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ABSTRACT 

DETERMINATION OF TRACE ELEMENT PROVENANCE, RIO LOA BASIN, NORTHERN 

CHILE 

 

Leslie Rae Wilson, M.S.  

  

Western Carolina University, (July, 2011) 

 

Director, Dr. Jerry R. Miller 

 

 

The Atacama Desert, located between the Pacific Ocean and the Andes in northern Chile and 

southern Peru, is one of the driest regions on the planet.  In spite of the extreme aridity, the 

Atacama is traversed by the Rio Loa, a perennial river which owes its continuous flow to 

precipitation and runoff at high elevations (>4000 m) along the western Andes, and the 

emergence of groundwater from thick alluvial aquifers.  Water within the Rio Loa is an extremely 

important resource, but its water and sediment are contaminated, exhibiting levels of trace metals 

and metalloids that exceed drinking water standards (e.g., for arsenic) and threshold effect 

guidelines for aquatic biota (e.g., for copper, cadmium, antimony, and zinc).  Previous studies, 

combined with data collected in 2009, suggest that trace metals/metalloids are derived from 

multiple sources, including El Tatio (a large geyser basin) and three large copper mines.  

Determination of the relative contribution of contaminants to the river from the geyser basin and 

the mines has proven problematic using spatial patterns in arsenic concentrations.  This study 

utilizes both total elemental concentrations (arsenic, antimony, copper, and lead) along with 

isotopes of antimony and lead to distinguish contaminant sources in the Rio Loa. Additionally, a 

sequential extraction procedure provided additional geochemical understanding of the elemental 

dispersal pathways via sediment binding.  

Isotopes of antimony and lead did not provide enough information to distinguish 

contaminant sources. Total concentrations of arsenic, antimony, and copper proved to be more 



 
 
informative, the largest source of copper contamination was determined to be the copper mining 

operations of El Abra, Radiomiro Tomic, and Chuquicamata.  But mining did not input 

significant quantities of arsenic or antimony, both of which were found in very high 

concentrations within the Rio Loa. Results showed that El Tatio Geyser Basin input most of the 

arsenic and antimony contamination. For this reason, a ratio of antimony/copper proved to be a 

good contaminant tracer to distinguish and quantify contaminated sediment from El Tatio and 

mining operations. This ratio was applied to floodplain cores and older terrace deposits to 

determine how sediments have been distributed within the basin over time.  

The El Tatio Geyser Basin proved to be the largest contaminator within the Rio Loa 

basin, mostly due to older terrace deposits, which are high in contamination from El Tatio, 

continually being eroded and re-worked into the floodplains and channel bed deposits of the 

lower reaches of the Rio Loa. Contaminated sediment from copper mining operations was not as 

relevant of a concern because copper transport downstream is inhibited by its adsorption onto Fe-

Mn oxide rich particles, which are quickly deposited and/or diluted within the Rio San Salvador 

(a tributary) before reaching the Rio Loa. 

 



7 
 

CHAPTER ONE:  INTRODUCTION 

In the northern region of Chile the Rio Loa traverses the Atacama Desert, which is 

considered one of the driest places on the planet.  The headwaters of the Rio Loa start at high 

elevations along the western flank of the Andes Mountains and the river flows 440 km westward 

to the Pacific Ocean (Figure 1). Because of the drainage area’s extreme aridity, water derived 

from the high Andes and delivered downstream through the Rio Loa, is a critical resource used 

for domestic, agricultural, and industrial purposes.  In fact, it provides the primary source of 

water for the city of Calama (population of approximately 138,000) and for three of the largest 

copper mines in the world (Chuquicamata, Radomiro Tomic, and El Abra).  Unfortunately, the 

quality of water within the Rio Loa is extremely poor; high concentrations of arsenic (As), 

antimony (antimony), lithium (Li), boron (B), and other toxic metals and metalloids have been 

measured within the river’s waters throughout much of its course (Romero et al., 2003).  Arsenic 

concentrations, for example, have been observed to exceed the World Health Organizations 

drinking water standards by a factor of ten (Romero et al., 2003).  The health effects of arsenic 

toxicity are well known and much of the urban water within the Rio Loa is treated for arsenic by 

iron precipitation at the Cerro Topater water treatment plant before utilized in Calama. However, 

the water supply for rural communities is not treated and serious health effects due to high arsenic 

levels have been reported in these areas (Romero et al., 2003).   
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Figure 1: Location map of Study Area 

 

 

 

Mining in the Atacama Desert is the source of income for many families and the basis for 

the local economy of Calama.  Open pit mining of the Chuquicamata-Exotica deposit started in 

the Rio Loa basin in 1923. In 1995, Chuquicamata processed about 150,000 tons of copper 

sulfides per day (tons/day), 28,000 tons/day copper oxides, and 100,000 tons/day of waste 

(Romero et al, 2003). Unfortunately, the mining activities within the basin have had significant 

impacts on water quality and quantity within the Rio Loa.  With respect to water quantity, the 

Chuquicamata mine alone has been known to consume 1760 L of water per ton of mineral 

processed from the Rio Loa in 1980 (Romero et al., 2003).  Today, the consumption rate is 
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slightly lower because of recycling techniques and long pipelines that bring in desalinated water 

from the Pacific Ocean. Tailings from mineral processing are currently discharged into the 

Talabre Impoundment, which is located in a fluvially eroded depression and consists of an area of 

40 km
2 
(Romero et al., 2003). Prior to the development of the Impoundment in the 1990’s, mine 

tailings were discharged directly into the Rio San Salvador and potentially other drainages in the 

area. 

The other two mines of significance in the area lie along deposits in the porphyry-copper 

belt and also utilize large quantities of water. These mines, named El Abra and Radomiro Tomic, 

are located 42 km and 17 km north of Chuquicamata, respectively (Romero et al., 2003). The 

mined ore deposits lie to the west of a reach of the Rio Loa referred to as the Upper Loa (Figure 

2). Alluvial fan deposits located within this upper reach of the Rio Loa valley contain mill and 

mine tailings from these two mines.  The mineral composition of El Abra and Radomiro Tomic 

deposits are slightly different from that of Chuquicamata. Radomiro Tomic contains minerals 

higher in sulfides while El Abra is distinguished by having copper-molybdenum rich 

mineralization (Romero et al., 2003).    

Temporally, long-term (decadal) variations in trace metal inputs to the Rio Loa are 

thought to vary as a function of mining history (methods, production, releases, etc.) at 

Chuquicamata (starting in 1923), Radomiro Tomic (1970), and El Abra (1996).  Following the 

initial onset of mining, the influence of mine production and processes on contaminant source(s) 

was probably maximized as tailings were piled in large quantities within the drainages and 

therefore always available for transport. Thus, significant variations in flux to the river were 

likely associated with differences in the rainfall runoff patterns responsible for sediment and 

contaminant entrainment and dispersal. 
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Spatial patterns in elemental concentrations suggest that high concentrations of arsenic 

and antimony are also derived from the El Tatio Geyser Field located at the head of the Rio 

Salado, a tributary to the Rio Loa (Figure 1). The geyser field is around 10 km
2
 and discharges 

between 250-500 L/s of hydrothermal waters into the Rio Salado. Dissolved arsenic 

concentrations in water from the geyser field are the highest reported for any surficial water body 

(Landrum et al, 2009). Romero et al., (2003) also argued on the basis of geographical patterns in 

concentration that the geyser basin is the primary source of arsenic (and other elements) into the Rio Loa 

Basin. Due to the high concentration of arsenic within the Rio Loa, citizens in towns nearby the river 

have been affected by water which has arsenic concentrations ranging from 100 to >1000 g/l.  The 

World Health Organization (WHO) has set the standard arsenic concentration to be no more than 10 g/l 

in potable water supplies. The potential for inputs of other metals besides arsenic into the Rio Loa 

basin from El Tatio is also significant, and there is a definite need to quantify sediment from the 

El Tatio Geyser Basin.   

While stream flows are influenced by groundwater recharge and discharge processes, 

flow through the drainage network is dominated by surface runoff, which produces high 

magnitude floods that inundate large areas of the valley floor including much of Calama.  

Enormous quantities of sediment are transported from the headwater areas and re-deposited 

downstream during these events.  A flood in 2001, estimated to have a recurrence interval of 100-

200 years, resulted in the deposition of up to 1 meter of fine-grained sediment over areas 

exceeding hundreds of km
2
 in the basin (Houston, 2006).  Smaller, more frequent events, such as 

those that occurred in 1977, 1997, and 1999 (R.I. > a few decades), have also been shown to 

inundate large areas and transport large quantities of sediment. However, not all floods are 

produced by rainfall in the Andes.  Flooding may occur over both time scales in response to 

north-easterly moving frontal storms sourced in the Pacific, which contribute about 30 to 40 

percent of the rainfall below 2300 m (Houston, 2006; Rech et al., 2010).  Thus, flooding at lower 
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elevations in the basin may be disconnected from runoff at higher elevations.  More importantly, 

sediment transport and re-deposition appears to be dominated by extreme events as suggested for 

other basins in arid regions (Baker, 1977). 

The effect of the above complexities is that transport and deposition of sediment-borne 

trace metals/metalloids appears to be dominated by high magnitude runoff events (R.I. > a few 

decades) that are capable of entraining and transporting large quantities of sediment, and which 

inundate historic terraces that locally cover large areas of the valley floor (e.g., Calama).  

Although it is clear that El Tatio and the mines contribute materials to the Rio Loa enriched in 

trace metals and metalloids, the relative amount derived from each has yet to be quantified and is 

likely to vary both between events and from one location to another. 

The degree of contamination is difficult to assess within the Rio Loa Basin because of the 

high degree of mineralization in the basin as a whole, and the natural release of trace metals and 

metalloids during weathering. As a result, determining exactly how much of a particular element 

is derived from the various anthropogenic and natural sources is a significant problem, which has 

received considerable attention and must be addressed to effectively manage water quality within 

the Rio Loa Basin.   

Romero et al. (2003) used total arsenic concentrations and chemical speciation data to 

determine where sediments from El Tatio are being deposited downstream. However, the use of 

arsenic concentrations to determine source(s) is plagued by analytical complications. More 

specifically, multiple sources of contamination within the Rio Loa Basin can lead to complex and 

confusing geographical patterns in concentration.  For example, overlapping anthropogenic 

pollutants can come from both point (mines, and El Tatio), and non-point sources (mineralized 

rocks), which could show an abrupt increase in contaminant concentration within the river system 

where these two sources combine.  A second problem with the use of total arsenic concentrations 
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is that arsenic typically possesses a high degree of chemical mobility between the dissolved and 

particulate forms which can significantly alter spatial patterns.  

The geochemical complexities that are involved with elemental and spatial patterns to 

identify contaminant sources may make the use of arsenic an unreliable predictor for contaminant 

sources. Physical and geochemical tracers and tracer methods have been growing in popularity to 

properly identify the sources of contaminants and their transport through the aquatic system to the 

location where they are currently deposited.  A physical or geochemical tracer is usually defined 

as material from the source location that contains a unique set of characteristics (contaminated or 

otherwise) that allows it to be distinguished from other constituents in the basin (Miller and 

Orbock Miller, 2007). Environmental studies utilize a wide range of characteristics unique to 

each source in the basin to find the best tracer for their purpose.  The range of tracer parameters is 

growing as more methods are being researched and discovered. Some common tracers utilized in 

environmental studies are sediment grain size and mineralogy, mineral magnetics, acid-soluble 

trace metals, rare earth elements, and various elemental isotopes.       

Isotopes have proven useful in a variety of environmental studies for  use as tracers. 

Isotopes of lead (
204

Pb, 
206

Pb, 
207

Pb, and 
208

Pb) have been utilized in deciphering the source and 

dispersal pathways of sediment and sediment borne contaminants in rivers (Miller et al., 2003). 

To be effective, each source of contaminated sediment should contain different Pb/U to Pb/Th 

ratios which influence the lead isotopic ratios in the geological material.  Problems with this 

method occur when lead is not associated with, or moving with, contaminated sediment or when 

lead in the surrounding rocks and the contaminated source materials is from the same source. 

Isotopes of chromium, molybdenum, copper, zinc, and selenium also hold promise for use as 

environmental tracers (Miller and Orbock Miller, 2007). Additionally, antimony isotopes have 
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recently been utilized in environmental applications as tracers and have been proven useful 

because of their wide range of isotopic values (Rouxel et al., 2003). 

The primary objective of this study is to determine the source(s) of selected trace metals 

and metalloids within alluvial sediments of the Rio Loa, and to determine the relative quantity of 

these contaminants derived from each source. Inherent in this broad objective is the assessment of 

the applicability of previously used methods for provenance analysis (e.g., documenting spatial 

patterns in elemental arsenic concentration). The investigation also explores the use of new 

methods of source identification based on geochemical speciation and isotopic analysis. More 

specifically, the study focuses on the ability of lead and antimony isotopes to differentiate 

anthropogenic mining wastes from natural sediment discharged from El Tatio. Specific 

hypotheses that were tested during the study include the following:  (1) arsenic is a poor tracer 

due to its high degree of mobility within the basin; (2) lead has a distinct isotopic signature for 

both mining operations and El Tatio; (3) lead can be utilized as a tracer within the basin; (4) 

copper input is primarily from mining operations; (5) antimony isotopes are distinct for El Tatio 

and mining operations; (6) antimony concentration is highest within samples taken from El Tatio; 

(7) antimony absorbs to silica crystals coming from El Tatio and therefore is found mostly in the 

residual fraction; (8) antimony isotopes can be used as tracers to determine the source(s) of 

contaminated sediment; and (9) plots of  antimony/copper ratios may be able to distinguish 

source(s) of contaminated sediment if antimony is high within El Tatio samples and copper is 

high within mining related samples.    
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CHAPTER TWO:  STUDY AREA 

 The Rio Loa heads on the western flank of the Andes and flows approximately 440 km 

downstream across the Atacama Desert to the Pacific Ocean (Figure 2).  Rainfall within the basin 

is highly variable, ranging from approximately 300 mm/yr to above 3000 mm/yr in the Andes to 

only 1-2 mm/yr near the coast.   The basin can be subdivided into seven major geomorphologic 

areas, which are referred as the Upper Loa, Mine Tributaries (El Abra and Radiomiro Tomic), El 

Tatio Geyser Field, Rio Salado, the Middle Loa, Rio San Salvador, and the Lower Loa.  The 

Upper Loa extends from the base of the Conchi reservoir in the Andes to its confluence with the 

Rio Salado (Figure 2).  Throughout the reach, the Rio Loa is incised into the underlying rocks, 

including limestones, rhyolitic and liparitic volcanic deposits, and Miocene to Holocene alluvial 

and lacustrine deposits.  The Rio Salado flows in a westerly direction from a series of geothermal 

springs called El Tatio Geyser Field in the Andes through volcanic rocks and ultimately to the 

main stem of the Rio Loa.  The Middle Loa represents the reach between the confluence of the 

Rio Salado and the Rio Loa to the mouth of the Rio San Salvador.  The underlying geology along 

this reach is dominated by Miocene to Holocene alluvial deposits and Pliocene to Holocene 

evaporitic deposits.  The Rio San Salvador is a tributary located downstream of the Chuquicamata 

copper mine. It eventually enters into the Lower Loa, located after the town of Calama (Figure 2). 

The Lower Loa flows northward until the river turns sharply to the west and flows through a 

canyon composed of Mesozoic and Paleozoic sedimentary formations exposed in the Coastal 

Mountain range (Cordillere de la Costa), located within the middle of the Atacama Desert.  

Ultimately, the Rio Loa empties into the Pacific Ocean around 22.5˚ latitude, 70.3˚ longitude.  
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CHAPTER THREE:  METHODS 

Sampling Methods 

Floodplain and Channel Deposits 

 In early November 2009, sediment and water samples were collected from each of the 

sample populations. The Rio Loa basin was subdivided into seven geographical areas for 

sampling on the basis of site geomorphology and potential sources of trace metals to the river. 

These areas include those mentioned as El Tatio Geyser Field, Rio Salado, Upper Loa, Mine 

Tributaries of the El Abra and Radiomiro Tomic, Middle Loa, Rio San Salvador, and Lower Loa 

(Figure 2). Alluvial sediments were collected from within the channel bed (19 samples), 

floodplain surfaces (13 samples), or terrace deposits (20 samples) (Table 2). Additionally, 

deposits were sampled at depth from two terraces and three floodplain sites within the middle Rio 

Loa and Rio Salado. Samples collected from the Upper Loa, upstream of sampling sites RT-1 and 

RT-2, are thought to primarily represent background concentrations as the reach is located 

upstream of copper mining operations and input from El Tatio. Contamination from the El Abra 

and Radomiro Tomic enter the Upper Rio Loa near RT-1 and RT-2 via large alluvial fan channels 

(Figure 2). Samples from the Rio Salado are downstream of El Tatio Geyser Field and are 

thought to represent sediment derived from there, while the Rio San Salvador drains contaminants 

from Chuquicamata copper mine. Sediment located within the Middle Loa is downstream of the 

confluence of the Rio Salado with the Upper Rio Loa. This section of reach is primarily thought 

to represent a mixture of sediment from El Tatio and the El Abra and Radiomiro Tomic copper 

mines. The furthest downstream samples were taken after the confluence of the Rio San Salvador 

and the Rio Loa, downstream from the town of Calama.  
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Middle Loa Terrace Deposits 

Terrace deposits within sampling sites RL3-T and RL1-T were sampled within the 

Middle Loa. One sample from each stratigraphic unit within the terrace was collected and 

analyzed for geochemical data via a total extraction. The RL1-T site was divided into four 

separate stratigraphic units (A-D) while the RL3-T site was broken into eight separate units (A-H) 

(Figures 19 and 20).   

 

Sampling Population Sample names 

El Tatio 

ET-1 ET-4   

ET-2 ET-R1   

ET-3 ET-R2   

El Salado 

RS-1-C RS-2-T2 RS-4-C 

RS-1-FP RS-3-C RS-4-FP1 

RS-1-T RS-3-FP (a,b) RS-4-FP2 

Upper Loa 

UL-1-C UL-2-FF UL-3-T (a-c) 

UL-2-C UL-3-C 

 
  UL-3-FP 

 Mine Tributaries RT-1 RT-2   

Chuquicamata 
RSS-2-1 RSS-2T   

RSS-2C     

Middle Loa 

RL1-C RL-2-T RL-3-FP (a-d) 

RL2-C RL3-T (a-h) 

 RL1-T (a-d)   

 
Lower Loa  

RL-4-C RL-4-T   

RL-4-FP     

Table 1: Samples associated with each population; samples in bold were analyzed for metal 

speciation by sequential extraction. See figure 2 for sampling site locations. Channel bed (C), 

floodplain (FP), and terrace samples (T), along with one sample from a farm field along the 

floodplain (FF), were sampled during November, 2009. 
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Figure 2: Location map of sample sites. Colors of sample sites indicate how samples were broken 

up on the basis of geomorphological populations. Refer to legend for population names.  
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Geochemical Analyses 

 All of the collected samples were placed in polypropylene sampling containers, packaged 

in plastics bags, and shipped to the Nevada Bureau of Mines and Geology (NBMG) for analysis. 

The analysis used to address the objectives included both total and sequential extractions 

digestion procedures. The elements analyzed in detail were copper, antimony, lead, and arsenic 

along with isotopes of antimony and lead.  The total extraction analysis involved the microwave 

digestion of 400 mg of dried and homogenized sediment, <2 mm in size, using 4mL of hot Aqua 

Regia (1:3 ratio of nitric to hydrochloric acid). The samples were analyzed for selected 

elementals using a Micromass Platform Inductively Coupled Plasma-Mass Spectrometer with a 

hexapole collision cell (ICP-HEX-MS). With respect to total concentrations, the instrument was 

calibrated with three USGS (GXR-1, GXR-2, and GXR-5) and two NIST (2709 and 2711) 

standard reference materials (SRMs). Reagent blanks and the analyte concentrations for the five 

SRMs were plotted against blank-subtracted integrated peak areas. A regression line was fitted to 

this array of calibration points and the equation of this line was used to quantify unknown sample 

concentrations. Deviation of standards from the regression line was used to estimate analytical 

accuracy, which was +/- 3 to 5 percent of the amount present when determining total 

concentrations. Accuracy of lead isotopic measurements was assessed with the NIST 981 lead 

isotope standard. Accuracy was typically better than +/- 0.5 percent, and systematic instrumental 

bias was corrected. Replicate analyses were used to determine analytical precision, which was < 

+/- 5 percent. 

Sequential Extraction Method 

Sequential extraction is a technique which determines how contaminants are bound to 

sediments, thereby allowing for determination of their mobility and bioavailability (Miller and 

Orbock Miller, 2007). The analysis was performed on thirty of the fifty collected sediment 
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samples taken from the Rio Loa Basin (Table 1).  One gram of each sample was weighed into a 

50 mL centrifuge tube. Wet sample weights were used and later corrected by using sediment 

moistures measured at 105˚C.  A five step sequential extraction was performed on the samples. 

The strength of the chemical reagent was increased in each step in order to extract various bound 

fractions from the sediment sample.  The exchangeable fraction, carbonate-bound, Fe-Mn oxide 

metal, organic metal and residual metal fractions were extracted from all thirty samples (Table 2).   

Concentrations were determined by first subtracting blank standard responses. Blank 

samples were run after every fourth sample. An average of the two blanks was calculated and 

subtracted from sample responses. The subtracted sample response was then divided by the Tm 

response given by the ICP-HEX-MS instrument. The instrument was calibrated with three USGS 

(GXR-1, GXR-2, and GXR-5) and two NIST (2709 and 2711) standard reference materials 

(SRMs). A regression line equation was calculated using Microsoft Office Excel 2007. The 

regression line equation was then used to determine the concentrations of each sample.  

Exchangeable-metal Fraction  

The exchangeable fraction used MgCl2 as the chemical reagent. 8 mL of 1 M MgCl2 was 

added to each sample and agitated frequently at room temperature for 1 hour.  Samples were 

centrifuged for 5 minutes. The aliquot of supernatant was decanted from the leached sediment 

and 4 mL of Aqua Regia was added to each sample to keep cations from precipitating. 5 mL of 

supernatant was diluted to 100 mL using nano-pure water. Samples were again diluted 1:4 before 

they were analyzed by ICP-MS.   

Carbonate-Bound Metal Fraction 

Remaining residue from the previous sample leach was then extracted with 8 mL of 1 M 

sodium acetate solution which was adjusted to a pH of 5.00 with acetic acid in order to extract the 
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carbonate-bound metal fraction.  Samples were agitated at room temperature for 5 hours and then 

centrifuged for 5 minutes. The aliquot of supernatant was decanted and 4 mL of Aqua Regia was 

added to each sample. 5 mL of supernatant was diluted to 100 mL using nano-pure water. 

Samples were again diluted 1:4 before they were analyzed by ICP-MS.   

Fe-Mn Oxide Metal Fraction 

The Fe-Mn oxide metal fraction from each sample was extracted using 20 mL of 0.04 M 

NH2OH*HCL and applied to the remaining residue left after the carbonate bound metal fraction 

leach. The samples were agitated periodically in a boiling water bath for 5 hours and then 

centrifuged for 5 minutes. The aliquot of supernatant was decanted from the leached material and 

4 mL of Aqua Regia was added to each sample. 5 mL of supernatant was diluted to 100 mL using 

nano-pure water. Samples were again diluted 1:4 before they were analyzed by ICP-MS.   

Organic-Metal Fraction 

Reagents for the organic metal fraction included 3 mL of 0.02 M HNO3 and 5 mL of 30% 

H2O2 which was adjusted to a pH 2 with HNO3.  Each sample was agitated periodically at 85˚C 

for 2 hours. 3 mL of H2O2 (pH 2) was added to each sample and agitated periodically on a hot 

bath at 85˚C for 3 hours. After 3 hours, 5 mL of 3.2 M ammonium acetate in 20% v/v HNO3 was 

added to each sample before being agitated periodically again at room temperature for 30 

minutes. Samples were centrifuged for 5 minutes. The aliquot of supernatant was decanted from 

the remaining leached sediment and 4 mL of Aqua Regia was added to each sample. 5 mL of 

supernatant was diluted to 100 mL using nano-pure water. Samples were again diluted 1:4 before 

they were analyzed by ICP-MS.  
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Residual Metal Fraction 

Only samples from El Tatio were analyzed for the residual metal fraction (ET-1, ET-2, 

ET-3, ET-4, ET-R1, and ET-R2).  The extraction was performed by adding 10 mL of 

concentrated HF and 16 mL of Aqua Regia to each sample. The six El Tatio samples were heated 

on a hot bath for 2 hours while agitating periodically. Samples were centrifuged for 5 minutes. 

The aliquot of supernatant was decanted from the 50 mL centrifuge tube, and 4 mL of Aqua 

Regia was added to each. 5 mL of supernatant was diluted to 100 mL using nano-pure water. 

Samples were again diluted 1:4 before analyzed by ICP-MS.  Summing the concentrations of 

each previous extraction, and then subtracting that value from the total metal concentration 

determined the residual metal fraction for all other samples.   

Total Metal Fraction 

Total metal analysis was determined by digesting 400mg of sample with 8 mL Aqua 

Regia and 2 mL of concentrated HF. Each sample was agitated periodically for 2 hours in a hot 

bath. The samples were then diluted to 500 mL with nano-pure water before being run through 

the ICP-MS.   

Chemical Species 

or Form 
Reagent Used Bioavailability 

Exchangeable Ions 1M MgCl2 Available 

Carbonate Bound 

Fraction 

1M CH3COONa solution adjusted to a 

pH of 5.0 with CH3COOH 

Less available: 

(Ion exchange reactions) 

Fe-Mn Oxide 

Bound Fraction 
0.04M NH2OH*HCL 

Less Available; promoted 

by chemical alteration 

(Mn oxides/Hydroxides) 

Organic Bound 

Metal Fraction 

0.02M HNO3 with  30% H2O2 which 

has been adjusted to a pH 2 with HNO3 

and 3.2M  CH3COONH4 in 20%v/v 

HNO3 

Available only after 

chemical alteration (Fe 

oxides/hydro) 

Residual Ions 

within Crystalline 

Structure of 

Minerals 

Aqua Regia and Concentrated HF 

Unavailable unless 

severely weathered or 

decomposed 

Table 2: Five-Step Sequential Extraction method used 
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Antimony Hydride Generation 

Previous studies used antimony isotopes as environmental tracers by analyzing seawater 

samples near hydrothermal vents using a hydride generation apparatus attached to the ICP-MS 

system (O. Rouxel et al., 2003). Hydride Generation is a technique that helps eliminate spectral 

and/or isobaric interferences within the ICP-MS to more accurately determine concentrations for 

certain elements including antimony. Antimony Standards of 10 μg/100 mL, 50 μg/100 mL, and 

100 μg/100 mL with 5% HCL were made for the hydride generation trials. Formation of Stibine 

gas (SbH3) is formed by injection of a 5% solution of NaBOH combined with a 10% solution of 

HNO3 into the sample to react with any antimony present and produce Stibine gas, which then 

travels through the hydride generation apparatus and into the ICP-MS instrument for 

measurement.  The solutions were made 10 minutes before starting the hydride generation due to 

likelihood of chemical break down. The apparatus for hydride generation was set up so Stibine 

gas would be formed and injected directly into the ICP-MS. For trial runs, the antimony standard 

was placed into a 500 mL round bottom flask while it was injected using a syringe and needle 

with 10% NaBH4 and 5% NaOH at a slow rate.  

This technique worked well while being tested with only standard solutions, but when 

tried with the samples from the Rio Loa the apparatus did not produce the same reproducible 

results as previous antimony isotopic studies. That is, chemical interferences and/or matrix effects 

were produced within the apparatus and values for antimony isotopes were not consistent with 

previous literature findings. Research into the method proved that the instrument utilized had a 

hexipole collision cell located before the quadruple mass analyzer of the MS instrument which 

provided a better detector for antimony isotope samples from the Rio Loa Basin.  Because of 

these findings, total digestions of the samples from within the Rio Loa Basin were run through 

the ICP-HEX-MS by direct liquid injection and reproducible antimony isotopic values were 
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detected. Results were examined by plotting 
123

Sb vs. 
121

Sb to test how accurate the instrument 

was measuring.  

 
Figure 3: Analytical determination for 

121
Sb and 

123
Sb isotopes. R

2
 values indicate how 

accurate the ICP-MS instrument measured antimony isotopes. Lower R
2
 values indicate small 

chemical interferences within the instrument.  
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CHAPTER FOUR:  RESULTS 

Comparison of Total Elemental Concentrations to Biotic Effect Guidelines 

Total trace metal and metalloid concentrations in sediment samples from the Rio Loa 

Basin are high with respect to both background and operatic effect guidelines (Table 3). For 

example, MacDonald et. al. (2000) researched levels in which biota are harmed by toxic trace 

metals within the channel bed sediment. Their determined levels of effect were subdivided into 

lower and upper concentrations referred to as the threshold effect concentration (TEC) and the 

probable effect concentration (PEC).  The threshold effect concentration (TEC) refers to a value 

in which the biota was first noticed to be negatively affected by harmful concentrations of toxic 

trace metals. The probable effect concentration (PEC) refers to a value where there is a “high 

probability” that biota living within the environmental system will be harmed by the 

concentrations of toxic trace metals. The TEC and PEC for selected toxic trace metals are given 

in Table 3, along with determined data for each sampling population within the Rio Loa Basin. 

All six sampling populations exhibited concentrations above the threshold and probable effect 

concentrations for some elements (Table 3). MacDonald did not present data on antimony, but 

average soil antimony concentrations worldwide are 0.67 ppm (Buonicore et al., 1996). 

Concentrations found within the Upper Rio Loa, which is upstream of both mining operations and 

El Tatio, are more than 10 times greater than the average soil data. An increase in this already 

high background antimony may pose a threat to local biota living within the water column even 

though it is tolerant of high background concentrations.    

The concentrations of selected, toxic trace metals within the Rio Loa Basin exhibit some 

notable geographical patterns. The El Tatio Geyser Field contains arsenic concentrations which 

are, on average, 90 times higher than the PEC determined values (Table 3). Additionally, 

concentrations of antimony are more than 25 times higher within these samples than the other 
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sample populations. With respect to sediment contaminated by mining operations, alluvium 

within the Rio San Salvador is above the PEC for arsenic, cadmium, copper, lead, and zinc, and 

above the TEC for chromium and nickel. Sediment within alluvial fan channels receiving input 

from the El Abra and Radiomiro Tomic mine tributaries is above the PEC values for arsenic and 

copper, and above the TEC for cadmium and nickel.  Overall, downstream of mining operations 

(mine tributaries and Rio San Salvador), copper concentrations are the most significant, whereas 

downstream of El Tatio, arsenic and antimony concentrations are the highest (Table 3).  

 
Table 3: TEC, Consensus based threshold effects conc.; PEC, Probable effects threshold conc. 

(from MacDonald et al, 2000); The mean concentrations that are red in color are above the 

probable effect concentration (PEC) and the ones in yellow are above the threshold effect 

concentration (TEC).  Average soils data from Buonicore (1996).  

 

 

Comparison of Total Concentrations between Sampling Populations 

Box and whisker plots for each sampling population were plotted to determine elemental 

differences among the groups, with regards to lead, arsenic, antimony, and copper surface 

concentrations.  Plots were created using Microsoft Office Excel 2007 and analyzed by observing 

the total concentrations and ranges of selected elements within each of the population areas of the 

Rio Loa Basin. Population areas containing high concentrations of selected trace metals and 

metalloids are assumed to have the most significant input of selected trace metal and metalloid 

contamination into the Rio Loa Basin.  
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Statistical analysis was done using R commander version 2.12.1. A one way ANOVA test 

statistic using pairwise comparisons of means for each element (lead, arsenic, antimony, and 

copper) and isotopic ratio (antimony and lead) was calculated across the different basin 

populations for statistical comparisons. Compact letter display (CLD) shows how each population 

is statistically different from one another by t-test analysis between two separate populations by 

displaying either an A or B based on the results. In some cases, populations were found to have 

an “AB" CLD designation, which represents a population which is statistically similar to two 

separate populations (A and B) within the basin. Results from the t-test between each population 

for all elements are show in Appendix A. The one way ANOVA test statistic was analyzed at the 

95% confidence interval and elements between populations that were below the 0.05 threshold p-

value where determined to have populations which were statistically different from one another.   

Total lead concentrations (ppm) for each population area within the Rio Loa Basin had 

overlapping values where one particular input source of lead could not be distinguished. The 

ANOVA test statistic indicated that the p-value for the population was 0.3123; therefore all the 

populations were similar throughout the basin (Figure 4). CLD shows that the t-tests between 

each population were all above the 0.05 p-value and no single population is different from 

another, indicating that lead is uniformly distributed throughout the Rio Loa Basin (Appendix A). 

Because no particular input source of lead could be distinguished, total lead concentrations were 

not utilized for tracer analysis in this study.  
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Figure 4: Box and Whisker plot of lead (ppm) for each geomorphologic area with the Rio Loa 

Basin. Plot show the minimum, maximum, median, upper/lower quartiles, and 

minimum/maximum outliers. Compact letter display (CLD) shows that all populations are 

statistically similar.  

 

 

 

Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 2 16 3 12 2 23 11 

Q1 6 17 15 17 10 25 13 

Median 8 17 18 21 16 27 15 

Q3 9 18 22 22 26 28 18 

Max 12 22 32 22 40 30 33 

IQR 3 1 7 5 16 3 5 

Upper 

Outliers 0 1 0 0 0 0 1 

Lower 

Outliers 0 1 0 0 0 0 0 

Table 4: Statistical values for lead (ppm) as shown in the box and whisker plot. 

 

 

 

 Total concentrations of arsenic (ppm) were highest within the samples from El Tatio 

Geyser Field (Figure 5).  Sediment samples from El Tatio had a maximum value of 6422 ppm, a 

minimum concentration of 1247 ppm, and an IQR of 2386. Samples from the El Tatio Geyser 

Field had a calculated median arsenic concentration which was between 4 and 5 times higher than 

ANOVA  

    p-value= 0.3123 
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the Rio San Salvador samples, and 13 times higher than the median concentration calculated for 

the mine tributaries of El Abra and Radiomiro Tomic. The one way ANOVA test determined a p-

value of 1.799 x 10
-4

, which is significantly below the 0.05 confidence interval indicating a large 

between population difference within the basin as a whole (Figure 5).  CLD indicates El Tatio 

Geyser Field is a separate population from all other samples within the basin based on the t-tests 

performed between all population means (Figure 5) (Appendix A).  Large differences in the 

overall arsenic concentrations between the El Tatio samples and the other geomorphologic areas 

presented on the graph makes the utilization of total arsenic concentration plausible as a 

geochemical tracer. 

 

 

 
Figure 5: Box and whisker plot of arsenic within each geomorphologic area. Dotted lines 

represent enlarged section of larger plot. Compact letter display (CLD) shows that El Tatio (A) is 

statistically different from all other populations (B) based on t-test analysis between populations.  

 

 

 

ANOVA 

     p-value= 1.8 x 10
-4
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Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 2.156 0.010 0.000 0.862 0.000 0.000 0.000 

Q1 4.840 0.165 0.361 1.103 0.010 0.003 0.007 

Median 5.199 0.264 0.599 1.344 0.014 0.005 0.129 

Q3 15.762 0.384 1.033 1.471 0.076 0.008 0.163 

Max 56.430 1.225 1.872 1.599 0.255 0.010 0.248 

IQR 10.921 0.218 0.672 0.369 0.066 0.005 0.156 

Upper 

Outliers 1.000 2.000 0.000 0.000 1.000 0.000 0.000 

Lower 

Outliers 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 5: Statistical values for box and whisker plot of arsenic.  

 

 

 

Similar to total arsenic concentrations, total antimony concentrations were also higher 

within samples collected from El Tatio relative to the other sample populations (Figure 6). The 

concentrations of antimony within the El Tatio samples were 2 orders of magnitude higher than 

all of the other populations within the Rio Loa Basin. Antimony concentrations at El Tatio are 

between 289-2840 ppm, with a median of 1780 ppm. The one way ANOVA test indicates that 

there are differences between the populations based on a p-value of 8.35 x 10
-4

, which rejects the 

null hypothesis at the 95% confidence interval. CLD on antimony concentrations results in a 

similar outcome to arsenic, in that El Tatio is the population which is statistically different from 

the other populations within the basin (Figure 6) (Appendix A).  In comparison of antimony to 

the mine-related samples, median concentrations are 90 times higher than those analyzed within 

the Rio San Salvador and 325 times higher than the median antimony concentration observed in 

the sediment downstream of input from the El Abra and Radiomiro Tomic mining operations 

(Table 6). Due to the distinct differences in antimony concentrations at the El Tatio Geyser Field 

compared to the other geomorphologic areas within the Rio Loa Basin, especially sediment from 

mining operations, the total concentrations of antimony were utilized as a sediment tracer.   
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Figure 6: box and whisker plot of antimony concentrations (ppm) for all populations within the 

Rio Loa Basin. Dotted lines represent enlarged section of the larger graph. Compact letter display 

(CLD) indicates that El Tatio is a separate population (A) compared to all other populations 

within the basin (B) based on t-test results between populations.  

 

 

 

Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 289 4 7 6 18 5 2 

Q1 1003 12 17 15 19 5 3 

Median 1780 21 32 23 19 5 5 

Q3 2640 28 47 28 31 6 5 

Max 2840 42 106 33 42 6 6 

IQR 1637 15 30 14 12 0 2 

Upper 

Outliers 0 0 1 0 0 0 0 

Lower 

Outliers 0 0 0 0 0 0 0 

Table 6: Statistical values for box and whisker plot of antimony concentrations (ppm) 

 

 

Figure 7 shows that copper concentrations are high in both the Rio San Salvador samples, 

found downstream of Chuquicamata, and the alluvial fan samples, that drain the El Abra and 

Radiomiro Tomic copper mines. The Rio San Salvador samples have a median of 762 ppm while 

ANOVA 

     p-value=  8.35 x 10
-4
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the samples from the mine tributaries have a median of 726 ppm (Table 7). The inner quartile 

range (IQR) of the samples within the Rio San Salvador is much higher than those taken from the 

mine tributaries.  The IQR for the Rio San Salvador was calculated to be 1300 ppm, while the 

IQR for the mine tributaries was calculated to be 172 ppm. In comparison to the El Tatio samples, 

median copper concentrations within samples from the Rio San Salvador and mine tributaries are 

between 13 and 14 times greater than the calculated median copper concentration for the El Tatio 

samples. El Tatio has the lowest minimum concentration of copper, calculated to be 9.8 ppm, 

while the Lower Loa has the lowest median copper concentration of 19.83 ppm (Table 7). 

Statistical analyses on the total concentrations of copper indicate that mining operations are 

different from all other populations within the basin. 

 A one way ANOVA test throughout the entire basin calculated that there are distinct 

differences based on a p-value of 1.397x10
-6

, much below the 0.05 limit at the 95% confidence 

interval. CLD between populations indicates that the two populations representing mining 

operations (Chuquicamata and mine tributaries) are the populations which are distinctly different 

based on t-test results (Figure 7) (Appendix A). Distinct differences in total copper concentrations 

between mining operations and all other population areas, especially sediment directly 

downstream of the El Tatio Geyser Field, makes the utilization of total copper concentrations as a 

contaminated sediment tracer for mining operations plausible.   
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Figure 7: Box and whisker plot of copper concentrations for each population. The box and 

whisker plot contains the average, upper quartile, lower quartile and both maximum and 

minimum outliers. CLD shows that the Rio San Salvador and Mine Tributaries are statistically 

similar.  

 

 

 

Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 10 32 18 10 147 555 28 

Q1 36 50 30 15 166 641 51 

Median 53 66 40 20 762 726 68 

Q3 76 78 52 26 1466 812 84 

Max 106 137 220 31 1808 898 99 

IQR 40 29 22 11 1300 172 33 

Upper 

Outliers 0 1 3 0 0 0 0 

Lower 

Outliers 0 0 0 0 0 0 0 

Table 7: Statistical values for box and whisker plot of copper concentrations 

 

 

 

Tracer Analysis of the Antimony/Copper Ratio 

The copper and antimony data presented above show that their concentrations differ 

significantly between El Tatio and the copper mines. These large differences suggest that the ratio 

of antimony/copper will be an effective tracer of contaminated sediment. Thus, antimony/copper 

ANOVA 

   p-value= 1.40 x 10
-6
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ratios were calculated by dividing the total concentrations of antimony by the total concentrations 

of copper for each sample to help quantify the amount of contaminated sediment from these two 

source types (i.e. the mining operations and the El Tatio Geyser Field) (Figure 8).   

Samples from the El Tatio Geyser Field had the highest ratio, 56.43 and the largest IQR 

calculated, 10.92 (Table 8).  The lowest ratios calculated were 0.005 and 0.014, represented by 

the mine tributaries, El Abra and Radiomiro Tomic, and the Rio San Salvador, respectively.  The 

El Tatio samples had a calculated median ratio which was 370 times larger than the median ratio 

calculated within the Rio San Salvador samples, and more than a 1000 times larger than the 

median ratio of the mine tributaries. Large error bars within the plots of the Rio Salado, and 

especially the Middle Loa, represent sediment mixing of input from both the mining operations 

and the El Tatio Geyser Field (Figure 8).  

Statistical analyses done on the antimony/copper ratio indicates that there are differences 

between populations based on a one way ANOVA test statistic with a p-value of 7.4 x 10
-3

. 

Between populations, the t-tests found that the mean for El Tatio was different from the Rio 

Salado, Middle Loa, Rio San Salvador, and Upper Loa, but not statistically different from the 

Lower Loa and the Mine Tributaries. The Lower Loa and Mine Tributaries are statistically 

similar to El Tatio because the t-test statistics performed between them were calculated to be 

0.0783 and 0.1271, respectively (Appendix A). However, they were also determined to be 

statistically similar to all other populations, based on the CLD designation of “AB”, indicating 

that these populations are similar to both A and B designated populations (Figure 8). Although, 

statistical error could be present within the Mine Tributary population due a very small sample 

size of only two samples available when this test was performed. 
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Figure 8: Box and whisker plot of antimony/copper for each population. Compact letter display 

(CLD) indicates that the Lower Loa and mine tributaries are statistically similar to both El Tatio 

(A) and all other populations within the Rio Loa (B) based on t-test analysis.  

 

 

 

Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 2.156 0.010 0.000 0.862 0.000 0.000 0.000 

Q1 4.840 0.165 0.361 1.103 0.010 0.003 0.007 

Median 5.199 0.264 0.599 1.344 0.014 0.005 0.129 

Q3 15.762 0.384 1.033 1.471 0.076 0.008 0.163 

Max 56.430 1.225 1.872 1.599 0.255 0.010 0.248 

IQR 10.921 0.218 0.672 0.369 0.066 0.005 0.156 

Upper 

Outliers 1 2 0 0 1 0 0 

Lower 

Outliers 0 0 0 0 0 0 0 

Table 8: Statistical values for antimony/copper box and whisker plot 

 

 

 

Antimony Isotopic Analysis within the Rio Loa Basin 

 

Antimony isotopic analysis revealed that the background bedrock material located within 

the Upper Loa was able to be distinguished from both anthropogenic (mining activities) and 

natural sediment input of toxic metals and metalloids within the lower reaches of the Rio Loa 

ANOVA 

   p-value= 7.44 x 10
-3
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(Figure 9).  However, this method could not distinguish between each source of contamination 

(i.e. El Tatio and the copper mines) (Figure 9).  The mean isotopic signature of antimony within 

the Upper Loa is larger than both the anthropogenic and natural (El Tatio) hypothesized sources 

of contamination (Figure 9). Unfortunately, the median antimony signature for both El Tatio and 

the Rio San Salvador (i.e. Chuquicamata) is similar, with a 
123

Sb/
121

Sb ratio of around 0.77 and 

0.78, respectively (Table 9). The Upper Loa contains a ratio that is higher with a median value of 

1.04, and an IQR of 0.110 (Table 9). The mean isotopic signature decreases to 0.78 after the 

confluence of the Upper Loa and the Rio Salado, and continues to decline moving downstream 

throughout the Rio Loa system. Statistical analyses confirmed that the Upper Loa is statistically 

different than all other populations based on t-tests between populations (Appendix A). CLD 

displays the Upper Loa (B) to be statistically separate from all other populations (A). The one 

way ANOVA test statistic was calculated to be 1.32 x 10
-4

, considerably below the 0.05 threshold 

p-value for a 95% confidence interval (Figure 9).   
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Figure 9: 

123
Sb/

121
Sb box and whisker plots for each population with the Rio Loa Basin. CLD of 

pairwise comparisons of means shows that the Upper Loa is statistically different from the other 

populations.  

 

 

 

Labels El Tatio 

Rio 

Salado 

Middle 

Loa 

Lower 

Loa 

San 

Salvador 

Mine 

Tribs Upper Loa 

Min 0.774 0.784 0.757 0.768 0.784 0.735 0.907 

Q1 0.793 0.807 0.772 0.782 0.798 0.750 0.929 

Median 0.819 0.819 0.782 0.797 0.812 0.765 0.945 

Q3 0.867 0.820 0.803 0.803 0.821 0.779 1.039 

Max 0.996 0.867 0.887 0.810 0.831 0.794 1.110 

IQR 0.073 0.013 0.031 0.021 0.023 0.030 0.110 

Upper 

Outliers 1 1 2 0 0 0 0 

Lower 

Outliers 0 1 0 0 0 0 0 

Table 9: Statistical values for 
123

Sb/
121

Sb box and whisker plot 

 

 

 

 

 

 

 

ANOVA  

   p-value= 1.32 x 10
-4
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Lead Isotopic Analysis within the Rio Loa Basin 

 

Box and whisker plots of lead isotopes were created using the ratios of 
206

Pb/
207

Pb, 

206
Pb/

208
Pb, and 

207
Pb/

208
Pb (Figure 10a-c). Overall, the analysis revealed that lead isotopic ratios 

between mine derived sediment, the El Tatio Geyser Field, and the background material (Upper 

Loa) were similar. Test results for a one way ANOVA using pairwise comparisons of means 

indicated that 
206

Pb /
207

Pb, 
206

Pb/
208

Pb, and 
207

Pb/
208

Pb have p-values of 0.5949, 0.06615 and 

0.113, respectively. All determined p-values were above the 0.05 threshold p-value at 95% 

confidence, therefore the null hypothesis could not be rejected.   Because of this, the lead isotopes 

are assumed to be uniformly distributed throughout the Rio Loa Basin and are not utilized for 

tracer analysis. 

 Interestingly, t-tests between populations designated that El Tatio Geyser Field was 

statistically different than the Rio San Salvador for 
206

Pb/
208

Pb, and 
207

Pb/
208

Pb ratios (Figure 

10b,c) (Appendix A). For 
206

Pb/
208

Pb, and 
207

Pb/
208

Pb the p-values for t-tests between El Tatio and 

the Rio San Salvador were determined to be 0.0367 and 0.0481, respectively (Appendix A). 

Because of this, the CLD indicates that El Tatio and the Rio San Salvador are separate 

populations from each other. However, El Tatio and the Rio San Salvador are not statistically 

different from all the other populations within the basin because CLD indicates an “AB” 

designation for all of the other populations within the basin (Figure 10 b,c). 
206

Pb/
208

Pb and 

207
Pb/

208
Pb may hold promise in future contaminant studies, but for this particular study the 

means were not statistically different and cannot provide contaminant tracer for the basin.  
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Figure 10: Analysis of lead isotopes. CLD indicates that all ratios of lead isotopes are above the 

0.05 threshold p-value; therefore they are not statistically significant at this confidence level. 

 

ANOVA 

   p-value=0.5949 

ANOVA 

   p-value= 0.0662 

ANOVA 

   p-value= 0.113 
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Spatial Changes in Geochemistry: Upper to Lower Loa Drainage System 

   

Column plots showing downstream changes in total concentrations and ratios provided 

additional insights into contaminant input within a particular river reach. Reach-based analysis 

was done within the Upper to Lower Loa drainage system to detect specific input locations of 

arsenic, antimony, copper, and lead. This segment of the River extends from the headwaters of 

the Upper Rio Loa located near sample site UL-1, downstream through the Middle Loa and 

Calama Basin, and ultimately into the Lower Loa located after the confluence of the Rio San 

Salvador and the Rio Loa (Figure 11). For reach-based analysis, only surface samples (channel 

and floodplain deposits) were analyzed. Within the Upper Loa drainage system, concentrations of 

copper, antimony, and lead are generally larger within the floodplain deposits than within the 

channel bed deposits (Figure 12 b-d). 

 

Total Arsenic Concentrations 

Total concentrations of arsenic show almost the opposite trend, where concentrations are 

larger within the channel than nearby floodplain deposits for the RL-3 and RL-2 site (Figure 12a).  

Total arsenic concentrations within the Upper Loa drainage system are relatively low within the 

headwaters, exhibiting a notable increase in concentration within the floodplain sample at UL2-

FF. After the confluence of the Rio Salado, concentrations increase from 50 ppm to 275 ppm 

within the RL3-C sample. Channel bed arsenic concentrations drop after the confluence of the 

Rio San Salvador (Figure 12a).  

Total Copper Concentrations 

Total copper concentration within the floodplain sample, UL2-FF, is an order of 

magnitude higher than both UL1-C and UL2-C, and 4 orders of magnitude higher than UL3-C 

(Figure 12b).  All other concentrations within the samples collected downstream are much lower. 
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Within the Upper Loa drainage system, no elevated point source of copper contamination can be 

detected. Interestingly, no noticeable increase in copper concentrations occur downstream of the 

Rio San Salvador, which is known to drain metal contaminants from the Chuquicamata mine.   

Total Antimony Concentrations and Antimony Isotopes 

Within the headwaters of the Upper Loa drainage system, total antimony concentrations 

are below 11 ppm. Downstream of the confluence with the Rio Salado, antimony concentrations 

increase systematically until reaching sample RL3-a, located within the Middle Loa,  after the 

confluence with the Rio San Salvador, no additional spikes in antimony concentration are present 

(Figure 12c).  

In reference to the antimony isotopes, the Upper Loa samples (UL1, UL2, UL3, and 

UL4) and additionally, RL3- C, all contain isotopic signatures which are larger than the samples 

collected further downstream around the town of Calama, within the Middle Loa, and the Lower 

Loa downstream of the Rio San Salvador (i.e. Chuquicamata) (Figure 13d).  

 Total Lead Concentrations and Lead Isotopes 

Similar to total copper concentrations, lead concentrations observed within the UL2-FF 

sample were nearly an order of magnitude higher than the other samples collected within the 

Upper Loa. No other notable increase in lead concentrations occurs along the Upper Loa drainage 

system. Concentrations within the floodplain deposits are higher than those seen within the 

channel bed deposits (Figure 11d).  Lead isotopic ratios along the Upper Loa drainage system 

exhibit similar isotopic values (Figure 13a-c). 
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Figure 11: Location map of Upper to Lower Rio Loa Drainage System. Grey Arrows represent 

flow direction of analyzed reach. 
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Figure 12a-d: Concentrations of arsenic, copper, antimony, and lead (ppm) within the Upper to 

Lower Rio Loa-Rio Loa drainage basin. Arrows represent input location of named tributary.  

Burgundy columns represent channel bed deposits whereas blue columns represent floodplain 

deposits.  

 

 

 
Figure 13a-d: Analysis of lead and antimony isotopes within the Upper to Lower Rio Loa 

drainage system. Arrows represent input location of named tributary.  Burgundy columns 

represent channel bed deposits whereas blue columns represent floodplain deposits. 
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Figure 14: Location map of El Tatio-El Salado-Rio Loa Drainage System. Grey Arrows represent 

flow direction of analyzed reach. 
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Spatial Changes in Geochemistry: El Tatio-Rio Salado-Rio Loa Drainage System 

 

The El Tatio-Rio Salado-Rio Loa drainage system begins downstream of the El Tatio 

Geyser Field within the channel of the Rio Salado at sample RS-3-C and extends downstream 

through the Rio Salado, into the Middle Loa and ultimately into the Lower Loa (Figure 14). 

Similar to the Upper Loa to Lower drainage system, a reach based analysis was performed using 

only surface samples within the channel bed and upper floodplain deposits. Column plots 

showing the downstream variations within the streambed sediments were produced for total 

concentrations of arsenic, copper, antimony, and lead, as well as for isotopes of lead and 

antimony (Figures 15 and 16).  

Total Arsenic Concentrations 

Reach-based analysis on the total concentrations of arsenic showed higher average 

concentrations from samples taken within the Rio Salado in comparison to samples located 

downstream within the Middle and Lower Loa (Figure 15a). Samples RS3-C , RS3-FP-a, and 

RS1-C are on average higher in concentration than those noticed downstream, especially after the 

confluence of the Rio Salado and Middle Loa after sample RL3-C. Additionally, a decrease in 

arsenic concentration is noticed after the confluence of the Rio Loa with the Rio San Salvador.   

Total Copper Concentrations 

Reach-based analysis on copper concentrations reveals minor changes in the total 

concentrations along the channel suggesting a more systematic pattern of copper deposition 

within the channel than within floodplain deposits (Figure 15b). Copper concentrations within the 

floodplain deposits change frequently within one population area and also between population 

areas.  Overall, channel samples located within the Rio Salado are higher in concentration 

compared to those within the Middle Loa and Lower Loa.  A steady drop in concentration can be 

observed downstream within the Middle Loa and Lower Loa after the Rio San Salvador 

confluence.   
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Total Antimony Concentrations and Antimony Isotopes 

Reach-based analysis of the total concentration of antimony showed floodplain deposits 

had a higher concentration in comparison to channel bed deposits (Figure 15c). The reach-based 

analysis was broken up into analyzing the channel bed deposits and then the floodplain deposits 

since they each demonstrate different depositional patterns. Within the channel bed deposits, 

samples upstream of the Rio Salado/Rio Loa confluence show high concentrations of antimony, 

which is most likely coming from the El Tatio Geyser Field.  However, downstream of the Rio 

Salado/Rio Loa confluence, channel bed sediments decrease in antimony concentrations to an 

average of about 7 ppm throughout the rest of the reach.  In comparison, floodplain deposits do 

not decrease systematically in a downstream direction. Sample RL-1-FP-a, located within the 

Middle Loa, has an antimony concentration (ppm) which is almost 2 times greater than the 

average antimony concentrations determined for both the Middle Loa and Lower Loa floodplains. 

Additionally, antimony isotopic analysis revealed the 
123

Sb/
121

Sb ratio had no schematic trends for 

reach based analysis (Figure 16d).  

Total Lead Concentrations and Lead Isotopes 

Similar to Sb, reach-based analysis on the total concentration of lead (ppm) revealed that 

floodplain deposits contained a higher concentration of lead than channel bed deposits (Figure 

15d). No systematic downstream patterns in lead concentrations occur along the El Tatio-Rio 

Salado-Rio Loa reach and no particular point source of lead was recognized. Additionally, the 

reach-based analysis of 
206

Pb/
208

Pb and 
207

Pb/
208

Pb isotopes contained a similar ratio throughout 

the reach. The 
206

Pb/
207

Pb isotopic ratio increased slightly within the Middle Loa within both the 

floodplain and channel deposits to a ratio of 1.27, but decreased after input from the Rio San 

Salvador to a ratio of about 1.23 (Figure 16a-c). 
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Figure 15a-d: Concentrations of arsenic, copper, antimony, and lead (ppm) Within the El Tatio-

Rio Salado-Rio Loa drainage basin. Arrows represent input location of named tributary.  

Burgundy columns represent channel bed deposits whereas blue columns represent floodplain 

deposits.  

 

 

 

 
Figure 16a-d: Analysis of lead and antimony isotopes within the El Tatio-Rio Salado-Rio Loa 

drainage system. Arrows represent input location of named tributary.  Burgundy columns 

represent channel bed deposits whereas blue columns represent floodplain deposits 
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Antimony/Copper Reach Based Analysis 

 

Reach-based analysis was done on both the Upper to Lower Loa and the El Tatio-Rio 

Salado-Rio Loa drainage systems (Figure 17a-b). Within the Upper Loa, ratios of UL1-C and 

UL2-C are higher than ratios of UL2-FF and UL3-C indicating that copper concentrations within 

these samples are increasing. Interestingly, the sediments directly downstream of El Tatio have a 

relatively low ratio in comparison to sediments downstream within the Middle Loa, which is 

unexpected since El Tatio drains sediments containing high values of antimony. After the Rio 

Loa/Rio Salado confluence, the ratio within the Middle Loa and Lower Loa increases in a 

somewhat systematic pattern within both the floodplain and channel bed deposits. This indicates 

that either total copper concentrations are dropping, antimony concentrations are increasing, or 

both (Figure 17).  

 

 

Floodplain Analysis 

Floodplain deposits located at three locations along the Rio Salado and Middle Loa were 

analyzed at different depths below the surface for total concentrations of arsenic and antimony 

(Figure 18). Concentrations of arsenic range from around 80 ppm to almost 800 ppm. Antimony 

concentrations (ppm) are much lower, ranging from 10-33 ppm. There are some notable 

schematic downstream trends within the data. With respect to arsenic, concentrations are high 

within the Rio Salado (RS-3-FP-a and RS-3-FP-b), and decrease in average concentration within 

the floodplain sediment in the downstream direction. Additionally, the RL-3 floodplain site 

(located within the middle Rio Loa) shows a schematic decrease in arsenic concentration with 

depth (Figure 18). Concentrations of antimony within these three floodplain sites are similar 

within the Rio Salado. The RS-3 site has an average antimony concentration of 32 ppm, which 
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decreases with depth, but the RS-4 floodplain deposit contains an average concentration of 28 

ppm, and increases with depth. Within the Middle Loa, lower values within the floodplains are 

observed with antimony concentrations between 12-17 ppm (Figure 18).  

 

 
Figure 17a-b: antimony/copper ratios showing downstream variations within the Upper to Lower 

Loa drainage system (a) and the El Tatio-Rio Salado-Rio Loa drainage system (b). Black arrows 

represent the confluence of named fluvial system.  
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Figure 18: Depth Concentrations (arsenic and antimony) within three separate floodplain sites 

along Rio Loa and Rio Salado. See Figure 2 for sample site locations. Concentrations of arsenic 

(ppm) are plotted along the top axis while concentrations of antimony are plotted along the 

bottom axis. 

 

 

Middle Loa Terrace Deposits  

As mentioned, the RL-1 and RL-3 sampling sites were subdivided on the basis of their 

stratigraphic composition and then sampled for geochemical analysis. Within the RL-1 site, the 

channel sits in a wide valley composed of flat marshy terrain, which is used as pasture. The 

pasture is located 3.5-4 meters above the channel bed and the terrace shows lots of erosion 

features. Stratigraphic unit A is composed of silt-silt loam high in organic matter. Unit B is thin 

and composed of re-worked silt-sized ash deposited by the Rio Loa from a nearby volcano. Unit 

C is a silt-loam and rests on top of the eroded loamly-silt surface of unit D. Lastly, Unit D is a red 

soil surface, which contains carbonate and evaporate nodules.  

The RL-3 terrace is spatially extensive and is composed of eight separate stratigraphic 

units. The surface of the terrace forms a highly eroded playa surface composed of red silt 

particles. The floodplain near the stream is well defined and is covered in dry species of grasses. 
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The channel is fast flowing and about 2.5 m deep with wetland grasses along the margins. Units 

A-F are all composed of silt-sized particles, that become more compact (harder) with depth.  Unit 

G is composed of silt-sized particles near the top and becomes more organic with depth. Unit H is 

a paleo-soil composed of loam and fine sand-sized particles. 

The antimony/copper ratio was used to quantify the dominant sediment contributor at the 

time the terrace was formed (Figures 19 and 20).  Labels were put on the photographs to show 

how the stratigraphic units within the terraces were subdivided for sampling and analysis. 

Overall, the concentrations of arsenic are higher than the values for antimony in both terraces. 

The concentrations of arsenic range from 112-167 ppm within the RL-1 terrace (Figure 19), and 

between 330-1713 ppm within the RL-3 terrace site (Figure 20). Antimony concentrations within 

the RL-1 terrace range from 50-110 ppm, while the RL-3 terrace ranges from 15-50 ppm. Total 

arsenic concentrations are similar overall for the RL-1 terrace, however within the RL-3 terrace, 

noticeable increases in arsenic occurs within stratigraphic unit E and F (Figure 20).   The most 

distinct pattern seen in both terrace sites is the increase in antimony concentrations with depth. 

This increase is seen within stratigraphic units D of the RL-1 terrace site (Figure 19), and unit E 

within the RL-3 terrace (Figure 20).  
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Figure 19: Variations in arsenic and antimony concentrations (ppm) with depth in terrace deposits 

described and sampled at RL-1 within the Calama basin. Photograph on Right shows samples 

stratigraphic units 

 

 

  
Figure 20: Depth Concentrations (arsenic, antimony) and antimony/copper ratios within RL-3 

terrace site along the Rio Loa. 
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Sequential Extraction Analyses 

Sequential extraction analyses revealed that arsenic has a high mobility within the basin 

because it binds to multiple substrates within the river column and it may transfer to different 

particle types within the water as the river transports sediment downstream (Figure 21a). An 

assumption in the use of chemical tracers for sediment bound contaminants is that they are 

conservative, meaning they move with the sediment without entering the aqueous phase.  At El 

Tatio, arsenic is mostly associated with the carbonate fraction, with the exchangeable ion fraction 

having the second largest percentage. However, within the Rio Salado, the Fe-Mn oxides and 

carbonates exhibit similar percentages of arsenic, whereas the exchangeable arsenic decreases 

dramatically downstream of El Tatio.  

 The Upper Loa was determined to have a lower amount of arsenic within the residual 

fraction than the Rio Salado (Figure 21a). Downstream, the Middle Loa displays an interesting 

increase in both the Fe-Mn oxide and carbonate fractions while the percentage of arsenic 

associated with the exchangeable, organic, and residual fractions decreased within this section of 

the river. The Middle Loa also has the lowest amount of arsenic within the residual phase, 

indicating mobility within this section is high because it is predominately bound to particles 

where it can be easily desorbed. Downstream of the Chuquicamata mine, the arsenic found within 

the Fe-Mn oxide fraction is slightly higher, while the exchangeable and organic fractions are 

slightly lower relative to the dominant arsenic absorbing substrates within the Rio Salado and the 

Middle Loa.   

Copper is predominately attached to Fe-Mn oxides or organic matter within the water 

column in all sample populations (Figure 21b). Only about 5-10 percent of the copper was found 

adsorbed to the carbonate particle surfaces and an even smaller percentage was found within the 

exchangeable fraction. The residual fraction extraction suggests some of the copper, less than 35 

percent, is being absorbed within the crystalline structure of the particles. Within each population 
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the percentage of copper, which changes substrates it is attached to, is low. For this reason, 

copper is not considered to be mobile because the predominate substrate it is adsorbed to is not 

changing between sample populations.   

 The sequential extraction on antimony revealed that it is tightly bound within the residual 

phase and therefore its mobility within the water column, and potential for biological uptake, is 

limited (Figure 21c). The most noticeable deviation is from samples taken downstream of 

Chuquicamata, in which some antimony is associated with the exchangeable, carbonate, Fe-Mn 

oxide, and organic fractions. Although the amount of mobile antimony coming from 

Chuquicamata is lower than 25 percent, the other 75 percent is bound within the residual phase. 

El Tatio Geyser Field contains the highest amount of antimony found within the residual phase. 

This is possibly because antimony from the geyser basin is being precipitated from extremely hot 

emergent waters and as the water cools, the antimony absorbs with silica, forming an opal 

amorphous mineral (Landrum et al., 2009).  

 Lead was also found tightly bound to sediment since the largest percentage of lead was 

found within the residual phase (Figure 21d). Lead is commonly seen tightly bound with sulfur to 

create sulfide minerals such as galena, which have been known to form in hydrothermal areas 

(Landrum et al, 2009). Only about 10-20 percent of the time, lead was found within the organic 

fraction (Figure 21d). The Upper Loa, located upstream from the drainage from El Tatio, contains 

the highest percentage of lead adsorbed to particles (i.e., not found within the residual fraction). 

This loosely bound form of lead is also present within the Middle Loa in minor amounts, but is 

diluted by lead in the residual fraction coming from the El Tatio Geyser Field. 
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Figure 21a-d: Analysis of Sequential Extraction; arsenic is bound within multiple extractions, 

while lead and antimony are primarily found in the residual phase. Copper was determined to be 

mostly within the Fe-Mn oxide and organic matter fractions.  
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CHAPTER FIVE:  DISCUSSION 

Several sources of toxic trace metals exist within the Rio Loa Basin, of which El Tatio 

and mining operations are the two largest contributors. During this investigation, several different 

methods to determine the influx of trace metals to the river from each of the potential sources 

were utilized. These methods include (1) spatial trends in elemental concentrations, (2) elemental 

ratios, and (3) lead and antimony isotopes.  The usefulness of the various methods will be 

discussed in the following paragraphs, starting by examining spatial trends in arsenic, antimony, 

copper, and lead concentrations along the drainage network.  

Total Elemental Concentrations 

Total Arsenic and Antimony Concentrations 

The semi-systematic downstream decreases in arsenic and antimony concentrations 

within the deposits of the Rio Loa Basin indicate that El Tatio Geyser Field is the largest source 

of these toxic metals (Figures 5 and 6 ). Mining operations also appear to contribute a lesser 

amount of arsenic and antimony to the river, and therefore add to the contaminant load. For 

example, within the Upper Loa, a small contribution of arsenic and antimony from mining 

operations at El Abra and Radiomiro Tomic is suggested by a minor increase in concentration, 

especially after sample UL2-FF (Figure 12a,c).  Further downstream, dilution and/or the 

deposition of contaminated particles slowly decreases the arsenic and antimony concentrations 

along the channel until the Rio Salado confluence, where arsenic and antimony concentrations 

increase dramatically. This dramatic increase in concentration predominately results from the 

influx of sediment transported from the El Tatio via the Rio Salado. As shown in figure 15a and 

c, after antimony and arsenic enters the Middle Loa from the Rio Salado, it is quickly diluted 

through mixing of predominantly clean sediment from the Upper Loa. This trend is seen through 

the decrease in concentrations in the downstream direction throughout the Middle Loa. After the 
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confluence of the Rio San Salvador, arsenic and antimony concentrations decrease rapidly again, 

presumably due to dilution as sediment characterized by low arsenic and antimony concentrations 

enter the Rio Loa from the Rio San Salvador and mixes with the contaminated sediment within 

the lower Loa.    

Within the Middle Loa, the increase in concentrations of antimony in the floodplains and 

the increase of arsenic in the channel bed sediment is most likely related to (1) grain size 

differences common in the channel bed and floodplain deposits, and (2) partitioning differences 

of the two elements (Figures 12 and 15a,c). The sequential extraction data indicates that antimony 

is primarily associated with the residual phase. This is consistent with earlier studies (e.g. 

Landrum et al., 2007) that have argued that antimony is contained within the structure of silica 

minerals precipitated from hot solutions at El Tatio, making it immobile within the river system. 

Two separate dispersal pathways could lead to high concentrations of antimony within 

the floodplain deposits of the Middle and Lower Loa. First, contaminated sediment coming from 

El Tatio are deposited within the Middle Loa. Hydraulic sorting of the particles will deposit 

particles on the floodplain of the Rio Loa during normal conditions. During a flood event, the 

floodplains are inundated and the more mobile elements will be picked up by the floodwater and 

transported downstream, while the non-mobile elements will stay within the floodplain. Arsenic 

is considered much more mobile than antimony, so during a flood event, arsenic may be 

dissolved within the floodwater and flushed out of the floodplain deposits.  

The second pathway leading to an increase of antimony within the floodplain sediment is 

the erosion of older terrace deposits. During the latest El Nino/La Nina flood event in 2001, older 

terraces were inundated and eroded by floodwater. The eroded sediments were re-worked into the 

floodplain deposits of the Middle Loa. Flood deposits after the event were observed to be almost 

a meter thick in some locations within the Calama Basin (Houston, 2006). Both arsenic and 
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antimony were found to be above background values within the terraces analyzed at two sites 

(Figures 19 and 20). However, since arsenic is the more mobile element of the two, it is less 

likely to be deposited with sediment on the floodplain and more likely to be dissolved within the 

water column and transported downstream. Antimony presumably remains with the sediment on 

the floodplain after the flood.  For this reason, a higher concentration of antimony, in comparison 

to arsenic, will be observed within the floodplain deposits of the Middle and Lower Loa.   

Total Copper Concentrations 

Analysis of total copper concentrations found that mining operations contribute a large 

amount of copper into the Rio Loa Basin (Figure 7). The Rio San Salvador, which drains the 

Chuquicamata mine, and the two smaller mines (El Abra and Radiomiro Tomic) exhibit high 

concentrations of copper (Figure 7). The low concentrations of copper observed in samples from 

El Tatio and along the Rio Salado suggest that there was very little copper coming from these two 

sources. The lowest concentrations of copper are found within samples taken from within the 

Upper Loa supporting the argument that these sediments reflect the background values of copper 

for the basin as a whole.   

Interestingly, reach-based analysis revealed that the Lower Loa had the lowest median 

concentration of copper even though this reach is located directly downstream of the Rio San 

Salvador, which exhibited very high concentrations of copper. The sequential extraction results of 

copper showed it was mostly present within the Fe-Mn oxide and organic matter fractions (Figure 

21b). Copper released from Chuquicamata via the Rio San Salvador, will be quickly adsorbed to 

any free surface area of Fe-Mn oxides and/or organic matter substrates which are present within 

the channel bed and will not be transported long distances downstream in solution. The most 

probable situation is that a majority of the copper released has already been adsorbed to Fe-Mn 

oxides and/or organic matter within the Rio San Salvador before it could be transported to the 
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Lower Loa due to sediment storage and dilution from clean sediment within the Rio San 

Salvador. Because of this, copper concentrations observed within the Lower Loa are not as high 

as to be expected.  

Total Lead Concentrations 

Schematic patterns for total lead input analysis proved difficult because the mean 

concentration for all the samples analyzed was similar (Figure 13a-b). That is, no schematic 

patterns exist, possibly because there is no point source of lead contamination other than the 

mineralized rocks that underlie the basin as a whole. They are weathered and eroded at similar 

rates throughout the entire Rio Loa Basin, resulting in similar lead concentrations within the 

alluvial sediments.  

Use of the Antimony/Copper Ratio as a Geochemical Tracer  

A box and whisker plot of the antimony to copper ratio suggests that it may serve as a 

simple parameter to distinguish anthropogenic and natural sources of contaminated sediment in 

the Rio Loa (Figure 8).  Since the mining operations of Chuquicamata and El Abra and 

Radiomiro Tomic have high concentrations of copper, they plotted low on the box and whisker 

plot. Population areas high in antimony and low in copper, such as the El Tatio Geyser Field, 

plotted very low on the box and whisker plot. The mixing of sediment from the El Tatio Geyser 

Field and mining contaminated sediment from the Upper Loa is noticeable on the plots by the 

large IQR observed within the Middle Loa, and to a lesser extent, the Lower Loa (Figure 8). The 

Rio Salado is observed to have a much lower antimony/copper ratio in the El Tatio Geyser Field, 

possibly because of dilution factors which greatly influence the concentration of antimony within 

this reach. Additionally, a small input of copper into the Rio Salado could be via small copper 

mining operations which are present within the foothills of the Andes Mountains.  
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The antimony/copper ratio increases downstream within the Rio Salado-Rio Loa-Lower 

Loa system (Figure 17b). This is due to the total copper concentration within Rio Loa decreasing 

downstream, while the antimony concentration within the floodplains are either increasing or 

staying constant. The copper concentration within the Middle Loa and Lower Loa is decreasing 

for two separate reasons. First, sediment low in copper will be incorporated into the channel, 

diluting the overall concentration of copper within the Rio Loa as it flows downstream. 

Additionally, the partitioning of copper onto particles of Fe-Mn oxides and/or organic matter 

within the channel bed limits the transport of copper downstream. This is especially true if the 

copper enriched particles are deposited on a floodplain, as is demonstrated by the high 

concentrations of copper within sample RL3-FP-a (Figure 15b).  

The observed increase in antimony within the Middle Loa may be due to the erosion of 

older terrace deposits and the subsequent reworking of these particles into the floodplain and 

channel bed deposits. Older terrace deposits sampled at RL-3 and RL-4 presumably consisted of 

contaminated sediment derived mostly from the El Tatio Geyser Field because they contained 

high concentrations of antimony and arsenic (Figures 19 and 20). The terraces contained low 

concentrations of copper, demonstrating that mining operations had little impact on the sediment 

in the Rio Loa at the time these terrace deposits were created.  As these terraces are eroded, the 

antimony and arsenic contaminated sediment is transported downstream and deposited within 

both the channel bed and floodplain deposits of the Middle Loa and Lower Loa. Concentrations 

of arsenic are likely to be lower because during floods the floodplains are inundated and arsenic is 

leached from the sediments. Antimony does not dissolve out of the floodplain deposits since it is 

tightly bound within the crystalline structure of the sediment. Over time, the concentrations of 

antimony within the floodplain deposits will probably increase as the terrace sediments are 

eroded and re-worked into the floodplain deposits.    
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Isotopic Analysis 

Improvements on instruments such as the Inductively-Coupled Plasma Mass 

Spectrometer (ICP-MS) and the Thermal Ionization Mass Spectrometer (TIMS) help expand 

upon the use of isotopes as contaminant tracers in environmental studies. Due to the 

complications of using total concentration data alone, isotopic tracers have given researchers the 

ability to more accurately trace contaminant sources and nutrient cycling in more detail and with 

better precision. Isotopic tracer methods have only recently been applied to the study of 

hydrophobic (sediment borne) trace metal contaminant flow pathways, and the field is rapidly 

growing with new advances in technology and instrument precision. Historically, isotopic tracers 

have been used in a wide range of hydrology studies where they are used to (1) determine the 

sources of water and solutes; (2) characterize water and contaminant flow paths and; (3) assess 

the biogeochemical cycling of nutrients (Miller and Orbock Miller, 2007). An isotope of an atom 

can either be stable or radioactive, and this depends on whether or not the isotope is decaying into 

other isotopes, by giving off different types of radiation.    

In this study, stable isotopes of antimony and radiogenic isotopes of lead were analyzed 

for source determination.  These isotopes were chosen because (1) lead isotopes are commonly 

used in environmental isotopic studies because they typically exhibit high fractionation ratios in 

most rock types and have been proven useful in tracer analysis; (2) antimony isotopes have 

proven to be useful in some environmental applications (Rouzel et al., 2003); (3) antimony 

concentrations within the Rio Loa Basin are high in comparison to average soil concentrations 

measured throughout the world (Miller and Orbock Miller, 2007); and (4) high concentrations of 

both lead and antimony within the residual fraction makes them promising in tracer analysis 

because they are moving with contaminated sediment instead of partitioning to various substrates 

and dissolving into the water column.  
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Antimony Isotopic Analysis 

 Antimony isotopes have not been extensively used as an environmental tracer, 

nevertheless, antimony isotopes show promise because the large range of isotopic values is 

dependent on the reduction and oxidation reactions which aid in the fractionation of antimony 

(III) and antimony (V) chemical species. Redox driven isotope fractionation, especially in 

hydrothermal areas, is known to naturally produce large fractionation values between oxidized 

and reduced species of antimony (O. Rouxel et al., 2003). As seen within the samples taken from 

the El Tatio Geyser Field, the antimony isotopic range of these samples is greater than all other 

locations within the basin (Table 9). The Rio Salado, Chuquicamata, and Lower Loa all contain 

smaller isotopic ranges in comparison. The mean isotopic value for the Upper Loa represents a 

much higher signature than the other populations (Figure 9). This likely results because the reach 

is not affected by antimony input from El Tatio; therefore the samples represent background 

isotopic ratios. Utilization of this method in studies with only one source of contamination could 

provide useful in determining hydrothermically contaminated material from background 

materials. However, in this particular study it provided little information in determining sources 

of contamination because the two sources being distinguished (i.e. mining operations and El 

Tatio) had similar ratios. 

Lead Isotopic Analysis 

Lead isotopes often provide an extremely useful tool in environmental studies for 

contaminant tracer applications.  However, in the case of the Rio Loa basin, the mean isotopic 

signatures for all source populations are similar. Thus, lead isotopes cannot be used to distinguish 

between the contaminated sediment sources. One exception may be the identification of sediment 

from Chuquicamata using the 
207

Pb/
208

Pb ratio (Figure 10b). The mean signature is slightly lower 

for Chuquicamata compared to all the other sources within the basin, however additional samples 

(and sample analysis) are required to verify the potential trend.  If Chuquicamata does in fact 
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have a different isotopic signature than the other sources, it would be an extremely useful tool in 

finding out how much contaminated sediment is coming from this mine.  

 

Floodplains and Terraces 

Floodplain deposits typically have high concentrations of contaminants due to hydraulic 

sorting between the larger and smaller particles. Smaller grain sizes within the floodplains may 

contribute to the larger concentrations being found within the floodplain deposits. Analysis of the 

terrace deposits at RL-1 and RL-3 provided an interesting history of changes in contaminant 

sources and pathways over time in the Rio Loa Basin (Figures 19 and 20). In the RL-1 terrace, 

section B is lighter in color and contains larger grain sizes, but is higher in both arsenic and 

antimony concentrations relative to section A and C within the terrace (Figure 19). These units 

were deposited possibly during a volcanic eruption, where the ash was transported by the river 

system and deposited on the floodplain.  

The most interesting pattern observed within these two terrace sites is the noticeable 

increase in antimony concentrations with depth, observed within stratigraphic section E of RL-3 

(Figure 19) and D of RL-1 (Figure 20). This suggests either (1) changes in mining procedures 

have decreased the input of antimony into the fluvial system, or (2) post-mining operations have 

diluted the antimony coming from El Tatio within the system. It is suspected that the surface of 

the terrace deposit must be from post-mining operations since previous literature suggests that 

during the latest El Nino/La Nina event in 2001, the Middle Loa terraces were substantially 

flooded, and deposits of a meter thick were reported in some areas (Houston et al., 2006). No 

simple method is available to date these two terrace deposits, but some evidence, like higher 

concentrations of antimony within the older deposits, suggests that El Tatio may have contributed 

more antimony into the Rio Loa in earlier times than it does today. 
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CHAPTER SIX:  CONCLUSIONS 

El Tatio Geyser Field contained very high concentrations of antimony, and mining 

operations contained the highest concentrations of copper relative to other source populations 

within the Rio Loa basin.  Thus, the antimony/copper ratio proved to be the best method to 

distinguish source(s) of sediment contamination within the Rio Loa Basin. Moreover, 

antimony/copper data showed where contaminants, which were either contaminated from El Tatio 

Geyser Field or mining operations, were deposited. The Middle and Lower Loa were 

contaminated by both mining operations and El Tatio, but downstream the input from El Tatio 

was greater than that which was coming from the mining operations. A look at the older terrace 

deposits revealed that El Tatio Geyser Field was the main contributor of antimony (and sediment) 

at the time these deposits were created. Over time, large amounts of antimony have been built up 

within the layers of the terraces. As these terraces are eroded, the re-worked sediments are 

incorporated into the floodplains and to a lesser extent, the channel bed.  

 Copper concentrations decrease within the Rio Loa because of dilution and storage of 

sediment, most of which consists of Fe-Mn Oxides and/or organic matter. Since copper was 

determined to have a high affinity for Fe-Mn Oxides and organic matter, it is presumed that any 

copper released from both Chuquicamata and mining operations will absorb to these particles and 

will not be transported long distances downstream of the mining operation in solution. 

Additionally, these Fe-Mn and organic matter particles are deposited and diluted within the Rio 

San Salvador and not readily transported with the suspended or particulate load downstream. 

Thus, the low concentration of copper found within the Lower Loa after the confluence of the Rio 

San Salvador is explained by this process.  

 Isotopes of antimony and lead did not provide enough information to accurately 

distinguish between the anthropogenic (mining operations) and natural (El Tatio) sources of 
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contamination studied in this investigation. Lead was determined to be uniformly distributed 

within the entire basin of the Rio Loa due to similar bedrock throughout; therefore it was not 

helpful for this particular study. Antimony isotopes were able to distinguish background ratios 

from material which has been affected by contaminant input from El Tatio, but they were not able 

to distinguish between sediment from mining operations and El Tatio. Antimony isotopes may 

prove useful in similar studies which are attempting to quantify contaminated sediment from one 

source of hydrothermal contamination.  

 The objective of this study was to determine the degree of contamination within the Rio 

Loa Basin and distinguish the potential source(s) of contamination via the use of total 

concentrations of arsenic, antimony, copper, and lead and the ratios of antimony and lead 

Isotopes. A sequential extraction procedure on thirty of the samples within the basin aided in the 

analysis by determining how the selected elements are bound to the analyzed sediment, therefore 

providing geochemical data describing the most likely dispersal pathway, and mobility, of each 

element. Additionally, findings within the floodplains and terraces located within the Rio Loa 

Basin helped in interpreting a historical record of contamination within the basin, along with 

where additional contaminant input is occurring today.     
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APPENDIX A 

t-values calculated for a comparisons of means across basin populations 

Pb 

  Linear Hypotheses:  t value  Pr(>|t|) 

Lower Loa - El Tatio == 0          1.023 0.942 

Middle Loa - El Tatio == 0             1 0.948 

Mine Tribs - El Tatio == 0          1.554 0.705 

Rio Salado - El Tatio == 0          1.269 0.856 

Rio San Salvador - El Tatio == 0          1.179 0.893 

Upper Loa - El Tatio == 0              2.608 0.16 

Middle Loa - Lower Loa == 0        -0.207 1.0000 

Mine Tribs - Lower Loa == 0           0.597 0.996 

Rio Salado - Lower Loa == 0         0.013 1.0000 

Rio San Salvador - Lower Loa == 0     0.049 1.0000 

Upper Loa - Lower Loa == 0           1.107 0.918 

Mine Tribs - Middle Loa == 0          0.847 0.976 

Rio Salado - Middle Loa == 0            0.269 1.0000 

Rio San Salvador - Middle Loa == 0   0.285 1.0000 

Upper Loa - Middle Loa == 0             1.608 0.672 

Rio Salado - Mine Tribs == 0         -0.656 0.994 

Rio San Salvador - Mine Tribs == 0  -0.586 0.997 

Upper Loa - Mine Tribs == 0         0.291 1.0000 

Rio San Salvador - Rio Salado == 0        0.044 1.0000 

Upper Loa - Rio Salado == 0          1.339 0.823 

Upper Loa - Rio San Salvador == 0    1.154 0.902 

 

As 

  Linear Hypotheses: t value  Pr(>|t|)  

Lower Loa - El Tatio == 0            -4.308  0.00352 ** 

Middle Loa - El Tatio == 0             -4.846 < 0.001 *** 

Mine Tribs - El Tatio == 0   -3.704  0.01535 *   

Rio Salado - El Tatio == 0          -4.81  0.00103 ** 

Rio San Salvador - El Tatio == 0    -4.193   0.00493 ** 

Upper Loa - El Tatio == 0         -5.38  < 0.001 *** 

Middle Loa - Lower Loa == 0             0.153 1.0000 

Mine Tribs - Lower Loa == 0         0.024 1.0000 

Rio Salado - Lower Loa == 0        0.381 0.9997 

Rio San Salvador - Lower Loa == 0           0.444 0.99927 
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Upper Loa - Lower Loa == 0            -0.085 1.0000 

Mine Tribs - Middle Loa == 0           -0.107 1.0000 

Rio Salado - Middle Loa == 0         0.26 0.99997 

Rio San Salvador - Middle Loa == 0         0.34 0.99984 

Upper Loa - Middle Loa == 0            -0.283 0.99995 

Rio Salado - Mine Tribs == 0        0.303 0.99992 

Rio San Salvador - Mine Tribs == 0   0.367 0.99976 

Upper Loa - Mine Tribs == 0            -0.1 1.0000 

Rio San Salvador - Rio Salado == 0      0.109 1.0000 

Upper Loa - Rio Salado == 0          -0.571 0.99703 

Upper Loa - Rio San Salvador == 0    -0.619 0.99537 

 

Sb 

  Linear Hypothesest value  t value Pr(>|t|)    

Lower Loa - El Tatio == 0             -3.923  0.01088 *  

Middle Loa - El Tatio == 0            -4.253  0.00507 ** 

Mine Tribs - El Tatio == 0          -2.62 0.16275 

Rio Salado - El Tatio == 0             -4.789 0.00155 ** 

Rio San Salvador - El Tatio == 0        -3.905 0.01130 * 

Upper Loa - El Tatio == 0             -4.651  0.00231 ** 

Middle Loa - Lower Loa == 0                   0.038 1.0000 

Mine Tribs - Lower Loa == 0   -0.048 1.0000 

Rio Salado - Lower Loa == 0            0.013 1.0000 

Rio San Salvador - Lower Loa == 0       0.016 1.0000 

Upper Loa - Lower Loa == 0             -0.058 1.0000 

Mine Tribs - Middle Loa == 0        -0.076 1.0000 

Rio Salado - Middle Loa == 0           -0.03 1.0000 

Rio San Salvador - Middle Loa == 0     -0.021 1.0000 

Upper Loa - Middle Loa == 0           -0.106 1.0000 

Rio Salado - Mine Tribs == 0          0.06 1.0000 

Rio San Salvador - Mine Tribs == 0      0.059 1.0000 

Upper Loa - Mine Tribs == 0             0.012 1.0000 

Rio San Salvador - Rio Salado == 0      0.005 1.0000 

Upper Loa - Rio Salado == 0          -0.085 1.0000 

Upper Loa - Rio San Salvador == 0    -0.075 1.0000 

 

Cu 

  Linear Hypotheses: t value   Pr(>|t|)    

Lower Loa - El Tatio == 0         -0.215 1.0000 

Middle Loa - El Tatio == 0               0.319 0.9999 
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Mine Tribs - El Tatio == 0           4.576  0.00185 ** 

Rio Salado - El Tatio == 0              0.057 1.0000 

Rio San Salvador - El Tatio == 0    6.575  < 0.001 *** 

Upper Loa - El Tatio == 0          0.12 1.0000 

Middle Loa - Lower Loa == 0            0.473 0.9990 

Mine Tribs - Lower Loa == 0       4.259  0.00422 ** 

Rio Salado - Lower Loa == 0          0.262 1.0000 

Rio San Salvador - Lower Loa == 0   5.756  < 0.001 *** 

Upper Loa - Lower Loa == 0            0.308 0.9999 

Mine Tribs - Middle Loa == 0       4.235  0.00447 ** 

Rio Salado - Middle Loa == 0         -0.264 1.0000 

Rio San Salvador - Middle Loa == 0  6.039  < 0.001 *** 

Upper Loa - Middle Loa == 0          -0.191 1.0000 

Rio Salado - Mine Tribs == 0        -4.535  0.00207 ** 

Rio San Salvador - Mine Tribs == 0  0.587 0.9965 

Upper Loa - Mine Tribs == 0         -4.379  0.00309 ** 

Rio San Salvador - Rio Salado == 0   6.524  < 0.001 *** 

Upper Loa - Rio Salado == 0          0.065 1.0000 

Upper Loa - Rio San Salvador == 0  -6.219 < 0.001 *** 

 

Sb/Cu 

  Linear Hypotheses:  t value  Pr(>|t|)  

Lower Loa - El Tatio == 0              -2.984 0.0783 

Middle Loa - El Tatio == 0           -3.353 0.0358 * 

Mine Tribs - El Tatio == 0          -2.743 0.1271 

Rio Salado - El Tatio == 0          -3.802  0.0129 * 

Rio San Salvador - El Tatio == 0    -3.465 0.0277 * 

Upper Loa - El Tatio == 0          -3.837 0.0115 * 

Middle Loa - Lower Loa == 0            -0.071 1.000 

Mine Tribs - Lower Loa == 0            -0.142 1.000 

Rio Salado - Lower Loa == 0           -0.121 1.000 

Rio San Salvador - Lower Loa == 0    -0.166 1.000 

Upper Loa - Lower Loa == 0         -0.149 1.000 

Mine Tribs - Middle Loa == 0        -0.086 1.000 

Rio Salado - Middle Loa == 0        -0.048 1.000 

Rio San Salvador - Middle Loa == 0    -0.103 1.000 

Upper Loa - Middle Loa == 0        -0.079 1.000 

Rio Salado - Mine Tribs == 0         0.054 1.000 

Rio San Salvador - Mine Tribs == 0   0.003 1.000 

Upper Loa - Mine Tribs == 0           -0.149 1.000 
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Rio San Salvador - Rio Salado == 0   0.029 1.000 

Upper Loa - Rio Salado == 0         -0.035 1.000 

Upper Loa - Rio San Salvador == 0    0.033 1.000 

 

Sb-123/Sb-121 

  Linear Hypotheses: t value     Pr(>|t|)  

Lower Loa - El Tatio == 0          -1.45 0.76424 

Middle Loa - El Tatio == 0            -1.781 0.56464 

Mine Tribs - El Tatio == 0            -1.882 0.50262 

Rio Salado - El Tatio == 0         -1.485 0.74495 

Rio San Salvador - El Tatio == 0      -0.986 0.95065 

Upper Loa - El Tatio == 0           3.835  0.01172 * 

Middle Loa - Lower Loa == 0             -0.004 1.0000 

Mine Tribs - Lower Loa == 0             -0.56 0.99729 

Rio Salado - Lower Loa == 0             0.238 0.99998 

Rio San Salvador - Lower Loa == 0        0.402 0.99958 

Upper Loa - Lower Loa == 0               4.584 0.00193 ** 

Mine Tribs - Middle Loa == 0        -0.623 0.99516 

Rio Salado - Middle Loa == 0         0.296 0.99993 

Rio San Salvador - Middle Loa == 0        0.468 0.999 

Upper Loa - Middle Loa == 0          5.533  < 0.001 *** 

Rio Salado - Mine Tribs == 0              0.832 0.97811 

Rio San Salvador - Mine Tribs == 0       0.92 0.96445 

Upper Loa - Mine Tribs == 0          4.612   0.00179 ** 

Rio San Salvador - Rio Salado == 0          0.226 0.99999 

Upper Loa - Rio Salado == 0             5.25  < 0.001 *** 

Upper Loa - Rio San Salvador == 0   4.134 0.00602 ** 

 

Pb-206/Pb-207 

  Linear Hypotheses:  t value  Pr(>|t|) 

Lower Loa - El Tatio == 0          2 0.431 

Middle Loa - El Tatio == 0         0.941 0.961 

Mine Tribs - El Tatio == 0         0.032 1.0000 

Rio Salado - El Tatio == 0          0.363 1.0000 

Rio San Salvador - El Tatio == 0        0.558 0.997 

Upper Loa - El Tatio == 0           0.703 0.991 

Middle Loa - Lower Loa == 0         -1.232 0.872 

Mine Tribs - Lower Loa == 0          -1.521 0.725 

Rio Salado - Lower Loa == 0        -1.704 0.613 

Rio San Salvador - Lower Loa == 0   -1.38 0.802 
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Upper Loa - Lower Loa == 0          -1.426 0.778 

Mine Tribs - Middle Loa == 0        -0.634 0.995 

Rio Salado - Middle Loa == 0        -0.578 0.997 

Rio San Salvador - Middle Loa == 0 -0.284 1.0000 

Upper Loa - Middle Loa == 0        -0.238 1.0000 

Rio Salado - Mine Tribs == 0        0.225 1.0000 

Rio San Salvador - Mine Tribs == 0   0.386 1.0000 

Upper Loa - Mine Tribs == 0           0.465 0.999 

Rio San Salvador - Rio Salado == 0   0.233 1.0000 

Upper Loa - Rio Salado == 0          0.34 1.0000 

Upper Loa - Rio San Salvador == 0    0.071 1.0000 

   

   Pb-206/Pb-208 

  Linear Hypotheses: t value  Pr(>|t|)   

Lower Loa - El Tatio == 0        -0.058 1.0000 

Middle Loa - El Tatio == 0         -1.343 0.8212 

Mine Tribs - El Tatio == 0         -1.46 0.7594 

Rio Salado - El Tatio == 0          -0.66 0.9935 

Rio San Salvador - El Tatio == 0      -3.311  0.0367 * 

Upper Loa - El Tatio == 0           -0.887 0.9704 

Middle Loa - Lower Loa == 0         -1.039 0.9379 

Mine Tribs - Lower Loa == 0          -1.261 0.8591 

Rio Salado - Lower Loa == 0         -0.481 0.9989 

Rio San Salvador - Lower Loa == 0    -2.745 0.1232 

Upper Loa - Lower Loa == 0             -0.667 0.9931 

Mine Tribs - Middle Loa == 0         -0.511 0.9984 

Rio Salado - Middle Loa == 0            0.683 0.9922 

Rio San Salvador - Middle Loa == 0       -2.11 0.3695 

Upper Loa - Middle Loa == 0              0.455 0.9992 

Rio Salado - Mine Tribs == 0           0.994 0.9492 

Rio San Salvador - Mine Tribs == 0    -1.091 0.9227 

Upper Loa - Mine Tribs == 0           0.833 0.9783 

Rio San Salvador - Rio Salado == 0       -2.721 0.1288 

Upper Loa - Rio Salado == 0        -0.228 1.0000 

Upper Loa - Rio San Salvador == 0    2.518 0.1891 

 

 

  

   Pb-207/Pb-208 

  Linear Hypotheses:   t value        Pr(>|t|)   
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Lower Loa - El Tatio == 0          -0.657 0.9936 

Middle Loa - El Tatio == 0            -1.523 0.7232 

Mine Tribs - El Tatio == 0             -1.377 0.8042 

Rio Salado - El Tatio == 0         -0.735 0.9885 

Rio San Salvador - El Tatio == 0    -3.192   0.0481 * 

Upper Loa - El Tatio == 0         -1.012 0.9448 

Middle Loa - Lower Loa == 0         -0.586 0.9966 

Mine Tribs - Lower Loa == 0             -0.722 0.9895 

Rio Salado - Lower Loa == 0         0.057 1.0000 

Rio San Salvador - Lower Loa == 0   -2.09 0.3807 

Upper Loa - Lower Loa == 0           -0.17 1.0000 

Mine Tribs - Middle Loa == 0     -0.3 0.9999 

Rio Salado - Middle Loa == 0             0.787 0.9836 

Rio San Salvador - Middle Loa == 0  -1.83 0.5337 

Upper Loa - Middle Loa == 0               0.51 0.9984 

Rio Salado - Mine Tribs == 0          0.857 0.975 

Rio San Salvador - Mine Tribs == 0     -1.082 0.9257 

Upper Loa - Mine Tribs == 0            0.661 0.9934 

Rio San Salvador - Rio Salado == 0      -2.534 0.1838 

Upper Loa - Rio Salado == 0          -0.277 1.0000 

Upper Loa - Rio San Salvador == 0    2.287 0.2815 
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APPENDIX B 

Graphs of pairwise comparisons of means using an ANOVA one way test with 95% confidence. 
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