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ABSTRACT

ACTIVITY RECOGNITION USING GREY-MARKOV MODEL

Kirke Shouse, M.S.T.

Western Carolina University (December 2011)

Director: Dr. James Zhang

Activity Recognition (AR) is a process of identifying actions and goals of one or

more agents of interest. AR techniques have been applied to both large and small scale

activity identification. Examples of AR techniques include Genetic Algorithm, Markov

Chain, and so on.

This research proposes a novel method, Grey Markov Model (GMM), for detec-

tion and prediction of pre-defined activities. There were three objectives of this research.

The first objective was to establish a database of pre-defined human activities. The second

objective was to establish the Grey Markov Model. The final objective was to verify the

model performance using the established database.

This thesis describes the methodology of test setup and data collection, as well as

the procedures of model generation. Furthermore, experimental results of model perfor-

mance verification test are also reported.



7

CHAPTER 1: INTRODUCTION

Activity Recognition (AR) is an ongoing field of study. Activity Recognition (AR)

is a process of identifying actions and goals of one or more agents of interest. AR tech-

niques have been applied to both large and small scale activity identification. An example

of large scale recognition is traffic pattern for a major street and its intersections to help

generate a better flow of traffic. Small scale recognition is where AR is most frequently

seen. An example of small scale recognition is Activities of Daily Living (ADL). ADL is

used to help assisted living facilities determine whether or not a patient is in need of care.

This thesis focuses on small scale recognition, and in particular identifying and predicting

the current position of someone’s posture in a chair.

The importance of AR is becoming more and more prevalent as the life expectancy

and number of elderly people increases. By being able to identify and predict someone’s

current state and future state, the care for the elderly can be vastly improved. For example,

if the current state of a patient is one that is known to lead to one of the negative future

states, such as falling down, then the healthcare provider knows that intervention is neces-

sary to prevent injury. As sensory technology improves the non-invasive approaches can

even help with predicting internal problems, such as heart and other vital organ failures.

Most methods of AR lack the speed and accuracy needed to provide the responses

needed for healthcare concerns. The most predominant method of AR is considered to be

Markov Model. This method is primarily used in speech recognition, and not designed to

deal with AR. While it does boast decent accuracy and speed, it still lacks the precision
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needed for healthcare predicaments. This thesis proposes a new method for AR that has

yet to be explored in great depth using a Grey-Markov Model (GMM) as the algorithm for

detection. GMM is a combination of the previously stated Markov Model and Grey Model.

Grey Model was originally designed for control systems. Its inclusion with Markov Model

helps to reduce error previously seen in Markov Model alone.

Through this research the generation of the GMM algorithm was constructed in

MatLab. This algorithm used the Markov Model as it’s main source of interpretation, but

as previously stated the introduction of Grey Model was appended to eliminate error and

improve detection rates. The main focus of the Markov Model is to link the states of in-

terest with a transition matrix. A Markov chain takes a stochastic process and makes the

next state dependent on the current state and not the past states. The Grey Model takes

the transition matrix and transition probabilities and uses a differential equation to predict

the current and future state. The predictions error is further reduced by implementing the

residual error calculated from one state to any other state, and determining the most likely

next state.

To test the algorithm, Dow Jones stock exchange data was used to determine if,

given a specific amount of closing averages, could the following day’s closing average

be predicted. This was done over one month, three month, and one year time intervals.

The predictions were used as a comparison between Grey Model and GMM to test the

improvements. The prediction results showed that the algorithm was consistently more

accurate than Grey Model by itself.

The next step was to test the algorithm on previously collected data used for AR.

This data was provided by a faculty member which was obtained during his dissertation

work. The data consisted of participants positioned on a couch in five unique states. The

data was tested and predicted accurately what the current state was. To further test this
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data set the original data was scrambled so that the original order of states was altered

to confirm the accuracy of the algorithm. The results showed the algorithm was just as

accurate as before.

Once the initial test of the algorithm was done with actual AR data, new data was

generated using a similar concept. The new data was collected by placing four load cells

underneath the legs of a chair. Four states were established and consisted of front, back,

left, and right. The new data acquired was tested by the algorithm, and again the accuracy

shown was sufficient for AR.

This thesis is organized as follows, chapter two provides a literature review dis-

cussing the basic concepts of AR, Markov Model, Grey Model, and GMM. In chapter

three the design methodology is discussed in detail pertaining to the algorithm, data col-

lection, and data testing. Chapter four shows the results and analysis attained through this

research. Lastly, chapter five concludes the research and recommends future work.
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CHAPTER 2: LITERATURE REVIEW

2.1 Activity Recognition

Activity Recognition(AR) is a process of identifying actions and goals of one or more

agents of interest. AR techniques have been applied to both large and small scale activity

identification. Examples of AR techniques include Genetic Algorithm, Markov Chain, and

so on. AR can be viewed in numerous ways dependent upon its application. For example,

if the actions of interest are behavioral then AR can be classified as behavioral recognition.

Other common references to AR are goal recognition, intent recognition, plan recognition,

and location-based recognition [1–4].

Since the inception of the digital age and devices such as smartphones, AR has

become more prevalent. Its significance has lead to vast amounts of research in the vary-

ing fields of AR. One important field that research has arisen is the medical field. The

importance of AR for medical purposes is vast, but benefits to the elderly have emerged as

the prevailing source of interest in the field [2, 4].

One such benefit is the use of AR to help with assisted living patients. These

patients require consistent attention, and with more patients than healthcare workers the

advent of AR to help identify and diagnose problems has been a reprieve to the health-

care providers. Preventative measures can be used to help identify potential injuries and

problems before they occur. The ultimate goal would be to identify and solve potential

problems autonomously if at all possible, but further progress in the field must occur for

that revelation [2, 4].
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2.2 Predominant Methods in Activity Recognition

There have been many different approaches to AR, but with so many facets to AR it is dif-

ficult to generalize the methods. Some prevalent methods consist of data mining, robotics,

and most commonly used sensors. An example of robotic assistance in AR can be found

in the work of Pollack et al. about memory loss in the elderly [4]. This research explores

the assisted living of the elderly with a robot to assure activities of daily living are remem-

bered and accomplished as planned. This may range from simple task such as using the

restroom to taking important medication. The use of adaptivity in the robots algorithm

allows for daily routines to be completed without the monotonus approach of an alarm

clock reminder.

Want et al. uses the more commonly used approach, sensors [2]. This approach

uses a badge worn by agents that tracks movement in varying locations. Two examples

of where the badge was used were in an office building setting and in a hospital setting.

In the office building setting the use of the badge allowed a receptionist to easily keep

track of where individuals were when they were needed. In the hospital setting the badge

was used to keep up to date information on patients and staff in case medical emergencies

arose. This may seem that AR is not heavily relied upon, but once the badges are used for

an extended period of time training occurs allowing an algorithm to not only see where

someone is, but also to predict where they may be going using previous data. The problem

with the badge method is that an individual’s privacy may be violated with this invasive

approach.

Another example of AR using a sensor approach can be seen using a non-invasive

approach [3]. This approaches uses sensor data on household objects instead of the per-
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son. By using these sensors on items such as a coffee-maker, the authors investigate if they

could determine recognizable patterns with objects in daily life. Through decision trees

which classify patterns they were able to achieve a high success rate of detection without

being invasive to the members of the household.

The method used in this research was a non-invasive approach using sensors to

determine a person orientation in a chair. The algorithm used to determine and predict

the current and future states was a combination of Grey Prediction and Markov Model.

The combination of this algorithm is known as Grey-Markov Model, and allowed for the

short-comings of both to be surpassed.

2.3 Grey Prediction and Markov Model

Grey prediction was originally introduced by Deng [5] in 1982. Grey prediction was orig-

inally designed for use with control systems. It has been widely used in control systems

since its inception. The theory states that if a system consisted of all unknowns then it was

considered black. Conversely if a system consisted of all knowns it was considered white.

Therefore a grey system consisted of known and unknowns. The goal of grey prediction

was to whiten the system and reveal the unknowns. Since control system data tend to fol-

low an exponential trend the method was ideal for the task. When using grey prediction in

a field such as AR the exponential trend tends to propagate error through the process.

A series of papers were published in the 1960s first referencing Hidden Markov

Models. One of the first applied uses of Hidden Markov Models was found in speech

recognition. As people became more familiar with Hidden Markov Models, more fields

of study began to use the prediction method. Some examples of fields are Biology, Stock

Market, Power Consumption, and DNA research. In 1989 Lawrence R. Rabiner published

a paper explaining Hidden Markov Models and their application in speech recognition. [6].
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First Rabiner explains the process in constructing a Hidden Markov Model. The author

further explained Hidden Markov Models for prediction using two examples. The first

example used is the simple task of flipping a coin that has heads on one side and tails

on the other. Rabiner sets up the experiment by explaining that you are in a room with a

curtain in between you and the person flipping the coin. The person flipping the coin will

not tell you anything they are doing just the outcome of every coin flip. To construct the

Hidden Markov Model one must first determine what a given state will correspond to, i.e.

state one would be heads, while state two would be tails. Next one must determine how

many states; in this case there are two states, either head or tails. Lastly, the determina-

tion of the probability of the coin being head or tails must be decided. It is fairly obvious

in the case of the coin what the probabilities would be for the coin to be either heads or

tails, so Rabiner goes on to show a two coin model and a three coin model. These would

allow you to generate a Hidden Markov Model that can predict a sequence of coin flips [6].

2.3.1 Grey Prediction Method

The first step of implementing the Grey Prediction Method is data treatment. Let the

original data sequence be denoted as such:

{x(0)(1),x(0)(2), · · · ,x(0)(n)} (2.1)

The original data can be reconstructed with the following equation:

x̂(0)(k+1) = x̂(1)(k+1)− x̂(1)(k)−Dk+1 (2.2)

Where:

Di = Di−1 +2[x(0)(i−1)− x(0)(i)] (2.3)
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The second step is to build the GM(1,1) Model. The Accumulated Generation Opera-

tion(AGO) sequence X (1) can be obtained by:

X (1) = {x(1)(1),x(1)(2), · · · ,x(1)(n)} (2.4)

Where:

x(1)(k) =
k

∑
i=1

x(0)(i),k = 1,2, · · · ,n (2.5)

The grey GM(1,1) model can be made by establishing the first-order differential equation

for x(1)(t) as:

dx(1)(t)
dt

+ax(1)(t) = u (2.6)

Where a and u are the parameters to be estimated, and can be obtained by:(
â
û

)
= [BT B]−1BTY (2.7)

Where B =


−[x(1)(1)+ x(1)(2)]/2 1
−[x(1)(2)+ x(1)(3)]/2 1

...
...

−[x(1)(n−1)+ x(1)(n)]/2 1

 (2.8)

Y = [x(0)(2),x(0)(3), · · · ,x(0)(n)]T

We can obtain the time response function by solving the differential equation:

x̂(1)(k+1) = [x(1)− û
â
]e−âk +

û
â

(2.9)

This can be rewritten as:

x̂(1)(k+1) = be−âk + c (2.10)
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Lastly, the residual errors must be calculated by using the following:

E = {e1,e2, · · · ,en} (2.11)

Where:

ei = x(0)(i)− x̂(0)(i) (2.12)

2.3.2 Grey Markov Method

The Grey-Markov Model(GMM) is an extension of Grey Model(GM) to further reduce

detection and prediction errors. The first step in building the GMM is to divide the residual

errors into q states where each state satisfies the equi-probability principle, and is defined

as R1,R2, · · · ,Rq.

Next the construction of the transition matrix is done by determining the probability from

state Ri to state R j, which results in the transition matrix P:

P(1) =


P(1)

11 P(1)
12 · · · P(1)

1q

P(1)
21 P(1)

22 · · · P(1)
2q

...
...

...
...

P(1)
q1 P(1)

q2 · · · P(1)
qq

 (2.13)

The transition probability can be calculated directly as follows:

P(m)
i j =

M(m)
i j

Mi
(i, j = 1,2, · · · ,L) (2.14)

Where M(m)
i j stands for the transition from Ri to R j in m steps, where Mi is the number of

state Ri.

The resultant transition probability matrix is as follows:
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P(m) =


P(m)

11 P(m)
12 · · · P(m)

1q

P(m)
21 P(m)

22 · · · P(m)
2q

...
...

...
...

P(m)
q1 P(m)

q2 · · · P(m)
qq

 (2.15)

Next, the residual error must be confirmed. Let the interval median in [Ri−,Ri+] be residual

error forecasting value as follows:

êi = 0.5(Ri−+Ri+) (2.16)

Once the residual error ei and x̂(0) are determined the prediction of the original data can be

constructed:

ŷ(i) = x̂(0)(i)+ êi (2.17)

Comparing ŷ(i) against the original data will determine the success rate of the process.
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CHAPTER 3: METHODOLODY

In this chapter, we first introduce the algorithm for this research. The results of

algorithm test with known data sets are shown. The method for obtaining data to be tested

is also explained. The method for pre-processing the collected data is also shown in this

chapter.

3.1 Algorithm

The algorithm for this research is based on the theories described in chapter two. The

flow-chart of the algorithm is shown in Figure 3.1.

Figure 3.1: Algorithm Flow Chart
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As can be seen in Figure 3.1 the algorithm begins with an initial steady state. Once

the initial steady state has been recognized the algorithm begins to check for a transition.

Once a large enough change is noticed on the data a transition is considered to have oc-

curred. Once the transition is detected the algorithm attempts to predict the next state

based on the previous steady state and the transition which was detected. After the predic-

tion is made the algorithm confirms the predicted steady state and establishes it as the new

current steady state for the prediction of the next state.

An initial performance verification test was performed using the algorithm and

Dow Jones Industrial Closing Average. The test used the GMM algorithm previously con-

structed and the original Grey Model to verify the improvement of the proposed algorithm.

Three tests were conducted using the data, the first test used the first twenty-nine days of

a month to predict the thirtieth day. The next test used three months of data to predict the

first day of the fourth month. The last test used one year worth of data to predicted the first

day of the following year. The results of this test are shown below:
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Figure 3.2: Dow Jones Industrial Closing Average Results

Table 3.1: Dow Jones Industrial Closing Average Table

GM Error(%) GMM Error(%) Actual
One Month 11265 1.2576 11174 0.4396 11125

Three Month 11591 4.1902 11301 1.5834 11125
One Year 13532 21.637 12036 8.1898 11125



20

It can be seen in Figure 3.2 the original data is a solid blue line, the GMM predic-

tion is a solid red line, and the GM prediction is a dotted black line. The results shown in

Table 3.1 display the actual closing average and the percentage error associated with each

prediction method. There is a noticeable increase in error which correlates to the number

of data points, but an error of 8.1898% shown for GMM over a year of prediction towards

a value of 11,125 is not that significant. As opposed to an error percentage of 21.637% for

GM over a year this value is clearly significant. This clearly shows that the GMM method

is more accurate then the original GM method. The same closing day was used for all

three tests and the previous data was constructed with that in mind.

3.2 Test with Existing AR Data

This research was an extension of the dissertation work of a faculty member and therefore

data was readily available for testing. The data set was based on the sitting position of

three participants assuming five distinct positions on a couch. Four load cells were placed

underneath each leg of the couch to produce a reading that would vary based on a posi-

tion. The original data was separate with regards to each state being an independent data

set and no transitions were available. To attempt to test this data the individual data sets

of the five positions for one participant was combined into one larger data set. This new

data set was then scrambled, keeping the four load cell readings for one state together, but

moving the states themselves into random order. The final data sets consisted of five states

randomly scrambled 1500 times and tested for 1000 iterations. The prediction rate over

1000 iterations was 89% accurate. This detection rate was satisfactory but the data was

not ideal for the algorithm proposed since it was missing the transitions between states.
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3.3 Design of AR Test

To overcome the lack of transitions in the previous existing data sets new data was col-

lected following the same approach. Instead of a couch for the testing apparatus a chair

was chosen and four distinct states were selected. The four states were sitting with your

back in the chair, sitting towards the front of the chair, leaning on the right arm of the chair,

and leaning on the left arm of the chair. Next a transition state diagram was designed to

insure that each state and its corresponding possible transitions were accounted for. The

state diagram is shown below:

Figure 3.3: Transition State Diagram

The participants began the test standing up and were told to sit down in the front

position. They held each steady state for 10 seconds before transitioning to the new state.
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Once all transitions were complete the participants would then get up from the chair and

the data collection would end. This was done twice for each participant with a cushion in

the chair and twice for each participant with no cushion in the chair. These multiple runs

allowed for an averaging of each particular steady state to try and compensate for the lack

of training needed for the transition probability matrix.

3.4 Test-bed Design and Data Collection

The design and implementation of a test-bed as well as data collection strategy are de-

scribed in the following subsections.

3.4.1 Test Apparatus Design and Construction

The test apparatus is depicted in this subsection. The test-bed was designed similar to that

used in the faculty member’s dissertation work. A chair was chosen, but the same load

cells, and data acquisition method were implemented to maintain consistency. The four

steady states were chosen for their distinct difference from one another. The four states

are shown in the figure below:

front back
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right left

Figure 3.4: Four Steady State Positions

As can be observed in Figure 3.4, the load cells were attached to the legs of the

chair and held in place to maintain consistent readings. A cushion was used in two of the

four each participants data runs to insure there was no effect in distribution in the weight

of the chair. The results confirmed this hypothesis and the four runs were considered con-

sistent.

3.4.2 Data Collection

The data was collected using four FC23 Compression Load Cells as the sensors attached

to the legs of the chair. A NI-USB-6008 DAQ was used to collect the data through a Lab-

view program. The Labview program recorded the four load cell values and amplify their

output by 10,000. This amplification was needed due to the load cell’s high end weight

capacity. This amplification did not obscure the data because six significant digits were

shown to maintain accuracy. Each state was maintained for a minimum of ten seconds,

and the sampling rate was ten samples per second.
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3.5 Experiment Design and Data Treatment

This section discusses the design of the experiment and data treatment.

3.5.1 Participant Selection

There were 14 participants chosen for this research. There were 11 males and 3 females

chosen. The participants were chosen to add variation, not only to gender but weight.

Shown below is a table of the 14 participants, their corresponding weight, and how many

iterations of data were collected from them:

Table 3.2: Participant Information

Participant Gender Weight Runs
1 Female 120 4
2 Female 125 4
3 Female 130 4
4 Male 150 4
5 Male 160 4
6 Male 170 4
7 Male 175 4
8 Male 180 4
9 Male 185 4

10 Male 205 4
11 Male 205 4
12 Male 250 4
13 Male 250 4
14 Male 315 4

As seen in Table 3.2 each participant’s weight varied from 120 pounds to 315

pounds to see if a general classification of steady state and transitions could be generated.

Each participant completed four iterations to combine for an average steady state value.
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3.5.2 State transition design

A state transition matrix was designed in the algorithm to help determine the correct state.

Shown below is the methodology behind that design:

Re f erence State(re f ) =


a1 f b1 f c1 f d1 f
a2 f b2 f c2 f d2 f

...
an f bn f cn f dn f

 (3.1)

Where 1, · · · ,n refers to the n possible transitions, and f is a notation of the reference state

and holds no mathematical significance.

Then the measured/predicted state is shown as:

Measured/Predicted State(mea) =


a1 b1 c1 d1

...

...
a1 b1 c1 d1

 (3.2)

Where the corresponding state can be determined from below using the same size matrices

for re f and mea:

[minval ind] = min(sum(abs(re f −mea)))

Where ind is the state closest to the reference, and sum is notation associated with MatLab

referencing Summation.

Not only was there a design needed for the steady state matrix, but one was also required

for the transition matrix. That design is described below:

Measured Transition(MT ) =


a1 b1 c1 d1

...

...
a1 b1 c1 d1

 (3.3)

Re f erence Transition(re f ) =


a1 f b1 f c1 f d1 f
a2 f b2 f c2 f d2 f

...
an f bn f cn f dn f

 (3.4)
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Re f ∗ (MT )′ =

 a1 f ∗a1 b1 f ∗b1 c1 f ∗ c1 d1 f ∗d1
...

an f ∗an bn f ∗bn cn f ∗ cn dn f ∗dn

 (3.5)

Then the corresponding state can be determined from below:

[maxval ind] = max(Re f ∗ (MT )′)

Where the ind value returned is the predicted state.

These two methods allowed for the algorithm to detect the steady state and to predict the

next steady state based off the transition. The results showed that the algorithm’s use of

the two methods had a very high detection rate.

The transitions themselves were able to be characterized into four groups. Depend-

ing on what the current state was a combination of the four loads magnitude and direction

could characterize the transition. A table describing this process is shown below:

Table 3.3: Transition Classification

State Transition Load Cell Trend Coded Transition
Front→ Any ↑ ↑ ↓ ↓ 1 1 -1 -1
Any→ Front ↓ ↓ ↑ ↑ -1 -1 1 1
Back→ Right
Left→ Right ↑ ↓ ↑ ↓ 1 -1 1 -1
Left→ Back

Right→ Back
Back→ Left ↓ ↑ ↓ ↑ -1 1 -1 1
Right→ Left

The arrows in Table 3.3 dictate the direction the load cell’s magnitude is going.

The four arrow combination is for right rear, left rear, right front, left front load cells re-

spectively. The trouble in prediction occurs with the last two groups, but the magnitude

becomes the deciding factor in determining the next steady state.
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3.5.3 Data Treatment

The original data collected had poor results initially. This was due to a lot of high fre-

quency contents in the transitions and steady states. To eliminate the errors associated

with this problem the data was passed through a lowpass filter. An example of the original

data and resultant filtered data is shown below:

Figure 3.5: Original Data versus Filtered Data

This transformation was accomplished using the Zero-Phase Forward and Reverse

Digital Filtering function, filtfilt, in MatLab. The filtfilt function requires three parameters

to accomplish this. The function is done using filtfilt(b,a,x), where a is [0,1], x is the data,

and b is finite impulse response. The resultant differential equation is shown below:
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y(n) = b(1)∗ x(n) +b(2)∗ x(n−1)+ . . .+b(nb+1)∗ x(n−nb)
−a(2)∗ y(n−1)− . . .−a(na+1)∗ y(n−na) (3.6)

This process allowed for the high frequency content to be eliminated and the data to be

more easily interpreted.

The method’s used in this section allowed for the construction of the algorithm, the

data collection, the data pre-processing, and data interpretation. Using these processes,

results and analysis were gathering for a conclusion to be drawn on the effectiveness of

the proposed method in the field of AR.
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CHAPTER 4: RESULTS AND ANALYSIS

4.1 Results on Collected Data

This chapter provides results and analysis of real-world data using GMM for AR. This data

consisted of the 14 participants of varying weight and gender positioned in four unique

postures. Original data can be found in Appendix(D,E,F). The first step in the process

was to make sure steady state detection was identifiable on its own merit without the use

of transitions. An example of an easily, nominally, and poorly detectable steady state is

shown in the plots below:

(a) Rear Right
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(b) Rear Left

(c) Front Right
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(d) Front Left

Figure 4.1: Easily Detectable Steady State

(a) Rear Right
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(b) Rear Left

(c) Front Right
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(d) Front Left

Figure 4.2: Nominally Detectable Steady State

(a) Rear Right
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(b) Rear Left

(c) Front Right
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(d) Front Left

Figure 4.3: Poorly Detectable Steady State

The combination of the four load cell values correlates directly to a given steady

state. For example the right rear is shown in (a), the left rear is shown in (b), the front

right is shown in (c), and the front left is shown in (d). There are four steady states and

transitions shown in the figures. The GMM algorithm can correctly identify and mimic

these changes resulting in a high detection rate for steady state. With the steady state

identification alone there were 53 data sets with 13 states to be identified. The algorithm

correctly identified 670 out of 689 states which equates to a 97.2% detection rate. Below

is a table identifying the state and correctly identified and wrongly identified amounts out

of the 53 data sets:
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Table 4.1: Steady State Detection Results

Steady State Correct Wrong %
1 53 0 100
4 53 0 100
1 53 0 100
2 51 2 96.2
4 53 0 100
2 52 1 98.1
3 48 5 90.6
4 51 2 96.2
3 49 4 92.4
2 50 3 94.3
1 53 0 100
3 51 2 96.2
1 53 0 100

Total 670 19 97.2

In Table 4.1, steady state 1 refers to the front steady state, 2 refers to the back

steady state, 3 refers to the left steady state, and 4 refers to the right steady state. This is

promising, but prediction, not identification, is the true goal of this research. The next step

in the process was to use the steady state detection in conjunction with transition detection

to produce a prediction for the next steady state.

As previously shown in Table 3.3, the transitions could be characterized into four

groups. There was a two step process in equating the current state using transitions. The

first step was to make a decision about which group the transition belonged to. The second

step was to determine which transition in the corresponding group occurred. Once the

transition was identified the steady state associated with it could be classified. The first test

done for transition detection is based on this assumption. Identifying the correct groups

would eliminate possible errors found when associating with transitions outside of the

groups. Shown below are figures of the transition detection method used to identify the

direction and magnitude of a transition from steady state to steady state:
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(a) Rear Right

(b) Rear Left
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(c) Front Right

(d) Front Left

Figure 4.4: Transition Detection

In Figure 4.4 (a) refers to the rear right, (b) refers to the rear left, (c) refers to

the front right, and (d) refers to the front left load cells. This transition detection used a



39

windowing method to identify the correct direction of the transitions at each steady state.

Without this windowing the detection rate would either identify too many transitions or not

enough transitions. With this approach, if there were too many transitions detected in a

specific window then the one with greatest magnitude detected first would be declared the

correct transition. Also if there was no transition detected in the window then one would

be designated with a magnitude of one as to not have a great effect. Once the transition

detection method was complete all 54 data sets were applied to the algorithm to determine

the detection rate for the four group identification. There were 642 out of 756 correctly

identified transition groups. This equates to an 84.92% detection rate of the transition

groups. Once the group detection rate was complete the next step was to identify each in-

dividual transition using the knowledge gained from the transition group detection. Once

again there were 54 data sets ran through the algorithm and there were 544 out of 756

correctly identified transitions. This equates to a 71.96% detection rate for each individual

transition. Shown below is a table depicting the number of transitions, correctly identified

group transitions, and correctly identified individual transitions:
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Table 4.2: Transition Detection Rate

Participant Transitions Group Individual Group % Individual %
1 56 50 46 89.3 82.1
2 56 38 30 67.8 53.5
3 56 52 50 92.8 89.2
4 56 42 34 75 60.7
5 56 55 50 98.2 89.2
6 56 54 50 96.4 89.2
7 56 45 39 80.3 69.6
8 56 56 55 100 98.2
9 56 49 40 87.5 71.4
10 56 45 30 80.3 53.5
11 56 50 45 89.2 80.3
12 56 56 54 100 96.4
13 42 22 10 52.3 23.8
14 42 28 11 66.7 26.2

Total 756 642 544 84.92 71.96

The last step in this process was to generate new data by asking participants to

repeat the data collection, but this time they were told to choose their own sequence of

postures. The participant was to hold the position for the usual ten seconds, and to transi-

tion twenty times. This was done for four participants and allowed for 80 new steady states

to be created at random. There were 72 out of 80 steady states predicted correctly for a

detection rate of 90%. This used both the transition detection and steady state detection to

predict the next steady state.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

The proposed thesis investigated the addition of Markov Model to improve the

performance of the Grey Model for activity recognition. Through research a better under-

standing of the proposed techniques and methods for AR was achieved. The need for AR,

in particular for healthcare, is paramount. The use of AR to help alleviate the problems

associated with assisted living for not only the patient, the healthcare provider, but the

family of the patients is unmeasurable.

The initial research identified the proposed method Grey Markov Model as an ap-

proach to be explored in great depth for AR. The success of the Grey Markov Model in

other fields showed promise that its application in AR could improve performance. This

thesis work achieved the three goals set for the research: data collection, algorithm de-

velopment, and algorithm verification. In this research, a test apparatus was designed and

implemented to collect real-world data for verification purposes. An algorithm was de-

veloped and refined to achieve the detection rates reported in this thesis. This algorithm

was constructed and verified throughout multiple procedures. The use of the Dow Jones

data, data collected previous data, and newly acquired data provided a relatively thorough

investigation of the algorithm.

There were also algorithms developed to both detect steady state and transitions.

The corresponding results were shown and the original data provided for reproduction of

the experiments. Both the steady state detection and the transition detection show satis-

factory results for the field of activity recognition. The last set of data gathered used the
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previously collected data as training, and allowed for a true correlation between prediction

and detection to be seen. The detection rate of 90% on the final data sets acquired showed

that the two detection methods could predict the next state very consistently.

Future work for this research should consist of collecting more data sets for future

testing. The acquisition of more data sets will allow for a training of the system to increase

detection rates. Also an investigation of statistical significance of factors such as gender

and weight is necessary as they pertain to the thresholds for detection. If direct correlations

could be established with these factors then a more general and better threshold could be

established and detection speed would be greatly increased.
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APPENDIX A: ONE MONTH DJI DATA

Day Closing Average
1 10829.68
2 10751.27
3 10944.72
4 10967.65
5 10948.58
6 11006.48
7 11010.34
8 11020.4
9 11096.08
10 11096.92
11 11062.78
12 11143.69
13 10978.62
14 11107.97
15 11146.57
16 11132.56
17 11164.05
18 11169.46
19 11126.28
20 11113.95
21 11118.4
22 11124.62
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APPENDIX B: THREE MONTH DJI DATA

Day Closing Avg Day Closing Avg Day Closing Avg
1 10674.38 26 10340.69 51 11020.4
2 10636.38 27 10387.01 52 11096.08
3 10680.43 28 10415.24 53 11096.92
4 10674.98 29 10462.77 54 11062.78
5 10653.56 30 10544.13 55 11143.69
6 10698.75 31 10526.49 56 10978.62
7 10644.25 32 10572.73 57 11107.97
8 10378.83 33 10594.83 58 11146.57
9 10319.95 34 10607.85 59 11132.56
10 10303.15 35 10753.62 60 11164.05
11 10302.01 36 10761.03 61 11169.46
12 10405.85 37 10739.31 62 11126.28
13 10415.54 38 10662.42 63 11113.95
14 10271.21 39 10860.26 64 11118.4
15 10213.62 40 10812.04 65 11124.62
16 10174.41 41 10858.14
17 10040.45 42 10835.28
18 10060.06 43 10788.05
19 9985.81 44 10829.68
20 10150.65 45 10751.27
21 10009.73 46 10944.72
22 10014.72 47 10967.65
23 10269.47 48 10948.58
24 10320.1 49 11006.48
25 10447.93 50 11010.34
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APPENDIX C: ONE YEAR DJI DATA

Day Closing Avg Day Closing Avg Day Closing Avg
1 9789.44 26 10285.97 51 10710.55
2 9771.91 27 10337.05 52 10609.65
3 9802.14 28 10405.83 53 10725.43
4 10005.96 29 10471.5 54 10603.15
5 10023.42 30 10501.05 55 10389.88
6 10226.94 31 10452 56 10172.98
7 10246.97 32 10441.12 57 10196.86
8 10291.26 33 10308.26 58 10194.29
9 10197.47 34 10328.89 59 10236.16
10 10270.47 35 10414.14 60 10120.46
11 10406.96 36 10464.93 61 10067.33
12 10437.42 37 10466.44 62 10185.53
13 10426.31 38 10520.1 63 10296.85
14 10332.44 39 10547.08 64 10270.55
15 10318.16 40 10545.41 65 10002.18
16 10450.95 41 10548.51 66 10012.23
17 10433.71 42 10428.05 67 9908.39
18 10464.4 43 10583.96 68 10058.64
19 10309.92 44 10572.02 69 10038.38
20 10344.84 45 10573.68 70 10144.19
21 10471.58 46 10606.86 71 10099.14
22 10452.68 47 10618.19 72 10268.81
23 10366.15 48 10663.99 73 10309.24
24 10388.9 49 10627.26 74 10392.9
25 10390.11 50 10680.77 75 10402.35
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Day Closing Avg Day Closing Avg Day Closing Avg
76 10383.38 101 10895.86 126 10926.77
77 10282.41 102 10907.42 127 10868.12
78 10374.16 103 10856.63 128 10520.32
79 10321.03 104 10927.07 129 10380.43
80 10325.26 105 10973.55 130 10785.14
81 10403.79 106 10969.99 131 10748.26
82 10405.98 107 10897.52 132 10896.91
83 10396.76 108 10927.07 133 10782.95
84 10444.14 109 10997.35 134 10620.16
85 10566.2 110 11005.97 135 10625.83
86 10552.52 111 11019.42 136 10510.95
87 10564.38 112 11123.11 137 10444.37
88 10567.33 113 11144.57 138 10068.01
89 10611.84 114 11018.66 139 10193.39
90 10624.69 115 11092.05 140 10066.57
91 10642.15 116 11117.06 141 10043.75
92 10685.98 117 11124.92 142 9974.45
93 10733.67 118 11134.29 143 10258.99
94 10779.17 119 11204.28 144 10136.63
95 10741.98 120 11205.03 145 10024.02
96 10785.89 121 10991.99 146 10249.54
97 10888.83 122 11045.27 147 10255.28
98 10836.15 123 11167.32 148 9931.97
99 10841.21 124 11008.61 149 9816.49
100 10850.36 125 11151.83 150 9939.98
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Day Closing Avg Day Closing Avg Day Closing Avg
151 9899.25 176 10359.31 201 10271.21
152 10172.53 177 10097.9 202 10213.62
153 10211.07 178 10154.43 203 10174.41
154 10190.89 179 10229.96 204 10040.45
155 10404.77 180 10120.53 205 10060.06
156 10409.46 181 10322.3 206 9985.81
157 10434.17 182 10424.62 207 10150.65
158 10450.64 183 10525.43 208 10009.73
159 10442.41 184 10537.69 209 10014.72
160 10293.52 185 10497.88 210 10269.47
161 10298.44 186 10467.16 211 10320.1
162 10152.8 187 10465.94 212 10447.93
163 10143.81 188 10674.38 213 10340.69
164 10138.52 189 10636.38 214 10387.01
165 9870.3 190 10680.43 215 10415.24
166 9774.02 191 10674.98 216 10462.77
167 9732.53 192 10653.56 217 10544.13
168 9686.48 193 10698.75 218 10526.49
169 9743.62 194 10644.25 219 10572.73
170 10018.28 195 10378.83 220 10594.83
171 10138.99 196 10319.95 221 10607.85
172 10198.03 197 10303.15 222 10753.62
173 10216.27 198 10302.01 223 10761.03
174 10363.02 199 10405.85 224 10739.31
175 10366.72 200 10415.54 225 10662.42
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Day Closing Avg Day Closing Avg
226 10860.26 251 11118.4
227 10812.04 252 11124.62
228 10858.14
229 10835.28
230 10788.05
231 10829.68
232 10751.27
233 10944.72
234 10967.65
235 10948.58
236 11006.48
237 11010.34
238 11020.4
239 11096.08
240 11096.92
241 11062.78
242 11143.69
243 10978.62
244 11107.97
245 11146.57
246 11132.56
247 11164.05
248 11169.46
249 11126.28
250 11113.95
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APPENDIX D: EASILY DETECTABLE DATA SET

Load Cell A Load Cell B Load Cell C Load Cell D
1 1.1203940e+002 1.3733390e+002 8.6122600e+001 4.0194100e+001
2 1.1153010e+002 1.3784290e+002 8.5612900e+001 4.1721300e+001
3 1.0898380e+002 1.3631610e+002 8.5612900e+001 4.1721500e+001
4 1.1203920e+002 1.3835210e+002 8.6122700e+001 4.1212300e+001
5 1.1203930e+002 1.3580710e+002 8.6122600e+001 4.3248900e+001
6 1.0847460e+002 1.3733400e+002 8.4084000e+001 4.1721400e+001
7 1.1051150e+002 1.3936990e+002 9.1728800e+001 4.1212200e+001
8 1.0949300e+002 1.3936990e+002 8.6122600e+001 4.1212100e+001
9 1.1102070e+002 1.3835200e+002 8.4593600e+001 4.3758100e+001
10 1.1051140e+002 1.4089690e+002 8.3064800e+001 4.1721600e+001
11 3.9726300e+001 8.1857500e+001 1.2944420e+002 8.6015600e+001
12 3.8707600e+001 8.1348300e+001 1.3607000e+002 8.8052000e+001
13 3.9726200e+001 7.9312600e+001 1.3454100e+002 9.3143700e+001
14 3.8198500e+001 7.9821700e+001 1.3097330e+002 8.8052100e+001
15 4.0744700e+001 8.0839400e+001 1.3352160e+002 8.8052300e+001
16 3.9217100e+001 7.9821500e+001 1.3708940e+002 9.1106900e+001
17 4.1254100e+001 7.9821500e+001 1.3759910e+002 9.0597900e+001
18 3.9217000e+001 8.2366400e+001 1.3657970e+002 8.8561400e+001
19 3.9726300e+001 8.0330500e+001 1.3657970e+002 9.2125300e+001
20 3.9726300e+001 7.8294500e+001 1.3250230e+002 8.9579600e+001
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Load Cell A Load Cell B Load Cell C Load Cell D
21 1.2477010e+002 1.0679630e+002 1.0345130e+002 5.3431400e+001
22 1.2578850e+002 1.0526950e+002 1.0294160e+002 4.8849200e+001
23 1.2171480e+002 1.0476050e+002 9.9883600e+001 4.8340100e+001
24 1.2171470e+002 1.0374280e+002 1.0141250e+002 4.9358500e+001
25 1.2273330e+002 1.0628730e+002 1.0345130e+002 5.0376500e+001
26 1.2273320e+002 1.0476040e+002 1.0090310e+002 4.8849200e+001
27 1.2578850e+002 1.0679630e+002 1.0345110e+002 4.8340100e+001
28 1.2171470e+002 1.0679620e+002 1.0141250e+002 5.1904100e+001
29 1.2120550e+002 1.0730530e+002 1.0294150e+002 4.9867500e+001
30 1.2324240e+002 1.0679630e+002 1.0141260e+002 4.7321900e+001
31 6.9262400e+001 1.5769290e+002 9.2748400e+001 6.1577700e+001
32 6.9262300e+001 1.5616600e+002 9.1219400e+001 6.0559500e+001
33 6.8243800e+001 1.5616600e+002 9.0709700e+001 6.5141500e+001
34 6.9262400e+001 1.5616600e+002 9.2238800e+001 6.5141500e+001
35 7.0280700e+001 1.5514810e+002 9.3767700e+001 6.0559400e+001
36 7.0280700e+001 1.5769280e+002 9.3767700e+001 6.2086800e+001
37 7.1808400e+001 1.5616600e+002 9.2748400e+001 6.2086800e+001
38 7.0280800e+001 1.5667490e+002 9.2748400e+001 6.2595900e+001
39 6.8243700e+001 1.5616590e+002 9.5296800e+001 6.2595900e+001
40 6.7225300e+001 1.5820190e+002 9.2748400e+001 6.5650700e+001
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APPENDIX E: NOMINALLY DETECTABLE DATA SET

Load Cell A Load Cell B Load Cell C Load Cell D
1 1.3393640e+002 1.4853120e+002 1.0803840e+002 6.7687200e+001
2 1.3037160e+002 1.4802220e+002 1.0599970e+002 6.3614100e+001
3 1.2884400e+002 1.4954900e+002 1.1058650e+002 6.5141500e+001
4 1.3088110e+002 1.5107610e+002 1.0599950e+002 6.7687000e+001
5 1.3037160e+002 1.4751330e+002 1.0650930e+002 6.5141500e+001
6 1.3139030e+002 1.4802230e+002 1.0854810e+002 6.6669000e+001
7 1.2935310e+002 1.4700450e+002 1.0650940e+002 6.2086800e+001
8 1.2986250e+002 1.4649550e+002 1.0803830e+002 6.3614100e+001
9 1.2884380e+002 1.5056720e+002 1.1160590e+002 6.4123200e+001
10 1.3037170e+002 1.4598650e+002 1.0905760e+002 6.5650600e+001
11 4.4818600e+001 7.2187200e+001 1.7174620e+002 1.0536290e+002
12 4.3290900e+001 7.2187200e+001 1.7225590e+002 1.0332600e+002
13 4.5837400e+001 7.2696100e+001 1.7276560e+002 1.0281700e+002
14 4.4818600e+001 7.1169300e+001 1.7072690e+002 9.9762300e+001
15 4.7874200e+001 7.2696100e+001 1.7276560e+002 1.0027140e+002
16 4.5837100e+001 7.1169200e+001 1.7123650e+002 1.0281700e+002
17 4.4309500e+001 7.2187200e+001 1.7225590e+002 1.0383520e+002
18 4.3291000e+001 6.9642500e+001 1.7327520e+002 1.0383540e+002
19 4.3290900e+001 7.2696200e+001 1.7225580e+002 1.0230780e+002
20 4.2272500e+001 7.1678200e+001 1.7072670e+002 1.0332620e+002
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Load Cell A Load Cell B Load Cell C Load Cell D
21 1.4055670e+002 1.1341300e+002 1.2638630e+002 7.0742000e+001
22 1.3546410e+002 1.1544900e+002 1.2587650e+002 7.0232800e+001
23 1.3699200e+002 1.1595800e+002 1.2587650e+002 7.0742000e+001
24 1.3597350e+002 1.1493990e+002 1.2944420e+002 7.2269500e+001
25 1.3801040e+002 1.1697580e+002 1.2587680e+002 6.9723600e+001
26 1.3648260e+002 1.1290400e+002 1.2842500e+002 6.9723600e+001
27 1.3953820e+002 1.1443100e+002 1.2842500e+002 7.2778600e+001
28 1.3953810e+002 1.1290400e+002 1.2536690e+002 7.0742000e+001
29 1.3902910e+002 1.1341300e+002 1.2791540e+002 6.9214500e+001
30 1.3851970e+002 1.1188600e+002 1.2893450e+002 7.0232900e+001
31 1.1051150e+002 1.6227340e+002 1.0090280e+002 6.8705400e+001
32 1.1203940e+002 1.6227330e+002 1.0294160e+002 6.8196200e+001
33 1.1102070e+002 1.6227340e+002 1.0090270e+002 6.7178000e+001
34 1.1458540e+002 1.6176450e+002 1.0039330e+002 7.2269500e+001
35 1.1356690e+002 1.6023750e+002 1.0396090e+002 7.4306000e+001
36 1.1254840e+002 1.6227340e+002 1.0090280e+002 7.2778600e+001
37 1.1254850e+002 1.5921970e+002 1.0039320e+002 7.2269500e+001
38 1.1458530e+002 1.6023760e+002 1.0447060e+002 7.0232900e+001
39 1.1254860e+002 1.5769280e+002 1.0447060e+002 7.3287700e+001
40 1.1356720e+002 1.5820180e+002 1.0599960e+002 7.2778700e+001
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APPENDIX F: POORLY DETECTABLE DATA SET

Load Cell A Load Cell B Load Cell C Load Cell D
1 8.2502700e+001 1.1901170e+002 8.3064600e+001 3.8157400e+001
2 8.6067600e+001 1.1901170e+002 8.3064800e+001 3.6630000e+001
3 8.5558200e+001 1.2002970e+002 8.1026200e+001 3.7648400e+001
4 8.7595300e+001 1.1595790e+002 8.1535800e+001 3.9175700e+001
5 8.2502600e+001 1.1748500e+002 8.2554900e+001 3.8157300e+001
6 8.2502700e+001 1.1799390e+002 8.6122800e+001 4.0194000e+001
7 8.5558300e+001 1.1697590e+002 8.3574300e+001 3.7139000e+001
8 8.7595300e+001 1.1850280e+002 8.0516400e+001 3.8157300e+001
9 8.4539800e+001 1.1799380e+002 8.2555100e+001 3.7139000e+001
10 8.4539700e+001 1.1748480e+002 8.2555000e+001 3.7648400e+001
11 3.6670800e+001 6.6588800e+001 1.1058680e+002 8.0415400e+001
12 3.7180200e+001 6.2516900e+001 1.0956730e+002 7.8888100e+001
13 3.8198700e+001 6.4043800e+001 1.0854800e+002 7.9906400e+001
14 3.8707800e+001 6.6079700e+001 1.0752870e+002 7.7360700e+001
15 4.0235400e+001 6.3025900e+001 1.0701900e+002 7.7360800e+001
16 3.7689300e+001 6.3535000e+001 1.0803850e+002 8.0415400e+001
17 3.8707600e+001 6.3534800e+001 1.1058650e+002 7.8888000e+001
18 3.8198500e+001 6.5570800e+001 1.0752870e+002 7.7360800e+001
19 3.9216900e+001 6.4552800e+001 1.0752860e+002 7.7869900e+001
20 3.7689200e+001 6.0990000e+001 1.0956730e+002 7.7869900e+001
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Load Cell A Load Cell B Load Cell C Load Cell D
21 7.2317700e+001 1.1341300e+002 8.1026200e+001 4.6812800e+001
22 7.4354700e+001 1.1544890e+002 8.0006900e+001 4.7321800e+001
23 7.2826900e+001 1.1748490e+002 8.1535800e+001 5.1904000e+001
24 7.6391800e+001 1.1697590e+002 8.0006700e+001 4.9358300e+001
25 7.4354700e+001 1.1697590e+002 8.0006900e+001 4.6812800e+001
26 7.3336200e+001 1.1392190e+002 8.2045500e+001 4.8340100e+001
27 7.3336300e+001 1.1748490e+002 8.4083800e+001 4.9867400e+001
28 7.4354700e+001 1.1697590e+002 8.4084000e+001 4.7321900e+001
29 7.1808500e+001 1.1901180e+002 8.3574400e+001 4.8340100e+001
30 7.2317700e+001 1.1748470e+002 8.3574300e+001 4.8849400e+001
31 7.4864000e+001 1.1901160e+002 8.4593700e+001 3.9175600e+001
32 7.5882400e+001 1.2053840e+002 8.4593700e+001 3.8157300e+001
33 7.6391700e+001 1.1697580e+002 8.5103200e+001 4.0703200e+001
34 7.3336100e+001 1.1748480e+002 8.8161300e+001 3.7648200e+001
35 7.7919400e+001 1.1901180e+002 8.3574400e+001 4.2230600e+001
36 7.4863900e+001 1.1748470e+002 8.6122600e+001 3.9684800e+001
37 7.5882600e+001 1.1697590e+002 8.3064800e+001 4.1212400e+001
38 7.2827100e+001 1.1850290e+002 8.5612900e+001 3.9684900e+001
39 7.4864100e+001 1.1799380e+002 8.4593700e+001 4.0703000e+001
40 7.3336100e+001 1.1850280e+002 8.4593800e+001 4.0703100e+001


