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Abstract

The topic of this thesis is the analysis of complex diseases, and specifically
the use of k-means and mixture modeling based clustering methods to do it.

We concern ourselves mostly with the modeling of complex phenotypes of
diseases: the symptoms and signs of diseases, and the other multiple co-
phenotypes that go with them. The two related questions we seek answers for
are: 1) how can we use these clustering methods to summarize the complex,
multivariate phenotype data, for example to be used as a simple phenotype
in genetic analyses and 2) how can we use these clustering methods to find
subgroups of sufferers of a particular disease, such that might share the
same causal factors of the disease.

Current methods for studies on medical genetics ideally call for a single or at
most handful of univariate phenotypes to be compared to genetic markers.
Multidimensional phenotypes cannot be handled by the standard methods,
and treating each variable as independent and testing one hundred pheno-
types with unclear true dependency structure against thousands of markers
results into problems with both running times and multiple testing correc-
tion. In this work, clustering is utilized to summarize a multi-dimensional
phenotype into something that can then be used in association studies of
both genetic and other type of potential causes.

I describe a clustering process and some clustering methods used in this
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work, with comments on practical issues and references to the relevant
literature. After some experiments on artificial data to gain insight to
the properties of these methods, I present four case-studies on real data,
highlighting both ways to succesfully use these methods and problems that
can arise in the process.

Computing Reviews (1998) Categories and Subject
Descriptors:
I.5.3 [Pattern Recognition]: Clustering
J.2 [Applications]: Life and Medical Sciences—medical genetics,

psychiatry

General Terms:
Clustering, Experimentation, Applications

Additional Key Words and Phrases:
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Notation and abbreviations

1x function with value 1 if x is true and 0 otherwise

A, B datasets
a, b arbitrary values, functions, or random variables, as specified

in the text
C,D partitions of a set of observations, or equivalently, clusterings
d number of variables in a dataset, or, equivalently, number of

columns in a dataset, or, as a result, number of dimensions
in a model

E[a] expected value of a
E[a|b] expected value of a given b
F a set of functions
f any function, as specified in the text
g counter used for clusters in a clustering model, or groups in

a population, or components in a mixture model
H entropy
i, j indices
K the larger one of the values k for two alternative clusterings
K ′ the smaller one of the values k for two alternative clusterings
k number of clusters in a clustering model, subgroups in a

population, or components in a mixture model
L likelihood
M a clustering model
N number of observations (individuals) in a data set, or, equiv-

alently, number of rows in a data matrix
Nab number of pairs of observations satisfying certain conditions,

as specified in the text
n used for any integer, as specified in the text
nCa number of observations having cluster label a in clustering C

vii
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na,b number of observations having cluster label a in one clustering
and cluster label b in another

o number of parameters in a model
p(a) probability of a
p(a, b) joint probability of a and b
p(a|b) probability of a given b.
S(C,D) a similarity function between clusterings C and D
T arbitrary time period
t counter for iterations in an algorithm
a(t) value of a on the t’th iteration of an algorithm
v number of partitions in a cross-validation scheme
Y a data matrix, or equivalently a data set of size N individuals

× d variables
yj the j’th row in a datamatrix Y , or, equivalently, the j’th

individual in a data set
yji the ith element of yj , or equivalently, the value of the i’th

variable for the j’th individual
yj,obs the observed (non-missing) values in yj
y·l the l’th column (variable) for any row (individual) in Y
zgj class label, taking value 1 if the j’th individual belongs to

the g’th cluster / subgroup / mixture component
ẑgj an expected value estimate of zgj
zj a class label vector for the j’th observation/individual
ẑj an expected value estimate of zj

θ parameter vector for any model, as specified in the text
κ used for Cohen’s κ, a measure of agreement between two

classifications
µ the mean, either the vector of a multivariate Gaussian dis-

tribution, or equivalently, the mean of observations in a
particular cluster

πg mixing proportion of the g’th component of a mixture model
or g’th subgroup in a population, or, equivalently, the cluster
propability of the g’th cluster

Σ the covariance matrix of a multivariate Gaussian distribution
φ the likelihood function of a Gaussian distribution

ADI-R Autism Diagnostic Interview - Revised
AMI Adjusted Mutual Information
BIC Bayesian information criterion
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Cκ Cohen’s κ
DISC1 a candidate gene for psychotic disorders (Disrupted in

Schizophrenia 1)
DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th

Edition
DTNBP1 a candidate gene for schizophrenia, also known as dysbindin

1 (Dystrobrevin Binding Protein 1)
EM Expectation-Maximization (algorithm)
HA Harm Avoidance, a scale in TCI
ID identification number/code for an individual in a dataset
JI Jaccard Index
MH Meila H-index
MI Mutual Information
NFBC1966 Northern Finland Birth Cohort 1966
NMI Normalized Mutual Information
NS Novelty Seeking, a scale in TCI
RD Reward Dependency, a scale in TCI
P Persistence, a scale in TCI
PC Pairwise Concordance (Rand Index)
PCA Principal Component Analysis
SD Standard Deviation
TCI Temperament and Character Inventory
YF The Cardiovascular Risk in Young Finns study
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Chapter 1

Introduction

“No catalog of techniques can convey the willingness to look for
what can be seen, whether or not anticipated.”
(John W. Tukey)

In this thesis, we describe the use of clustering methods in the analysis of
complex diseases. Specifically, we concentrate on mixture model clustering,
including the special case of k-means where suitable, and using them to
summarize the complex phenotypes and co-phenotypes of these diseases or
phenomena. Such summarizations can be of help when looking for causal
factors (genetic or otherwise) for the phenomena.

This work is in the intersection of computational methods for data
analysis and the medical science of etiology. In addition, the practical
field of computer programming is necessary to implement the procedures
described. All this combined makes for a large field, and thus it has been
necessary to restict ourselves to a particular clustering method (mixture
model clustering), as well as to not delve very deeply into any particular
field of medicine. We hope, however, that even with these restrictions the
description of the work performed here will also give general insights to a
practical clustering process in the study of complex diseases.

This thesis has been written mainly with a computer science audience in
mind; basic programming skills and reading skills of mathematical notation
are assumed, and medical information is kept on a fairly basic level. The
author has, however, also attempted to make the thesis readable for the
medical reseacher audience.

1



2 1 Introduction

1.1 Complex diseases

The definition of “a disease” is a matter of some debate in itself [Ems87]. For
the purposes of this work, we define disease as a condition of an organism
that

1. is considered abnormal,

2. causes impairments of bodily (including mental) functions,

3. follows from a specific set of causes, and

4. is associated (though not necessarily deterministically) with specific
symptoms and signs.

Etiology, the study of origins of diseases, is concerned in defining diseases
such that the causes1 and the probabilities of symptoms and signs are known.
Understanding the etiology of diseases is the key to alleviating suffering
caused by them: we can prevent a disease by breaking the causal chain
leading into it and we can cure a disease by removing a cause upholding
it. When we cannot do either, easing symptoms can be more feasible when
we understands their mechanisms, and often simply understanding what is
happening and what to expect alleviates the mental suffering associated
with diseases.

Many syndromes (collections of symptoms that seem to go together)
that we think of as diseases are not diseases in the sense of the definition
given above. For example “the common cold” is a collection of diseases,
each caused by a separate microbiological entity [SM97]. On the other
hand, sometimes different diseases are related to overlapping causes. Again
as a simple example, over-consumption of alcohol is a causative agent of
several possible complications, ranging from a common hangover to liver
disease and even having consequences to the next generation in the form of
fetal alcohol syndrome and the psychological consequences of being raised
up by alcoholic parents [SM97]. In addition, various factors can alter the
probabilities of particular symptoms in diseases ultimately caused by the
same causes: sometimes we say that there exists two (or more) forms or
subtypes of the same disease, when most causes and symptoms are the
same, but a minor variation in the causative environment affects the exact
expression of the symptoms [SM97].

1I use “cause” here in a broad way to mean both necessary and sufficient causes, and
also a collection of factors that increase the probability of a disease. The philosophical
concept of causation in disease is way beyond the scope of this work.



1.2 Nature of the data 3

The fact that similar symptoms are often caused by different causes,
and similar causes sometimes cause different symptoms, obviously greatly
interferes with studies of etiology. In medical genetics, a disease is called
complex, where it seems likely or clear that it is unlikely to follow a clear
Mendelian inheritance pattern [Hun05]. Currently, it seems that such simple
diseases are actually the exception rather than the rule: most diseases are
caused by several mutations and even more environmental factors together,
and some things that we think of as the same disease might actually be
caused by two or more separate mutations that lead to a similar disturbance
in the body, independently.

Genetics that relies on tracking established diagnoses or single symptoms
will generally fail to establish the genetic etiology of such diseases, due to
such studies requiring a much larger sample size than the more simple
cases [Hun05]. Regardless, many current genetic analyses methods expect a
single phenotype, the associations of which to the genetic markers under
consideration are then studied, and for practical reasons, medical dataset
sizes have an upper limit in the order of thousands, at most tens of thousands
individuals. Hence, the initial purpose of this work: exploring one potential
way to build from symptoms, signs, and other observations of individuals
new subtypes for genetic analysis, in the hopes that these phenotypically
homogeneous subtypes would correlate better with subgroups of syndromes
with similar (genetic) etiology.

1.2 Nature of the data

The data we are working on typically concerns individuals. For each
individual, ideally, the same variables have been measured, resulting in
a data matrix. Sizes of datasets described in this study count individuals in
thousands and variables in tens or low hundreds. Individual variables can be
of any type: binary (for example presence or absence of a symptom), class-
valued (types of symptoms of background information), ordered (answers
to questionnaire items on a scale from strongly agree to strongly disagree),
or continuous (age, various blood tests).

The information can come from several different sources. We can sep-
arate these sources, roughly, into three: self-reported, register-based, and
measured data. Self-reported data is, obviously, information that the in-
dividual gives of him/herself. Register-based data is obtained (with the
individual’s permission) from various national registries such as the Hospital
Discharge Registry utilized in this study. Measured data is data that has
somehow been measured and confirmed for this study in particular. It can
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include physical examination data (blood tests, measurements performed by
a medical professional), various structured ways of interviewing the patient
(by trained and controlled interviewers), and variables constructed from
case notes in a systematic way.

In addition to different sources, the data can concern different timelines.
Some variables relate to the patient’s status “now”, others relate to his or
her past history, or even his or her parents’ or ancestors’ history. In addition
to this, data about history might have been obtained at different times:
retrospectively, or in a follow-up during the time when it was current.

The way individuals are recruited to the study has effects on the data.
All studies begin with identifying some sort of group of interest, be it
individuals with a disease, individuals belonging to families with the disease,
members of a population, inhabitants of a region, or something else. Then
this group, or a random sample there of, is contacted and an attempt to
recruit them for the study is made. Obviously, the way the group is identified
in the first case and the response rate to recruitment affects whether the
study actually contains a sample from the population originally under study,
or some subpopulation there of. For example, it is very typical that the
individuals worst affected by a given disease are not in the shape to respond,
thus eliminating extreme cases of disease from the data.

All these make the technically simple data matrix actually quite a
complex structure. Sources, timing, and recruitment all cause their own
biases in the data and affect the reliability of the variables.

1.3 The role of clustering in genetics

Current methods for studies on medical genetics ideally call for a single
or at most handful of univariate phenotypes to be compared to genetic
markers. Multidimensional phenotypes cannot be handled by the standard
methods, and treating each variable as independent and testing one hundred
phenotypes with unclear true dependency structure against thousands of
markers results into problems with both running times and multiple testing
corrections.

When the obvious phenotypes (such as diagnoses) have been tested for
associations with the markers and a suspicion remains that they do not
capture all information about the causative links between disease and genes,
researches typically want to look at phenotypes that are more directly or
more strongly associated to certain genes. Such groups can be so-called
endophenotypes: directly genetically associated phenotypes that predispose
to disease [GG03]. Alternatively, they can be a redefinition of a diagnosis
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to weed out “noise” to find a core group of patients with a more similar
disease [HKB+05].

In the typical case, we do not have before-hand information on what
these endophenotypes or relevant subgroups might be. If we did, they could
in many cases be measured or constructed directly (at least as well as the
original diagnosis can be defined). The need to look for these phenotypes
arises when it seems likely that the analysis of the etiology of a particular
syndrome is confounded by the existence of multiple causal factors, both
genetic and otherwise, but we do not exactly (or at all) understand how.

Constructing this kind of alternative phenotypes means summarizing
often multidimensional data in novel ways, and has often been done manually
with a domain specialist with a good “hunch.” Thus the question is or can
be translated as “are there subgroups in this data that we are not yet
aware of”. From the point of view of data analysis or machine learning this
question naturally translates as the problem of clustering, which can be
roughly defined as the unsupervised learning question of “division of a set
of objects into subgroups such that objects in the same group are similar to
each other, while being as different as possible from objects in other groups”.

In the studies presented in this thesis, clustering is utilized in summariz-
ing a multi-dimensional phenotype into something that can then be used in
association studies of both genetic and other type of potential causes. The
work presented is by nature exploratory, in the sense that its purpose is
to discover hypotheses that can then be tested by conventional statistical
means, or finding questions that can be answered by further studies. Such
exploration requires a different thinking than confirmatory data analysis –
though not less care to be taken to be aware of biases possibly introduced.
John W. Tukey, in 1980 [Tuk80], wrote:

“If we need a short suggestion of what exploratory data analysis
is, I would suggest that

1. It is an attitude, AND

2. A flexibility, AND

3. Some graph paper (or transparencies, or both).

No catalog of techniques can convey the willingness to look for
what can be seen, whether or not anticipated. The graph paper
[—] not as a technique, but rather as a recognition that the
picture-examining eye is the best finder we have of the wholly
unanticipated.”
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Computerized methods have allowed us to “see” some things that weer
impossible to see with just graph paper and transparencies, but the principle
still holds. While the approaches can (and should) borrow methods from
each other, if one does not differentiate in one’s mind clearly between
exploration and confirmation, the temptation arises to do both on one go:
to first seek for a hypothesis, and then seeing it in the data at hand, to
“confirm” it by hypothesis testing in the same. This leads to a sort of circular
reasoning and indeed a rigorous confirmation of a hypothesis would require
a separate dataset.

For example, the schizophrenia study presented in Section 4.1 was started
as exploration of subgroups of the disease, and ended with the suggestion
that individuals with the disease might have different genetic background
depending on the presence of mood symptoms[WPTH+09]. We could not
have arrived to that suggestion by performing a study that would have
required us to predefine exactly what we were looking for, but on the other
hand this study alone cannot conclusively show that what is suggested is
the case.

1.4 Overview of this work

In the work that lead to this book, I or co-workers have performed clus-
tering studies of four medical datasets from the Finnish population: 1)
schizophrenia patients and their relatives, 2) migraine sufferers from families
with several migraine cases, 3) children with autism spectrum disorders
and healthy controls, 4) a population sample of individuals assessing the
associations of temperament and various lifestyle and health measurements.

In addition, during the course of this work, I have performed various
experiments on artificial data as “sanity checks” for how well the selected
cluster scoring, validation, and replication techniques perform.

Based on these, I describe a practical process for clustering, from prepro-
cessing to postprocess visualization and statistical analysis, attempting to
guarantee that the above three points have been taken into account. Matlab
code implementing the parts of the process can be provided by the author.2

The process includes:

• preparatory analyses to familiarize the researcher with the data, iden-
tify features that suggest mistakes in the data (outliers, non-random

2One should not expect to take this code and simply run it on their data, however.
For reasons that will become apparent, a lot of such code is data-dependent. Performing
this kind of studies without at least one person who can program would be madness.
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patterns of missing data, illogical distributions of variables), help to
select variables, and to decide on missing-data handling procedures

• a mixture-model clustering process (though this can be easily, and
has in one of the studies been, replaced by another method)

• scores for selecting the number of clusters

• randomization-based analyses to ensure the stability and validity of
the clustering

• visualizations and statistical analyses to present the clustering to a
domain specialist.

This thesis is organized as follows:
Chapter 2 first gives a comprehensive description of the clustering

methods and techniques used in this work, together with references to
relevant literature. We begin by describing the pre-processing stage of data
cleaning. Especial attention is given to typical features of medical data,
such as the role of demographic and diagnostic information, and the usually
fairly large amount of missing data.

The basics of mixture model clustering and its special case the k-means
clustering method are then explained. As missing data is a concern in
most medical datasets, attention is paid for how to handle it. We describe
general solutions to the problem, and give an overview for how to incor-
porate missing data handling into the mixture model clustering methods.
Methods for selecting the number of clusters and to compare clusterings
are described. Again, we first give a general overview and then describe in
more detail the methods used in this work, namely v-fold cross-validation
and the Bayesian information criterion score for cluster number selection,
and pairwise concordance, adjusted mutual information, and Cohen’s κ for
clustering comparisons.

Finally, ways to analyze the quality of clustering are discussed. We
separate this process into two questions: whether the clusters are real,
and whether they are interesting. For the first question, we describe the
concept of cluster stability on various levels of the process, and propose the
procedure of randomly dropping individuals and variables for to assess it.
We also recommend replication in a separate dataset whenever possible. For
interestingness of the clustering, we describe some simple summarization
and visualization procedures, as well as practical considerations of working
with experts from fields other than our own.

Chapter 3 describes some original experiments on the behaviour of the
described algorithms on artificial data. The artificial data was generated
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using a model similar to that used in clustering, but with added noise and
missing data. We perform tens of test runs of the algorithm in various
conditions. The tests reported include:

1. comparison of Bayesian Information Criterion and cross-validation as
methods for cluster number selection, demonstrating that for realistic
N both give acceptably good results;

2. experiments on the observation of ”natural hierarchies”: in the pres-
ence of a cluster structure in the data the clusters observed for different
cluster number tend to form a hierarchical structure even for non-
hierarchical methods;

3. experiments on replication of clusterings in a separate data sample,
confirming that doing so can in many circumstances not only validate
our prior clustering, but also indicate the lack of a clear cluster
structure in the data;

4. a study on the effects of missing data, giving some insight into how
much of the data can be unobserved for this kind of methods to still
work; and

5. an experiment confirming that the method of randomly dropping data
rows to explore cluster stability does produce reliable results, at least
when model assumptions are somewhat met, even in the presence of
originally missing data and noise.

Chapter 4 describes the original real-data studies, successes and failures,
together with medical and methodological lessons learned. As our prime
success story, we present a schizophrenia study where clustering was able to
shed light on controversial results in medical genetics. In this study, Finnish
individuals from families with individuals with schizophrenia were clustered,
and the resulting clusters used as an alternative grouping in an association
analysis of genetic markers in known candidate genes for schizophrenia.
This study demonstrates that clustering can reveal groups with a more
homogenous causal background and thus aid in detecting, for example, the
genes involved.

As another succesful example, we present a clustering of sample of
Finnish population into temperament groups. Here, the clustering is based
on a questionnaire of adult temperament, and we show striking associations
of these clusters to a wide variety of variables about health, lifestyle, and
social status. This study demonstrates that sometimes clustering can
simplify a multidimensional characteristic of individuals while keeping intact
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all or almost all of the associations of dimensions to relevant medical
variables. Here we also demonstrate the use of a second sample to replicate
the clustering results.

We also present two cautionary stories about where clustering works
suboptimally: a migraine study where missing data proved to be a problem,
and a study on autism where cluster structure was not discovered. While
naturally of much less medical interest, from the computer science point
of view these stories are at least of equal importance to the previous two,
demonstrating the shortcomings and pitfalls of these methods.

The major contributions of this work are, besides the practical real-data
studies (Chapter 4), the practical experience gained for clustering studies
(Chapter 2) and the insights gained on simulated data into some hands-
on details of clustering algorithm behavior (Chapter 3). All simulations
presented in Chapter 3 were performed and reported by the author alone. In
the studies in Chapter 4, the author has performed all clustering, validations,
and genetic analyses for the schizophrenia study (Chapter 4.1), all clustering
and validation involved in the migraine study (Chapter 4.3), and about
half of the analyses in the temperament study (Chapter 4.2) together with
co-author Stefan Schönauer, as well as taught the method and the validity
analyses to and reviewed the results by co-author Ulrika Roine performing
the clustering in the autism study (Chapter 4.4).





Chapter 2

The clustering process

“All models are false, but some are useful.”
(George E. P. Box)

The main theme of this work is applying clustering methods to various
medical datasets. This sort of work sits firmly in the overlap of various
fields: theoretical computer science that describes the methods, the scientific
field the data is applied to (referred to by the computer scientists as the
“domain”), and the program engineering and practical data analysis skills
needed to make those two meet. We limit ourselves here to the application of
a particular family of clustering models (namely, mixture model clustering
and its special case, k-means) to a particular domain (namely, that of
certain fields of medicine). This removes us both from certain other fields
of clustering familiar to medical researches (especially hierarchical methods)
and some typical major domains familiar to clustering experts (market
research, text classifications, gene expression), and hopefully provides some
new insights to applicative computer science and the medical fields both.

When we are clustering data on a real-life medical field, we are generally
never looking for “the real subgroups in the data”. This is due to the simple
fact that most of the time, the concept of “the real subgroups” is not realistic.
Many ways to group the data meaningfully usually exist, each useful for
different purposes. In the studies described in this thesis, we are looking
for a subgroup structure that can tell us something new about the data or
the domain. A good example of this are our results in the schizophrenia
family data (described in detail in Chapter 4.1). A main result of that study
is that when we draw the line between “psychosis in general” and “core
schizophrenia in particular” differently, we find not that one categorization
being better at detecting all associations, but that different categorizations
reveal different etiological factors. Some candidate genes are associated to

11
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psychosis in general, and some to a very specific subset of schizophrenia.
Neither of these categorizations is more “true” than the other, but which
one should be used depends on the research question.

Classically, a clustering process is separated into three stages. The
names used for these stages vary; in different textbooks they have been
called, for example, “pre-processing, analysis, and post-processing” [HK06]
or “exploration, model-building, and validation” [HL01]. In the first stage,
the researcher first looks at the data, familiarizes herself with it, selects the
variables to be used, performs necessary transformations on them, and runs
initial tests to select the clustering methods and parameters to be used.
Then, in the next stage, the method itself is applied on the selected data, a
model is selected from among those produced by various parametrizations,
and the validity of the model is studied. Finally, the models are analyzed,
and scientific conclusions about the domain drawn. The process presented
in this chapter follows these phases, too.

2.1 Preprocessing stage

2.1.1 Understanding the data

In this section we describe some of the steps in the preprocessing stage.
This is a highly data-specific phase, and due to this reason we will rather
informally present some observations from the studies described in Chapter
4, rather than attempt to give a full procedure and formal descriptions.

Before any data analysis, it is necessary to get familiar with the data
enough to understand its features and peculiarities, to find possible biases,
hidden dependencies, and other sources of error (see e.g. [HMS01, HK06]).
To this end, the researcher should be aware of the basics of how the data at
hand has been collected. This includes at least: how were the individuals
sampled, when and where were various measurements obtained, how are
the measurements coded (in what units or using which classes), what recod-
ings have been performed on the variables (discretizations, normalizations,
combining classes), what types of missing data are there, and how are these
types designated in the data.

The most important distinction about the possible ways of recruiting
individuals to the study, from a clustering point of view, is whether the
data under study comes from a random sample from a population, from a
case-control sample, or from some more complex design (for example from
recruiting members of families or individuals from a particular region with
a particular disease). Many statistical methods and clustering procedures
have underlying assumptions of independence, which are violated in all but
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random sampling collection. This does not necessarily pose a problem for
the clustering itself, but it can be crucial when interpreting the results.

Before more complex analysis, we then take a look at the variable
descriptions of the data, including the ranges and possible values for each
variable, as well as annotations to describe what the values mean. From
this, the type—categorical, ordered, continuous—and range of each variable
can be figured out. For the methods used in this thesis, it is simplest
if all variables can be treated similarly, and either treated as continuous
dimensions of a real space, or as unordered classes, even if this requires
transformations. In many cases, however, this is not possible without making
the transformations so artificial as not to be interpretable. At this point, we
must also check that all variables actually match their description—meaning
mostly, that there are no values other than the valid ones.

In preprocessing for clustering it is important to identify key demo-
graphic and data-specific variables that should not end up being the major
determinants of the clustering. What these are depends on the exact ap-
plication, but in most practical examples at least a running participant
identification number in the study and row in the data matrix belong to
this category. If data has been collected in several centers or phases, any
variable identifying these will also be included in this set. Of variables
related to the individual, age and sex typically belong to this category, as
we are usually not interested in a clustering solution that reveals only such
basic truths that old people are different from adolescents, or males from
females. Depending on the application, also geographic location, ethnic
group, level of education, or other such demographics might belong here.

In addition, we might want to identify a small set of (5, at most 10)
variables of especial interest to be used in first-pass post-processing analyses
for evaluating the interestingness of the clustering. These could be, for
example, diagnoses or the most interesting symptoms. In some studies we
have also opted to making the data analysts blind to diagnostic groups
to begin with, to assure that we do not unconsciously steer the clustering
process towards something that appeals to our prior understanding of the
phenomenon.

On datasets where data missingness is expected, we can then proceed
by looking at the patterns of missingness. Data missing at random is the
exception, not the rule, in medicine. It is possible for data missingness to
carry information [LR02], for example sometimes a “missing” value signifies
that the variable cannot be recorded because it does not exist (if you do not
have headaches, the severity of those headaches is not a meaningful concept).
At this point, such missingness with information needs to be separated from
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really unknown data, for example by recoding it as a separate value.
Questions answered at this point include the following [LR02]. How

many percent of data is missing per variable? Are there variables with more
missing than recorded data? Is there a pattern to the percentages of missing
data over the variables? For example, in questionnaire data, the later a
question is on the questionnaire form, the more data is usually missing. Is
there a pattern of these percentages over the individuals, and if so, is it
related to some specific demographic variable? Any such discrepancies will
then be gone over with a domain expert, preferably with the same people
who provided the data.

After familiarizing ourselves with the missing data patterns, we then
take a look at the distributions of each individual variable. Medical variables
often have a natural minimum and/or maximum, and if the first sanity
check over annotations did not already do this, any outliers beyond these
are be recognized and either corrected by the domain experts or treated as
missing data. These natural ranges are in the optimal case provided by the
medical experts in charge of the data collection. Also values clearly beyond
the typical range of values for that variable should be recognized at this
point. How far away is “clearly” is not an easy question to answer, but a
possible rule of thumb is that if the presence or absence of one value alone
significantly changes the mean or variance of the variable, then that value
needs to be removed.

Associations to the demographic and data-specific are then looked at.
Any standard statistical test will do the job. If associations to arbitrary
features of the data, such as running IDs or centers of data collection are
found, they are reported to the domain experts before proceeding. If there
is a small number of such variables, they can simply be dropped from the
analysis, although we should obtain a good understanding of why such
associations occur. Otherwise, there is the chance that other, more complex,
associations with arbitrary features might go undetected. If there are many,
however, sometimes the domain specialist can advice us that the association
is natural and to be expected. For example, if cases tend to have a lower
ID and controls a higher one, we can proceed to look for demographic
effects for cases and controls separately, but ignore the general associations.
Where such an explanation cannot be found, it can necessary to restrict
the clustering into a subgroup of individuals, e.g. only to those from a
particular data collection center, or to cluster groups separately.

If associations to demographic variables are found, the options to correct
that include 1) adjusting the values of the associated variables by some
standard way, 2) analyzing groups (e.g. males and females) separately, 3)
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dropping the variable completely, or 4) accepting the effect as inherent to
the phenomenon and including the variable as is. All decisions to drop
data, stratify analysis, or adjust variables, are made in communication with
domain experts.

Once these basic considerations have been gone through, two major
decisions are then made: first, which variables will be used for clustering,
and second, which individuals will be included. In the studies presented here,
we excluded from clustering any variables that directly code for diagnoses of
interest. For example, in addition to the diagnosis itself, we would exclude
the variable for case-control status in a case-control dataset. After all, in
a clustering study we are usually not interested in replicating an existing
classification scheme (which a diagnosis essentially is); if we were, we would
be using classification methods instead.

Next, we want to check for redundant variables by looking at all pairwise
correlations of variables. If two variables are identical or nearly identical
(possibly apart from labeling or scale used), one of them can be dropped. If
the missing data pattern for the variables is not identical, combining the two
into a variable with less missing data than either of the original ones is also
possible—which one to use for those individuals who have both recorded
being, again, a domain expert’s choice. Such highly correlating variables
often result from features of the data collection process, for example the
same thing having been measured twice on different visits to the clinic
performing the studies or asked in separate parts of questionnaires, or
sometimes from having been both measured and self-reported. (In the
latter case, the difference between measurement and self-report can be an
interesting variable in itself.)

Once all this is done, we divide the remaining variables into two parts:
those to perform the clustering on, and those to use as comparison data for
the clustering obtained. Sometimes, a clear division of phenotype variables to
a clustering subset and comparison subset suggests itself. This, for example,
is the case in our temperament clustering study described in Section 4.2,
where the researchers were specifically interested in temperament groups
and their associations to a large set of background variables, rather than
clusters of that background. Sometimes we only leave out diagnoses and
data specific variables (e.g., running IDs, collection center information).
Sometimes to limit the amount of missing data we are forced to include
variables with at least some cut-off percentage of non-missing data.

As to individuals, sometimes the medical interest lies in finding subgroups
inside a particular diagnostic or demographic group, and the rest of the
individuals can be excluded. For example if we are interested in subgroups
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of individuals with the disease, healthy controls can be ignored (though
they can be included too to see if they form a separate cluster). It might
also be necessary to exclude individuals who have been for some reason
unable to participate fully (for example, individuals with mental retardation
were excluded in the schizophrenia study described below). Other than
that, the only exclusion criteria for individuals that we have considered is
missing data. Medical datasets often include people who originally enrolled
to the study, but did not show up for medical examinations or fill up the
questionnaires sent to them. These individuals have most of their data
beyond demographics and diagnoses missing, and thus do not provide useful
information.

In the final dataset, as a rule of thumb, the number of variables should
be a fraction of the number of individuals for most clustering algorithms to
provide stable and meaningful results. If after removing redundant variables
there still are more variables than what feels reasonable, or if a high number
of variables used fails to provide a stable clustering, we can further prune
the variables, starting from excluding variables with most missing data
and/or those with a high correlation to another variable. Various dimension
reduction techniques also could be used, but beyond simple combining of
binary variables have not been utilized in the studies reported in this work.
Such techniques have the downside of making the included variables harder
to interpret. (One should note that in gene expression studies considerable
progress has been made towards methods that are applicable even in the
case when there are many more variables than observations, for example
[Kii08]. However, in this study we do not tackle this issue.)

2.1.2 Selection of clustering method

For an overview of different clustering methods see, for example, [JMF99,
HMS01] or [HK06]. It is not easy to suggest criteria for what clustering
method should be used, beyond general guidelines of some methods being
more suitable for continuous and some for class-labeled data. All methods
come with some strengths combined with some assumptions, the violation
of which can cause unexpected and, in the worst case, undetectable errors.
As a principle, since clustering is by nature exploratory, it is crucial that
the assumptions of the model are as explicit as possible and the results it
produces are interpretable and understandable by the researches involved.

The data itself, obviously, poses some restrictions on the selection. For
example, the k-means procedure [Mac67, Llo82] is widely spread and easily
available, due to its being included in many (if not most) available software
packages for this kind of analysis. Strictly speaking, the k-means procedure
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is applicable only when the data can be interpreted as points in some
continuous (typically Euclidean) space, and when the amount of missing
data is relatively small. Hierarchical methods [JMF99] also require a way to
formulate a distance measure, and are best suitable for domains where the
data points can be assumed to form a hierarchy (as, for example, genetic
sequences can be assumed to do, based on evolution).

Mixture model methods [MP00, HJ03] require that a joint distribution
given the group the individual belongs to can be formulated. This usually
means that some explicit assumptions of distributions and independence
between the variables have to be made. Mixture model methods combine
nicely explicit assumptions with interpretability of the results, which is
the reason for why they have been used in this thesis whenever possible,
with the only “exception” of reverting to simple k-means (a special case
of mixture models) when the data consists of continuous variables and is
complete.

The selection of a clustering method might incur further needs of prepro-
cessing. For example, for many distance measures, including the Euclidean
distance, it is necessary to normalize or scale the variables so that one
dimension will not span a much higher range than some other, inadvertently
gaining more weight. As another example, the strong independence assump-
tions many models, for example the naïve-Bayes model (e.g. [DP97]) used
in this work, might call for some way to combine highly correlated variables,
to preserve some of the dependency structure of the original data.

Once the clustering method is selected, before proceeding any further,
we need to specify the process in detail. This must be done in order to avoid
problems with multiple testing. The process description should include at
least

• which clustering method is to be used,

• which variables the clustering is based on, what preprocessing will be
done on them, and how will missing values be treated,

• what score will be used for model selection among different parameters
the process requires (most notably, number of clusters),

• how will cluster validity/stability be assessed, and

• under which conditions will groups (for example, males and females)
be reclustered separately, or variables excluded from clustering.

Paradoxically, for the selection of the variables, the clustering method,
and the method for missing value handling, it might be necessary to perform
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a couple of initial runs of the algorithms on the data under consideration and
to assess the stability of the results, in order to avoid using huge amounts of
energy into providing an unstable clustering. When this is done, we should
avoid looking at the results other than stability before the final selection
of methodology. Optimally the person performing this stage should be as
blind as possible to data semantics; in the very least we should blind them
to diagnosis or case/control status.

2.2 Mixture model clustering

2.2.1 Mixtures of distributions as clustering

In statistics, one very basic method of describing data is to make the assump-
tion that the data comes from a certain model (say, is normally distributed),
and then to look for the parameter estimation of that distribution that
make the data best fit the model (or vice versa). Two groups of subjects can
then be compared by comparing these parameters and calculating whether
the differences are statistically significant or likely to have arisen by chance
alone.

In fitting of mixtures of distributions, the underlying assumption is
that the subjects come from a population of k groups with proportions
π1, ..., πk (summing to one). Each group has a similar distribution (say, the
variables for each subject come from a multivariate normal distribution)
but with different, unknown, parameters for each group. The probability of
the observed values for a particular subject are defined on the unobserved
group (termed the “latent class” in the classification context) of the subject.
The task is then to simultaneously find the distribution parameters for each
group, the mixing proportions, and the group of each subject such that the
data fit to the model is maximized. [MP00]

In the case of distributions whose parameters can be found in closed
form, and using the maximum likelihood setting as the definition for best fit,
the task can be achieved for a given k with the Expectation-Maximization
algorithm [DLR77, MP00]. The output for this algorithm is 1) the pa-
rameters of the distribution for each group, and 2) for each individual the
probability of belonging to each group (summing up to one, naturally).
These probabilities can then be used as a probabilistic (soft) clustering of
the subjects, or, when a deterministic (hard) clustering is required (as often
is the case for interpretability), the cluster of each subject can be taken to
be the one with the highest probability. [MP00]
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2.2.2 The Gaussian and Naïve Bayes models

Given an N × d data matrix Y in which all rows yj , j = 1, ..., N correspond
to a d-dimensional data vector describing one individual, the task is now
to specify the mixture model in detail and to find the maximum likelihood
estimate for it. Given a context where we assume each subject to be “really”
produced from one of the components of the mixture, we can approach
this as thinking the problem as a problem of estimation with missing data
[DLR77, MP00, HJ03].

The probability distributions used in this work are 1) multivariate Gaus-
sian distributions, and 2) the Naïve Bayes model with point distributions.
The latter assumes every variable to be a class-valued one, and indepen-
dent from all other variables given the class assignment (this independence
assumption is why it is called “naïve”, or sometimes “simple”) [DP97].

In a finite mixture of k d-dimensional Gaussian distributions, denote
for each g = 1, ..., k the mixing proportions by πg and the parameters by
µg (the mean vector) and Σg (the covariance matrix). The value of the
probability distribution function for an observation yj is [MP00]

f(yj |θ) =
k∑
g=1

πgφ(yj |µg,Σg), (2.1)

where θ = (π,µ,Σ) is the parameter vector of the model, containing
the mixing proportions π = π1, ...πk and the parameters µ = µ1, ...,µk

and Σ = Σ1, ...,Σkof the normal distributions, and φ is the probability
distribution function of the multivariate Gaussian distribution:

φ(y|µ,Σ) = 1
(2π)d/2|Σ|1/2 e

− (y−µ)TΣ−1(y−µ)
2 (2.2)

That is, as the groups in the data are mutually exclusive and exhaustive,
the joint density for observing the values of yj is the sum of the densities
for observing the same in each group, weighted by the proportions of the
groups. One can think of yj having been sampled by first sampling one of
the groups, and then sampling the values of yj from the distribution with
that group’s parameters.

For each subject j = 1, ..., N , consider the class label zj : a k-dimensional
binary vector, where zgj = 1 or 0 according to whether the j’th subject
came from the g’th group or not. These data are unknown, and to obtain
a clustering, we want to estimate them together with the distribution
parameters. For estimation purposes, we allow the estimates ẑgj to have
values between and including 0 and 1. In general, a case could be allowed
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to belong to several classes, but for the purposes of this work, we require zj
and the estimate ẑj to sum up to exactly one.

In a discrete Naïve Bayes model of k components and d variables, with
the mixing proportions of πg, denote by θ the collection of all the parameters
of the model (mixing proportions and point probabilities p(y|zj = 1)) the
probability distribution function at an observation yj is

f(yj |θ) =
k∑
g=1

πgP (y|zgj = 1) (2.3)

=
k∑
g=1

(πg
d∏
i=1

P (yij |zgj = 1))

where P (yij |zgj = 1) is the point probability of the i’th element in vector y
given that the group assignment for the individual is g.

When we assume that all individuals are independent from each other,
the value of the probability function for the whole data is simply the product
of the probabilities for the individuals:

f(Y |θ) =
N∏
j=1

f(yj |θ) =
N∏
j=1

(
k∑
g=1

πgφ(yj |µg,Σg)) (2.4)

for the Gaussian and

f(Y |θ) =
N∏
j=1

f(yj |θ) =
N∏
j=1

(
k∑
g=1

(πg
d∏
i=1

P (yji|zgj = 1)))

for the discrete Naïve Bayes case.

2.2.3 Expectation-Maximization algorithm for fitting Mix-
ture Models

The Expectation-Maximization (EM) algorithm was first proposed by Demp-
ster et al. in 1977 [DLR77]. The below follows the presentation for mixture
model clustering by Hunt and Jorgensen [HJ03].

Suppose first that the data matrix Y is complete, that is, no data is
missing. In this case, for a fixed k, we can obtain a maximum likelihood
estimate for the missing class labels and the parameters of the distribution
with a variation of the general Expectation Maximization-algorithm.

Intuitively explained, the EM-algorithm is an iterative process which
alternatively improves our current estimates of the parameters, until no
additional improvement can be made. We start by picking some arbitrary



2.2 Mixture model clustering 21

values for the model parameters1. On each iteration, the algorithm first
replaces the class labels by their expected values based on the current
parameters (Expectation-step). Then it updates the parameters using this
filled-in data (Maximization-step, meaning the maximization of the complete-
data log-likelihood given the estimates for the missing data). Due to the
properties of the model setting, this iteration cannot make the likelihood of
the observed data given the current parameters worse, and it can improve
it [DLR77]. The procedure is repeated several times, until no considerable
improvement is achieved, or the pre-set maximum number of iterations is
reached.

Denote by E[a|b](t) the expected value of a given b at iteration t. Now,
more formally, for a mixture of Gaussian distributions, the algorithm works
as follows:

Initialization: set π(0)
i , µ

(0)
i , Σ(0)

i to some arbitrary values. Set t =
1.

E-step: set the class labels to their expected values : ẑ(t)
j = E[zj |π(t−1)

i ,
µ

(t−1)
i , Σ(t−1)

i ] for each j = 1, ..., N .

M-step: calculate π(t)
i , µ

(t)
i , Σ(t)

i for each i = 1, ..., k as maximum
likelihood estimates based on Y and ẑ(t)

j .

Convergence: check if the algorithm has converged or a user-specified
maximum t has been reached. If not, increase t by one and repeat the
E- and M-steps.

The calculation of the necessary values for Gaussian distributions is
straightforward, as follows [MP00, HJ03].

The expectation for individual j belonging to class g is the likelihood
of yj given that class and the class parameters, divided by the sum of the
likelihoods of yj in each class:

ẑgj = E[zgj ] = πgφ(yj |µg,Σg)∑k
i=1 πiφ(yj |µi,Σi)

. (2.5)

The mean vector of each class is the mean of the data for all individuals
weighted by the class probabilities:

µg =
∑N
j=1 ẑgjyj∑N
j=1 ẑgj

. (2.6)

1Alternatively, we could start from an arbitrary class assignment, followed by first an
M-step and then an E-step.
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The covariance of two variables l and m in class g is the covariance of
the two variables over all individuals, weighted by the class probabilities:

σg(lm) =
∑N
j=1 ẑgj(yjl − µg)(yjm − µg)∑N

j=1 ẑgj
. (2.7)

The mixing proportions are the sums of group probabilities in each
group, divided by N :

πi =
∑N
j=1 ẑij

N
. (2.8)

Since the estimates ẑij sum up to one for each subject j, the final values
of the class label vectors ẑj can be used as the probabilities that a certain
subject belongs to a certain class, and hence, they give the desired clustering.

It can be shown that this process will always converge to a local maxi-
mum of the log-likelihood [MP00]. No guarantee about finding the global
maximum exists; in fact, in many cases a global maximum itself does not
exists, as certain pathological cases putting an increasingly narrower dis-
tribution over one data point can achieve infinite likelihoods. To counter
these problems, the algorithm is restarted and ran with different beginning
values several times, and there is a maximum number of iterations. In the
end either the most frequent (the one found the most times) or the best
(in the sense of the observed-data likelihood) of the solutions that actually
converged is picked as the ”correct” one. (Often, but not always, the most
frequent and the best solution are equal.)

The algorithm for the Naïve Bayes model works in the same way. The
expectation for the individual j belonging to class g is the likelihood of
yj given that class and the class parameters, divided by the sum of the
likelihoods of yj in each class:

ẑgj = E[zgj ] = πgP (yj |zgj = 1)∑k
i=1 πiP (yj |zij = 1)

. (2.9)

The point probability that the l’th variable y·l takes value A, given a
group assignment g, is the number of individuals with that value weighted
by their current class probabilities. 1x stands for a function that takes value
1 if x is true, and 0 otherwise:

P (y·l = A|zg = 1) =
∑N
j=1 zgj1yjl=A∑N

j=1 zgj
. (2.10)

The mixing proportions are the sums of group probabilities in each
group, divided by N :

πg =
∑N
j=1 ẑgj

N
. (2.11)
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2.2.4 Implementational details

Beginning values. In practice, it is not possible to pick just any begin-
ning values, as this would drive many probabilities too close to zero. Values
too close to zero cause both practical problems (inaccuracies in floating point
arithmetic) and theoretical ones (one or more clusters becoming empty).
Instead, we pick values that we have a reason to believe to be reasonably in
the same range as the correct ones. In the case of Gaussian mixtures, we
have used a procedure recommended by McLahlan and Peel [MP00], where
the means of each component are randomly sampled from a multivariate
distribution with the sample mean and covariance as parameters, and all
component covariances initially set to the sample covariance. (With missing
data, calculated from the available data.)

Definition of convergence. For checking for convergence, we initially
considered setting the required difference in log-likelihoods as small as
possible (to smaller than realmin in Matlab; that is, practically zero).
However, as the procedure involves some calculations with very small floating
point numbers, the log-likelihoods estimated are not accurate enough to
produce the small differences reliably. Also, after a certain change in
difference the changes in parameters are also very minimal. In practice,
such an extreme setting only serves to prolong the running time without
changing accuracy. In the end, after some experimenting, we went back to
the netlab [Nab01] default of considering the procedure converged if the
difference between log-likelihoods is equal or less than 10−4.

Number of restarts As the procedure requires an initial “guess” of either
model parameters or cluster memberships, there is inherent randomness
in it. The EM algorithm guarantees convergence into a local optimum, but
not into a global one. To increase the probability that a global one has
been find, we need to restart the algorithm from different guesses and keep
the best model found in those restarts. (Naturally, it is not possible to
guarantee that a global optimum has been found.) Instead of using a fixed
number of restarts, I find it a good idea to use an adaptive one: repeat the
process until for n consecutive repeats a model better than the best so far
has not been found. I typically use n of 10.

2.2.5 The k-means algorithm

In k-means clustering, [Mac67, Llo82, HMS01] k centers are selected and
each observation belongs to the cluster the center of which is closest. This
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can be seen as a special case of a mixture model where the cluster probability
of each observation have a value of one for exactly one cluster (and zero for
all others), and every cluster in the distribution is spherical in form.

The basic problem is to find a k-means clustering that minimizes the sum
of distances of each point to the closest center [Mac67]. If Y = (y1, ...,yn)
is a set of observations, as above, and C = C1, ...Ck is a partition of the
observations into k subsets, f some distance function, and µg the mean of
the observations in Cg, the aim is to minimize

arg min
C

k∑
g=1

∑
yj∈Cg

f(yj ,µg). (2.12)

This minimization in the general case can be shown to be NP-hard in
Euclidean space [ADHP09]. Various algorithms converging to local optima
instead of the global one are in practice used. The standard method [Llo82]
uses an iterative process very like the one described for mixture models
in general earlier in this chapter: starting from an arbitrary collection of
centers, assign each point to the closest center, and then recalculate the
centers. The assignment-recalculation cycle is repeated until no cluster
assignments change. More formally:

Initialization: Set µ
(0)
g to some arbitrary values for all clusters

g = 1, . . . , k. Set t = 1.

Update labels2: Set z(t)
gj = 1 if f(yj ,µ(t)

g ) = minh∈1,...,k f(yj ,µ(t)
h )

and 0 otherwise for all j = 1, . . . , N observations and clusters g =
1, . . . , k clusters

Update centers3: Set µ
(t)
g =

∑N
j=1(z(t)

jg yj)/
∑N
j=1 z

(t)
jg .

Convergence: If µ
(t−1)
g is µ

(t)
g for all g = 1, . . . , k, or if a user-

specified maximum t has been reached, stop the process. Otherwise,
increase t by one and repeat the update steps.

The selection of starting points will affect the outcome. Various heuristics
have been suggested for to aid in selection. In any case, like above, the

2We assume here that the distance of an observation to two different cluster centers
cannot be exactly the same. If this does not hold, the class label vectors can be checked
and ties can be broken arbitrarily, ensuring that the class label vector for individual z(t)

j

has exactly one value of one, and the rest zeros.
3We assume here that no cluster is empty. An empty cluster would lead to division

by zero and an undefined center. If an empty cluster happens, it can simply be removed
from the process.
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process is usually repeated several times from different starting points, and
the best clustering (as per the above minimization criterion) chosen.

2.2.6 Handling missing values

For a good general handbook on handling missing data in statistical analyses,
see the book by Little and Rubin [LR02].

Missing data in medical datasets

Data can be missing in a medical dataset for various reasons, leading to
different patterns of missingness. It is absolutely vital to look at the patterns
of missingness for each variable and each individual before starting any sort
of analysis, and to identify plausible processes behind missing values. In
addition to looking at simply percentage of missingness, we need to also
look at these percentages against simple demographics – region, gender,
age etc. A simple plot of the data matrix, individuals in rows ordered by
running ID, age, etc. with a black square for a missing value and a white
one for non-missing one (such as in Figure 2.1), reveals obvious blocks of
missing values.

There obviously almost always is some randomly missing data. Complete
datasets in medicine are the exception; some data missing is the normal
state of things. Blood tests sometimes do not produce a result, or produce
an obviously erroneous result, due to technical faults. An individual might
skip a question in a questionnaire by accident. Some of this type of chance
missingness is not completely random: variables have a different probability
of failing (some tests fail more often than others, questions at the bottom of
a page are skipped more often), and individuals have a different probability
of failing too (some people are more careful than others in filling out forms).

Some variables for some individuals are unmeasurable; for example,
frequency of a symptom is undefined if the person never experiences said
symptom, and questions about past pregnancies are meaningless for males.
In this case, missingness depends deterministically on the value of some
(possibly in itself unmeasured) variable. In this case, a missing value for
that variable identifies a group of individuals, far from random, and actually
carries clear medical information.

Some variables might not have been measured for everyone in the dataset
for reasons of study design. This might be, for example, because only persons
in that subset agreed to have their blood taken or responded to a particular
questionnaire, or because the test is expensive and was only applied to a (we
hope) representative subsample, or because some new procedure was only
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Figure 2.1: Matrix of the data used in the migraine study described in
Chapter 4.3, observed values in white and missing values in black. X-axis,
the 194 original variables. Y-axis, 6283 individuals in the dataset, ordered
by ID. Note the obvious non-randomness of missing data. This picture was
originally not drawn; only one with rows of the data file was used. Strong
correlations of clusters and other variables to running ID very soon called
for this one, too.
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invented when a long-term data collection process was already underway
and thus recorded only those enrolled at a later date. This leads to blocks of
missing values: the same m variables are missing for the same n individuals.

We usually have some individuals with data completely or almost com-
pletely missing. Participants in a medical study are recruited with the aim of
covering a particular group of people—for example, in a case-control setting,
we formulate a way of sampling cases (e.g. “all patients with this disease
who visited clinic a during time T”, or “all patients with the diagnosis of b
in the National Hospital Discharge Registry during time T”), and then a
way of sampling controls for the cases—but not everyone researchers contact
for interest to participate will consent to do so. It would be a mistake to
simply disregard the existence of these individuals. While methodologically,
we need to proceed with the assumption that our sample with actual data
in it is representative of the original population of intent, when interpreting
the results we also need to keep in mind that the people who declined to
participate probably did not necessarily or even typically do so by random.
For example, those worst affected by disease are also more likely to decline
because the disease itself prevents or discourages them from participation.

In longitudinal studies, variables collected early in the study are usually
more complete than those collected late, due to individuals dropping out
of the study, losing contact to the researchers, or dying. In this case, the
missingness proportion of a variable correlates to the time of data collection.
Similar pattern can often be observed in questionnaire studies: the further
towards the end of a questionnaire the variable was asked about, the more
people have gotten bored with the form and stopped filling it in. Again, the
assumption that the people who drop out or do not finish a questionnaire
do so by random is usually necessary to simplify analyses, but nevertheless
not valid.

The cases above mostly describe a situation where the missingness of
values is a “feature, not a bug”, but data can also be missing by error.
Random failures of laboratory tests can be considered to be in this category.
In addition, though this is changing, medical data is practically always
obtained not by instruments feeding directly to a computer, but by paper
questionnaires and manual laboratory tests, which are then coded to an
electronic format by an error-prone human being. This can produce not only
errors, but also missingness, if the coder accidentally puts in meaningless
values or skips some individuals.

A specific case of user error causing missing data is a “file-matching
error”, where coding has been done in separate stages (either by different
individuals or at different times or both, sometimes even using different
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software), and when matching those stages an error occurs such that variables
are not matched correctly. This leads to a data matrix where a particular
variable occurs twice (or more times), with each individual having a missing
value in one occurrence and their correct value (possibly also missing) in
the other, depending on which patch they were coded in.

Many coding errors can be fixed fairly easily if noticed early enough.
Recognizing them only after analyses have been started or done typically
means the necessity to redo the whole thing.

Basic approaches to handling missing data

Basic approaches to handling missing data can be roughly categorized into
three: ignore missing data, fill it in with some “guesstimate”, and include it
in the model as is [LR02].

Ignoring values that have missing data work for some applications, where
required model parameters or scores can be calculated based on existing data
only. Effectively, this equals to only considering the marginal distributions
of observed data [LR02]. This method is generally not practical if the
proportion of missing data is high, or if the missing data carries a lot of
information which is thus destroyed. Hence, it is usually not practical in
complex diseases applications.

Possibly the most typical approach to missing data in medical studies is
to impute it. Imputation refers to the practice of replacing missing values
by some estimated values [LR02]. As simplistic schemes, for example mean
value of the variable or the mean of a group of similar individuals (same
age group and sex, for example) could be used. In the case of a missing
questionnaire item the mean of the answers of the same individual to similar
questions might be appropriate. Various more complex schemes based on
for example regression on other, observed items, can also be used (see for
example [TCS+01, LR02])

Shrive and colleagues [SSQG06] analyze various methods of imputation
in a 20-question depression scale, for fairly simple scenarios of missingness.
While basic statistics such as means and SDs could be regenerated from
imputed data, the best method analyzed (multiple imputation) had mis-
classification rates (compared to full data) for depression between 5 and
10 percent, depending on the scenario. Note that this mis-classification
is incurred by the missing data alone, and for fairly simple missing data
assumptions.

The third alternative is to include missing data in the clustering model.
This is can be done by at least two different ways: treating missing data
as an additional value for the variable (applicable when the variable is



2.2 Mixture model clustering 29

categorical), or trying to learn the missing values at the same time as the
clustering assignment (works well in the EM context, see below). Wagstaff
[Wag01] has also suggested a modified KSC algorithm that treats variables
with missing values as constraints on a clustering performed with complete
variables; however, as it is usual that all or almost all variables have missing
data, this approach is not practical for complex diseases analysis.

Whatever approach we end up choosing, when drawing conclusions from
the results, it is necessary to keep in mind that some data was originally
missing. It is important to, as far as possible, flag any originally missing
data [TCS+01, Wag01], and take care to analyze clustering results with
regards to their dependency on data missingness.

Methods used in this work

The following is based on [GJ94] and [HJ03].
In the discussion in Chapter 2.2 of the EM algorithm for the mixture of

Gaussian distributions or discrete the Naïve Bayes model, we considered
a situation where we have no missing data in the initial data set, that
is, the only hidden data are the class labels of the model setting. The
EM-algorithm, however, can also be used in situations where data is missing
from some of the subject vectors yj .

In this case, the expected values of group probabilities can be calculated
as

E[zij ] = πiφ(yj,obs|µi,Σi)∑k
g=1 πgφ(yj,obs|µg,Σg)

(2.13)

where yj,obs are the observed values of the j’th subject. These calculations
are done using the appropriate marginal distributions and pose no great
problems.

Concerning the other necessary calculations, the idea immediately sug-
gests itself that the missing values in Y should also be replaced by their
expected values given the group parameters for the calculations in each
group. The conditional expectation for a variable m, missing for sub-
ject yj , supposing that it originates from the g’th mixture component
(E[yjm|yj,obs,µg,Σg]), can be calculated for arbitrary normal distributions
by the sweep operator (see [HJ03, LR02]). Indeed doing so will lead to
unbiased estimates for µg [HJ03].

Doing so in this straight-forward way will force many values artificially
close to the means, and thus the calculations would underestimate the
covariances [HJ03]. The bias for variables m and l is known to be (N −
1)−1 ∑N

j=1 σlm|obs,j , where σlm|obs,j is the covariance of the observed values
of the variables m and l when yjl and yjm are both missing, and 0 otherwise
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[HJ03]. Intuitively, the covariances must be increased by the amount
of covariance that is not explained by the observed variables to avoid
underestimating them.

In practice, it is not reasonable to calculate all the values exactly, but on
each E-step calculate the sufficient statistics for each component distribution.
The calculation can be sped up by using a so-called matrix sweep operator
for deriving the conditional expected values and residual covariances. Even
then, the procedure is time consuming for large amounts of data.

A MATLAB implementation of the procedure was programmed by the
author for the analyses presented in this book, based on the publicly
available netlab package [Nab01]. In a class data case when using Naïve
Bayes models, I have handled missing data by an additional label rather than
any other imputation scheme, prior to or during clustering. The additional
missing value label allows the model to adjust to data that is not missing
by random.

2.3 Selecting the number of clusters

2.3.1 Overview

Most clustering methods in general use, including all those used in this
work, require the number of clusters to be passed to the basic algorithm as
a parameter. Selection of the number of clusters based on minimizing the
same criteria that one uses to select between models of the same number
of clusters is generally not possible. Namely, these criteria rely directly or
indirectly on the average distance between the closest cluster center and
the data points, and hence tend to go to zero as cluster number approaches
the number of data points.

Hence, the question whether a real cluster structure exists in a data
being clustered, and if so, how many clusters are there, is of fundamental
importance in real-data clustering studies. Various validity indices have
been developed to answer this question; for a good overview see, for example,
[BSH+07].

Generally, these measures can be divided into three types: internal,
relative, and external [BSH+07]. Internal measures are such that measure
some quality of the obtained clustering itself, for example the Silhouette
index [Rou87, GB03], which measures how compact and separate the ob-
tained clusters are, or the Bayesian Information Criterion [Sch78], a score
for selecting between models of different parameters based on data likelihood
given the model and a penalty score for model complexity.



2.3 Selecting the number of clusters 31

Relative measures compare alternative clusterings of the same data
with different subsets of the data. For example, stability schemes where
clusterings obtained on partial data are compared [LRBB04] and other
cross-validation procedures [Smy96] fall into this category (see also Chapter
2.5.2). External measures rely on the comparison of the obtained clustering
to some “golden standard” and as such are usually only relevant in method
development [BSH+07], as when the correct classification solution is already
known, clustering is rarely needed.

In addition to exact scores, various visual aids have been suggested. Such
methods are based on looking at scores or other measures of the alternative
models and identifying a point where the rate of improvement between
subsequent cluster numbers changes, as first suggested by Thorndike in 1953
[Tho53].

In this work, we have used two methods in particular, namely the
Bayesian Information Criterion (BIC) [Sch78] and the 10-fold cross-validation
scheme [Smy96]. These scores are described here in detail; for experiments
comparing the two, see Chapter 3.2.

2.3.2 The Bayesian information criterion

A number of scores have been developed for selecting between clustering
models based on the idea that a model should be scored by minimizing the
error between the data and the model plus a penalty on the complexity
of the model. A complex model that fits the data perfectly will have zero
error, but a big penalty on the complexity, while a simple model might have
a large error, but still score better because of the complexity penalty being
low.

The Bayesian information criterion [Sch78] is suitable for selecting be-
tween models that can express data likelihood given the model, or where
the model errors can be assumed to be normally distributed. The basic
form of the BIC score is

−2 lnL+ o ln(N) (2.14)

where L is the likelihood for the model, o is the number of free parameters
in the model, and N is the number of data points. The first term is often
called error, and the second one penalty.

For Gaussian mixtures, the number of free parameters is

o = kd+ kd(d− 1)/2 + (k − 1) (2.15)

where d is the number of variables in the data and k is the number of
components. The first term in the number of parameters comes from the k
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cluster centers of dimensionality d, the second term from the k covariance
matrices, and the third from the cluster probabilities (the −1 is there
because once all but one of them are known, the final one is fixed).

For a Naïve Bayes mixture model we have

o = k
d∑
i=1

(ai − 1) + (k − 1) (2.16)

where k is the number of clusters, d is the number of variables, and ai is
the number of possible values for the i’th variable. The first term in the
number of parameters are for the k probability tables for d variables (−1,
because once ai − 1 probabilities are fixed, the last one is known), and the
second term is for the cluster probabilities.

In the case of k-means, which does not directly produce a likelihood
estimate for the data, the BIC score can still be used if we treat the clusters
as spherical Gaussians [CG92].

Like for many other scores for cluster validity and/or similarity, it is
not always easy to clearly describe what value of BIC is “a good one”, as
the range of the values is greatly data-dependent. However, this is not a
limitation in the case of this work, since we only use BIC to compare models
of the same class built with the same data, and hence it is enough to see if
one score is bigger or smaller than another.

2.3.3 Cross-validation

Another commonly used way to address the problem of over-fitting is that
of cross-validation [Smy96, MP00]. In v-fold cross-validation, the dataset is
partitioned to v non-overlapping groups of equal sizes at random [Smy96].
One partition at a time is designated as the test set and the rest of the
data used as the training set. Models parameters are estimated on the
training set, and then evaluated on the test set. For example, the average
distance of the points in the training set to the k centers in the learning
set is calculated for k-means and the data likelihood of the test set given
the model learned on the learning set is calculated for mixture models.
Alternative models of different number of clusters are learned with each
training dataset. The sums (or averages) scores for each number of clusters
are then compared, and the best one chosen as the number of clusters.
In Monte-Carlo cross-validation, repeated partitions of the same size are
constructed at random, with the possibility for overlap allowed [Smy96].

The idea is that as long as the model reasonably can represent the
underlying distribution or complete object space from which the samples



2.3 Selecting the number of clusters 33

are drawn, the likelihood of the test set should also remain high, while if
the model overfits to data, it might be very good on the training set but
will fail on the test set, because it has adjusted to the outliers. In practice,
we have used v = 10 and number of clusters from 1 to 12 with success.

2.3.4 Visual aids

In addition to scores, various visual aids have been used to figure out the
correct number of clusters. The most common of these is the so-called
“elbow criterion”.

As stated above, for most of the clustering methods in common use it
holds that by increasing k one can always improve on the goal function
(until k = N). For example, in k-means clustering, by increasing the number
of cluster centers, the optimal sum of the distances of the points to those
centers will decrease, and in mixture model clustering the overall data
log-likelihood decreases if we introduce more components.

However, this change tends to be rapid in the beginning of this process
of increasing k, while after a certain point adding more clusters will result
in only a slight change. Looking at the plot of the goal function, one can
often identify a point where an initially rapid decrease in the function to be
minimized flattens off. Looking for such a point and taking it to represent
the correct number of clusters is titled an “elbow criterion”. (The idea was
introduced by Robert L. Thorndike in a humorous speech “Who belongs in
the family?” in 1953 [Tho53], though he introduces it as something to base
a score on, freely admitting he could not actually achieve that.)

Obviously, this method is far from foolproof: the elbow might not exist,
but instead we observe a smoothly flattening curve, or there might be more
than one elbow. However, it does always make sense to look at not just the
minimum value of whatever score is being used, but also the raw values of
the goal function and the score for each k tested. It can easily happen that
a score suggests a particular number of clusters, but looking at the actual
goal function one sees a plateau rather than a dip around this point, in
which case also the adjacent numbers should be considered as a possibility.
In the scope of this work, we have always looked at the goal function plots,
but not really utilized the elbow criterion as a method to select the number
of clusters.

In addition to looking at the goal function, we can look at other measures
describing the clustering solutions. In the studies of this thesis it turned
out to be useful to examine the similarity between the clustering solutions
for subsequent values of k. See Chapter 3.3 for more discussion and Figure
4.10 for an example.
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2.4 Comparing clusterings
In the course of clustering, we often have to compare two alternative
clustering models for the same data to find out if they are similar or
not. For example, we might want to ask if two models obtained from
different starting points for an algorithm are the same or similar, or if the
clusterings obtained for different values of k resemble each other or not. In
stability analysis (see next section) we want to know how much a clustering
obtained with partial data differs from one obtained with full data, and in
replication studies we want to compare cluster labels obtained based on
the model learned on one dataset to those obtained by a model learned on
an independent dataset. Sometimes we also want to compare a clustering
result to some known classification, in medicine typically diagnoses, and in
experiments with artificial data to the known “correct” reference clustering.

Various scores have been developed for comparing two clusterings based
on the labels they give for individuals; for an overview see, for example,
[Mei05]. These have been roughly categorized into three varieties [VEB09]:
pair-counting, set-matching, and information-based.

2.4.1 Pair-counting measures

Pair-counting measures look at all pairs of items (individuals) in the dataset,
and count the times when the two items are, or are not, in the same cluster in
each of the clusterings [VEB09]. Four counts are obtained when comparing
clusterings C and D:

• N11: the number of pairs that are in the same cluster in both C and
D

• N00: the number of pairs that are in a different cluster in both C and
D

• N10: the number of pairs that are in the same cluster in C, but in a
different cluster in D

• N01: the number of pairs that are in a different cluster in C but in
the same cluster in D.

Based on this counts, various scores can be formulated to measure the
degree of agreement between C and D. The possibly most intuitive of these,
the “pairwise concordance” or the Rand Index [Ran71] similarity measure
counts the times the clusterings agree on a pair out of all possible pairs:

SPC(C,D) = N00 +N11
N11 +N00 +N10 +N01

(2.17)
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The problem with this measure is that while the score is one if and only if the
two clusters exactly agree, it does not in practice ever reach zero; in fact it
tends to concentrate on a narrow interval close to one [HA85, VEB09]. The
expected value for a random clustering varies with the clustering parameters
(N , k, mixing proportions). This expected value can be calculated, and
adjustments have been suggested based on it [HA85], scaling the value
between 0 and 1, with a baseline of 0 for similarity of random clusterings,
independent of k [VEB09].

Another pair-counting score is the Jaccard Index [BHEG02]

SJI(C,D) = N11
N11 +N01 +N10

(2.18)

This index leaves out of consideration the case where both clusterings assign
the pair to different clusters. This can be argued to be appropriate in the
case where there are numerous clusters and the case of two items belonging
to a different one is not very informative. As an example, in gene expression
studies the result that two genes do not share an expression pattern could
be considered to be of little interest.

2.4.2 Set-matching methods

Set-matching based scores compare the clustering labels directly by counting
the contingency table nc,d of clustering labels where c = 1, ..., kC and
d = 1, ..., kD are the clustering labels of the two clusterings C andD[VEB09]:

Label in C
1 2 . . . kC total

Label in D
1 n1,1 n2,1 . . . nkC ,1 nD1
2 n1,2 n2,2 . . . nkC ,2 nD2
. . . . . . . . . . . .
kD n1,kD n2,kD . . . nkC ,kD nDkD
total nC1 nC2 nCkC N

Many standard statistical tests (for example, the χ2 test) for testing
significance of the deviation of a cross-tabulation from the null hypothesis
that the table is produced by two independent random variables (see e.g.
[HL01]) could also be applied to this table. It is, however, obvious that two
alternative clusterings produced with the same method of the same data
cannot be independent, so the meaning of this kind of statistical testing is
somewhat unclear when comparing clusterings with alternative parameters.
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In comparing clusterings of replication samples (see Chapters 2.5.3 and 3.4)
the statistical question of independence becomes more valid.

Many scores for comparing cross-tabulations (for example mis-classification
rates or rater agreement measures) assume that a clear relationship exists
between labels in C and those in D [HL01, MH01]. In clustering, cluster
labels are typically not semantically meaningful or fixed, and so for exam-
ple “cluster 1” in C cannot be assumed to be the equivalent of “cluster 1”
in D. For many scores this difficulty can be overcome by looking at all
possible ways of matching up the labels in C and D and taking the maxi-
mum/minimum (whichever is appropriate) over those [MH01]. In clustering,
since k is typically fairly small for both C and D, an exhaustive search over
all possible mappings is usually possible.

For example: let K be the maximum and K ′ the minimum of kC and
kD, and F the set of all injective mappings f of {1, . . . ,K} into {1, . . . ,K ′}.
The Meila H-index [MH01] is then defined as

SMH(C,D) = 1− 1
n

max
f∈F

K∑
g=1

ng,f(g) (2.19)

or, in other words, the mis-classification rate minimized over all possible
ways to associate the clusters in one of the clusterings to the clusters in the
other.

As another example, pertaining to the domain of the real-data studies in
this work, Cohen’s κ [Coh60] is a score often used in psychology to compare
two “raters” or classifiers. It can be defined for clusterings in the same
way as Meila’s H above. Note though that Cohen’s κ is only valid when
kC = kD = k. Let f : {1, ..., k} → {1, ..., k} now be a bijection telling
how clusters in C are matched with clusters in D. Define the expected
probability of agreement between two classifications given f as

p(a|f) =
k∑
g=1

(
nCg
N

nDf(g)
N

) (2.20)

that is, the probability of agreement given the marginal distributions of the
classifications. Cohen’s κ in the clustering case is defined by:

SCκ(C,D) = max
f∈F

∑k
g=1(ng,f(g)/N)− p(a|f)

1− p(a|f) . (2.21)

The first term
∑k
g=1(ng,f(g)/N) of the numerator tells the proportion of

observations clustered according to the pairing f , and F is the set of all
possible bijections f .
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One problem with this kind of measures is defining what constitutes a
good similarity result, and what does a certain difference between observed
values mean. For example for Cohen’s κ, based on simulations, it seems
not possible to give one good cut-off value for what is an “acceptable”
result [BQMR97]. In literature, various rules of thumb such as 0.6 for
“substantial” and 0.8 for “almost perfect” agreement [LK77] have been
suggested. Like Bakeman and colleagues [BQMR97], we suggest using such
high values of Cohen’s κ as indicative of the presence of similarity, but
avoiding comparisons of models based on values that both make the cut-off
(considering for example the value of 0.85 as “significantly higher” similarity
than 0.75).

2.4.3 Information-based measures

Finally, two clusterings can be compared based on their mutual information.
Let

p(g, h) = ng,h
N

(2.22)

be the joint probability of cluster label g in C and cluster label h in D, and
similarly let the probability of cluster label g in C be

p(g|C) =
nCg
N
. (2.23)

Here ng,h is the number of observations having cluster label g in C and
cluster label h in D, and nCg is the number of observations with label g in
C, as before.

The mutual information of two clusterings is defined as the mutual
information between the associated random variables [CT91]:

SMI(C,D) =
kC∑
g=1

kD∑
h=1

p(g, h) log p(g, h)
p(g|C)p(h|D)) (2.24)

MI is non-negative and takes value 0 if the two clusterings are independent
(p(g, h) = p(g|C)p(h|D) always). Otherwise, if logarithm of base 2 is used,
it can be thought of as a measure for how many bits of information knowing
the clustering label of an item in C reveals of its label in D (or vice versa;
MI is symmetric). [CT91]

The upper limit of MI depends on the entropies of the two clusterings—in
practice, this means, on N and k. Hence, it is not immediately intuitively
usable for figuring out how close to equal two clusterings are. This can be
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avoided by normalizing the score, for example according to [SG03]:

SNMI(C,D) = SMI(C,D)√
H(C)H(D)

(2.25)

where H(C) is the entropy of C:

H(C) = −
kC∑
g=1

p(g|C) log p(g|C) (2.26)

(using the same logarithm base as for the mutual information, naturally).
Vinh and Bailey [VEB09] observe that while the theoretical baseline

of the (normalized) mutual information is zero, this is rarely achieved for
random clusterings when k exceeds N/100, because by chance the clusterings
will resemble each other. To counter this, they calculate the expected value of
the Mutual Information between two clusterings with the observed marginal
counts

E[I(MC,D)] = E[I(M)|nc1 . . . nckc , n
d
1, . . . n

d
kd

] (2.27)
Here M simply denotes any contingency table consistent with the marginal
counts. Based on it, the normalized Mutual Information can then be
adjusted for the expected value as follows.

SAMI(C,D) = SMI(C,D)− E[I(MC,D)]√
H(C)H(D)− E[I(MC,D]

(2.28)

This for the case where the normalization is based on the square root of the
entropies; other normalization possibilities exist [VEB09]. This measure is
called the Adjusted Mutual Information or AMI in the following.

AMI has the desirable property that it it takes value of 1 if and only
if the clusterings are exactly the identical, and the value of 0 when the
mutual information between the models is what you would expect by chance
[VEB09]. As the normalization and the adjustment are both monotonic, two
values of the AMI can be directly compared just like two values of mutual
information; higher value implies higher similarity.

2.5 Cluster validation

2.5.1 Validity

By validating a clustering we mean, in a loose sense, the procedure of
evaluating the results of a clustering algorithm [HBV01], especially when
the aim is to do so in a quantitative and objective manner [RLBB02]. The
main questions are:
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• Are the clusters real, in the sense that they describe an actual structure
in the data or in the population from which the data was sampled,
whichever is appropriate?

• Are the clusters interesting, in the sense that describing the data as
clusters benefits the goals of the domain researchers?

An example of a clustering that is real, but not interesting, is one that
differentiates between males and females in a sample, or other division along
known groups. Examples of clusterings which are interesting, but not real,
can be obtained from a random clustering; the human ability to see patterns
everywhere is amazing.

The question of whether a clustering is real can be approached by various
measures of clustering stability [HMS01, HK06]. As already mentioned in
Chapter 2.3, such validation can be based on internal, relative, or external
features of the data.

If we assume that we have sampled every individual in the population of
interest, the question whether a structure really exists can be answered by
scores used for cluster number selection (see Chapter 2.3) by comparing the
trivial solution of all individuals in one cluster to other solutions. However,
in medicine (and many other fields of science) this is usually not the case,
and we have to answer the harder question of whether the obtained clustering
corresponds to something real in the underlying population; this is where
the concept of stability becomes relevant.

The interestingness of a clustering will usually be established by a
domain specialist, with the help of various visualizations and statistics (see
Chapter 2.6.2). To avoid over-estimating the value of the clustering because
it seems interesting, the question of validity in the “reality” sense must be
established before looking at interestingness.

2.5.2 Stability

Cluster stability refers to the variability (or lack of it) in clustering solutions,
when the process is repeated. In practice, the term can refer to four different
concepts.

One, there is the stability related to the clustering algorithm: whether
consequent runs of the same algorithm will result in similar results. In many
clustering algorithms, there is some randomness involved; for example in
the case of k-means and mixture models via the EM algorithm, one has to
pick the starting point at random. In some other algorithms randomness
can be introduced by the process. For example, in hierarchical clustering
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the methods require the selection of a pair of clusters based on a distance
measure, and ties are usually broken at random.

Several restarts should be performed with different random initializations
and random choices; standard practice is to report the best of these as the
result [HMS01, HK06]. However, in the presence of a clear, real cluster
structure the vast majority of these subsequent runs tend to result in
the same or similar solution. This phenomenon is the first meaning of
“cluster stability”. While such stability cannot be considered proof of a real,
interesting cluster structure, the absence of such basic stability should lead
to doubts of the presence of such a clustering, assuming one has no reason
to doubt the basic applicability of the clustering algorithm used to the data
at hand.

We have found that in practice (see studies reported in Chapter 4), for
both k-means and mixture model clustering, 10–20 random restarts for
each number of clusters is sufficient to establish this sort of stability in the
presence of a strong cluster. These restarts are usually performed in any
case to search for the best solution for the particular number of clusters and
so analyzing this kind of stability causes no additional time requirements.

Second, stability can refer to the similarity of clustering results obtained
when individuals are randomly removed from the dataset. If randomly
removing even a small number of individuals tends to change the clustering
results a lot, this suggests that the original results are highly dependent on
particular outlier individuals, which is usually not the desirable case.

This sort of analysis requires a high number of re-clusterings with subsets
of the data. We have found it a good and informative practice to randomly
drop subsequent tens of percent of individuals (keeping 90, 80, 70, ... percent
of the original rows, down to 10 percent), and to perform 10 separate random
drops of each size, using as k the number of clusters the full data suggests.
The clustering labels obtained on these alternative models are then compared
to ones obtained with full data. This process is similar to Monte-Carlo
cross-validation for cluster-number selection [Smy96], but instead of using
it to select the number of clusters, we use it to assess the stability of a
clustering solution.

A simple plot of the average similarity for each sample size (for any
measure that seems suitable, see Chapter 2.4) will establish the cluster
solution dependency on particular individuals. A good result is one where
the similarity starts to drop clearly only when the proportion of removed
individuals is of such a size that it is likely that most members of a particular
cluster have been removed (hence, dependent on the minimum cluster size).
Similar analysis can be performed for dropping variables.
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Third, “real” clustering structures are usually stable relative to changes
in the model parameters, most notably in the case of this work, changes in
cluster number k. A true clustering structure in the population often (though
not necessarily quite always) leads to clustering solutions of subsequent
k being hierarchical refinements of each other, and hence clusterings of
different k resembling each other (see Chapter 3.3 for observations of this
in simulations).

Since clusterings for subsequent k are in any case obtained in the process
of deciding k, it is easy to look at similarities between these different models.
In the absence of similarity, more care needs to be taken in selecting the
number of clusters, and the question whether the clustering actually is “real”
must be carefully considered, while in the presence of similarity k can be
more freely selected from the models that score close to best, and some
confidence can be gained by the clustering being something other than
arbitrary.

Fourth, “stability” might refer to stability in an actual replication study;
this is discussed in the next subsection.

2.5.3 Replication

Clustering is sometimes thought of as partitioning a set of objects that,
implicitly or explicitly, are thought to cover the whole object space. The
goal is defined simply as obtaining a good partition of the objects at hand.
However, in reality, at least in medical sciences, most clustering studies are
performed not to obtain a good partition of the individuals in the sample,
but with the hope that such a partition could reveal something about an
underlying, unmeasured, structure in a population from which that sample
was drawn. In natural sciences in general, the replication of results in a new
sample from the same or similar population is considered the ultimate test
for whether the results represent facts.

The idea of replicating clustering studies is as such hardly new: Ketchen
and Sook mention this idea in their paper on application of cluster analysis
in strategic management research [KS96], referring as far back as to a study
in 1982 where it has been done. They also comment, however, that obtaining
second samples can be difficult or even impossible.

Despite the practical difficulties, whenever a second sample can be ob-
tained, replication remains the method of choice also for validating clustering
results of population samples. Given datasets A and B, a simple way to
approach the replication is as follows:

• Make sure all normalizations, data transformations, and missing data
imputations are done in the exact same manner in both datasets.
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• Learn a clustering model MA and a clustering CAA using dataset A,
exactly as if you would if B did not exist.

• Similarly, obtain a clustering model MB and a clustering CBB using
dataset B.

• Assign a cluster to every individual in A using model MB (resulting
in clustering CAB),

• Assign a cluster to every individual in B using model MA (resulting
in clustering CBA ).

• Now treat CAA ∪ CBA and CAB ∪ CBB as two alternative clusterings over
the combined sample. If the clusterings reflect a true cluster structure
in the population, they should be similar (though rarely the exact
same).

When the number of clusters inMA andMB is different, we can additionally
compare not only the best models for both, but the models with the
corresponding number of clusters for both cases, resulting in a total of three
comparisons of similarity.

Since it is usually the case that the clustering study on the first dataset
is already complete when the second sample is obtained, we must take
care that the preprocessing phase is replicated properly. For example, if
variables in sample A was discretized into five classes using percentiles
from sample A, it must be considered whether the correct solution to use
these same boundaries in discretizing B, instead of using a separate set of
boundaries obtained from the second sample. The argument for this is that
the boundaries are somewhat arbitrary and might be affected by outliers,
and we are trying to replicate the clustering, not the percentiles. The best
way, naturally, would be to use boundaries from the combined sample, but
this would require repeating the clustering on A.

Please see Chapter 3.4 for an example showing that replication can not
only separate between clusterings of different populations, but also detect
the case where clusterings are erroneously detected in a population where
no subgroup structure exists, and Chapter 4.2 for a study where replication
was used.

2.6 The final model

In the end of a clustering process, we arrive to one (or a few) models that
we then consider the “true” one. We then analyze what that model tells us
about the data or about the population where the data was sampled from.
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2.6.1 The selection of the “final model”

In a practical data analysis situation, sooner or later we have to fix one
model, or at most a handful of models, as the final clustering, based on
which conclusions of pertaining to the domain can be drawn. Clustering is,
by nature, exploratory data analysis. It does not render itself easily into
formal hypothesis testing setting, and the concept of correction for multiple
testing does not always easily apply.

The strict approach is to require that the selection process is fixed exactly
beforehand, in order to avoid biases caused by the researcher’s preferences
for results. We should indeed strive to write down the process by which
this selection will be done in the beginning of the process and during it
document all steps and any changes. In the very least, we must fix which
score will be used for model selection, e.g. to select between different k.

I have, however, yet to see any analysis process on non-trivial data where
at least one detail would not have been changed during the analysis. Typical
reasons for such changes include realizing too late that known subgroups
(e.g. males and females) have different data ranges and so should probably
be clustered separately, or finding out in the middle of the process that
clustering solutions for k = 2, ..., 4 have practically equal scores. In such
cases, it makes no sense to stick to a predefined process that does not fit
the requirements of the data.

Based on these experiences, to blindly choose the best model (k) based
on a score does not seem advisable. Instead, we should look at the scores
and consider all models that have a score close to the best. As shown in
Chapter 3.3 it is typical that clusterings into subsequent k are refinements
of each other, and when this holds, it can be argued that one of them is not
any truer than the others, but that one may freely choose the detail level
that provides best or most thought-provoking insight into the medical field
under study.

2.6.2 Visualization and statistical analysis

Once a model has been selected, we face the tasks of explaining and inter-
preting it. First step of this process is to gain a reality check for ourselves;
the last step is to explain the final model in a scientific article or presentation.
These steps and those in between require all sorts of visualizations and
statistical analyses to describe the groups identified.

It is obviously impossible in the scope of this work to list all possible
ways, or even all ways ever so far used, to present a clustering solution.
In addition, a single correct way for visualization does not exists, but the
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correct way depends on what is being presented to who. Next we describe
some simple approaches. See, for example, [TSK06] for more material on
visualization.

In the first stage, we want to gain insight to the clustering solution
at a high level. We can start with this with simple tables: number of
individuals in each cluster, and the breakdown of demographic and “im-
portant” variables such as gender, diagnoses, etc. in each group, giving
proportions for categorical and mean and SD for continuous variables. Bar
charts and boxplots will help in presenting this work to those who prefer
visual representations at this stage. At this point, we also perform certain
reality checks: we look at things like running ID, order in data matrix,
family numbers, and percentages of missing data per individual to see if the
clusters seem to associate to any of these. Plotting the data into the first
principal components can help to see how clear the separation of the clusters
is, though when the dimensionality reduction is an order of magnitude or
more, a lack of separation in the first few dimensions does not necessarily
mean anything.

The aim of this stage is to be able to describe the clustering in basic,
concrete terms, such as: we have k clusters, with π1, ..., πk percent of the
individuals in each cluster, males and females do / do not separate into
different clusters, individuals in cluster g tend to be older/younger than
others, individuals with this-or-that diagnosis cluster separately from /
together with those of another one. We will, hopefully, be able to say that
the clustering is not directly dependent on out-of-domain variables such as
running IDs or non-informative missingness status.

The second stage of looking at the solution is to look at all variables
in the dataset (both those on which the clustering is based on, and any
other information), and see how they associate to the clustering. Tables
with means and SDs or proportions (whichever is appropriate) as well as
a bar graph or a box plot are produced for each variable. In addition to
the values for each cluster, we should include similar figures / graphs for
the whole data, for comparison. We then need to go through all these and
noting down which characterize each cluster. In addition to observed values
of the data, we also look at percentages of missing data broken down per
cluster.

This is a tedious task, especially when the number of variables is large.
Due to missing data, special value concerns, the need to specify what type
each variable is, and so forth, a special script or program to allow for such
special cases and to print out all the information in a format suitable for
this particular dataset is usually necessary, instead of using a general data
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analysis program.
In addition to providing statistics and visualizations, we would strongly

prefer such a program to automatically call our attention to the ‘most
significant’ or ‘best characterizing’ variables. Unfortunately, the question of
how to assess the significance of the association of a variable to a clustering
is not easy to answer by standard statistical methods, because the concept
of independence is not clear where we have specifically tried to construct a
clustering that separates the individuals. Only when the variables analyzed
at this stage are clearly separate from those that the clustering is based on
(for example, analyzing the association of childhood social class with adult
temperament, see Chapter 4.2), the use of simple p-values with conservative
multiple correction can be completely justified as a means to confirm that
an association of a variable to the clustering is statistically significant.

Due to the fact that it is rare that researchers collect data that they
do not primarily believe to have something to do with the phenomenon
of interest, we face a lot of gray area when trying to answer the question
whether two clusters “significantly differ” from each other regarding a
particular variable. One solution is to pick a suitable statistics (for example,
a χ2 test for contingency tables, a t-test for independence of means [HL01]),
and simply use the order of variables to tell which of them are the most
important for that cluster, without drawing further statistical conclusions.

Sometimes it is not individual variables we are interested in, but patterns
of variables. Especially when describing cluster centers, we want to get
some over-all idea of how the variables go together. A table can help in
this for those who are good at reading them. As visualization, we have
found the rarely used starplot (see Figure 4.8) of good use, because of the
(admittedly fairly subjective) ease of spotting patterns without the (also
subjective) distraction of variables catching attention differently depending
on their relation to the left / right / center of the graph (or table).

After this stage of analysis, we at least to some degree can describe the
clusters in terms of individual (clustering and background) variables, such
as whether clusters differ on amount of missing data, what variables have
different statistics between clusters, and which variables for each cluster are
the ones that separate them.

At this point, the research group has very probably developed nicknames
for the clusters, such as calling some “the elders” and another “the psychotic”.
As it seems to be in practice impossible to force everyone to talk about
e.g. cluster A, B, and C all the time (if we try, we will find ourselves going
“Who are they again?” “The urban businessmen.” very soon), it is a good
idea to check the nicknames against data, and if necessary change them to
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something that fits better.

2.6.3 Things to take into account when working with do-
main experts

A real-data clustering study should in my opinion never be performed
without a domain expert, that is, a scientist trained in the field the data
describes. The closer that expert is familiar with the particular dataset,
the better. The closer they can work with the group performing the actual
analysis, the better.

First of all, expertise is needed for to simply understand the data in
the pre-processing stage. For a trivial example, most medical variables
have natural boundaries of possible values: just like a person’s age cannot
be less than zero, a person’s systolic blood pressure cannot be above 300
(without death occurring instantly). Where discretization is needed, instead
of automatic schemes a natural boundary can sometimes be defined, and
these natural boundaries should be used whenever possible. Categorical
variables often include particular values that are of the most critical interest,
so sometimes it makes sense to reduce the number of values to include only
these and “the rest”. Secondly, expertise is critical in looking at the results.
Obviously, it gives us a way to establish the interestingness of the results in
practical studies.

There are two caveats related to working with experts of a medical field
– these probably hold for experts in other fields too, but the author of this
has no personal experience there. First of all, human beings are extremely
good at detecting patterns, regardless of whether any exist in the data they
are seeing, and experts are even better at seeing patterns in their own field
(this is part of what makes them experts). The whole field of statistics
can be viewed partly as an answer to this problem: to discern a spurious
pattern that a human being sees but which actually rises out of random
chance from patterns produced by actual, interesting features of the data.

We must, therefore, resist the temptation to establish the validity of
a clustering solution by showing it to a domain expert and asking if it
makes sense, as this question will also in some cases where the solution is
arbitrary result in an affirmative answer. Instead, we must first convince
ourselves that the clusters reflect a structure in the data and/or population
(see Chapters 2.3 and 2.5), and only then present the domain scientists with
the question of what interesting patterns they see in this existing clustering.

Another standard problem of exploratory data analysis is the temptation
to do the analysis every which way and then pick the most appealing solution
as the correct one. Naturally, some ‘fiddling with it’ is impossible to avoid.
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The question of whether to analyze, e.g., men and women separately or to
adjust variables for age depends a lot on whether the results when doing
so differ from the ‘raw clustering’. Which variables to include is subject to
some debate and it is a rare real-life study where this decision is fully made
before first passes at analysis have already been performed. Sometimes one
notices that a clustering solution is dependent on a particular uninteresting
variable or on missingness status, and a new clustering excluding these must
then of course be performed.

In the absence of a formal procedure of penalizing such fiddling (such
as e.g. correction for multiple testing provides for hypothesis testing), it
is difficult to give any hard and fast rule of when to stop this iterative
fiddling-with-it process. It is absolutely essential though that the people
involved are aware of the temptation and do not imagine themselves immune
to it. Some people see the watching out for this as the domain expert’s job:
they are seen as ‘the customer’ of the data analysts, and the analyst’s job
is to simply perform whatever analyses are requested. In the opinion of the
author of this thesis, however, it is primarily the responsibility of the data
analyst to draw the line; they know the method, and knowing when to stop
is part of knowing your trade.





Chapter 3

Simulations

“A fool is a man who never tried an experiment in his life.”
(Erasmus Darwin)

As seen in Chapter 2, there are many possible choices in the selection of
a clustering method and its setting. Hence it is important to understand
how the methods chosen perform on different types of data. It is useful to
test the behaviour of the algorithms on datasets that have a known structure
and at the same time resemble real data in many respects. This chapter
describes such experiments on simulated data.

To begin with, the artificial data used will be described. Then we explore
the behaviour of two scores for selecting the number of clusters, namely
the BIC score and 10-fold crossvalidation (see Chapter 2.3). The second
set of simulations concerns the observation that in the presence of a true
clustering structure, even a non-hierarchical clustering method tends to
provide approximately hierarchical results. Next, we explore the use of
a separate sample from the same population in confirming the clustering
results. Then, effects of missing data on these clustering methods is tested,
and finally, we shortly explore the practice of removing data rows to confirm
cluster stability.

3.1 The artificial data

In generating the datasets we experiment on, we have tried to imitate real
data, but do so staying close to model assumptions, except when deliberately
testing the effect of breaking them. Thus the artificial data is generated
by using parameters that stem from the real datasets. Unless mentioned
otherwise in what follows, the data for these simulations was generated from
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mixture models of multivariate Gaussian distributions of 12 dimensions
(same number as in our real-life temperament dataset in Chapter 4.2).

The cluster centers were generated from a spherical Gaussian distribution
of zero mean and variances of one. Covariances were sampled from the
experimental distribution of covariances of normalized variables in two real-
life datasets (those described in chapters 4.2 and 4.3). If this sampling gave
a matrix that was not positive definite (as covariance matrices must be) the
closest positive definite matrix was used (computed by the netlab [Nab01]
implementation of the algorithm described in [Luc01]).

For class-valued data, the obtained values where then discretized into
five according to percentiles (20, 40, 60, 80). This was done rather than
directly generating class-valued data because our impression is that a lot
of actual medical class-valued data actually comes from a continuous but
unmeasurable distribution (for example, severity of pain on a scale of 1-5).

In ’clean’ datasets, models of three centers were used without added
noise. In ’noisy’ datasets, one fifth of the data points were replaced by
points sampled from a uniform distribution over a ball with a zero mean
and radius of the maximum distance of any point from zero in the original
sample. Datasets with ’no structure’ have only one component in the
mixture model, with zero mean and covariances sampled from the real-life
experimental distribution. In ’gradient’ datasets, all points where sampled
from a distribution elongated along one dimension.

Note that it would of course be possible to generate more complex
artificial datasets, either by a more complex data generation method or by
re-sampling heavily from real-life datasets. However, in most cases we did
not want to do this, because of the uncertainty it causes for interpretation
of whether results are due to method properties or some unknown feature of
the data. Instead where feasible, the same simulation has been performed
with an available, suitably modified real life data set, to give an idea on
how the results obtained compare to those seen in realistic settings.

3.2 BIC score versus 10-fold cross-validation

In this section, we explore empirically the result that the Bayesian Informa-
tion Criterion and the k-fold cross-validation criterion for model selection
should asymptotically be the same. The key questions are on one hand how
large N should be for the asymptotic result to hold, and on the other hand
which criterion seems better for realistic N . (In the studies on real life data
presented in this thesis, both criteria have been successfully used.)

For each scenario (clean, noisy, and no-structure, as explained in the pre-
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vious Section), five samples of each size were created for N = {100, 200, 300,
400, 500, 600, 700, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000} to cover realistic dataset sizes for the types of data analyzed in this
thesis. In addition, random samples of N = {100, 200, 300, ..., 2000} were
drawn from a real life dataset (the replication data used and described in
Chapter 4.2).

A mixture model of Gaussians was then fit to the data using the
Expectation-Maximization (EM) algorithm (see Section 2.2). Random starts
were repeated until no improvement was found in five consequent restarts
and the best model was selected. This process was repeated for k from 1 to
5 and the scores calculated for each.

Bayesian Information Criterion (Section 2.3.2) was calculated assuming
model parameters for the centers of the model and full covariance matrices.
Ten-fold cross-validation (Section 2.3.3) was performed and the sum of the
test set data likelihoods calculated on the best model found for each training
set.

Figure 3.1 shows the average BIC and 10-fold cross-validation scores
per individual, over different N , for different dataset types for the three-
cluster models. The pattern is similar for any other number of clusters (not
shown). We can see that when N reaches 1000, regardless of the dataset
type, BIC and 10-fold cross-validation give roughly equal results. Some
difference remains in the case of the generated datasets with noise even for
N = 10, 000. One can speculate that this might be due to the noise being
modeled slightly differently for each cross-validation round, and suggest
that if both BIC and 10-fold cross-validation scores are calculated for some
dataset and a difference found, there might be heavy noise present.

Figure 3.2 shows the average best number of clusters predicted by each
method for scenario, per N . For the real life data, the number of clusters
predicted by both methods for N = 2000 is three, but BIC stabilizes to this
value sooner than 10-fold cross-validation. Of course, we do not know the
real number of clusters for this data, though the real-life analysis suggests
that numbers 2-4 can be considered useful. We can see that also for the
artificial data with cluster structure, for low N , 10-fold cross-validation
predicts cluster numbers lower than BIC.

We cannot consider the occasional prediction of four clusters for the
noisy data true “over-estimation”, as typically the fourth cluster is an
attempt to predict the noise. The more there are data points, the likelier
the “background noise” is to get its own cluster. For the data without
real cluster structure, BIC consistently predicts 2 or more clusters for even
for high N , while 10-fold cross-validation does not err from the (correct)
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Figure 3.1: Average BIC and 10-fold cross-validation scores per individual
over different N , for different scenarios. Note that the X-axis is different
for the real data case than the three artificial-data cases. Convergence is
clearly seen around N = 1, 000, except in the presence of heavy noise.

estimate of one even once.
As a conclusion we can say that in the presence of a cluster structure,

for low N , BIC is more likely to show the true number of clusters while
k-fold cross-validation is likely to underestimate it. However, in the absence
of structure, BIC is likely to overestimate the number. As it is not possible
to know, for real-life settings, whether a clustering structure exists or not,
and what a sufficient N for the convergence of the scores in the presence of
one is, we cannot really recommend one over the other in the general case.
In any specific case, we need to consider which type of error (predicting a
cluster structure in the absence of one, or underestimating the number of
true clusters) is more preferable to avoid.
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Figure 3.2: Average number of clusters predicted by the BIC and 10-fold
cross-validation scores for different N . True number of clusters is unknown
for real data, three for clean data, three or four for noisy data (depending on
if one is used to model noise), and one for data without structure. For low
N , 10-fold cross-validation tends to underestimate the number of clusters
in the presence of a clear cluster structure, while the BIC score seems to
overestimate the number in the absence of structure.
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3.3 Natural hierarchies

In this section, we explore the idea that if a real subgroup structure (as
opposed to say a single cloud or a gradient without clear demarcations) exists
in the data, some non-hierarchical clustering algorithms can be expected to
give hierarchical structured clusterings when the number of clusters changes.
That is, from the best clustering into k we can arrive to the best clustering
into k + 1 by splitting one of the clusters. We initially observed this to be
the case on many real life datasets, and it intuitively makes sense.

Assume that a dataset consists of three distinct, spherical clusters. These
clusters are trivially found by the standard algorithms for k = 3. If one
attempts to fit a k-means cluster model for k = 4, it seems unlikely that a
model using a cluster to mix two of the real clusters would obtain a better
score than one which simply assigned one center to two of the real clusters
each and two centers for one of them. On the other hand, if the data, instead
of clear demarcated subgroups, contains a gradient, it might make sense
to use whatever k you have to evenly cover the whole range of data. Thus
one would expect that the clusterings for k = 3 and k = 4 do not overlap
hierarchically. Similarly, in the case of a mixture model of Gaussians, for
k = 3 each real cluster should gets its own distribution and for k = 4 the
maximum likelihood is achieved by simply allocating two distributions for
one of the clusters. In the case of no real clusters the distributions end up
overlapping and changing places arbitrarily when cluster number increases.
(See Figure 3.3 for an example.)

Since the standard procedure for non-hierarchical clustering already
includes building a model for various values of k and using some scoring
system to pick among those, calculating such a similarity comparison for
clusterings with k and k + 1 clusters does not add to the complexity of the
clustering process.

To test this idea, we created 100 artificial datasets of 2000 points. Of
those, there were 25 of each of the clean, noisy, and gradient cases as
described in Chapter 3.1. The last 25 datasets were purposefully designed
to confound the k-means clustering process, consisting of points randomly
spread on the surfaces of four 12-dimensional spheres of diameters 1 to 3
(“Concentric” below). All datasets where clustered with 1) fitting a mixture
model of Gaussian distributions with the EM algorithm, and 2) the k-means
algorithm, for cluster numbers 2 to 8. The adjusted mutual information
(Section 2.4.3) of clusterings into k and k + 1 was then calculated for each
dataset to compare the clusterings.

Figures 3.4 (Mixtures of Gaussians) and 3.5 (k-means) show the adjusted
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Figure 3.3: A clustering of toy datasets with a mixture of Gaussians into 3
(left) and 4 (right) of two 2-dimensional artificial datasets, one with a clear
cluster structure (top) and one without (bottom).
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mutual information of k clusters compared to k+1 clusters for each of the 25
runs in the four scenarios. As can be seen, the mutual information between
clusterings into subsequent k is clearly higher in datasets with real structure
as compared to those without clear group structure (the ”Gradient” case).

In the Mixture Model case this difference is extreme, but it can be seen
also in the k-means case where more model assumptions are violated. Since
the k-means algorithm is able to produce only spherical clusters, in the
gradient case it tends to fit models where these are evenly spread on the
gradient, resulting with more overlap than in the fitting of mixtures of
Gaussians. It is also noteworthy that even though the k-means algorithm is
unable to reliably reproduce the concentric spheres as clusters, the similarity
graphs are nevertheless able to somewhat differentiate between the datasets
between this sort of structure and the datasets without any sort of cluster
structure.

As for the Gaussian mixtures the similarity tends to peak around or
right after the true number of clusters, this observation could also be used
as a further model selection aid. Formulating an exact score with a cut-off
similarity value for real-life datasets is non-trivial. It is not possible based on
artificial experiments to decidedly say how much depends on the true number
of clusters, their overlaps, various data parameters (such as numbers of
observations or variables, and missing data proportions), model assumption
violations, etc. Nevertheless, extremes of the scale of whichever comparison
method used can clearly be considered indicative of the presence or absence of
cluster structure. If desired, artificial datasets with parameters appropriate
to data at hand and varying structure assumptions could be generated and
experimental values obtained this way for each study separately.
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Figure 3.4: Adjusted mutual information (y-axis) between a clustering into
k and clustering into k + 1 (x-axis) in each of the 25 datasets (one line
per dataset) of four different scenarios (clean data conforming to model
assumptions, same with added noise, concentric spheres, and gradient
without cluster structure). Models fit with the EM algorithm for Gaussian
Mixtures. Real number of clusters is three for the first three scenarios and
one for the last one.
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Figure 3.5: Adjusted mutual information (y-axis) between a clustering into
k and clustering into k + 1 (x-axis) in each of the 25 datasets (one line
per dataset) of four different scenarios (clean data conforming to model
assumptions, same with added noise, concentric spheres, and gradient
without cluster structure). Models fit with the k-means algorithm. Real
number of clusters is three for the first three scenarios and one for the last
one.
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3.4 Replicability on a separate sample

If a clustering is “real” in the sense that it reflects an underlying subgroup-
ing of individuals in the original population, then two samples from that
population should reveal a similar (though probably not, due to random
effects, completely identical) clustering model. This idea was used in our
analysis of temperament data, where a clustering model based on a sample
from the Finnish population was validated by comparing to a clustering
in a second sample. In this section we describe the simulations that are
used to study whether this intuitive property actually holds. Such a check
is crucial for the applicability of clustering methods.

Next we describe the process at a high level. We create three datasets,
two by sampling from the same distribution and one from sampling from
a similar class of distributions but with different parameters. Call these
datasets the “original”, “replication”, and “independent” samples. We learn
a clustering model based on each of the datasets. We then use the model
built on the original dataset to give clustering labels to individuals in the
replication and independent samples, and the models built on those two to
give two clustering labels to individuals in the original dataset.

We combine these labels to obtain four clusterings: A1) labels for individ-
uals in the original dataset and the replication dataset, based on the original
model, A2) labels for individuals in the original dataset and the replication
dataset, based on the replication model, B1) labels for individuals in the
original dataset and the independent dataset, based on the original model
and B2) labels for individuals in the original dataset and the independent
dataset, based on the independent model. Comparing a similarity score
between A1 and A2 to that of between B1 and B2 we get insight to whether
two clusterings from the same population can be expected to be more similar
to each other than two clusterings from different populations, given that
the populations have an underlying clustering structure.

First, data was generated from a mixture of multivariate normal distri-
butions as described in 3.1, for a fixed number k = {3, 4, 5} of true centers.
This distribution was sampled for two datasets of size 1000 each (“original”
and “replication” samples). In addition, another (“independent”) sample
was created from another distribution with the number of centers randomly
selected to be between k − 1 and k + 1 (inclusive).

These datasets were clustered independently using the EM algorithm to
fit mixtures of Gaussian distributions (see Section 2.2). The best k for
the original sample was determined by the Bayesian information criterion
(Section 2.3.2), and the replication and independent sample where forced to
the same k.
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For to compare this to a situation where there is no cluster structure in
the original population, data was generated from a single multivariate normal
distribution for the original and replication samples, and the independent
dataset was generated from a distribution of 1–5 centers, at random. These
data were similarly clustered, but k forced in turns to 3, 4, or 5, in order to
simulate a situation where we mistakenly identify a cluster structure that is
not there.

Alternative clusterings for original/replication and original/independent
datasets were compared by cross-tabulating the cluster labels and calculating
the χ2 statistic. One hundred experiments were performed for existing
cluster structure and for the case of no cluster structure in the original, and
for each possible value of k involved.

Figures 3.6 to 3.8 show observed χ2 values for the four cases (original
population does or does not have a cluster structure, second sample is a
replication or an independent sample) for k = 3 to 5. Note that this k refers
to the true number of clusters in the case where cluster structure exists and
to the arbitrarily picked k in the case of no cluster structure.

We see the basically same phenomenon in all of the cases. Where there is
no cluster structure and the replication dataset comes from an independent
sample, the statistics stays below N = 1000. Where there is a cluster
structure but the second sample is an independent one, or where there is no
cluster structure but the replication is from the same distribution, we see a
distribution of observed χ2 that resembles the theoretical χ2 distribution,
maximum observed values falling at about 2 ∗N = 2000, which is what you
would expect for two random clusterings.

In the case of a replication from the same distribution with a cluster
structure, we see a spread-out of values, going up to extremes close to
what we would expect with a perfect replication. The higher the number
of clusters, the more there are poorer-quality replications. Since our N
does not increase with k, this is to be expected: the smaller N/k, the more
likely it is that the sample contains only a small amount of representatives
from a particular cluster, making clustering more random. In any case,
the distribution does not significantly overlap with those obtained in other
scenarios.

This means that should we observe a high similarity between the repli-
cation clusterings, we can fairly safely assume that 1) there is a clustering
structure in the population, and 2) we have managed to replicate the sam-
pling procedure accurately. However, should we observe a low similarity, we
cannot based on it alone deduce whether this is because of lack of a real
cluster structure or failure of replication.
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Figure 3.6: Histograms of chi-square values comparing clustering based on
a model obtained on a sample from a distribution with or without cluster
structure, to either a model obtained on another sample from the same
distribution (replication) or to a model obtained with a sample from a
different distribution with cluster structure (independent). Three clusters
in the original distribution.
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Figure 3.7: Histograms of chi-square values comparing clustering based on
a model obtained on a sample from a distribution with or without cluster
structure, to either a model obtained on another sample from the same
distribution (replication) or to a model obtained with a sample from a
different distribution with cluster structure (independent). Four clusters in
the original distribution. Red and green lines show observations from a real
life replication experiment. [WSM+12]

For the sake of interest, in the case of four clusters, I have shown two
values observed in a real life dataset (described in [WSM+12] and Chapter
4.2). In the case of real data, what structures exist, they probably do not
conform very closely to the model assumptions. This might explain why we
observe values that are between the observed distributions for the different
simulated scenarios.
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Figure 3.8: Histograms of chi-square values comparing clustering based on
a model obtained on a sample from a distribution with or without cluster
structure, to either a model obtained on another sample from the same
distribution (replication) or to a model obtained with a sample from a
different distribution with cluster structure (independent). Five clusters in
the original distribution.
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3.5 Effects of missing data

In medical datasets missing data is very common. This is usually handled
by more or less refined imputation methods (see Section 2.2.6), but the
effect on results is not very well understood. In the experiments of this
section, we progressively remove more and more points at random from the
data, cluster the remaining points, and compare the results to the clustering
obtained on full data. The generated datasets are either mixture models
of Gaussians, or mixture models of multinomials. In the first case, missing
data is treated as missing in the EM sense and imputed on each cycle; in the
second case missing data is treated as an additional value for each variable.

The aim is to find out how sensitive these methods are for missing data,
and whether there is a difference in the effect of missing data in the case of
data with a real clustering structure, and data without structure.

For the real life data, I used the temperament dataset from Section 4.2
for the Gaussian case, and a migraine dataset described in Section 4.3 for
the multinomial one. The migraine dataset has over 6000 individuals and
194 variables, but a lot of missing data. A greedy selection process yielded
1000 individuals and 83 variables such that the initial dataset is complete.
The temperament dataset has complete data for the 12 variables for 2000+
individuals, of which a random 1000 was selected as a test case.

Six different kinds of artificial datasets were generated: the clean, noisy,
and no-structure scenarios described in Chapter 3.1, for both Gaussian and
class-valued data. There were ten datasets of each kind.

A reference clustering for each dataset was first found. Number of
clusters from 2 to 5 was tried (even though 1 is the correct answer for some
datasets, it was excluded, as obviously the similarity between clusterings into
1 is always perfect and so it is not of interest). Restarts from random starting
points were performed for each number of clusters until data likelihood did
not improve on six consequent restarts. The best overall model was chosen
from among the best clusterings into 2 to 5 clusters by using the Bayesian
information criterion (Section 2.3.2). Re-clusterings of each dataset with
increasing number of missing data were then performed with the same
procedure.

First re-clustering of each dataset was performed with the full data, to
give a baseline of what to expect from replicability of results in general. Each
dataset was then re-clustered with progressive ten of percent of observed
values in the dataset removed at each stage. In these re-clusterings, the
cluster number was assumed to be known and equivalent to the one in the
reference clustering. Two kinds of removal simulations were performed. In
the first case, observations were removed by random. In the second case, to



3.5 Effects of missing data 65

achieve a more realistic pattern of missingness, observations in a block in
the data consisting of half of the columns and quarter of the rows was given
a weighted probability of missingness (five times that of other values).

Figure 3.9 shows the average adjusted mutual information (Section
2.4.3) results for the discretized and Gaussian data, for both random and
non-random missingness.

The good news is that even when data is missing not at random, the
situation is not much worse than it missing at random. For the discrete
data case, the situation seems very good: modelling the missing data as
another value for the clusters does not disturb the models much when cluster
structure is actually present in the data. For the Gaussian case, where
missing data is imputed on each round of the EM-algorithm, similarity is
relative to missing data proportion.

We can also see that the reference clustering for the artificial datasets
with no real clustering fails to be replicated at all, even in the case of
no missing data. (Note that in a real life situation, the BIC might have
suggested selecting just one cluster as the correct model for this data;
however, as stability results for just one cluster do not make sense, that
possibility is excluded here, leading to totally arbitrary two-cluster solutions
and hence no similarity.)

One should note that it is difficult to draw conclusions of the quality
of the data or interestingness of the clusters based on these curves. For
the class-valued data, the adjusted mutual information AMI for the dataset
with most intentional noise falls faster initially than the clean dataset, but
ends up higher, and for the Gaussian case, while it starts slightly lower, it
remains higher when data points are removed. This is most likely due to the
fact that the algorithm ends up modeling noise with a fairly stable cluster,
and reminds us that a stable cluster is not necessarily an interesting one.

It would be tempting to draw from this the conclusion that you actually
gain by discretizing, since the similarities for the discretized case are so much
higher than those of the Gaussian case. This would, however, be incorrect,
as each case is compared to the reference clustering obtained by said method
on full data, instead of the true clustering in the data-generating model.
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Figure 3.9: Adjusted mutual information for re-clusterings with various
percentages of missing data. Top figures: mixture models of Gaussians, with
missing data treated as missing in the EM-sense. Bottom figures: the discrete
naive Bayes model, with missing data treated as another value for the
variable. On the left, data missing at random. On the right, blocks of data
having higher probability of missingness. X-axis, missing data proportion.
Y-axis, adjusted mutual information. Four different simulation scenarios
were considered: based on real data, a ’clean’ model conforming to model
assumptions, one with added noise, and one without cluster structure. Note
that the Gaussian and Naive Bayes cases are not comparable.
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3.6 Stability analysis by random drops
In the real data analyses described in this thesis, we have often utilized the
idea, explained in detail in Chapter 2.5.2, that a clustering that reflects
a true phenomenon in the underlying population rather than over-fitting
into features of the data should not be sensitive to removal of individuals at
random. In this section, we study this phenomenon on artificial data.

Artificial datasets of N = 2000 were generated as described in Chapter
3.1. Each dataset was clustered with a Gaussian mixture model. Each
dataset was first clustered as is to get a reference clustering, and then
re-clustered first intact and then with a 10 percent of rows removed at a
time, until only 200 rows remained. There were 25 datasets of each kind, 100
sets in total. Note that the difference of these experiments to the missing
data ones reported in the previous section is that here we remove complete
rows as opposed to individual points of data. For real-life data, we used
a sample of 2, 000 data points from the temperament dataset described in
Chapter 4.2.

As Figure 3.10 shows, when there is a clear cluster structure in the
data, with these parameters, the clusterings can be expected to resemble
the one obtained on full data for until about N = 400, with Adjusted
Mutual Information of above 0.9 for until about half of the data points are
removed. For the artificial datasets we see a pattern where the similarity
falls relatively steadily when the missing data proportion increases. For the
real-life simulation case, we see a pattern where the similarity first stays high
and then falls abruptly. This or the complete absence of stability is in our
experience the typical pattern for real-life data in general. Gradient-type
data and and data without any structure behave similarly with each other,
AMI staying close to zero (implying similarity no higher than that which
would be expected by chance) all the time.
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Figure 3.10: Adjusted mutual information to the reference clustering on full
data, when an increasing amount of data rows are removed. Average over
25 simulated datasets is shown. X-axis shows remaining number of rows
in the dataset, Y-axis shows the adjusted mutual information between the
clusterings on the reduced dataset and the original.



Chapter 4

Studies on real data

“As a physician and as a pilot, I think it lets me be a pretty good
translator having one foot in the medical world and one foot in
the flying world. Sometimes when the medical guys come in and
speak medical stuff to the pilots, the pilots really don’t know what
they’re saying.”
(David M. Brown)

In this chapter we consider some studies where clustering has been
used in the analysis of medical data. We describe the underlying medical
phenomena and the datasets, present some of the findings, and describe the
methodological implications of the studies.

4.1 Case 1: Schizophrenia subtypes
In this study, we performed a clustering of individuals with schizophrenia,
and their relatives (some healthy, some with schizophrenia or another mental
health problem), based on various measures of symptoms and signs of disease.
The aim, which was realized, was to identify subgroups of sufferers with
specific genetic associations. Three candidate genes were analyzed and we
showed an association of one of them (DTNBP1 ) to a specific subtype of
schizophrenia, characterized by lack of emotional symptoms and a more
severe course of illness. The results of this study have been published in
[WPTH+09].

4.1.1 Background

Schizophrenia (from Greek skhizein, “to split”, and phren, “mind”) is a
chronic psychotic disorder with varying course and symptoms. Its most
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common symptoms include hallucinations (typically auditory, but also
others), paranoid or otherwise bizarre delusions, and disorganized thought
and speech. It is often associated with significant social and cognitive
disability and blunted emotional states [KNW95].

Diagnosis of schizophrenia is based on anamnesis and status, that is,
descriptions of experiences by the patient and possibly his family, and obser-
vations by professionals. Laboratory, brain imaging, or other measurement
tests for schizophrenia do not exist, but several structured, scored interview
procedures and structured ways to describe past symptoms have been de-
vised to aid with diagnosis and give measurable definitions for research. The
diagnostic criteria for schizophrenia have been set for clinical practice, but
genetic liability seems to extend to a broader phenotype with abnormalities
in multiple dimensions, such as cognitive capabilities [KNW95, TSF00].

The disease has been known for long to have a familial, most likely genetic,
association [KMG+93, CKL+98, TWM+94]. However, genetic studies have
failed so far to bring forth a clear picture on which genes are involved [FK08].
Some promising genes, like DISC1, have been found to not be associated
only to schizophrenia but also to a wide variety of other mental disorders
[CBS+08]. Others, like DTNBP1, seem to show association to specific
symptoms in schizophrenia [FK08] and the association to the disease itself
has been replicated in some populations and studies [FFP+04, VCS+08], but
not in others [FFP+04, SDL+08]. To understand this heterogeneity, both on
the phenotype and the genetic levels, efforts have been targeted to identify
endophenotypes [GG03] or other more homogeneous subgroups [COO06,
HKB+05, PTHH+04, CDN+08], with the hope that such subgroups would
be more directly associated with underlying biology.

In this study, we had the luxury of having a dataset where both informa-
tion about a wide variety of possibly related phenotypes and genetic data
about promising candidate genes was available. This allowed us to first
seek for clusters of the phenotypes, and then analyze how those phenotype
groups are associated to the genetic data. Comparing this to associations
to diagnoses, we could shed some light on reasons for the unclear findings of
previous genetic studies. Latent class analysis has been previously used to in-
vestigate symptoms of psychotic illnesses [CSWM94, MNL+04, MMM+05],
but rarely to investigate the broader phenotypes related to schizophrenia
[LMR07].

4.1.2 Data

Data in this study [HVS+99, VLH+00, WPTH+09] consisted of 904 indi-
viduals and 203 variables, most of them binary. Most individuals had at
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least one other family member in the dataset. There were 288 families in
total. For details of the data, see [HVS+99, VLH+00, WPTH+09].

The clustering dataset had 203 variables. The first 73 of them were
binary variables describing the presence or absence of symptoms during
the patient’s lifetime. A structured interview had provided 111 variables of
mostly of class nature, and finally, 17 continuous variables described the
results of neuropsychological testing. See [WPTH+09] and the supplements
of the article for details. Genetic information was not used for clustering,
but analyzed for its association to the clusters. The genetic dataset consisted
of 53 single nucleotide polymorphisms (essentially, binary variables) over
three different candidate genes.

4.1.3 Methods

Variables with continuous scales, or ordered scales with more than 10
different values, were discretized into variables with five different values,
using the 20th, 40th, 60th and 80th percentile as the cut-off points. Missing
values were assumed to form an additional class for each variable. Pairs
of binary variables were combined to form new variables with 8 values
(missing values were considered a third value). This was done in a “greedy”
manner, always combining first the pair with highest correlation. This
reduces the number of variables and aims to reduce the problems resulting
from the violation of the independence assumptions in the model. No other
pre-processing of the data was performed.

The data were clustered using a Naïve Bayes mixture model (see Chapter
2.2). Family information, direct information on existing diagnoses, or or
any genetic variant information, were not used for clustering. The number
of clusters was chosen by the 10-fold cross-validation procedure. Cluster
robustness was tested by random removals of individuals and variables
(separately), as described in Chapter 2.5.2.

We also performed the clustering separately for males and females, and
separately for individuals in the two cohorts of the data. These results are
practically equivalent to the one obtained by full data, within at most 10
individuals clustered differently, and will not be presented.

The association of the clusters to the candidate gene single-nucleotide
polymorphisms was analyzed after clustering with the program Mendel
[LSS05], using its allele-sharing non-parametric linkage option. In these
analyses, we considered one of the psychosis groups of the three-cluster
solution (see below) as affected, the non-psychosis group as affected, and
the third cluster unknown. For the clinical diagnoses, a DSM-IV [Ame00]
based definition for schizophrenia spectrum disorder was used as definition
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Figure 4.1: 10-fold cross-validation scores for the schizophrenia clusters.
X-axis, number of clusters. Y-axis, data log-likelihood score in 10-fold
cross-validation (smaller is better). Dots show individual experiments, and
in addition mean and median are shown.

of affected status. The p-values presented in the article were obtained via
permutation and corrected for multiple testing by the Bonferroni correction.

4.1.4 Clustering results

Figure 4.1 shows the 10-fold cross-validation scores over different number
of clusters (the smaller the score, the better the test-set data likelihood
given the training-set model). We can see that the scores are very similar
for some variety in the number of clusters. This is related to the fact that
the alternate models at the flat area of the mean and median curves are
hierarchical refinements of each other. We can see this from Figure 4.2:
the adjusted mutual information between subsequent number of clusters
is always above 0.5 (on this scale, one means complete similarity and zero
means similarity between random clusterings of the size).

It also turned out that beyond three clusters, the additional clusters
are almost all small subgroups that would not be of interest or practical in
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Figure 4.2: Adjusted mutual information between models with subsequent
number of clusters k for the schizophrenia data. X-axis, numbers of clusters
for the models compared. Y-axis, adjusted mutual information: value of 1
signifies identical models, and value of 0 signifies expected value for random
clusterings of similar size.
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Figure 4.3: Cluster sizes for different number of clusters in the schizophrenia
dataset. X-axis, number of clusters. Y-axis, number of individuals in a
cluster. Shown are values for each cluster in black and the median cluster
size for each model.

further analysis. As Figure 4.3 shows, when the cluster size goes up, many
very small clusters are added. In fact (compare to the previous figure),
these models tend to be approximate hierarchical refinements of each other.
For example, the model with four clusters can be formed from the model
with three clusters simply by separating a cluster of 22 individuals from
one of the clusters and moving nine other individuals from one cluster to
another (see Figure 4.4. On the other hand, the clustering into two is a
fairly trivial division of cases into psychotic and non-psychotic and hence,
while obviously valid, hardly interesting in the medical sense. We ended
up looking further into the model with three clusters, which turned out to
provide an interesting division of the psychotic cases into two groups (as
explained later).

To analyze the stability of this model, we formed a clustering into three
with random subsets of the cases, and compared this to the original clustering.
Figure 4.5 shows the results of this experiment. We also performed a similar
experiment removing variables instead of cases, the results of which are
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Figure 4.4: The hierarchy of clusterings into subsequent number of clusters
in the schizophrenia study. Each row of circles corresponds to a clustering
into as many clusters. Circle areas are relative to number of individuals in
the cluster. Arrow widths are relative to number of individuals that are in
both of the two clusters connected. Grey arrows correspond to less than
five individuals.
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Figure 4.5: Results of the experiment where cases were randomly removed
from the schizophrenia set and a new clustering obtained. X-axis, percentage
of data removed. Y-axis, normalized pairwise concordance between the
original clustering and the reduced dataset; value of 1 signifies full similarity
and a value of 0 the similarity of random assignment to clusters of similar
size. The error bars show two standard deviations over 10 repeats of the
experiment for each percentage.

shown in 4.6.
The first phenomenon we can see that there are a certain number of

cases that are “between clusters” so that the exact assignment of them varies
even with the full data. This is an expected feature given the algorithm
used: the restarting point is random and we stop the iteration process when
the likelihood changes very little, meaning that individuals whose likelihood
given two different clusters is similar might end up in a different cluster.
As can be seen from the similarity being almost exactly one, though, the
number of such individuals in this dataset is very low (below 10).

Second, we can see that as long as we have about 70 % of the individuals
we receive reasonably similar clusterings, and that the similarity starts to
steeply decline after that. This suggests that the clustering is not dependent
on some outlier cases but actually represents a real phenomenon in the
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Figure 4.6: Results of the experiment where variables were randomly re-
moved from the schizophrenia set and a new clustering obtained. X-axis,
percentage of data rows removed. Y-axis, normalized pairwise concordance
between the original clustering and the reduced dataset; value of 1 signifies
full similarity and a value of 0 the similarity of random assignment to clus-
ters of similar size. The error bars show minimum and maximum observed
over 10 repeats.
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data. Also, the amount of data is enough for this kind of analysis, with a
certain safety buffer, but that the amount could not have been significantly
smaller without affecting the results. We can also see that about half of the
variables can be removed without the results changing much, but when 70
percent of them are removed, the quality of the clustering suffers a lot.

4.1.5 Medical implications

For detailed discussion of the results, see [WPTH+09].
We identified three clusters of individuals; 1) one that we ended up

calling “core schizophrenia”, 2) one for psychotic illness characterized by
mood symptoms, and 3) one for individuals without psychotic symptoms.
Looking at the clusters versus established diagnoses (Figure 4.7) we can
see that the cluster division does not follow the “established” division of
psychoses into schizophrenia spectrum and psychotic mood disorders. Many
schizophrenia and schizophrenia spectrum cases cluster with individuals
with mood disorders instead.

After noticing that the clusters do not conform to the diagnostic divisions,
we analyzed the difference between individuals with schizophrenia in cluster
1 and those in cluster 2. It turns out that individuals with schizophrenia
in cluster 1 had less mood symptoms, more cognitive impairments, and a
more severe course of illness than individuals with schizophrenia in cluster
1. They seem to represent a “core schizophrenia” subgroup, while the
schizophrenic individuals in cluster 2 represent “less severe schizophrenia
with mood symptoms”.

Of the candidate genes, we found in [WPTH+09] that DISC1, a well-
established candidate gene for several mental disorders, is associated to
the broader schizophrenia spectrum disorder, confirming previous results
obtained also on this same dataset. However, DTNBP1, another candidate
gene with more inconsistent results from previous studies, showed association
to the “core schizophrenia” group but not to the broader diagnosis. This
gene has also in other studies been shown to have an association to symptoms
that characterize our “core schizophrenia”, for example earlier age of onset,
absence of manic symptoms, and more severe psychopathology [FK08].

This is consistent with the interpretation that the partially contradictory
results of earlier studies (for example, [FFP+04, CDN+08, FK08, VCS+08,
SDL+08]) are most likely partially caused by the association of candidate
genes to different aspects or subtypes of schizophrenia. The conclusion
can be drawn that attention to details of the disease phenotype, such as
prevalence of mood symptoms, age of onset, severity of the disease, and
cognitive functions, and analysis per subgroups based on them, is necessary
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Figure 4.7: Clusters versus diagnostic groups in the schizophrenia study. The
bars show the number of individuals in each cluster, colored by diagnostic
group. We see that Cluster 3 consists mostly of individuals without a
psychotic disorder and Cluster 2 of individuals with a schizophrenia spectrum
disorder, while Cluster 1 has individuals from all groups. Figure reproduced
from the article [WPTH+09].
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to understand the full picture of the genetics of schizophrenia.
However, the association of DISC1 to a much broader genotype cautions

against seeking for only one “true subtyping” or definition of the disease,
narrowing down the search, since doing so would miss the role of that gene
in a wide variety of psychiatric disorders. This implies that understanding
the genetics of even the most hereditary psychiatric disorders will require big
samples of detailed phenotypes from relatively homogeneous populations,
which will provide challenges for data collection and management as well as
statistical analysis.

4.1.6 Methodological implications

This study clearly demonstrated that clustering methods have their place
in genetic studies of complex diseases. We were able to demonstrate that
the dataset clusters to subgroups that are clinically meaningful. Moreover,
one of these has a clear association to a known candidate gene that is not
observed in the same dataset for the clinical diagnosis. Trying to reach the
same conclusion by analyzing each of the multiple variables separately would
have lead to dilution of the results after correction for multiple testing, and
the results would have been inconclusive. The Naïve Bayes mixture model
worked well in this case, despite the naive assumptions from which it gets
its name.

We have also here confirmed in practice that cluster number selection
based on the cross-validation techniques works. When such techniques do
not give one clear minimum score, comparing solutions with subsequent
number of clusters is a good idea. Here it turned out, as it did in our
simulations (see Chapter 3.3), that these solutions are refinements of each
other. Such an observation both gives us confidence that the observed
clustering structure is real, and makes the choice between these solutions
less critical.

Naturally, we nevertheless need to estimate the robustness of the model.
Here we did it by dropping cases or variables in increasing amounts, and
comparing the solutions obtained with partial data to the original one.
When the mutual information between the original clustering and those
obtained with minor parts of the data removed is high, we can conclude that
the clustering solution is not likely dependent on some outlier observations.
Here, we found that we can remove up to 30 percent of the cases and up to
50 percent of the variables without a large decline in the similarity of the
clustering to the original.

The latter observation might pose the question whether there were ‘too
many’ variables. Each variable increases the complexity of the model and
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the runtime of the analysis, and so if up to 50 percent of them are not
needed to reconstruct the clustering, could we have done better with further
dimension reduction before analysis? It is of course difficult to answer this
question post-hoc, but I would here say that since the models obtained with
partial variable data were similar, but not the same, the additional variables
still carried information.

One possible downside of this kind of analysis is the fairly long time
it takes to perform all the calculations. The clustering process is iterative
in itself, and even to obtain one clustering we need to restart the process
several times because of the EMalgorithm requiring a random start that
might potentially affect results (see Chapter 2.2.3). To select between
cluster numbers, we need to rerun this process for each possible k, and in
the random drop experiments then repeat all of that for all of the random
partial datasets. This is by no means prohibitive though: on a Linux cluster,
using Matlab’s Parallel Computing Toolbox to run four labs in parallel, the
computation time is in order of days rather than weeks.

The comparison of the clustering scheme to the established diagnostic
scheme became very important here. Visualization and detailed analysis
of the multiple variables required work, a lot of it manual. It also required
some work and careful explanation of the genetic results to convince people
that the point of the clustering was not as such to try and present a “better”
or “more correct” way to group individuals than the diagnostic grouping,
but rather that we demonstrated that probably no general-purpose grouping
even exists.

4.2 Case 2: Temperament groups
In this study, we clustered individuals based on their answers to a ques-
tionnaire assessing temperament. The clustering structure was replicated
in a separate sample. The individuals in each cluster were then compared
regarding variables from various life domains, such as mental and physical
health, marriage status, education and employment, as well as scores on
other psychiatric scales. We were able to show that 1) the 12 temperament
“scales” traditionally calculated from the questionnaire are not independent
in the population, and 2) that people in different clusters have very different
outcomes in life. This section is based on [WSM+12].

4.2.1 Background

For a more detailed description of the area, see [WSM+12]. Temperament
refers to aspects of personality that are considered inherited or innate, rather



82 4 Studies on real data

than learned (e.g. [ZB08], [Clo87]). It consists of early-appearing variation
in general mood or emotional reactivity; the innate tendency of a person to
react in a particular way in particular situations. In contrast, personality
in addition to temperament includes learned responses, preferences, and
opinion, while temperament is considered to be the biologically-based,
inherited core of personality. Temperament affects how good a fit a person
is to a particular society and social environment, and both temperament
alone and this interaction are assumed to function as a predisposing or
protecting factors to psychiatric disorders (see below).

Several approaches have been developed for classifying temperament and
personality [ZB08]. A number of scaling systems are available for measuring
temperament in adults. Such systems typically consist of a questionnaire,
usually filled out by the person him/herself, containing questions assumed to
be related to temperament. The questions are typically either binary (“Does
the following statement describe you?”) or answered with a small set of
ordered options (“On a scale of 1 to 5, how well does the following statement
describe you?”). The answers to these questions are then combined, by
summing or averaging the individual answers to certain predefined (usually
non-overlapping) sets of questions assumed to relate to the same facet of a
temperament, into “scales”. When (again, usually non-overlapping) subsets
of questions belonging to one such scale are analyzed separately, they are
termed “subscales”.

One such scaling system is the Temperament and Character Inventory
(TCI) [CvP93, CPvW94]. The version used in this study tests four tem-
perament dimensions defined by basic stimulus-response characteristics:
novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and
persistence (P). These four are further divided into 12 subscales. Individual
scales measured by the TCI are normally distributed in the population, with
sex-dependent differences [MKE+04, MVL+07].

For the role of temperament in mental and somatic health, see [SM06,
SKM+07, HbJ+09], though the causal factors and directions are complex
and unclear. In particular, a high level of HA has been related to a num-
ber of psychiatric disorders [RS04, EBS+04, BPBC96, FADA+02, KSB+04].
Studies have also consistently shown a genetic component for all domains
of temperament, with heritability of 50 to 65% in Western populations
[HCM94, SHC+96, AOY+02, GCHM03]. Research concerning the relation-
ships between various domains of temperament has been less consistent,
however [MLK+08].

In [WSM+12], we had the opportunity to cluster individuals from two
Finnish populations sample based on TCI domains. This allowed for a
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comparison of cluster structures learned in the separate samples, an excellent
way to validate the clustering. The goal was to explore whether specific
subgroups of individuals with certain patterns of scores could be found, and
if so, whether these groups differ with respect to other measurements. Such
measurements were available for the first sample at the time of the study.

4.2.2 Data

The data in [WSM+12] consisted of two datasets, the Northern Finland
Birth Cohort 1966 [Ran69] (NFBC1966) and The Cardiovascular Risk in
Young Finns study [RJR+08] (YF).

The NFBC1966 is a prospective cohort study, originally including all
live-born individuals from Oulu and Lapland whose expected year of birth
was 1966 (N = 12,058) [Ran69]. The individuals have been followed up
at several points in their lives, ranging from prenatal surveys of parents
to a 31-year follow-up. The data used in this study comes from the 31-
year surveys, in which a questionnaire assessing temperament was sent
to all participants [SKM+07], limited to those individuals with complete
personality questionnaire, and individuals with mental retardation excluded
(final N = 3,711).

The YF project started in 1980. In it, 3,596 individuals from six different
age cohorts (3 to 18 years) from the Social Insurance Institution population
registry were chosen randomly [RJR+08]. The TCI scores for this study were
measured in 2001 (N = 2,097 for those with complete scale data) [HbJ+09].

The samples differ from each other in three major ways. 1) The age
in NFBC1966 is 31 years for all participants, while participants in the YF
study are between 24 and 40 years old, at the time of measurements. 2)
NFBC1966 population covers the two Northernmost provinces of Finland,
while YF individuals are sampled from all over Finland. 3) The version of
TCI used in the two studies is not the same.

Age and geographic distribution turned out not to be significantly
correlated to the TCI scores in YF, so we chose to simply the ignore age-
and location-related differences.

The major difference between the TCI versions is that the one used in
NFBC1966 questionnaire presents the questions in a binary format (“Does
this statement describe you?”) while the one used in YF presents them in
a scaled format (“On a scale of 1-5, how well does this statement describe
you?”). Hence, the summed scales are not directly comparable. Nevertheless,
as for the k-means clustering algorithm the data were normalized to mean
zero and variance 1, the models learned on one dataset could be directly
applied to the normalized data of the other, and this turned out not to pose



84 4 Studies on real data

any problems.
The data on NFBC1966 concerning current life domains can be divided

into five parts: 1) the so-called 15D questionnaire, assessing self-reported
well-being in 15 domains (such as mobility, vision, hearing, sleeping, eating,
depression, distress, sexual activity), 2) education and social status, 3)
physical well-being and health, including life habits such as smoking and
alcohol use, 4) confirmed diagnoses (both somatic and psychiatric), and 5)
other psychological scales.

4.2.3 Methods

The data in [WSM+12] were clustered by the k-means procedure (see Chap-
ter 2.2.5), and the number of clusters chosen by the Bayesian Information
Criterion (Chapter 2.3.2) from among 2–12 clusters. (The k-means methods
was able to, in this fairly normally distributed data without missing values
sample, produce robust results in a short time.) The Euclidean distance
between the 12-dimensional, normalized temperament subscale vectors was
used as the similarity measure. Males and females were analyzed separately,
as previous studies have established there are significant differences in scores
between genders [MVL+07].

Clusterings between the NFBC1966 and YF data were compared as fol-
lows. First, clustering models were learned for both datasets independently
and a cluster was assigned to each individual in that dataset. Second, a
clustering was assigned to each individual based on the best model over-all
obtained on the other dataset. Third, since the k obtained for each model
by BIC did not agree, all individuals were assigned a cluster according to
the model built on the dataset the individual belonged to with the best k
on the other dataset. Thus, each individual had four cluster assignments:
two based on the overall best models for each dataset, and two based on
the best model on one data for the k decided based on the other data.

We then cross-tabulated these cluster assignments and compared the
χ2 statistics to those of random clusterings of individuals. Associations
to life domain variables were assessed by χ2 or one-way ANOVA statistic,
whichever is appropriate, and corrected for multiple testing by the Bonferroni
correction.

4.2.4 Results

A four-cluster solution had the smallest error for the NFBC1966 data, and
a two-cluster solution for the (smaller) YF data. Tables 4.1 and 4.2 show
cross-tabulations of the alternative models (for females and males). Cohen’s
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κ values are given, as they are the measurement for similarity of this kind
typically used in the field. All these values pass the rules of thumb of 0.6 for
“substantial agreement” and most of them are above the 0.8 limit for “almost
perfect” agreement; as noted before, care must be taken in comparing two
already high values with each other and we will refrain from doing so here.

We also calculated the χ2 values for the four versus four cluster cross-
tabulations for the combined datasets and compared them to values obtained
for random clusterings. These experiments are described in Chapter 3.4.
Figure 3.7 shows the value observed for males (red) and females (green),
compared to values observed in various scenarios of replication. We can see
that while the values do not reach those obtained on a full replication on
artificial data that confirms to the model assumptions, they are also far
from random.

Moreover, the patterns of the average TCI scales in each cluster were
strikingly similar for males and females, so that it was possible to by simple
visual inspection of the centers easily say which female cluster corresponds
to which male cluster; Figure 4.8 shows the matched up clusters for the
NFBC1966 data to illustrate this. (Cluster labels have been assigned to
reflect this matching.)

For psychological interpretation of the clusters, see [WSM+12].

4.2.5 Medical implications

It is usually assumed that the TCI subscales form independent, separate
dimensions of temperament. That we can capture almost all associations
to life domains with just four groups formed based on the 12 dimensions
would suggest that instead of being independent, the subscales form typical
patterns distributed fairly evenly in the population (the clusters were of
almost equal size).

It is remarkable that such a simple temperament cluster is so strongly
associated to a person’s socioeconomic status and education, and to experi-
ences of depression and anxiety, though the interpretation of this association
into causal hypothesis is far from trivial. See [WSM+12] for these results
and further discussion.

4.2.6 Methodological implications

In this study, we had the opportunity to replicate the clustering in a separate
sample. While not complicated, such a procedure is novel in practical
applications. A potential replication sample of the same population with a
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a)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

F1 F2 F1 F2 F1 F2

I 514 336 189 124 325 212
II 739 17 245 11 494 6
III 208 447 23 67 185 380
IV 0 657 0 224 0 433

b)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

I 111 17 625 97 48 13 391 70 63 13 391 70
II 150 565 41 0 86 392 22 0 86 392 22 0
III 543 10 27 75 457 10 24 74 457 10 24 74
IV 130 0 0 527 77 0 0 356 77 0 0 356

c)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

F1 F2 F1 F2 F1 F2

F1 0 1262 0 361 0 901
F2 1461 195 457 65 1004 130

Table 4.1: [WSM+12] Clusterings based on NFBC1966 models vs YF models,
females. a) NFBC1966 best model (four clusters) vs YF best model (two
clusters). b) NFBC1966 model into four (best model) vs YF model into four
(same number of clusters) (Cohen’s κ 0.7, 0.67, and 0.71). c) NFBC1966
model into two (equal number of clusters) vs YF model into two (best model)
(Cohen’s κ 0.87, 0.85, and 0.87)
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a)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

M1 M2 M1 M2 M1 M2

I 168 495 64 150 104 345
II 0 631 0 247 0 384
III 421 566 208 266 213 300
IV 659 0 279 0 380 0

b)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

I 0 5 1 657 0 3 0 211 0 2 1 446
II 0 556 29 46 0 212 14 21 0 344 15 25
III 52 66 607 262 33 36 279 126 19 30 328 136
IV 527 0 49 83 238 0 12 29 289 0 37 54

c)

Cluster in YF Cluster in YF Cluster in YF
Both datasets YF only NFBC1966 only

Cluster in
NFBC1966

M1 M2 M1 M2 M1 M2

M1 12 1591 6 620 6 971
M2 1236 101 545 43 691 58

Table 4.2: [WSM+12] Clusterings based on NFBC1966 models vs YF models,
males. a) NFBC1966 best model (four clusters) vs YF best model (two
clusters). b) NFBC1966 model into four (best model) vs YF model into four
(same number of clusters) (Cohen’s κ 0.73, 0.70, 0.75). c) NFBC1966 model
into two (equal number of clusters) vs YF model into two (best model)
(Cohen’s κ 0.92, 0.92, 0.92)
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Figure 4.8: [WSM+12] Temperament cluster centers in the NFBC66 best
model as starplots, normalized data. The male and female seem similar to
each other, despite having been learned independently. The subscales are as
follows: HA-1: anticipatory worry, HA-2: fear of uncertainty, HA-3: shyness,
HA-4: fatigability; NS-1: exploratory excitability, NS-2: impulsiveness,
NS-3: extravagance, NS-4: disorderliness; RD-1: sentimentality, RD-3:
attachment, RD-4: dependence; P: persistence.
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similar enough recruitment procedures is seldom available, but even when
it is, replication of an exploratory data analysis procedure is rarely done.

As we have demonstrated here and in the experiments with artificial data
(see Chapter 3.4) that it is a feasible and good method of establishing the
validity of a clustering model, we hope that it will become part of standard
procedures in clustering studies whenever replication data is available.

When a replication sample is not available, one might try simulating it
by dividing the original data randomly into two parts. While this serves
as a good check for the stability of the clustering solution, it fails in many
respects to achieve the same goals as a replication sample. Namely, the
important questions the replication answers is whether there is something
in the recruitment or data collection procedure that causes the clustering
structure. Rather than limit the sample size into half, the question whether
the clusters are arbitrary is better answered by random dropping of variables
/ individuals, the existence of a natural hierarchy, and other methods of
analysis of clustering stability.

4.3 Case 3: Migraine and the problems with miss-
ing and recoded data

4.3.1 Background

Migraine (from Old French megrim, Greek hemikrania, hemi “half” and
krania, “skull”) is a syndrome of the central nervous system, the typical
manifestation of which is recurrent attacks of pulsing, one-sided headache
[GLF02]. The headache is often associated with other symptoms, such
as nausea, sensitivity to light and sounds, or dizziness; sometimes more
severe neurological symptoms also occur, such as numbness or even partial
paralysis of the extremities. In aural migraine, the attacks are preceded by
so-called aura symptoms, typically visual disturbances such as seeing bursts
of color or zigzagging lines. In non-aural migraine, the aura symptoms are
absent. In the USA and Western Europe, up to 11 % of people suffer from
at least yearly migraine attacks [GLF02].

Migraine symptoms vary significantly between sufferers [Ant10]. Some
individuals have one or two relatively mild attacks over years; some have
severe, debilitating, hours-long attacks several times a week. As some
sufferers have migraine auras without actual headache and the collection of
related symptoms varies, it is possible that two individuals diagnosed with
migraine do not share a single symptom.

Migraine is often triggered by specific experiences or situations, such as
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particular foods (red wine, chocolate, cheese), sleep deprivation, physical
exercise, mental stress, normal hormonal changes (especially in women), etc.
Very little is known about the exact causal mechanisms of triggers to the
attack. The disorder is known to have a heritable component, but the exact
genetics are unclear.

In this study, a large dataset has been analyzed as an attempt to form
clusters of sufferers based on a diverse collection of aura and attack symp-
toms, triggers, course of disease, and other information of the individuals,
such as co-morbidity. The dataset, however, is large and it has been collected
over several years, and it has turned out that the clustering is very sensitive
to differences in missing data probabilities and coding of variables that have
been introduced during this time. For an overview of both the data used in
this study and the disease, see the PhD thesis of Verneri Anttila [Ant10].

4.3.2 Data

The data in this study consists of a total of about 6500 individuals coming
from families where at least three family members (among grandparents,
parents, parent’s siblings, siblings and children of an index case) suffer from
migraine.

A group of neurologists under Mikko Kallela and Markus Färkkilä have
been collecting a database of such families from headache clinics since 1992.
All individuals, whether they themselves suffered of migraine or not, were
asked to fulfill the validated Finnish Migraine Specific Questionnaire for
Family Studies [KWF01] and to provide a blood sample. A neurologist
also performed a physical examination of the index patient and sometimes
other family members as well. Based on these, over 200 variables were
recorded. The semantics of the variables varies widely; among other things
migraine features, age of onset, and other diagnoses (“co-morbidity”) have
been recorded.

This dataset consists of 6,283 individuals, both healthy and with migraine.
In our study, we limited ourselves to individuals with migraine and to
variables with missing data proportion of under 50% and a clear annotation.
This resulted in 135 variables and 2,500 to 3,500 individuals (see below).
Unfortunately, the data collection process and the coding of various variables
has not remained completely stable through-out the years, mainly due to
the increasing understanding of migraine and thus shifting of interests.
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4.3.3 Methods

We attempted to cluster the data using a mixture model of independent
multinomial distributions (the Naïve Bayes model). The Bayesian informa-
tion criterion was used to select the number of clusters from k = 1, . . . , 12.
Missing data was handled as a separate value for each variable. Random
dropping of individuals and variables were performed in order to establish
cluster stability.

Due to the missing data and recoding problems we performed the
clustering in several subsets of individuals. Originally, we included all
individuals with a migraine diagnosis and at least 50 percent of data recorded
(N = 2,661) (dataset ALL in the following). In the course of preliminary
clustering, the results showed that some of the clusters were related to data
collection and recording procedures (rather than underlying disease-related
phenomena). Thus we decided to exclude everyone with running ID over
4017, the point identified by a data expert as a significant change in those
procedures. This resulted in a dataset with N = 2500, denoted below by
OLD.

4.3.4 Results

The BIC scores over different number of clusters can be seen in Figure 4.9.
The natural hierarchies test (see Chapter 3.3) also looks convincing for both
models, as can be seen from Figure 4.10.

Based on the BIC score we selected six as the number of clusters. It
is noteworthy that the natural hierarchies score peaks at four and five,
and that the BIC score also flattens out before the rise from six. The
natural hierarchies scores guarantee that this solution is highly similar to
the solutions into four and five clusters, so it even if either of those is the
“real” number of groups in the population, choosing six does not take us too
far from the correct solution.

Cluster stability (Figure 4.11) was not particularly impressive, if not
particularly terrible either. Most worrying was that the average Adjusted
Mutual Information in 10 experiments does not reach over 0.9 even for
re-clusterings with the full data. However, the number of clusters the BIC
score suggested (Figure 4.12) remained at six in re-clusterings, only falling
slowly when at least 20 percent of the data is removed.

Since the stability of the models was at question, and the amount of
missing data was so great, we went on by looking carefully at the clusterings
obtained. The aim was to understand how much missing data determines
the cluster of each individual.
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Figure 4.9: BIC scores for the two alternative datasets in the migraine data.
X-axis, number of clusters. Y-axis, score. Due to difference in the number
of individuals, these scores cannot be directly compared with each other.
What is notable is the similar form of the curves: removing some individuals
does not seem to have changed the optimal number of clusters.
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Figure 4.10: Adjusted mutual information between models with k and
k − 1 clusters for the two alternative migraine datasets. X-axis, number of
clusters k. Y-axis, adjusted mutual information between the models of k
and k− 1 clusters. We can see that the models with 3-5 clusters are perfect
refinements of each other, and the rest are quite similar too, suggesting a
real cluster structure in the data. We can also see that there is not much
difference between the behavior of the two datasets.
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Figure 4.11: Average AMI to the original best model in 10 experiment series
of re-clustering with increasingly missing data in the migraine data. X-axis,
percentage of data removed at random. Y-axis, adjusted mutual information
(1 = perfect similarity, 0 = similarity of random cluster assignments of the
same size. Bars show minimum and maximum. The ALL dataset was
used for this experiment. Note that the average AMI is below 0.9 even for
re-clusterings of the original dataset.
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Figure 4.12: Average number of clusters in 10 experiment series of re-
clustering with increasingly missing data in the migraine data. X-axis,
percentage of data removed at random. Y-axis, average number of clusters
for the 10 repetitions. Bars show minimum and maximum. Note that six
clusters remains the suggested number even when a significant portion of
data is removed.
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a)

Cluster, missing data as value
1 2 3 4 5 6

Cluster,
missing
data
ignored

1 443 0 0 0 0 0
2 12 401 0 0 0 0
3 408 9 195 0 0 0
4 40 0 0 323 0 28
5 10 33 0 2 328 14
6 174 0 0 0 0 241

b)

Cluster, missing data as value
1 2 3 4 5 6

Cluster,
missing
data
ignored

1 221 0 0 0 241 0
2 2 302 0 34 1 0
3 0 0 235 1 202 0
4 0 1 0 383 14 0
5 1 0 0 0 448 0
6 0 1 32 1 37 343

Table 4.3: Comparison of clustering models when class is assigned based on
only available data, or treating missing data as an additional value (similarly
to when building the model). a) All cases with at least 50 percent of data
(ALL), b) all cases with at least 50 percent of data and ID < 4018 (OLD).

Table 4.3 shows a comparison of two different ways to assign a cluster
status to individuals in the two training sets. First, we can assign a cluster
for each individual by treating missing data as an additional value for the
cluster (as was done when building the models). Second, we can assign
a cluster for each by simply ignoring the variables with missing data, by
considering the probability of obtaining the values for the rest of the variables
given the model.

We can see from this that there seems to be a cluster in both datasets
(namely, cluster 1 for ALL and cluster 5 for OLD) that does not remain
intact when the use of missing data information is forbidden, suggesting
that this cluster label is based on missing data information only. In addition,
there are two clusters (columns 2 and 6 in a), 3 and 4 in b)) that lose some
members when missingness information is discarded. Three clusters remain
intact in both models.

In Table 4.4 we see a comparison of the clusterings obtained by the
two datasets, here using all the N = 3,410 cases of migraine in the data,
when a cluster label is assigned to each case by ignoring missing data. This
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Cluster with the ALL model
1 2 3 4 5 6

Cluster with
the OLD
model

1 79 0 8 1 1027 3
2 0 0 0 452 2 0
3 255 0 2 0 3 0
4 29 0 9 0 2 677
5 0 328 8 12 0 7
6 0 0 307 0 14 185

Table 4.4: Comparison of cluster labels of all migraine (N = 3,410) cases
with the two alternative models. Columns, clusters obtained with the model
learned on the ALL dataset. Rows, clusters obtained with the model learned
on the OLD dataset.

similarity showed that the discrepancy in the majority cluster when ignoring
and using missingness information is not simply due to data collection
procedures being different after a certain running participant number.

4.3.5 Methodological implications

The most convincing conclusion from the above results is that the majority
cluster obtained is probably based in a large part on patterns of missing data.
This is in itself not a surprising, as data is missing in a non-random way, and
we explicitly model missing data as an additional value for each variable.
Enough missing and enough dependency on missingness patterns between
variables implies that the individuals with certain patterns of missing values
truly form their own cluster. It is not an indication that the method does
not work, as such; rather, it is an indication that the missingness patterns
in the data are informative about the individuals. Unfortunately, in this
case the information very probably is not of medical interest, but is instead
related to data collection procedures.

As the clusters other than the majority cluster seem to reflect clusterings
based on actual variable values, it would be tempting to assume that the
“true” cluster of the individuals clustered differently when missing data
is ignored is the one obtained on observed data alone. The author feels,
however, that when the models are so clearly based on the missingness
status, and when the missingness is clearly not at random, this would not
really be an easily justifiable assumption. Such an assumption would seem
to require with confidence ruling out that the missingness pattern is not
informative of the “true” cluster of the individuals, which assumption we
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cannot justify based on the data. Even if the missingness pattern is driven
by data collection features, those in itself might be related to the underlying
cluster structure. Erring to the side of caution, we ended up recommending
this clustering to not be used for medical research purposes.

One possible option for future analysis would have been simply to
drop the individuals that change cluster depending on the missing data
treatment and concentrate on the individuals in the other, more stable
clusters. Unfortunately this would cause the number of individuals with
enough genetic data to be too low for the association studies that were the
primary interest of the domain experts, and so analysis was not carried
further. For some results about migraine on the same dataset, obtained by
simpler methods, see the PhD thesis of Verneri Anttila [Ant10].

As a conclusion from this study, we can see that under missing data
conditions, it is possible to obtain a clustering that looks convincing regard-
ing to cluster number selection and stability analysis methods, but does not
necessarily reflect an interesting underlying structure based on observed
data. It is, hence, not enough to rely on the cluster number selection
scores to convince oneself of a stable and interesting cluster structure. A
cluster structure might exist, but not reflect any underlying phenomenon
in the population under study, but rather data features such as coding or
missingness.

Stability tests by random dropping can pick up such problems, though
one should note that if the missingness mechanism is completely determin-
istic, this might not work either. Comparing the obtained clusterings by
assigning cluster labels with and without utilizing missingness information
can give some idea on how dependent the model is on the missingness status.

4.4 Case 4: No clear mixture model clusters in
autism data

4.4.1 Background

Autism (from Greek autos-, “self”) is a disorder of the development of social
interaction and communication, assumed to have a neurological basis.

The so-called “Autism Spectrum Disorders” include conditions of varying
symptoms and severity, ranging from sufferers of mild Asperger’s Syndrome
able to function as normal adults to deeply affected victims of Infantile
autism completely unable to communicate. Autism Spectrum Disorders
have a prevalence of 10 to 60 per 10,000, the most severe form of Infantile
Autism, or Autistic Disorder as it is also called, comprising 4 to 10 % of
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that. Boys are at increased risk. [GW99, CF01, Cha02, AG08]
Autism manifests as disturbances of reciprocal social interactions, com-

munication, behavior, and cognitive development. Repetitive actions and
interests also occur. Individual symptoms seem to be present in the general
population and there is no clear line separating the peculiar from the patho-
logical; we speak of autism when the symptoms appear together and/or as
more severe than is typical [Lon07].

Autism has been shown to have a clear genetically heritable basis,
but details of genetics remain unclear; the existence of a single causative
gene is highly unlikely [AG08]. Finding homogeneous subgroups of sufferers,
symptom components with a heritable basis, or predisposing endophenotypes
is again needed for further understanding of the heritability mechanics and
the disorders in general.

In this study, we attempted a Naïve Bayes mixture model clustering of
various measures of Infantile Autism. As this method proved unsuccessful,
the research group went on to perform PCA and a subsequent k-means
clustering of the results (in which work the author of this the present work
was only marginally involved).

4.4.2 Data and results

Autism Diagnostic Interview-Revised (ADI-R) is a structured diagnostic
interview of the parents or other primary caregivers of individuals with a
suspected autism diagnosis. An associated algorithm for calculating scores
based on the answers and defining a diagnosis based on the scores is also
defined (though was not used in this study) [LRC94]. Most of the questions
have 8 possible answers that can be considered ordered.

The data used in the clustering attempt described below consisted of
1395 individuals from the Autism Genetic Research Exchange collection
[GSL+01]. Of these, 1075 had received the diagnosis of autism. Number of
variables was 210. We attempted a clustering with the Naïve Bayes mixture
model procedure, with multinomial distributions, selecting the number of
clusters with the BIC score. The original clustering attempt produced a
clustering of two or three clusters (see Figure 4.13).

It was proved in the stability tests, however, that the three-cluster
solution was not stable – repeated clusterings by removing even 10 percent
of the data did not lead to a similar model. The two-cluster model was
stable, but even with a cursory look of the results it proved obvious that the
differentiating factor between the clusters was capability of speech, which,
while an important divisive factor of autism sufferers, is not the kind of
interesting new subgrouping one would hope from a clustering study. Due to
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Figure 4.13: Model error and the BIC score in the autism study. X-axis,
number of clusters. Y-axis, BIC score (blue, the top curve) and model error
(green, the lower curve). We can see the score flattening out at 2-3 clusters
and then rise steeply.
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the instability of the results and the suspicion that the high dimensionality
of the data compared to the number of individuals in the sample could be
the cause of it, it was decided that this path of analysis be abandoned, and
a PCA-based study performed instead.

4.4.3 Implications

The failure of mixture model clustering to produce meaningful results
was likely due to high dimensionality of the data compared to number of
individuals and/or the lack of cluster structure in the data. The author
of this book was personally initially reluctant to apply PCA, due to not
considering the data continuous by nature, but with advice from more
experienced members of the team it was decided that the person primarily
in charge of the analyses would proceed in that direction instead of e.g.
dimensionality reduction by other methods and re-clustering. The author
was proved wrong by subsequent results providing insight to Autism genetics
(Roine et al., submitted).

Stability tests proved the clustering to be problematic in a relatively
early phase of the study, and the line of research was abandoned, so the
below should be taken as speculation. It can, however, be relatively easily in-
tuitively understood that in cases where there might not be clear underlying
group structure, clustering methods might not provide stable results.

In this case, the author’s best guess for the reason behind the unstable
structure is that the autism spectrum disorders — just as the name implies
— do not constitute of separate subgroups. Rather, the sufferers form a
continuum, from mild forms of the disease barely separate from extreme
personalities to severely debilitating conditions, and everything in between.

Figure 3.3 and Section 3.3 explain in another context how clustering
methods adjust to a gradient, resulting in non-hierarchical system when k
is increased. Through a similar phenomenon, with a gradient structure in
high dimensionality, it is likely that the randomly chosen initial clustering
affects the results enough to cause unstable results. The fact that interesting
results were obtained by PCA speaks for the theory of a gradient instead
of cluster structure being present (though by no means confirms it with
certainty).





Chapter 5

Conclusions

“A conclusion is just the place where you got tired of thinking.”
(Nancy Kress)

In this thesis, we set out on a journey with a hammer, and proceeded
to hit some things to find out if they behave like nails. Regardless of
the abundance of such old tool-related jokes about it, this kind of basic
applicative work is still relatively rare in computer science: there is a gap
between algorithm development, where work usually stops when it has been
experimentally proved that the method works on some datasets, and medical
research, where methods are only rarely used unless they are a part of some
relatively easy-to-use software package. This work has been a pebble thrown
into that canyon that I hope many will follow.

In the practical real data studies included in this work I have shown that
clustering methods can in some cases provide crucial insight into complex
diseases. In the schizophrenia family study, our results shed light on the
reasons for previous inconclusive results on the association of particular
genes to disease. While conclusive proof of the role of these genes still eludes
the scientific community, similar conclusions have been reached by other
researches via independent methods, confirming our thinking as basically
sound. In the the temperament study, we were successful in summarizing the
12-dimensional temperament scale into four groups without losing practically
any information about background associations. We showed that males and
females have similar basic temperament groups, and that these groups have
associations to lifestyle, health, and position in the society.

We also found that not all nails are made equal for our hammer. Clus-
tering methods are not always applicable, or easily applicable, and the
reasons can be data-dependent (as was the case in the migraine study) or
result from the actual phenomenon under study (as might have been the
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case in the autism work). The conclusion must be drawn that clustering is
unlikely to be the “press a button and it goes” solution to this kind of data
analysis, but instead great care and a lot of effort must go into curating
and analyzing the data, and tailoring method selection and missing data
handling, for each dataset separately. The cleaner and simpler the data, the
easier it is to apply clustering methods, but unfortunately for those who
love their hammer, it also holds that the cleaner and simpler the data is,
the less need there is to go for complex analysis methods, instead of just
looking at simple correlations.

The use of these clustering methods is not as such very complicated, as
far as the required mathematical understanding and computer programming
skills go. However, many parts of the procedure are data-dependent and
data-driven, and interesting datasets tend to be complicated and noisy. For
these reasons, we do not consider it likely that the methods would ever
be easily usable without at least some programming skills. Even where
data allows the use of commercialized or otherwise packaged programs,
the interpretation of the results requires solid understanding of both the
processes and the peculiarities of the data at hand.

Especially the evaluation of the stability and validity of the clusterings
requires some care. As we have shown both in the simulations and in
the studies with real data, patterns of missing data and coding decisions
can affect the outcomes of the clustering algorithm, and detecting these
artefacts requires careful analysis of the stability of the clustering solutions.
We propose the use of random dropping of individuals and variables as
one excellent means to detect such artifacts. Moreover, we suggest that
replication in a separate sample should be held as the golden standard of
validation also for clustering studies, even though we have to acknowledge
the difficulties involved in replicating this kind of complex datasets.

In addition to these practical observations, various observations of the
behavior of these clustering methods were reported and confirmed on artifi-
cial data. We compared 10-fold cross-validation and Bayesian information
criterion in the selection of cluster number, and found them close to equal
for realistic N in the presence of a cluster structure. The BIC score has
the tendency to exaggerate the number of clusters in the absence of one,
though, and the 10-fold cross-validation procedure to underestimate the
number of clusters for small N (in the order of hundreds).

We also observe in simulations and in real data that in the presence of
a true clustering structure in the data, non-hierarchical clustering methods
tend to produce hierarchical clustering models for subsequent k, and that
replication in a new sample can also confirm or deny the presence of a cluster
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structure. For missing data, we show that for the missing data handling
procedures used in the real-life studies, data needs not to be missing at
random, and that even datasets with fairly large numbers of missing data
can still produce the clusterings obtained in full data. Finally, we show that
also randomly dropping rows from data the data matrix and re-clustering is
a good way to explore whether clusters are real.

To conclude, I consider clustering methods a viable alternative for this
kind of medical data analysis, given that there is a research group that
includes expertise both on the methods and on the domain. Good practical
programming skills on the method side and clinical experiences from the
disease under study on the medical side are a big bonus. It must be stressed
though that these methods are only an alternative. No exploratory data
analysis tool fits every data set, and sometimes exploration is not the best
alternative: for example, if you have a clear hypothesis, you should test it,
instead of explore in the hopes of landing on a proof.
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