugated anti-CD3 (BD Biosciences), PerCP-Cy5-conjugated anti-

CD4, Alexa Fluor™700-conjugated anti-CD8, APC-conjugated CD103, PerCP-Cy5.5™-

conjugated CD11b, APC-Alexa750™-conjugated CD11c, PE-conjugated CD86 and APC-

conjugated CD80 (eBiosciences). CCR10 was stained using anti-CCR10 (Capralogics, 

MA, USA) and a secondary PE-conjugated anti-goat antibody (R&D systems, 

Minneapolis, USA). In the intracellular Foxp3 or Ki-67 staining, cells were fixed and 

permeabilized with a commercial Foxp3 staining kit (eBiosciences, CA, USA) according 

to the manufacturer’s instructions and stained with PE- or Alexa Fluor™700-conjugated 

Foxp3 or PE-conjugated Ki-67 (BD Biosciences). Intracellular staining of CD69 (II) or 

CTLA-4 (III) was done with APC-conjugated CD69 (eBiosciences) or PE-conjugated 

CTLA-4 (eBiosciences) using Fix and Perm kit from Caltag (CA, USA) according to 

instructions. For analysis of cytokine production, cells were stimulated with PMA (20 

ng/ml) and ionomycin (1µg/ml) in the presence of Brefeldin A (10 µg/ml) for 4-5 hours, 
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after which the cells were washed, surface stained as above, fixed and permeabilized with 

Fix and Perm kit from Caltag and stained with PE-conjugated anti-IL-13 and APC-

conjugated IFN-γ (eBiosciences, CA, USA) The samples were run with FacsCantoII (BD 

Biosciences, NJ, USA) using FACS Diva software and the data was analyzed with FlowJo 

software(Tree Star Inc., Ashland, OR, USA). 

 

7.9 Statistical analysis 

Statistical analyzes were done with Student's t-test or nonparametric Mann-Whitney U test 

using GraphPad Prism™ software. 
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8. Results 

8.1 Effects of topical superantigen exposure in experimental 

AD-model (I) 

Over 90 % of AD patients suffer from Staphylococcus aureus colonization on the skin 

whereas this is much less common in the healthy population i.e. 5-10 % (Aly et al., 1977; 

Leyden et al., 1974; Michie and Davis, 1996). S. aureus is able to produce exotoxins with 

superantigenic properties, such as staphylococcal enterotoxins A-E, G-J and toxic shock 

syndrome toxin-1(Fraser and Proft, 2008). These toxins can exacerbate skin inflammation 

through several mechanisms. The effects of staphylococcal enterotoxin B (SEB) exposure 

on skin inflammation was examined in a murine model of atopic dermatitis. 

 
SEB was introduced onto the skin epicutaneously, in the presence or absence of OVA. 

SEB alone induced thickening of the skin and infiltration of T cells, mast cells and 

eosinophils (I, Fig. 1 and 2a). Simultaneous application of SEB with OVA significantly 

exacerbated the OVA-induced skin inflammation as evidenced by enhanced thickening of 

the dermis and increased numbers of T cells and mast cells in the skin (I, Fig. 1 and 2a). 

Immunohistochemical stainings revealed that compared to OVA exposed mice, 

significantly increased numbers of CD8 cells infiltrated the epidermis in SEB and 

OVA/SEB exposed mice, especially of TCRVβ8+ subtype (I, Fig. 2).  

 

The mRNA analysis of the skin demonstrated that SEB alone was able to induce IL-4 and 

IL-13 expression and moreover, enhanced the OVA induced expression of these 

cytokines. Additionally, SEB elicited the expression of Th1 cytokines, IL-12p40 and IFN-

γ, which were not induced or were induced only modestly after OVA exposure (I, Fig. 3). 

Furthermore, the expression levels of several proinflammatory chemokines (CCL3, CCL4 

and CCL8), Th2 chemokines (CCL1, CCL11 and CCL17) and Th1 chemokines (CXCL9, 

CXCL10 and CXCL11) were elevated in OVA treated mice when the animals were 

simultaneously exposed to SEB (I, Fig. 4). 
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Stimulation of dLN cells with OVA induced a significant IL-13 production in OVA and 

OVA/SEB sensitized mice whereas no IL-13 production was detected in PBS- or SEB 

treated mice. Also SEB stimulation resulted in IL-13 production in SEB and OVA treated 

mice but not in OVA/SEB mice. However, the SEB induced IL-13 levels were much 

lower compared to OVA induced levels (I, Fig 5a). Instead, IFN-γ production was induced 

only after SEB stimulation from cells derived from SEB and OVA/SEB mice but not from 

PBS or OVA sensitized mice (I, Fig. 5b). Finally, SEB exposure significantly enhanced 

total IgE and OVA- specific IgE and IgG2a production. Moreover, SEB induced the 

prodcution of SEB-specific IgE and IgG2a (I, Fig. 6). 

8.2 Role of Foxp3+ Treg cells in experimental AD-model (II) 

In the two-week AD model, the infiltration of eosinophils and T cells into the skin was 

significantly increased after epicutaneous ovalbumin (OVA) exposure (II, Fig. 1b). In 

addition, the expression levels of Th2 cytokines IL-4 and IL-13 and anti-inflammatory 

cytokine IL-10 were upregulated after OVA treatment. Instead, the IFN-γ mRNA 

expression was at a similar level as encountered in the PBS control mice (II, Fig. 1c). In 

addition, total and OVA-specific IgE levels in the serum were significantly increased after 

OVA treatment (II, Fig 1d). According to IHC stainings, the number of Foxp3+ cells in 

the skin was significantly elevated after OVA sensitization (II, Fig 1e), but the ratio of 

Foxp3+ cells/CD3+ cells was unchanged (II, Fig. 1f). In addition, time point experiments 

revealed that the percentages of Foxp3+ cells in the draining LNs were maintained at 

similar levels throughout the protocol (II, Fig. 1g), but the portion of activated memory 

Treg cells (CD103+) gradually increased (II, Fig. 1h). Moreover, OVA treatment resulted 

in the accumulation of both Foxp3- and Foxp3+ IL-10+ expressing T cells in the skin (II, 

Supplementary fig. 1). 

 
LN cells from OVA sensitized mice showed a strong Th2 cytokine production after α-CD3 

stimulation (II, Fig. 2a). As IL-4 has been shown to diminish the suppressive capacity of 

Treg cells (Dardalhon et al., 2008), the suppressive capacity of Treg cells derived from 

PBS or OVA sensitized mice was studied. The Treg cells from OVA sensitized mice were 

significantly impaired in their ability to suppress T cell proliferation (II, Fig. 2b).  
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Next the effect of Foxp3+ cell depletion in AD model was examined in DEREG mice. 

Foxp3+ Treg cells were depleted during the second sensitization week with an 

intraperitoneal injection of DT. Also, the effects of sole DT treatment on naive mice were 

studied. DT injection resulted in greatly reduced Foxp3 expression in the skin and LNs, at 

both the mRNA and protein levels (II, Fig. 3b-d). DT administration into naive DEREG 

mice revealed no inflammatory response in the skin, indicating that Foxp3+ depletion did 

not provoke spontaneous skin inflammation. Instead, the skin injury induced by tape 

stripping increased cellular infiltration and the mRNA expression of IL-4, IL-13 and IFN-

γ in DEREG PBS mice as compared with WT. OVA exposure further enhanced the 

cellular infiltration and the expression of Th2 cytokines and more in DEREG mice than in 

WT (II, Fig. 4a-c and Supplementary fig. 2). Furthermore, a larger percentage of OVA 

stimulated LN cells produced IL-13 in DEREG mice (II, Supplementary fig. 3) and total 

IgE and OVA-specific IgE and IgG2a levels in the serum were significantly elevated in 

comparison with WT mice (II, Fig. 4d). The mRNA expression of anti-inflammatory IL-

10 was also upregulated in DEREG OVA mice, this being confirmed at the protein level 

as well (II, Supplementary fig.1). 

 

To assess the phenotype of the remaining/regenerated subsets of Foxp3+ and Foxp3- 

regulatory T cells after depletion, LN cells were stained for PD-1 and Helios. PD-1 is 

expressed both by nTreg and iTreg cells, but at a higher level by iTreg cells (Haribhai et 

al., 2011), whereas Helios has been described as a marker for nTreg cells (Thornton et al., 

2010). In the DEREG mice, the frequency of PD-1+ Foxp3+ and PD-1+ Foxp3- cells was 

significantly higher, and the percentage of Helios+ Foxp3+ T cells was slightly lower than 

in the WT mice (Supplementary figure 4).  

 
Treg mediated suppression is directed at Teff cells directly or via DCs (Tang and 

Bluestone, 2008). Treg depletion induced changes were investigated in both of these cell 

types. The number of CD4+ and CD8+ T cells as well as CD11c+ dendritic cells (DC) was 

significantly higher in the LNs of OVA treated DEREG mice (II, Fig. 5a). In accordance 

with this finding, a higher percentage of these cells stained positive for the proliferation 

marker, Ki-67 (II, Fig. 5b). A greater percentage of both CD4+ and CD8+ T cells 

expressed the activation marker, CD69, in DEREG mice (II, Fig. 5c). In addition, a larger 
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proportion of DCs expressed costimulatory molecules CD80 and CD86 (II, Fig. 5d) and 

the mRNA expressions of CD80 and CD86 were elevated also in the skin (II Fig. 5e). 

Finally, there was a clear accumulation of CD11bhiCD11c+ inflammatory DCs (Hammad 

et al., 2009) and skin derived EpCam+ DCs (Nagao et al., 2009) in the draining LN of the 

Treg depleted mice (Fig. 5f). 

 
Epicutaneous sensitization can lead to airway inflammation when the sensitizing antigen is 

administered into the lungs (Lehto et al., 2005; Spergel et al., 1998), indicating a 

relationship between skin sensitization and subsequent development of asthma. It was 

studied how the absence of Treg cells during the second week of epicutaneous 

sensitization would modulate the subsequent airway inflammation (II, Fig. 6a). The 

inflammatory response in the lung of DEREG mice was significantly augmented, as 

evidenced by enhanced cellular infiltration into the lung (II, Fig. 6b), upregulated 

expression of IL-4 (II, Fig. 6c) and increased eosinophilia and T cell infiltration in the 

BAL fluid (II, Fig. 6d). By the time of read-out, the ratio of Foxp3+ cells in the LNs had 

already been restored, but the value was lower in the BALF (II, Fig. 6e). 

8.3 Role of Foxp3+ Treg cells during different phases of 

experimental CHS (III) 

Previous experiments have demonstrated a role for Foxp3+ Treg cells in the control of 

CHS responses during both sensitization and elicitation phases (Honda et al., 2011; 

Tomura et al., 2010). Moreover, Foxp3 Treg+ cells are known to migrate into the skin 

during the resolution phase (Tomura et al., 2010). However, the relative importance of 

regulation during different phases and the site and mode of action are still unknown. The 

role of Foxp3+ Treg cells was studied in different phases of a CHS response by depleting 

Foxp3+ Treg cells with DT-treatment either one day prior to sensitization (sensDT) or one 

day prior to elicitation (elicDT) (III, Fig. 1a). At 24 hours post challenge, the percentage 

of Foxp3+ cells in the sensDT group was approximately two thirds of the WT level, while 

in the elicDT group, the CD4+Foxp3+ cells were almost completely absent. In the skin the 

percentages were much lower than in WT in both groups (III, Fig 1b, c). 
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Compared to WT, the ear swelling and infiltration of inflammatory cells were much more 

severe in sensDT DEREG mice (III, Fig. 2b, c) and the mRNA expressions of 

proinflammatory IL-6, Th1 cytokine IFN-γ and anti-inflammatory cytokine IL-10 were 

significantly increased (III, Fig. 2e). In addition, the mRNA expressions of CXCL9 and 

CXCL10, which are involved in T cell recruitment into the skin during CHS responses, 

were significantly upregulated (III, Fig. 2f). Instead, in the elicDT DEREG mice, the ear 

swelling response, cellular infiltrate and the expression of inflammatory cytokines was 

comparable with the WT at 24 hours post elicitation (III, Fig. 3).  

 

The effects of Treg depletion on the phenotype of Teff cells and DCs were studied. The 

percentage of proliferating CD4+ and CD8+ T cells and activated Teff cells, as assessed 

by the expression of CTLA-4 (Valk et al., 2008), was significantly increased in the LNs of 

sensDT DEREG mice but not in elicDT DEREG mice compared with WT (III, Fig. 4a, b). 

Also, the expression of costimulatory molecules CD80 and CD86 on DCs was upregulated 

in sensDT group, both in the LNs and in the skin (III, Fig. 5). Again, no difference was 

observed between WT and elicDT DEREG mice. 

 

In order to avoid excessive tissue damage, the CHS response needs to be downregulated 

within a few days after exposure (Vocanson et al., 2009). The inflammatory response was 

followed for 96 hours after the challenge, and it was observed that ear swelling and 

expression of inflammatory cytokines were downregulated in the WT mice already at 48 

hours (III, Fig. 6a, c). The downregulation was accompanied by a gradual increase in the 

percentages of Foxp3+ Treg cell numbers in the skin, reaching as high as 50 % of CD4+ T 

cells at 96 hours post challenge. In contrast, in the dLNs, the percentage of Foxp3+ Treg 

cells remained constant (III, Fig. 6b). In sensDT DEREG mice, the inflammatory response 

was prolonged (III, Fig. 6a, c, d) and while the percentage of Foxp3+ cells in the dLNs of 

sensDT DEREG mice reached a similar level with WT by 96 hours post challenge, in the 

skin the percentage remained low, being only 15 % (III, Fig. 6b). In the elicDT group, the 

inflammatory response was also prolonged (III, Fig. 6a, c, d) and the percentage of 

Foxp3+ Treg cells was low both in the dLNs and the skin (III, Fig. 6b). 
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8.4 Effects of CCR4 deficiency in experimental CHS (IV) 

CCR4 is a chemokine receptor which is important for effector T cell recruitment into the 

skin (Campbell et al., 2007; Reiss et al., 2001). In addition, CCR4 has a crucial role in the 

function of Treg cells (Baatar et al., 2007; Iellem et al., 2001; Yuan et al., 2007) and is 

essential for Treg cell recruitment into the skin in the steady state (Sather et al., 2007). A 

CCR4 knock-out mouse was utilized to study the effects of CCR4 deficiency on the 

inflammatory response during oxazolone induced CHS. 

 
Compared to their WT littermates, CCR4-/- mice developed slightly but significantly 

exacerbated skin inflammation after oxazolone (OXA) sensitization and challenge. The 

ear swelling response was significantly increased in CCR4-/- mice as was the total number 

of inflammatory cells in the skin (IV, Fig 1). The IHC staining and flow cytometric 

analysis revealed an increased CD4+/CD8+ ratio in the skin (IV, Fig. 2). To further 

examine the CD4/CD8 T cell ratio, the numbers of CD4+ and CD8+ T cells in the dLN 

were followed on days 0, 2, 4 and 7 after oxazolone sensitization and 0, 4, 12 and 24 hours 

post challenge. The number of CD3+CD4+ cells in the draining LNs was higher in   

CCR4-/- mice at 7 days post sensitization as compared with WT (IV, Fig. 6a). In addition, 

already at 4 hours post challenge the numbers of CD4+ T cells in the LNs of CCR4-/- 

mice were significantly increased as compared to WT (IV, Fig. 6b). Instead, the number of 

CD8+ T cells was equal to WT at all time points studied (IV, Fig. 6a and b).  

 

The mRNA analysis of the exposed skin demonstrated significantly increased expression 

of several cytokines such as IL-6, TNF-α, IL-12p35, IL-4 and IL-13 in the skin of    

CCR4-/- mice (IV, Fig. 3a and b). However, the flow cytometric analysis of the skin 

revealed similar percentages of IL-13 and IFN-γ producing cells in the skin (IV, Fig. 3c) 

indicating that increased IL-13 mRNA levels in the skin had resulted from increased 

numbers of T cells in the skin. In support of this finding, stimulation of LN cells ex vivo at 

different time points after challenge revealed increased numbers of IL-13 producing cells 

in CCR4-/- mice whereas the numbers producing IFN-γ were at similar level with the WT 

(IV, Fig. 7 a, b). 
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Enhanced cellular recruitment may also result in increased cell numbers in the skin, which 

led us to analyze the expression of adhesion molecules E- and P-selectin in the skin. The 

expression levels of both these selectins were upregulated in CCR4-/- mice compared with 

WT (IV, Fig. 4a). In addition, the mRNA expression levels of chemokines CCL3, CCL4, 

CCL5 and CCL8 together with corresponding receptors CCR5 and CCR3 were increased 

in CCR4-/- mice (IV, Fig. 4b and c).  

 

CCR10, which is another skin homing receptor responding to chemokine CCL27 (Homey 

et al., 2000), was expressed at a similar level in WT and CCR4-/- mice as demonstrated by 

mRNA and flow cytometric analysis of the skin (IV, Fig. 5a, b). In addition, the 

chemotactic response towards CCL27 was equal in WT and CCR4-/- mice (IV, Fig. 5c). 

 

The mRNA expression of Foxp3 was increased in the skin in CCR4-/- mice and this result 

was further confirmed with flow cytometry and IHC staining (IV, Fig. 8a, b).The number 

of Foxp+ cells in the draining lymph node followed the kinetics of CD3+CD4+ cells (IV, 

Fig. 8c). The mRNA expression of anti-inflammatory cytokine TGF-β was upregulated in 

CCR4-/- mice whereas IL-10 expression was similar to that detected in WT (IV, Fig. 8a). 
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9. Discussion 

The occurrence of allergic diseases has been increasing for several decades and although 

the increase may have plateaued in some industrialized countries, the incidence rate is still 

high and the prevalence is rapidly increasing in the developing countries (Williams et al., 

2008). In the future, successful treatment of allergic diseases must be accompanied with 

an effective means of prevention of these diseases. In this thesis, mechanisms involved in 

allergic skin diseases were studied.  

 
In a murine model of AD, the S. aureus derived enterotoxin B (SEB) enhanced allergic 

inflammation and additionally induced mixed Th2/Th1 type inflammatory response, 

indicating that S. aureus colonization in the skin of AD patients may play a significant 

role in the exacerbation and chronification of this disease. Similarly, the depletion of Treg 

cells during epicutaneous sensitization phase augmented the inflammatory response in 

AD, clarifying the previously controversial role of Foxp3+ Treg cells in this disease. In 

addition, the absence of functional Treg cells during skin sensitization had long lasting 

effects on the subsequent airway inflammation.  

 

In CHS, a transient depletion of Treg cells during the sensitization, elicitation or resolution 

phase, revealed important role for Foxp3+ Treg cells especially in the control of priming 

of naive T cells as well as the resolution of inflammation. Instead, Foxp3+ Treg cells seem 

dispensable during the early phases of secondary responses. Finally, the absence of the 

skin homing receptor CCR4 lead to an unexpected worsened skin inflammation with 

altered CD4/CD8 balance, sustained high CD4+ cell numbers during sensitization phase 

and more rapid proliferation of CD4+ cells during the elicitation phase, indicating that 

CCR4 is in some way involved in the regulatory mechanisms during a CHS response.  
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9.1 SEB exposure induces infiltration of CD8+ T cells and 

mixed Th1/Th2-type dermatitis (I) 

An inherited defect in the production of antimicrobial peptides may account for enhanced 

susceptibility to suffer bacterial infections in AD patients (Nomura et al., 2003; Ong et al., 

2002). In addition, the Th2 dominated cytokine milieu in AD skin may decrease the 

production of AMPs (Howell et al., 2006). Bacterial colonization can exacerbate the skin 

inflammation in AD patients e.g. by producing microbial toxins which can activate the 

immune system through several mechanisms. S. aureus can produce a plethora of different 

toxins, many of which can act as superantigens (Fraser and Proft, 2008). Since 

sensitization to SEB has been shown to correlate with the severity of AD lesions (Breuer 

et al., 2000), it was decided to examine the effects of SEB on the inflammatory response 

in the murine model of AD.  

 
The skin of AD patients as well as OVA sensitized mice is occupied mainly by CD4+ T 

cells and only a few CD8+ T cells have been found in the epidermis (Lugovic et al., 

2005). In the present experiments, SEB exposure induced a marked infiltration of CD8 T 

cells, especially of the Vβ8+ subtype, into the skin. This result is in line with previous 

experiments which have demonstrated that Vβ8+ T cells are the major T cell type 

responding to SEB (Marrack and Kappler, 1990) and that cutaneous SEB exposure 

provokes inflammatory responses mediated by Vβ8+ T cells (Saloga et al., 1996). 

Previously it has also been reported that CD8+ T cells derived from lesional AD skin or 

blood of AD patients, efficiently proliferate after superantigenic stimulation (Akdis et al., 

1999). These results suggest that bacterial toxins secreted by skin colonizing bacteria in 

AD patients may lead to accumulation and activation of CD8+ T cells in the skin and 

subsequently affect the inflammatory response in AD.  

 

Epicutaneous sensitization with SEB alone induced an allergic inflammation in the skin as 

evidenced by the expression of Th2 type cytokines and production of SEB-specific IgE 

antibodies. These results are in accordance with previous studies (Laouini et al., 2003; 

Saloga et al., 1996; Skov et al., 2000) and indicate that SEB is able to act as a 

conventional allergen. Simultaneous application of SEB together with OVA exacerbated 

the OVA induced allergic skin inflammation. The cellular infiltration and production of 
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Th2 cytokines and OVA-specific antibodies were increased. In addition, the expression of 

Th1 cytokines in the skin was induced after SEB exposure, resulting in a mixed Th1/Th2 

type inflammation in SEB and SEB/OVA exposed mice. 

 

SEB stimulation elicited a strong IFN-γ production in the LN cells derived from SEB and 

SEB/OVA exposed mice, but not from OVA or PBS sensitized mice, pointing to the 

presence of SEB-specific cells. They were most likely CD8 cells, since the number of 

CD8 cells was increased in SEB and SEB/OVA treated group, whereas elevated CD4+ T 

cell numbers were observed only in SEB treated group. In addition, a previous experiment 

has demonstrated a strong IFN-γ production from CD8+Vβ8+ cells in SEB-injected mice 

(Herrmann et al., 1992). In an attempt to further elucidate the cellular recruitment into the 

skin, it was decided to investigate the expression levels of several chemokines. 

Simultaneous application of SEB and OVA synergistically elevated the expression levels 

of several proinflammatory chemokines. In addition, SEB treatment increased OVA 

induced expression of Th2 type chemokines and provoked the expression of Th1 

chemokines, indicating not only an enhanced recruitment of Th2 type cells but also active 

recruitment of Th1 cells to the site of inflammation after SEB exposure. In conclusion, 

these results indicate that SEB exposure might play a role in the chronification of the AD-

like inflammation. 

 

As a conclusion, these results demonstrate that toxins produced by skin colonizing 

bacteria may contribute both to the disease severity in AD patients as well as to 

chronification of the AD lesions. Therefore, careful control of S. aureus colonization on 

the skin of AD patients is crucial for treatment of AD. 

9.2 Foxp3+ cells control inflammatory responses during 

allergic skin inflammation (II and III) 

At present, the role of Foxp3+ cells in the pathomechanisms of AD is unclear. Studies on 

lesional skin of AD patients have revealed either the presence or absence of Foxp3+ cells 

(Schnopp et al., 2007; Szegedi et al., 2009; Verhagen et al., 2006) and while some 
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experiments report increased numbers of CD4+CD25+Foxp3+ cells in the blood of AD 

patients, some experiments show no differences but instead report increased numbers of 

Foxp3- Tr1 cells in AD patients compared to healthy controls (Ito et al., 2009; Ou et al., 

2004; Reefer et al., 2008; Szegedi et al., 2009). It was thus decided to examine the role of 

Foxp3+ Treg cells during AD-like inflammation. 

 

After repeated epicutaenous OVA exposure, the number of Foxp3+ cells significantly 

increased in the skin and LNs. However, the ratio of Foxp3+ T cells to Foxp3- T cells both 

in the skin and LNs remained unchanged, suggesting maintenance of Treg-Teff 

homeostasis even during inflammation. CD103+ has been reported to act as a marker for 

effector/memory type Treg cell in mice and it has been shown to play a role in the 

retention of Treg cells at the site of inflammation (Huehn et al., 2004; Siegmund et al., 

2005; Suffia et al., 2005). The steady increase of CD103+ Treg cells observed during 

exposure protocol indicated an active role for Treg cells during AD-like skin 

inflammation. Indeed, although showing a slightly impaired ability to suppress Teff cell 

proliferation under Th2 environment, the almost complete obliteration of Foxp3+ Treg 

cells during the second sensitization week severely augmented the inflammatory response 

in DEREG mice compared with WT mice.  

 

Tape stripping alone induced a mild skin inflammation in the PBS irritation WT controls 

and a much stronger response in the DT treated DEREG mice. The purpose of the tape 

stripping is to mimic the impaired skin barrier function that is encountered in AD patients 

(Kim et al., 2008; Marenholz et al., 2006; Palmer et al., 2006). The skin injury facilitates 

the penetration of the allergen through the skin and is essential for achieving proper 

sensitization. Tape stripping combined with OVA exposure further exacerbated the 

inflammatory response, resulting in significantly increased cellular infiltration, activation 

of Th2 cells and strongly elevated production of OVA-specific IgE, and more in DEREG 

than in WT mice. Importantly, depleting naive DEREG mice of their Treg cell 

compartment had no effect on the skin, proving that the exaggerated skin inflammation in 

the DEREG mice is not simply a consequence of the deletion of Treg cells. These results 

clearly demonstrate that Treg cells are crucial in controlling both the skin injury induced 

inflammation and the antigen-specific Th2 responses, both of which are essential 
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components of AD-associated pathology. It is noteworthy that the expression of the 

immunosuppressive cytokine, IL-10, was significantly elevated in DT treated OVA 

DEREG mice, indicating Foxp3+ Treg cell independent IL-10 production in the skin. 

Macrophages, DCs, and neutrophils among with keratinocytes and other skin cells are all 

significant producers of IL-10 (Wills-Karp et al., 2001; Vocanson et al., 2009). In 

addition, a contribution of Foxp3- IL-10+ Tr1 cells cannot be excluded (Hawrylowicz and 

O'Garra, 2005). A greater proportion of Foxp3- T cells in DEREG mice expressed PD-1 

compared with WT, which may point to the presence of a higher number of Foxp3- iTreg 

cells in DEREG mice. 

 

Depletion of Treg cells during skin sensitization had long-lasting consequences. The 

airway challenge one week after the end of the AD protocol induced inflammation in the 

lungs that reflected the situation in the skin, although the Foxp3+ Treg cell number had 

already been restored in the LNs. The total infiltration of cells was increased, especially in 

the lung parenchyma and increased numbers of CD4+ T cells was observed in the BALF. 

Moreover, the mRNA expression of IL-4 was significantly upregulated. This observation 

suggests that during the skin sensitization phase, dysfunctional/underactivated Foxp3+ 

Treg cells, e.g. due to decreased microbial burden or inherited Th2 biased immune 

responses, may modify the outcome of asthma response possibly developing later in AD 

patients. 

 

In CHS, Treg cells have been shown to have a role in all three phases of a CHS response, 

the sensitization, the elicitation and the resolution phase (Honda et al., 2011; Kish et al., 

2005; Ring et al., 2009; Tomura et al., 2010). However, the relative importance of Treg 

activities as well as the site and mode of Treg action during these phases is unclear. In our 

experiments, mice were depleted of Foxp3+ Treg cells one day prior to sensitization or 

one day prior to elicitation, and the inflammatory response was followed at 24-96h post 

elicitation. At 24 hour post challenge, mice depleted of Foxp3+ cells one day prior to 

sensitization showed significantly increased ear swelling, infiltration of inflammatory cells 

and production of several inflammatory cytokines and chemokines compared with WT. 

Conversely, in mice depleted one day prior to elicitation, the inflammatory parameters 

were at a similar level with WT. Similar kinds of results have been obtained in mice 
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injected with anti-CTLA-4 (Nuriya et al., 2001), which is one of the central mechanisms 

of Treg mediated suppression (Wing and Sakaguchi, 2010). These results suggest that 

Foxp3+ Treg cells are especially important during priming, but seem to be redundant 

during the first 24 hours after challenge.  

 

When the inflammatory response was followed beyond 24 hour time point, the 

inflammatory response in sensDT DEREG mice was sustained at a higher level compared 

to WT still at 96 hours after elicitation. This is in accordance with the experiments 

reported by Kish et al. (2005) and Honda et al. (2011), who demonstrated that depletion of 

CD25+ Treg cells or Foxp3+ Treg cells, respectively, at the sensitization phase results in 

exaggerated and prolonged inflammation. In elicDT mice, the ear swelling also continued 

to increase and the expression of inflammatory cytokines was upregulated compared to 

WT. Similar kind of observations were made also by Tomura et al.(2010) in CHS 

experiments with DNFB, which suggest that Foxp3+ Treg cells are essential in 

terminating the CHS response. 

 

The site of action of Foxp3+ Treg cells during challenge phase is not clear. Tomura et al. 

(2010) demonstrated that Foxp3+ Treg cells continuously migrate from the skin into the 

LNs and back to the skin during cutaneous immune responses. These Treg cells were 

highly immunosuppressive and were able to downregulate ear swelling responses. It was 

decided to follow Foxp3+ Treg percentages both in the dLNs and the skin at different time 

points after challenge. In the dLNs of WT mice, the ratio of Foxp3+ cells remained similar 

throughout the observation period. Instead, in the skin, the proportion of Foxp3+ cells 

significantly increased as a function of time, reaching as high as 50 % of CD3+CD4+ cells 

at the 96 hour time point. The strength of inflammation inversely correlated with the 

percentage of Foxp3+ Treg cells. In contrast, in sensDT mice, the proportion of Foxp3+ 

cells in the skin was significantly lower compared to WT although Treg/Teff balance had 

been restored in the LNs. At the same time, the inflammatory response in the skin was 

sustained at higher level compared to WT. These results point to an active role for Foxp3+ 

Treg cells in the skin during the resolution phase.  
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A similar kind of situation was observed also in the lungs in the AD-asthma study where 

Foxp3+ Treg percentages in DEREG mice were even higher in the LNs compared to WT, 

but remained significantly lower in the lungs. For some reason, restored Foxp3+ Treg cells 

do not accumulate at the site of inflammation. One possibility is the lack of antigen-

specific Foxp3+ Treg cells due to depletion, and subsequent impaired activation and/or 

migration of Foxp3+ cells into the inflammatory site. However, this phenomenon cannot 

explain the reduced Foxp3+ cell ratios in the lungs of PBS treated mice since these mice 

have never received OVA and therefore recruitment of Foxp3+ cells cannot be dependent 

on the presence of the antigen. However, it is possible that intranasal administration 

causes cellular damage which results in the release of self-antigens, and possibly the 

recruitment of nTreg cells into the lungs. A greater percentage Foxp3+ cells in DEREG 

mice after DT treatment stained positive for PD-1 as compared with WT, indicating that a 

larger share of the remaining/restored Foxp3+ cells in DEREG mice are iTreg cells 

(Haribhai et al., 2011) which may not react as readily to self-antigens as their nTreg cell 

counterparts (Belkaid, 2007). This could be one explanation for the decline in Foxp3+ cell 

numbers in the BAL-fluid of PBS treated DEREG mice. However, a more probable 

explanation is that it requires a longer time for Foxp3+ cells to recover in the periphery 

than in lymphoid organs. Further studies are needed to clarify this issue, but it seems that 

once Foxp3+ cells do not accumulate at the site of inflammation, the inflammatory 

response is stronger and/or prolonged. 

 

Treg cells utilize numerous mechanisms for the suppression of inflammatory responses. 

Some of them are targeted directly at Teff cells or indirectly via DCs. In order to 

characterize the important mechanisms utilized by Treg cells during allergic skin 

inflammation, the proliferation and activation status of Teff cells and DCs were studied 

both in AD and CHS. In both experiments, the percentage of proliferating, Ki67+, T cells 

in the dLNs were significantly increased, both in CD4 and CD8 subtypes, when allergen 

exposure occurred in the absence of Treg cells for several days. However, if only a short 

period of time had passed since Treg depletion, such as 24 hours in the challenge phase of 

CHS, no differences were observed in the numbers of proliferating cells between WT and 

DEREG mice. Similarly, the number of activated T cells, as evaluated by the percentage 

of CD69+ (AD) or CTLA-4+ (CHS) cells, was increased in those mice where a few days 
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had elapsed after Treg depletion. These results indicate that during allergic skin 

inflammation the control of T cell division and suppression of Teff activation are 

important means of suppression, but take several days to exert a visible impact. 

 

The percentages of CD80+ and CD86+ DCs were increased in the LNs of DEREG mice, 

again after several days of Foxp3+ Treg depletion. Additionally, in the skin, the mRNAs 

for CD80 and CD86 were significantly upregulated in DEREG mice, both in AD and 

CHS. In AD, increased percentages of DCs were positive for Ki-67 and there were 

increased numbers of CD11b+ DCs, which may indicate a presence of inflammation 

related IDEC cells (Kerschenlohr et al., 2003; Schuller et al., 2001). Together these results 

demonstrate that also DCs are targets of Treg mediated suppression during allergic skin 

inflammation.  

 

These results emphasize the importance of functional Foxp3+ Treg cells especially during 

priming of T cells, since the absence of Foxp3+ Treg cells at this stage has long-lasting 

effects on memory responses which cannot be reversed by restoration of Foxp3+ Treg 

population. Instead, during the rapid recall response, Treg cells are redundant, but their 

presence at the site of inflammation during memory response seems to be essential for the 

control and clearance of the inflammatory response. 

 

9.3 Exacerbated inflammatory response in CCR4-/- mice (IV) 

Some experiments have demonstrated that either CCR4 or CCR10 alone is essential for 

skin homing of T cells during inflammation (Campbell et al., 2007; Homey et al., 2002), 

whereas others have claimed that CCR4 and CCR10 possess overlapping roles, and only 

simultaneous blockade of both receptors diminishes cellular infiltration into the skin 

(Mirshahpanah et al., 2008; Reiss et al., 2001; Wang et al., 2009b). Most likely the 

importance of a particular receptor is related to the inflammatory conditions, which in turn 

are affected by the model or the antigen used. For example in mice, administration of α-

CCL17/α-CCL22 alone or together with α-CCL27 had variable effects on the extent of 
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infiltration by inflammatory cells when different chemicals (DNFB, OXA or TMA) were 

used (Mirshahpanah et al., 2008).  

 

When the effects of oxazolone induced skin inflammation were investigated in   CCR4-/- 

knock-out mice, it was observed that there was an augmented inflammatory response 

compared with WT. The ear swelling response was enhanced due to edema and increased 

cellular infiltration. Additionally, the mRNA expression of various inflammatory 

cytokines and chemokines was significantly increased. Similar kinds of results have been 

obtained by Reiss et al. (2001) who observed that the ear swelling responses in DNFB 

sensitized and challenged CCR4-/- mice were slightly increased compared with WT. In 

addition, in an adoptive transfer model, it was noticed that CCR4-/- T cells accumulated in 

the skin at least as well as WT cells (Reiss et al., 2001).  

 

Since CCR10 might compensate for the lack of CCR4 in some inflammatory situations, 

CCR10 expression was studied in CCR4-/- T cells compared with WT. The same 

percentage of skin derived T cells stained positive for CCR10 (17.2 % in WT vs. 19.4 % 

in CCR4-/-) and the mRNA levels of CCR10 in the skin were similar between WT and 

CCR4-/- mice. In addition, the chemotactic response towards CCR10 ligand, CCL27, was 

comparable with the WT, suggesting a functional but not overly activated CCL27-CCR10 

pathway in CCR4-/- mice. 

 

Instead, the mRNA expressions of E- and P-selectins, important adhesion molecules for 

tethering and rolling (Harari et al., 1999), were upregulated in CCR4-/- mice. This 

upregulated selectin expression together with increased mRNA expression of several 

chemokines and corresponding receptors, indicates more efficient recruitment of 

inflammatory cells into the skin of CCR4-/- mice. 

 

In an attempt to further understand the enhanced inflammation in CCR4-/- mice, the 

immune responses were monitored at various time points after sensitization and 

elicitation. There were significantly increased CD4+ cell numbers compared with WT, 

first at the LNs at the end of the sensitization period, next in the LNs at 4 and 12 hours 

post challenge and finally in the skin at 24 hours post challenge. Enhanced proliferation of 
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CCR4 deficient CD4+ T cells was also observed by Campbell et al. (2007) in the dLNs 

upon antigen stimulation, although the difference did not reach statistical significance in 

their experiment. Nonetheless, these results suggest a small but persistent role for CCR4 in 

the control of CD4+ T cell division. These more rapidly dividing cells were most likely 

Th2 cells, since the numbers of IL-13 producing cells in the LNs followed the kinetics of 

CD4+ cells and were significantly increased in CCR4-/- mice compared to WT.  

 

The faster proliferation of CD4+ Th2 cells, together with upregulated selectin and 

chemokine expression, most likely resulted in the increased cellular infiltration in CCR4-/- 

mice and consequently to the expression of elevated levels of inflammatory cytokines and 

enhanced inflammation. The reason for this enhanced proliferation and recruitment, 

however, is still not known. CCR4 is expressed by the majority of Treg cells (Iellem et al., 

2001) and it has been reported to play essential roles in their function. For example, it has 

been reported that cardiac allograft tolerance is mediated by Treg cells and is dependent 

on CCR4 expression (Lee et al., 2005). CCR4 is also involved in the interaction between 

DCs and Treg cells and the production of immunosuppressive IDO from DCs (Onodera et 

al., 2009). In mice, the absence of CCR4 on Treg cells results in a spontaneous skin 

inflammation, most likely due to impaired homing of Treg cells into the skin (Sather et al., 

2007). However, in the present experiments, Foxp3+ cells in CCR4-/- mice were equally 

well recruited into the skin as in WT mice and the percentage of Foxp3+ cells in the 

draining lymph nodes during the sensitization and elicitation phase was similar in both 

groups. These results demonstrate that although necessary for the steady state recruitment 

of Treg cells into the skin, CCR4 is not essential for Treg cell accumulation during 

inflammation.  

 

It cannot be ruled out, however, that the function of Treg cells was slightly impaired in 

CCR4-/- mice. Treg cells are known to interfere with Teff-DC interactions by forming 

contacts with antigen-bearing DCs (Tadokoro et al., 2006; Tang et al., 2006). Activated 

DCs produce CCL22 (Onodera et al., 2009; Tang and Cyster, 1999; Vulcano et al., 2001) 

and for example, in a mouse model of inflammatory bowel disease, CCR4 deficiency 

resulted in the generation of pathogenic T cells, most likely due to impaired Treg-DC 

interactions (Yuan et al., 2007). A similar situation could apply in the present CHS 



 
 
 
 

76

experiment with CCR4-/- mice and result in increased proliferation of CD4+ T cells. 

Furthermore, Ring et al. (2009) have demonstrated that Treg cells control the expression 

of P-and E-selectins in the endothelium and impaired function of Treg cells could explain 

the increased E-and P-selectin expression observed in our study. As shown by experiments 

by us and others (Honda et al., 2011; Kish et al., 2005), the absence of functional Treg 

cells during sensitization phase results in augmented secondary response. Although the 

inflammatory response in CCR4-/- mice was not as drastically exacerbated as in Treg 

depletion studies, the results could indicate a slight impairment of Treg function. 

However, further studies are needed to clarify these issues.  

 

9.4 Future directions 

Superantigens can exacerbate skin inflammation through several mechanisms, one being 

an ability to impair the suppressive function of Treg cells (Cardona et al., 2006; Lin et al., 

2011). As shown by our Treg depletion studies with the AD model, the absence of 

functional Treg cells resulted in a strongly enhanced inflammatory response with elevated 

IFN-γ, IL-4 and IL-13 production and increased serum IgE and IgG2a levels. In addition, 

the number of T cells was elevated in the skin while the number of eosinophils was not 

affected. As SEB exposure together with OVA sensitization induced similar kinds of 

changes in the inflammatory responses, it is possible that impairment of Treg function is 

one of the mechanisms through which SEB augments AD-like skin inflammation. This 

should be studied in the future. In addition, Th2 cytokines have been shown to suppress 

the production of antimicrobial peptides (Howell et al., 2006) and a previous study 

demonstrated lowered amounts of cathelicidin-related antimicrobial peptide in the skin of 

mice sensitized epicutaneously with OVA (Scott et al., 2007). Since at least 20 different 

AMPs have been recognized in the skin (Braff and Gallo, 2006), it would be interesting to 

study how their production is modulated in the skin after OVA-sensitization.  

 

Our results suggest that Foxp3+ Treg function is important in the LNs during priming. 

However, different sites of action during the secondary response have been proposed 

(Ring et al., 2010; Tomura et al., 2010). Our results show that at different time points after 
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elicitation, the ratios of Foxp3+ Treg cells were lower in DEREG mice at the site of 

inflammation, i.e. in the lungs or skin, while their number was restored in the LNs, 

suggesting that the Foxp3+ Treg/Teff cell ratio might be of relevance at the site of allergen 

exposure in the sensitized individual. For example in the future, it would be interesting to 

study with the help of knock-out mice with deficiencies in different homing receptors, if 

the presence of Foxp3+ Treg cells during secondary response is especially important at the 

site of inflammation, in the blood vessels lining the site of inflammation or in the draining 

LNs. It would also be of interest to study if the lowered Treg ratio is due to a lack of 

antigen specificity after Foxp3+ Treg depletion or does the restoration of Treg numbers in 

the periphery take a longer time than in the secondary lymphoid tissues. In addition, 

studies investigating the possible mechanisms of suppression by Treg cells during these 

inflammatory processes would be worthwhile in order to understand which molecules are 

important for interaction between Treg cells, Teff cells and DCs during allergic skin 

inflammation. In addition, in vivo activation of Treg cells through administration of 

probiotics or in vitro expansion of antigen-specific Treg cells would be interesting topics 

for future studies.  

 

In CCR4 experiments, the functionality of CCR4-/- Treg cells should be assessed. 

Although previous attempts have found no impaired ability of CCR4-/- cells to suppress T 

cell proliferation in vitro (Yuan et al., 2007), the effect of CCR4 deficiency might be 

different in vivo, where the expression of chemokine receptor might be more important for 

migration and/or retention of the cells in the LNs or at the site of inflammation than in a 

Petri-dish where cells exist in close contact with each other. In addition, inhibition of 

proliferation is only one mechanism of suppression and therefore the activation status and 

cytokine production of Teff cells and DCs should also be studied. The drawback in our 

experiments was that CCR4 was absent from all cell types, also from Teff cells. Since 

CCR4 has been proven to be important for Teff cell/DC interactions as well as Treg/DC 

interactions, it would be interesting to study if it is even more important for Treg cells than 

Teff cells since clearly Teff cells were able to become activated in the absence of CCR4. 

Injection of WT or CCR4-/- Treg cells into DEREG mice depleted of Treg cells in the 

CHS model, could help to clarify the role of CCR4 in Treg cell function during CHS. 
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10. Conclusions 

 
 

This thesis has attempted to unravel some of the issues involved in the pathomechanisms 

of allergic skin diseases. S. aureus colonization is a severe problem for AD patients and it 

was possible to prove experimentally that S. aureus derived enterotoxin B considerably 

exacerbated the allergic skin inflammation induced by OVA and could also act as an 

allergen itself. In addition, SEB enhanced the allergic response also systemically as 

demonstrated by elevated allergen- and SEB-specific IgE levels. Furthermore, SEB 

increased the production of Th2 cytokines and also induced the production of Th1 type 

cytokines, normally observed in chronic AD lesions, suggesting that bacterial colonization 

on the skin may significantly contribute not only to the severity but also to the 

chronification of AD. Therefore, prevention of bacterial colonization deserves special 

attention when designing treatment strategies for AD.  

 
The role of Foxp3+ Treg cells in AD has been controversial. It was found that these cells 

play an indispensable role in the control of AD-like skin inflammation since depletion of 

Foxp3+ cells resulted in a significantly augmented inflammatory response with elevated 

expression of Th2 cytokines and enhanced production of IgE. It was further demonstrated 

that the absence of functional Foxp3+ Treg cells during skin sensitization affected the 

magnitude of inflammation upon subsequent airway challenge with the same antigen, 

despite the restored Foxp3+ Treg cell compartment. These results emphasize that the 

presence of active, functional Foxp3+ Treg cells are crucial for controlling the magnitude 

of skin inflammation and their absence during sensitization can have long-lasting 

consequences along the atopic march. 

 

In CHS, it was possible to demonstrate that the Foxp3 expressing Treg cells efficiently 

controlled the priming of naive T cells, but seemed to be redundant during the early 

inflammatory response after challenge. This result emphasizes the importance of the 

presence of functional, active Treg cells during the sensitization phase. In fact, functional 

Treg cells may prevent the sensitization against weak haptens altogether. This result is in 

line with the hygiene hypothesis which states that inflammation activated Treg cells raise 
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the threshold for sensitization and therefore can prevent the development of allergic 

diseases. In addition to controlling the priming of naive T cells, the importance of Foxp3+ 

Treg cells became again evident during the resolution phase, where the prolonged 

inflammatory response was accompanied by an impaired ability of Foxp3+ Treg cells to 

accumulate in the skin. This result suggests that the action of Treg cells at the site of 

inflammation might be important for the clearance of the inflammation.  

 

Finally, it was demonstrated in the oxazolone induced CHS model that CCR4-/- mice 

exhibited more extensive inflammation in the skin as compared to WT, most likely 

through enhanced proliferation of Th2 cells and increased expression of adhesion 

molecules in the skin. These results indicate that CCR4 is involved in the regulation of 

these two events. However, recruitment of Treg cells into the skin was not impaired in 

CCR4-/- mice and Treg cells proliferated as efficiently in WT and CCR4-/- mice. These 

results do not rule out however, the possibility that the functionality of Treg cells in these 

mice is impaired.  
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