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Abstract

Population genetics has enjoyed a long and rich tradition of applying mathemat-
ical, computational and statistical methods. The connection between these fields
has deepened in the last few decades as advances in genotyping technology have
led to an exponential increase in the amount of genetic data allowing fundamental
questions involving the nature of genetic variation to be asked. The massive quanti-
ties of data have necessitated the development of new mathematical and statistical
models along with computational techniques to provide answers to these questions.

In this work we address two problems in population genetics by constructing
statistical models and analyzing their performance with simulated and real data.
The first one concerns the identification of genetic structure in natural populations
from molecular data, which is an important aspect in many fields of applied sci-
ence, including genetic association mapping and conservation biology. We frame it
as a problem of clustering and classification and utilize background information to
achieve a higher accuracy, when the genetic data is sparse. We develop a computa-
tionally efficient method for taking advantage of geographical sampling locations of
the individuals. The method is based on the assumption that the spatial structure
of the populations correlates strongly with the genetic structure, which has been
proven reasonable for human populations.

In the assignment of individuals into known populations, we also show how
improvements in the efficiency of the inference can be obtained by considering all
of the individuals jointly. The result is derived in the context of classification, which
is major field of study in machine learning and statistics, making it applicable in a
wide range of situations outside population genetics.

The other problem involves the reconstruction of evolutionary processes that
have resulted in the structure present in current populations. The genetic variation
between populations is caused to large extent by genetic drift, which corresponds to
random fluctuations in the distribution of a genetic type due to demographic pro-
cesses. Depending on the genetic marker under study, mutation has only a minor
or even negligible role, in contrast with traditional phylogenetic methods, where
mutational processes dominate as the time scales are longer. We follow the change
in the relative frequencies of different genetic types in populations by deriving ap-
proximations to widely used models in population genetics. The direct modeling
of population level properties allows the method to be applied data sets harbor-
ing thousands of samples, as demonstrated by the analysis of global population
structure of Streptococcus pneumoniae.

i



Preface

L.J. Savage wrote in the preface of his 1954 book The Foundations of statistics about his
concerns over the impact of the work:

Again, what he has written is far from perfect, even to his biased eye. He
has stopped revising and called the book finished, because one must sooner
or later.

Finally, he fears that he himself, and still more such public as he has, will
forget that the book is tentative, that an author’s most recent word need not
to be his last word.

While the objectives of this work are much more modest than those of Savage’s book,
which laid decision theoretic foundations for Bayesian approach to statistics, my own
feelings are closely reflected in the above quotation. The work behind the articles that
constitute the main part of the thesis spread over many years and the first one was pub-
lished already four years ago. Should I be addressing the problem described in article (I)
now, the resulting methods would probably be quite different. However, such considera-
tions serve only as a thought experiment as the relevance of applied statistical methods
rely on their ability to provide meaningful answers to scientific questions. Whether a
possibly better method could be devised is a question for possible future research, but it
does not diminish the importance of earlier work.

I would like to thank my supervisor Jukka Corander for giving an opportunity to work
with a range of interesting problems. He has provided me a great freedom and support in
pursuing the subjects I have found interesting. Many times during this work when I have
felt that there are insurmountable barriers for the method under development, Jukka has
quickly provided a wide array of ideas and techniques how these can be circumvented.

Two book reading seminars organized by Elja Arjas have helped me to deepen my
knowledge of population genetics and understand better the foundations of statistics. In
the first seminar on coalescent theory, the interesting discussions by Elja, Anders, Siru,
Matti and Jukka K put the theory in context and opened up the many details in a way,
which would not have been possible by independent reading of the book. The other
seminar on the book Probability theory by E.T. Jaynes made me to study the philosophy
and practice of statistics.

This work has not been made in isolation and I would like to thank the collaborators
who have not been mentioned earlier. The articles (I-V) greatly benefited from the
contributions made by the coauthors Pekka Marttinen, Jing Tang, Yaqiong Cui, Timo
Koski and Bill Hanage. I also acknowledge the many interesting discussions on Bayesian
statistics and other topics with my fellow PhD students: Paul, Riku, Väinö, Elina, Lu,
Alberto, Jie and others.

Finally, I am thankful to my wife Milka and my daughter Emmi. They have helped
me to concentrate on the most important aspects of my life, when the work for this thesis
has been the most stressful.

This work was made possible by funding from COMBI graduate school and Finnish
Doctoral Programme in Computational Sciences FICS. Financial help has also been
received from the Finnish Centre of Excellence in Computational Inference Research
(COIN).
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1 Introduction

Statistics and population genetics share a lot of common history. This is perhaps most
clearly highlighted in the work of R.A. Fisher (1890-1962), who not only made important
contributions to these fields, but revolutionized them almost single-handedly in 1920’s
and 30’s (Edwards, 2003; Green, 2003; Healy, 2003). He introduced and developed many
widely used concepts in statistics, such as likelihood, sufficiency, randomization, experi-
mental design and analysis of variance, but these form only a fraction of his contributions
to statistics (Fienberg, 1992). The scope of Fisher’s work is summarized by Savage (1976),
who wrote that ”It would be more economical to list the few statistical topics in which
he displayed no interest than those in which he did”.

The theory and practice of statistics can be divided broadly in to two approaches:
frequentist and Bayesian, which differ most substantially in the way in which uncertainty
is handled. In the Bayesian approach all uncertainty is described using probability, mak-
ing it a complete system where inferences are conducted using the laws of probability
theory (Bernardo and Smith, 1994; Robert, 2007). In the frequentist statistics, for which
Fisher was one of the leading figures in the 20th century, probability is utilized only on
some aspects of uncertainty. The main distinction between these two approaches comes
from the interpretation of probability and has been a cause of controversy in the philos-
ophy of statistics (Good, 1959; Cox, 1978; Efron, 1986; Lindley, 2000). This debate has
been mostly left to the past and it has become evident that successful inferences can be
obtained using many different methods (Efron, 2005; Kass, 2011).

The foundations of mathematical population genetics were laid in 1920’s and 30’s
by Fisher, J.B.S. Haldane and Sewall Wright (Ewens, 2004). Their objective was to
formulate an evolutionary theory based on Mendelian laws, which were considered to
be incompatible with Darwinian evolution in the early 20th century. A reconciliation
between these was achieved by Fisher (1918), whose derivations showed that Mendelian
segregation results in maintenance of genetic variation.

The modern methods for inference in population genetics are still based on the early
theory developed by Fisher, Wright and Haldane, but an important shift in the direction
of thinking has taken place. The classical theory was prospective, in the sense that it
considers what happens to genetic variability in the future. The modern theory is in
contrast retrospective and asks questions about the history of variation. Also, perhaps
due to lack of computational techniques, the early derivations considered either limiting
behavior with time or population size to get stationary distributions, or variability after
a few generations governed by Mendel’s laws. The availability of huge quantities of
molecular genetic data has created the need to provide answers to questions not considered
by Fisher and others, and consequently, to develop the theory to new directions.

An important aspect of many fields of science involving large numbers of quantita-
tive data is that of modeling. For example in physics models are able to describe the
processes in nature almost exactly. In population genetics such models are practically
impossible to design as the biological processes behind the phenomena are too complex
and unpredictable. Nevertheless it possible to come up with simplified models, which
capture many of the important aspects of genetic variation and allow conclusions to be
made. This is similar to the general practice of statistics, where models are known to be
wrong in advance, but they still facilitate inferences about uncertain quantities based on
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observed data (Gelman and Shalizi, 2012).
This work describes model-based solutions to two problems in population genetics:

discovery of population structure and reconstruction of the history of populations. The
former, which is the topic of articles (I-III), requests a representation of genetic variation
among individuals of the same species. The latter calls for identification of the processes
that have lead to this genetic variation and is discussed in articles (IV-V).

This summary part of the thesis reviews the basis of the methods presented in the
articles (I-V) and complements the discussion by placing them in a wider context. The
actual details of the statistical models are left to the articles and described only when
they facilitate deeper understanding of the models. The structure of the summary is as
follows. The Bayesian approach to statistics is presented in Section 2. We also highlight
some potential inaccuracies and sources of bias arising in model-based inference. In
Section 3, computational issues associated with Bayesian methods are discussed and
several popular algorithms are described. Partition-based models of articles (I-III) for
inferring population structure are introduced in Section 4. They are presented in the
broader context of clustering and classification, which are major fields of study in statistics
and machine learning. In Section 5, we describe methods to reconstruct the history of
several populations in form of a tree, acknowledging connections to phylogenetic and
coalescent theories. Section 5 derives also approximations used in articles (IV,V) to
models of mathematical population genetics. Finally, limitations and possible extensions
of the models are discussed in Section 6.
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2 Bayesian approach to statistics

In this section an overview of the Bayesian approach to statistics is given. Perhaps more
appropriate would be to state this as a Bayesian approach, because a large number of
different methods have been proposed under the label Bayesian (Good, 1971). The focus
of this section is on statistical inference: what can we learn about some unknown quantity
θ from observed data X. This leaves out many important fields of statistics such as design
of experiments (Dean and Voss, 1999).

Throughout the discussion we assume that the potential inference is carried out to
gain knowledge about some aspect of reality. If the results of the inferences were to be
used for making decisions, then, as noted by Fisher (1955), a larger variety of methods
could be considered. Breiman (2001) argues that formal statistical models, which are the
topic of this work, may be found too restrictive is such situations. Nevertheless, subjective
Bayesian methods provide a unified framework for combining information from multiple
sources, and they have been found valuable in many applied decision problems (Goldstein,
2006).

2.1 Bayesian inference

The Bayesian approach to statistics is characterized by the usage of probability to describe
all uncertainty (Bernardo and Smith, 1994; Jaynes, 2003; Gelman et al., 2004; Robert,
2007). The name Bayesian comes from the use of Bayes’ theorem to update the probability
of hypothesis H after observing data X

p(H | X) =
p(X | H)p(H)

p(X)
. (2.1)

Here p(H) is the probability of H before observing X, p(X | H) is the probability of
observing X given that H is true and

p(X) = p(X | H)p(H) + p(X | ¬H)p(¬H)

is the marginal probability of X. When considered as a function of H, p(X | H) is also
the likelihood of H. The terms p(X | H) and p(H | X) are known as prior and posterior
probabilities, respectively, reflecting the update in information after observing the data
X. The hypothesis H may correspond to almost anything from a major scientific theory
to a statement that the result of a coin toss is heads. In a typical statistical application
different hypotheses Hi correspond to the possible values that a parameter in a statistical
model can take.

Inferential methods based on Bayes’ theorem were introduced already in the late 18th
century by an English amateur mathematician Thomas Bayes and the prominent French
scientist Pierre Simon Laplace, but they remained in the marginal until the latter part
of the 20th century (Fienberg, 1992, 2006). This was mainly due to two reasons. First,
the use of probability to describe uncertainty associated with non-random events was
controversial. Second, as will be discussed later, the lack of computational methods and
resources rendered Bayesian inference applicable only for elementary problems.

The controversy about Bayesian inference did not come from the use of Bayes’ the-
orem, which is a result of elementary probability calculus, but from the specification of
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prior probability p(H). In frequentist statistics, probability of an event A is taken to
be the proportion of cases in an infinite population satisfying A (Good, 1959). Without
imagining an infinite population of alternative realities one can not specify the probability
of a hypothesis H, which either is or is not true with the actual state being unknown.

In Bayesian inference the probability of a hypothesis H is understood as a degree of
belief and Bayes’ theorem provides a way of updating it after observing data X. This
subjective interpretation of probability and consequently the whole Bayesian approach
can be derived from the need to quantify uncertainty in a coherent way (Jaynes, 2003).
The coherence here refers to the requirement that the levels of uncertainty associated
with different events should not be contradictory. Lindley (2000) provides motivation for
the use of probability to describe uncertainty in an informal manner. For more rigorous
presentation, the books by Bernardo and Smith (1994) and Robert (2007) derive the rules
of Bayesian inference from decision theory.

It is often difficult to associate an exact probability to a hypothesis H. This may be
due to lack of any meaningful prior information about H or the difficulty of elicitating
expert’s knowledge in probabilistic form (Garthwaite, Kadane and O’Hagan, 2005). There
has been a lot of research on how to construct prior probabilities and distributions which
contain minimum amount information about the question at hand starting already with
the work of Bayes and Laplace. Many different rules for deriving such prior distributions
have been proposed, which may result in same or different distributions depending on
the problem (Kass and Wasserman, 1996). The use of non-informative priors, known
as objective Bayes, is regarded by many to be inferior to full subjective analysis, but is
widely used as a standard recipe for Bayesian inference (see the articles by Berger (2006)
and Goldstein (2006), and the discussion following them).

The biggest advantage and at the same time the greatest disadvantage of the Bayesian
approach is that it is a closed system for inference. When conducting Bayesian analysis
one has to specify all possible hypotheses H = {H1, H2, ...} and assign prior probabilities
to them. This ensures that the resulting inferences are coherent. However, it is not
always possible to specify completely the set H , as something unexpected might be
seen. Also, as discussed above, the assignment of probabilities p(Hi) is far from trivial.
These difficulties have led some scientist to suggest that ”the Bayesian theory is a theory
of how to remain perfect but it does not explain how to become good” (Senn, 2011).
While this exaggerates the problem of specifying hypotheses and prior probabilities, it
has a grain of truth in that the results from a Bayesian inference are often sensitive to
the prior information.

Jaynes (2003) tried to circumvent this problem by keeping a small probability, say
10−6, that some alternative hypothesis HA not included in H is true. However, if one
does not include HA and p(X|HA) in the inferences, the results are not coherent anymore
and might be very far from correct (Fitelson and Thomason, 2008).

The discussion so far has been about a theoretical and idealistic way of conducting
statistical inference. In practice, there is a large number of obstacles preventing a full
Bayesian approach, and the statistician has to usually consider simplified hypotheses,
which are known to be false, but which might nevertheless capture some aspects of
reality. Along with problems of specifying prior probabilities, computational difficulties
associated with the need to evaluate p(X|H) and p(H|X) result in approximate degrees
of belief p̂(H|X).
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Statistical pragmatism suggested by Kass (2011) offers a more realistic description
of the actual practice of statistical inference. It calls for clear separation between the
real world and the theoretical world, where the statistical models live in. The statistical
models used can give meaningful results about the real world phenomena only if a strong
connection can be established between these two worlds. With this view, a great advan-
tage of the Bayesian approach is in the unified framework, which specifies how inferences
should be made in the theoretical world. The implications of the different assumptions
can be easily assessed by considering different prior distributions and likelihood functions.

This thesis is about developing ways to construct statistical models, which are families
of joint distributions for the data X and some unknown parameters θ characterizing the
model, and techniques that facilitate computation under these models. Whether, and to
what to degree, a specific model corresponds to reality is out of the scope of this work
and should be assessed by the scientist willing to use the methods developed here. We
note that our motivation for model construction is slightly different from the one used in
model construction for data analysis (Gelman et al., 2004). In data analysis, the objective
is to construct a model which effectively extracts some information from the data and the
model should not be treated as a fixed entity. Instead, the model should be modified or
expanded, if it is found to represent poorly some aspect of the data (Gelman and Shalizi,
2012).

While all of the models developed in this work are motivated using a Bayesian ap-
proach, they could as well be used in a more traditional statistics framework. The meth-
ods for inferring the population structure described in articles (I) and (II) could be even
viewed as maximum likelihood methods. Also, the approximations to the Wright-Fisher
model could be utilized without prior distributions for the unknown parameters.

2.2 Model validation

The central topic of this work is the development of statistical models for making in-
ferences on problems in population genetics. When building such models one is obliged
to make compromises between an accurate representation of reality, identifiability of the
model and computational efficiency. The resulting model represents only an approxima-
tion to the underlying biological processes and consequently the results of the inferences
based on the model are biased. However, as the famous quote by George E. P. Box
states, ”all models are wrong, but some are useful” (Box, 1979). Thus it is important to
recognize the assumptions and simplifications behind each model and to judge whether
the model is a reasonable approximation for the problem at hand. This is also reflected
in the statistical pragmatism described earlier, which makes a clear distinction between
the theoretical and real worlds (Kass, 2011).

It should be noted that the statistical model is not the sole source of inaccuracy in
this context. Even if one is able to formulate a probability model that is an accurate
description of reality, statistical inferences under the model would be complicated by the
computational difficulties discussed in the next section.

In the models developed in this work we can distinguish three levels of approximations,
each of which may cause some bias in the inferences. We describe these using the model
developed in (IV) as an example. First, the mathematical model serves as an idealistic
and simplified description of the processes happening in reality. In (IV), we assume that
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the individuals are sampled from several populations which are related according to a
tree. The genotypes of the individuals are assumed to follow simple Wright-Fisher model
with conditionally independent loci given the tree. Second, statistical models are used as
approximations to the mathematical models. In (IV), we use Beta-distributions to ap-
proximate the infinite population limit of the Wright-Fisher model to make computations
feasible. The statistical model also includes the prior distributions for the model param-
eters and these do not have any biological interpretation. Third, actual inferences under
the statistical model need to be carried out using approximative computational methods.
These methods may introduce a bias, as is the case with Laplace’s approximation and
the AMIS algorithm in used in (IV), and this bias needs to be quantified.

The first level of approximation, the mathematical model, is the most crucial part to
the inferences. The relevance of a specific mathematical model to the scientific problem
at hand should be assessed by the scientist wishing to use the model and it is thus mostly
outside the topic of this work.

One possibility to quantify how well the inferences reflect reality is to perform posterior
predictive checks as advocated by Gelman, Meng and Stern (1996). The idea is to first
generate replicate data sets Xrep from the posterior predictive distribution

p(Xrep|X) =

∫
Θ

p(Xrep | θ)p(θ | X)dθ.

The simulation of replicate data sets can be incorporated in a Monte Carlo algorithm
in a straightforward manner. Then, some aspects of the replicated data sets can be
compared with observed data X either visually or using some test criteria. If the observed
data X appears atypical in comparison to the replicated data sets, this is seen as an
indication that the model does not adequately represent the variation in the data X.
What action one should take based on these comparisons is left to subjective consideration
and no general guidelines can be given. As an example of posterior predictive checks, we
compared the distributions of pairwise FST (Balding, 2003) values with the human data
and simulated data in (IV).

The other two levels of approximation, the statistical model and the computational
methods, can usually be more easily quantified. For example, computations under the
mathematical model may be possible in some cases and these could be compared to those
done under the statistical model. Analysis of simulated data sets, generated from either
the mathematical or statistical model, provide a way of evaluating the results when the
true values of model parameters are known. Multiple different computational techniques
may be utilized to quantify their efficiency and bias. For all of the models developed in
the articles (I-V) we have utilized these methods of validation.
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3 Computation for Bayesian inference

The biggest obstacle that kept Bayesian methods outside mainstream statistics before
1980’s was not a philosophical one, but computational. Many inferential problems in
the Bayesian framework require maximization and integration of complicated functions.
Analytical solutions to these exist in several cases, but in general one has to resort
to numerical methods, which were not widely available before the arrival of desktop
computers.

To exemplify the typical computational issues arising in Bayesian statistics, consider a
situation where we seek to compute the posterior expectation E(h(θ) | X) of some random
quantity θ after a transformation h. The function h might be the identity function, a
projection of some component of θ or any other function for which the expectation exists
and is finite. To compute this expectation one has to evaluate the integral

E(h(θ) | X) =

∫
Θ

h(θ)p(θ | X)dθ, (3.1)

where p(θ | X) is the posterior distribution of θ after observing data X and Θ is its
support.

There does not exist any single method which would work for all integration problems
of the type (3.1), but the different methods have their own strengths and weaknesses.
When choosing a method to evaluate a specific expectation, these differences should be
acknowledged. The numerical approximation methods can be broadly divided into two
categories: deterministic methods and Monte Carlo methods (Evans and Swartz, 2000).
We provide a short overviews of these and present in detail some particular methods
which are used in the articles.

3.1 Deterministic methods

Deterministic approximation methods for evaluating integrals include a wide variety of
different approaches. Quadrature based are among the oldest techniques of approximate
integration. They approximate the integral as a weighted sum

E(h(θ) | X) ≈
N∑
i=1

wih(θi)p(θi | X), (3.2)

where the points θi and their weights wi are based on a specific rule. As an example con-
sider that Θ = [0, 1], θi = (i+1/2)/N and wi = 1/N . As N increases, the approximation
(3.2) based on this rule will converge to the true value of the expectation (3.1), although
it might be computationally very inefficient. Typically the rule is chosen so that it will
produce exact estimates for some class of functions, which depends on n. The quadrature
methods are generally very efficient in low dimensions, but as the dimension increases,
their accuracy quickly decreases.

Another possibility to evaluate integrals is obtained by approximating the integrand
h(θ)p(θ | X) with some function ϕ(θ). The approximation is assumed to be exact when
λ = λ0, where λ is a parameter characterizing the integrand. Typically, λ0 = ∞ or λ0 = 0,
and the methods are therefore called asymptotic approximations. In the estimation of
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posterior expectations the sample size of the data X can often be used as the parameter
λ. The asymptotic approximations provide a computationally very fast way to evaluate
integrals, but their drawback is that the accuracy can not be easily evaluated.

Laplace’s approximation Perhaps the most widely used asymptotic method is Laplace’s
approximation, which was used (IV) to marginalize out allele frequencies. We only con-
sider here this approximation for marginal posterior densities, which has proven popular
in Bayesian statistics (Tierney and Kadane, 1986; Rue, Martino and Chopin, 2009). We
assume that we can evaluate the joint posterior distribution p(θ, δ | X) and wish to com-
pute the marginal posterior distribution p(δ | X). Bayes’ theorem (2.1) implies that the
marginal can be computed as

p(δ | X) =
p(θ, δ | X)

p(θ | δ,X)
, (3.3)

which is valid for all values of θ in the support of the full conditional distribution
p(θ | δ,X). The problem with direct use of equation (3.3) is that the full conditional
distribution is rarely available analytically. Laplace’s approximation is obtained by re-
placing p(θ | δ,X) in (3.3) with a Gaussian distribution with parameters θ̂ and Σ̂, where
θ̂ is the mode of p(θ | δ,X) and Σ̂ is the minus inverse of the Hessian of log(p(θ | δ,X))
evaluated at θ̂. The motivation for this comes from the central limit theorem, which
ensures under certain regularity conditions that as the sample size of the data goes to
infinity, the full conditional distribution will converge to a Gaussian distribution.

3.2 Monte Carlo methods

Monte Carlo (MC) methods are a class of methods which are based on simulating ran-
dom variables (Robert and Casella, 2004). For evaluating integrals such as (3.1), the
idea behind them is simple. First, simulate N variables θ1, . . . , θN from the posterior
distribution p(· | Z). Then, approximate the integral as

E(h(θ) | X) ≈ 1

N

N∑
i=1

h(θi), (3.4)

which is unbiased as it is easily seen.
While (3.4) would in theory provide an easy way of estimating the expectation (3.1),

in practice simulation from p(· | X) is rarely directly possible. Importance sampling is an
alternative approach where the variables are simulated from another distribution q known
as a proposal distribution. The only requirement for the proposal is that the support of
the integrand h(θ)p(θ | X) is contained in the support of q. Given a sample θ1, . . . , θN
from q, the IS estimate of the expectation is

E(h(θ) | X) ≈ 1

N

N∑
i=1

wih(θi), (3.5)

where wi =
p(θi|X)
q(θi)

is the weight of the ith sample. The expectation of each term in the
sum is

E(wih(θi)) =

∫
Θ

h(θi)p(θi | X)

q(θi)
q(θi)dθi =

∫
Θ

h(θ)p(θ | X)dθ, (3.6)
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which indicates that the estimate (3.5) will converge to the true value of the expectation
(3.1) as the number of sample N increases.

While the use of almost any proposal distribution will guarantee that estimate will
be unbiased in the limit, the choice of q is crucial for the performance of the importance
sampler. If q is a poor approximation of the posterior p(· | X), then most weights wi

will be close to zero and have only negligible influence on the estimator of the integral
and the algorithm will be very inefficient. On the other hand, if the tails of p(· | X) are
heavier than those of q, the ratio p(θ | X)/q(θ) is not bounded in the support of q and
the estimator may have infinite variance.

Adaptive multiple importance sampling Here we describe a recently introduced
algorithm called Adaptive multiple importance sampler (AMIS, Cornuet et al., 2012),
which is used in article (IV) for integration over branch lengths of a population tree.
To understand the idea behind the AMIS algorithm, we briefly discuss the deterministic
multiple mixture sampling described in Owen and Zhou (2000), which utilizes a collection
of proposal distributions qi, i = 1, . . . , N instead of a single choice. The distributions
qi may be the same for several i or the may all be distinct. For each i = 1, . . . , N , the
sample θi is generated from distribution qi and the weight wi is calculated as if the sample
was generated from the mixture

q(θ) =
1

N

N∑
i=1

qi(θ). (3.7)

In practice, one usually uses much a smaller number d of distinct proposal distributions
enabling faster evaluation of (3.7). The estimator (3.5) based on the sample θ1, . . . , θN
with weights computed using (3.7) is unbiased if the whole sample is used. This is seen
by

E

(
1

N

N∑
i=1

p(θi | X)

q(θi)
h(θi)

)
=

1

N

N∑
i=1

∫
Θ

p(θi | X)

q(θi)
h(θi)qi(θi)dθi

=
1

N

N∑
i=1

∫
Θ

p(θ | X)
1
N

∑N
j=1 qj(θ)

h(θ)qi(θ)dθ

=

∫
Θ

p(θ | X)h(θ)
∑N

i=1 qi(θ)∑N
j=1 qj(θ)

dθ

=

∫
Θ

p(θ | X)h(θ)dθ.

The AMIS algorithm is an adaptive version of the deterministic multiple mixture.
Instead of predefined set of proposal distributions, it learns them based on previously
generated samples. The AMIS algorithm proceeds iteratively in T + 1 steps. First, at
step 0, N0 samples θ1,0, . . . , θN0,0 are generated from a proposal distribution q0. The
weight wi,0 of each sample i is computed as in regular importance sampling. Then at
step t, 1 ≤ t ≤ T , a proposal distribution qt is chosen based on samples and weights from
previous steps. The choice of qt can in principle be arbitrary, but usually is some form
of parametric distribution q(· | µ) and the parameter µ is estimated from the previous
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samples. Nt samples θ1,t, . . . , θNt,t are generated using this proposal qt. The weight wi,k

of every sample generated at this and the previous steps is calculated as

wi,k =
p(θi,k | X)(∑k

j=0Nj

)−1∑k
j=0Njqj(θi,k)

, (3.8)

for 0 ≤ k ≤ t, 1 ≤ i ≤ Nk. Thus at the step t the weights associated with the samples
are the same as if they were generated using the deterministic multiple mixture, with the
N0 first samples from q0, the next N1 from q1 and so on. Difference to the deterministic
multiple mixture comes from the fact that the proposal distribution qt depends on the
samples generated on previous steps. As a result, the AMIS estimator is biased

E

(
1

N

T∑
t=0

Nt∑
i=1

wi,th(θi,t)

)
̸= E(h(θ | X), (3.9)

whereN =
∑T

t=0Nt. The degree of bias can be controlled by generating a large proportion
of the samples from the initial proposal distribution q0. In practice, values of N0 = 1

2
N

have been used in the article (IV) and by Cornuet et al. (2012).

3.3 Markov chain Monte Carlo

The construction of a proposal distribution q, or even a family of such distributions as
with the AMIS algorithm, is not feasible in many practical problems. For example, this
may be due to the high dimensionality of the parameter space Θ. Markov chain Monte
Carlo algorithms (MCMC, Robert and Casella, 2004) provide a way of sampling from
complex distributions without requiring a global approximation to it. Instead, many of
the MCMC algorithms approximate the distribution only locally. While the history of
Markov chain Monte Carlo methods can be traced back to the early 1950’s, they remained
mostly absent from the statistical literature for a long time. In the last two decades
MCMC methods have gained a huge popularity in statistics following the groundbreaking
paper by Gelfand and Smith (1990), who demonstrated the potential of MCMC in a wide
variety of situations (Robert and Casella, 2011). Their almost universal applicability and
the ease of implementation have made MCMC the first choice for computing intractable
integrals in Bayesian statistics.

MCMC algorithms operate by simulating a Markov chain (θ1, θ2, . . .), whose stationary
distribution is the posterior p(· | X). After generating N samples from the Markov chain,
the expectation (3.1) can be estimated with formula (3.4). Under some specific criteria,
which are satisfied by the standard algorithms, the estimate converges to (3.1) as N
increases to infinity. In practice, the N0 first samples are usually discarded as burn-in
and the estimator

E(h(θ) | X) ≈ 1

N −N0

N∑
i=N0+1

h(θi) (3.10)

is used to reduce the dependence on the possibly poorly chosen starting value.
We describe briefly the Metropolis-Hastings (MH) algorithm, which along with the

Gibbs sampling are the two most popular MCMC methods. For using an MH algorithm
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to simulate values from the posterior distribution p(θ | X), one has to define two compo-
nents: an initial value θ0 and a proposal distribution q (· | θ∗). The MH algorithm then
proceeds as follows:

For t = 1, 2, . . .

• Sample θ∗ from the proposal q (· | θt−1).

• Compute

αt = min

(
1,

p(θ∗ | X)q(θt−1 | θ∗)
p(θt−1 | X)q(θ∗ | θt−1)

)
.

• Set

θt =

{
θ∗ with probability αt

θt−1 with probability (1− αt).

The proposal distribution q (· | θ∗) has a similar role in determining the performance
of the algorithm as the proposal q has in importance sampling. While the choice of a
proposal is easier for MH, because of the need for only a local approximation, MCMC
algorithms are often implemented for complex and high-dimensional problems. A typical
choice is a symmetric Gaussian proposal distribution with a covariance matrix Σ. It
has been shown that the optimal choice of Σ should be proportional to the covariance
structure of the posterior distribution p(θ | X) under specific conditions (Roberts and
Rosenthal, 2001). However, the covariance structure of the posterior is usually unknown
and estimating it constitutes a similar problem as evaluating (3.1).

Haario, Saksman and Tamminen (2001) introduced the Adaptive Metropolis (AM)
algorithm, which adaptively learns the covariance structure during iterations. The re-
sulting process is not a Markov chain anymore, as the distribution of θt depends on
the whole history θ0, . . . , θt−1, but it belongs to the class of adaptive MCMC methods
(Haario, Saksman and Tamminen, 2001; Andrieu and Thoms, 2008; Roberts and Rosen-
thal, 2009). The convergence properties of such methods have been under intensive study
for the last decade, and the algorithms have proved to be effective in situations where
standard MCMC algorithms fail without careful tuning. We implement AM in article
(V) to facilitate inference of population genetic parameters.
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4 Population structure, clustering and classification

A central concept in population genetics and subsequently in many other fields of bi-
ology is that of a population. Much of the early work by Wright, Fisher and Haldane
in the 1920’s considered the evolution of genetic patterns in a population, but no gen-
erally agreed definition of a population exists even today. Waples and Gaggiotti (2006)
list 18 distinct definitions of a biological population in ecology, evolution and statistics.
The vagueness about the concept of a population reflects the fact that it is an artificial
construction, which is used as a simplified representation of complex biological processes.

In this work we follow Waples and Gaggiotti (2006) and define population as:

A group of individuals of the same species living in close enough proximity
that any member of the group can potentially mate with any other member.

They termed this definition as the evolutionary paradigm and it is compatible with the
main body of population genetics research. It also offers a clear baseline for the inference
of population structure which is the topic of this section.

4.1 Inferring population structure

The need to make inference about the unknown population structure comes up in many
biological studies. For example, in conservation biology the viability of an endangered
species depends on whether it forms a single panmictic population or is fragmented into
several isolated populations (Hedrick, 2001; Pearse and Crandall, 2004). In genetic asso-
ciation studies the failure to take population structure into account may result in severely
biased results (Marchini et al., 2004). For studying the human evolutionary history the
genetic structure of present-day populations may offer important insights about the past
(Rosenberg et al., 2002).

The inference about population structure is usually conducted using genetic markers,
which are locations (loci) in the genome where variation exists between individuals. Dif-
ferent variants of the same marker are called alleles. Examples of genetic markers include
single nucleotide polymorphisms (SNP, Morin et al., 2004), where a single nucleotide site
has more than one nucleotide in population, and microsatellites (Ellegren, 2004), which
are tandem repetitions of short sequences with typically only a few nucleotides. For SNPs
the number of alleles present is usually two, whereas microsatellites may have dozens of
distinct alleles.

A single genetic marker rarely contains enough information about the population
structure and several marker loci are needed. The number of loci used may be almost
anything ranging from a few to several hundreds of thousands, as is the case with human
SNPs (Li et al., 2008). Many loci have the potential to complicate the inference by
creating dependence between the markers. This can be avoided by selecting markers
which are sufficiently far apart in the genome, so that recombination breaks links between
them.

In diploid organisms each individual carries two copies of the same marker gene, one
from each parent. Many genotyping techniques can not identify the phase of the alleles,
but return instead only the genotype of the individual. For example, consider that there
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are two types of alleles at a locus: A and a. Then the genotypes which can be observed
are AA, Aa and aa.

We now look at the frequencies of the different genotypes in a population of infinite
size. Throughout this work we use the term frequency to denote the proportion of an allele
or a genotype in a population, instead of the total number. The genotype frequencies
of a selectively neutral locus are completely determined by the allele frequencies, and
consequently the basis of identifying population structure lies in allele frequencies. To
see the reason for this we have to look at what Mendel’s laws imply about genotype
frequencies (Ewens, 2004). Consider again a biallelic locus with alleles A and a. Suppose
that the genotypes AA, Aa and aa are present in a population with frequencies X, 2Y
and Z, respectively. According to the Mendel’s law the genotype frequencies of the next
generation are now

X ′ = X2 +
1

2
(4XY ) +

1

4
(2Y )2 = (X + Y )2

2Y ′ =
1

2
(4XY ) +

1

2
(2Y )2 + 2XZ +

1

2
(4Y Z) = 2(X + Y )(Y + Z)

Z ′ =
1

4
(2Y )2 +

1

2
(4Y Z) + Z2+ = (Y + Z)2.

By denoting the frequency of the allele A with p = (X + Y ) these can be written as

X ′ = p2, 2Y ′ = 2p(1− p) and Z ′ = (1− p)2.

This result is known as the Hardy-Weinberg law, and it states that in an infinite popula-
tion with random mating, allele frequencies completely define genotype frequencies in a
selectively neutral locus. A population satisfying this is referred to be in Hardy-Weinberg
equilibrium.

However, if there is further substructure in a population, then the HW-equilibrium
will usually not hold. As an example, consider a population which consists of two sub-
populations that are both in HW-equilibrium with the frequencies of allele A being p
and p + a, respectively, such that 0 ≤ p ≤ 1 and −p ≤ a ≤ 1 − p. Assume that the
population is infinite in size and a proportion 0 < q < 1 of the individuals belong to
the first subpopulation. The frequency of A in the whole population is now given by
p′ = p + (1 − q)a. Then for the whole population to be in Hardy-Weinberg equilibrium
we need that

2p′(1− p′) = q2p(1− p) + (1− q)2(p+ a)(1− p− a) ⇔
(p+ (1− q)a)(1− p− (1− q)a) = qp(1− p) + (1− q)(p+ a)(1− p− a) ⇔

p(1− p)− p(1− q)a+ (1− q)a(1− p− (1− q)a) = p(1− p) + (1− q)(a(1− p− a)− pa) ⇔
(1− q)a(1− 2p− (1− q)a) = (1− q)a(1− 2p− a) ⇔

(1− q)qa2 = 0 ⇔
a = 0.

In other words, the two subpopulations need to have exactly the same frequency of A
for the whole population to be in HW-equilibrium. On the other hand, it is easily seen
that if we take a random sample of a population in Hardy-Weinberg equilibrium, then
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the genotypes of the sample will also be in HW-equilibrium. Thus the inference about
population structure can be framed as finding maximal groups from a sample, such that
in each group HW-equilibrium is satisfied.

There are alternative approaches to learning population structure that try to infer
continuous differences between individuals, instead of assigning individuals to discrete
populations. For example methods based on principal component analysis have been
introduced and proven successful in the analysis of large SNP data sets (Patterson, Price
and Reich, 2006). There is evidence that at least in humans genetic variation is of more
continuous form, which would indicate that such methods would be preferable over models
which assume discrete populations (Novembre et al., 2008). We do not pursue here the
debate whether genetic variation is discrete or continuous. We only note that we do not
assume that discrete populations exist in most cases, but they can serve as a reasonable
approximation. Also, detecting continuous differences often requires a lot of genetic data,
and while this is currently available for humans, it is more rare for many other species.

The problem of finding discrete population structure has been under intensive study
for over a decade and many programs have been introduced to conduct the inference,
such as STRUCTURE (Pritchard, Stephens and Donnelly, 2000; Falush, Stephens and
Pritchard, 2003), Partition (Dawson and Belkhir, 2001), BAPS (Bayesian analysis of
population structure; Corander, Waldmann and Sillanpää, 2003; Corander et al., 2004,
II), Geneland (Guillot et al., 2005; Guillot, 2008) and TESS (Chen et al., 2007). The
models behind these vary in details, but they follow more or less the same logic. Outside
the field of population genetics, the inference about discrete population structure can be
seen as clustering.

4.2 Predictive clustering

In this section we derive results concerning the predictive approach to clustering, which is
the task of classifying observations into groups without additional knowledge of the groups
(Jain, Murty and Flynn, 1999). This is motivated by the problem of inferring population
structure from genetic data described in the previous section, but applications of the
clustering framework are not limited to population genetics. In fact, the need to group
observations without background information occurs in many different fields of science
and clustering is one of the central topics in machine learning and statistics.

Consider that we have a total of N observations and associated with each obser-
vation i, i = 1, . . . , N , we have a vector xi of some measurements. Based on these
measurement vectors xi we wish to group the observations to classes s1, . . . , sK , for some
K ∈ {1, . . . , N}, so that each observation i belongs to exactly one class sc, 1 ≤ c ≤ K.
In population genetic context the observations 1, . . . , N are individuals and the vector
xi contains the allele types observed for individual i over several marker gene loci. With
diploid organisms there are two measurement vectors associated with each individual,
but the models considered below easily extend to this case. In fact, they allow a varying
number of measurement vectors associated with each individual.

Perhaps the most common methods used for clustering are those based on some dis-
tance measure between the measurement vectors. These methods proceed by computing
the distance d(xi, xj) between each pair of measurement vectors and collecting them to a
matrix D. The observations are then grouped hierarchically according to some criterion
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based on the distances until they all belong to the same group or class. A clustering is
then obtained by stopping the process when K groups are remaining.

We concentrate here on Bayesian probabilistic clustering methods, which assume that
the measurement vectors associated with observations belonging to a single cluster were
generated by a common cluster-specific probability distribution. Such clustering methods
are comprised of two equally important ingredients: the data generating model associated
with each cluster and the prior distribution for the clusterings. The importance of the
latter will be discussed in the next subsection.

A clustering of observations is represented by a partition of the set [N ] = {1, . . . , N},
which is a collection {s1, . . . , sK} of subsets sc of [N ] such that

∪K
c=1 sc = [N ] and

sc
∩
sc′ = ∅ for all c ̸= c′. In other words, each element of [N ] belongs to exactly

one set sc. The labels c do not carry any information and the subsets sc are identified
only in terms of their content.

The conditional probability of the whole data x = (x1, ..., xN) given the partition S
is assumed to be of the form

p(x|S) =
K∏
c=1

p(xsc), (4.1)

where xsc is the collection of measurement vectors for observations in sc. Statistical
inference about the unknown partition S is based on the posterior distribution

p(S|x) = p(x|S)p(S)
p(x)

, (4.2)

which is obtained after specifying the prior distribution p(S) for the partitions. The
marginal probability of the data is given by the sum

p(x) =
∑
S∈S

p(x|S)p(S),

where S denotes the space of all possible partitions.
While the posterior distribution (4.2) represents all the information about the un-

known partition S, the complicated structure and the size of the partition space S
makes it necessary to summarize it in some way. This is often done by choosing the
partition Ŝ, which maximizes the posterior (4.2). In theory the search for Ŝ necessitates
the exploration of the whole space S and provides no additional computational advan-
tage, but in practice Ŝ is approximated using a heuristic algorithm as is done in the
most recent versions of BAPS (II). The actual posterior probability of Ŝ might be very
low especially in high dimensional problems and, consequently, it might not represent
the underlying structure adequately. This can be acknowledged by using decision theory
to derive optimal estimates of the partition under a specific loss function (Robert, 2007;
Corander, Gyllenberg and Koski, 2009).

In this work we assume that each measurement vector xi consists of L discrete features
xi,j, which are assumed to be independent in each cluster. This corresponds to unlinked
marker genes in the context of the inference of population structure. We assume that
xi,j can take rj different values, which occur at frequencies θj,c = (θ1,j,c, . . . , θrj ,j,c) in
cluster sc. Furthermore, by assuming that the observations in cluster sc constitute a
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random sample from the cluster, the conditional cluster-specific probability for xj,sc , the
measurements of feature j in sc, has the product form

p(xj,sc |θj,c) =
rj∏
l=1

θ
nl,j,c

l,j,c , (4.3)

where nl,j,c is the number of times value l was measured for feature j in cluster sc. A
prior distribution for the parameters θl,j,c needs to be defined to obtain a marginal distri-
bution for xj,sc . A natural choice is a symmetric Dirichlet distribution with parameters
(αj, . . . , αj) which is conjugate to (4.3) and facilitates an analytic marginalization over
the frequencies. Common values used for αj in the absence of auxiliary information
include r−1

j , 1/2 and 1. With a Dirichlet prior the marginal distribution is now given by

p(xj,sc) =
Γ (rjαj)

Γ
(∑rj

l=1 (αj + nl,j,c)
) rj∏

l=1

Γ (αj + nl,j,c)

Γ (αj)
, (4.4)

Corander, Gyllenberg and Koski (2007) show that this model and the choice of Dirichlet
prior can be motivated in the biological context by assuming that the values rj are known.
If rj is unknown, the marginal distribution (4.4) is replaced by Ewens sampling formula
under a particular assumption about exchangeability (Ewens, 2004).

4.3 Prior distribution for the partition

The choice of prior distribution is crucial for satisfactory performance of the above clus-
tering method. As with any other application of Bayesian inference, the prior distribution
should be chosen on the basis of some auxiliary information. However, this information
is not always available and in such cases a weakly informative prior distribution might
be considered attractive. The size and complicated structure of the space of possible
partitions of the set [N ] makes it difficult to recognize the effects of different prior dis-
tributions to the results. The number of different partitions of a set of size n is given by
the nth Bell number

Bn = e−1

∞∑
m=1

mn

m!

(Rota, 1964; Stanley, 2012). Bell numbers also satisfy recurrence relation

Bn+1 =
n∑

m=1

(
n

m

)
Bm,

which can be used to compute numerically Bn for small values of n.
We do not try to describe here different strategies for choosing the prior distribution

and evaluate the strength of various approaches, but refer to Quintana (2006) for discus-
sion of some particular choices. Instead, we look at two distributions, which at first sight
may both look non-informative, and show how they may have a dramatic impact on the
inference. First, we consider the uniform distribution on S , the space of all partition of
the set [N ],

p1(S) =
1

BN

. (4.5)

16



With this prior, the mode of the posterior distribution (4.2) coincides with the maximum
likelihood estimate Ŝ, which is obtained by maximizing the conditional probability of
whole data (4.1) as a function of S. The motivation to use uniform prior may thus come
from the desire to find the clustering S which best describes data and ”let the data speak
for itself”.

On the other hand, if we wish to compute probabilities such as

p(i, j ∈ sc, for some c | x) =
∑

S;i,j∈sc

p(S | x) (4.6)

or
p(|S| = K | x) =

∑
S;|S|=K

p(S | x), (4.7)

then the prior has a considerable impact on the results. Under the uniform prior (4.5)
the prior probability corresponding to (4.6) is

p1(i, j ∈ sc, for some c) =
BN−1

BN

.

Figure 1 shows how this probability decays to zero as N increases. Similarly, the prior
probability corresponding to (4.7) is given by

p1(|S| = K) =
S(N,K)

BN

, (4.8)

where S(n, k) denotes the Stirling number of the second kind and equals the number of
ways in which a set of size n can be partitioned into k non-empty subsets (Stanley, 2012).
Values of S(n, k) can be computed using the recurrence

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1).

As shown in in Figure 1 the uniform prior (4.5) favors strongly values of K which are
approximately N/2. These results imply that while the posterior mode usually a good
estimate of the true clustering, the uncertainty associated with it might not be adequately
captured by the posterior distribution under (4.5).

The behavior of the uniform prior (4.5) on the distribution of the number of clusters
(4.8) could suggest the uniform distribution on the number of clusters as an alternative
possibility

p2(S) =
1

N

1

S(N, |S|)
.

However, this distribution contains implicitly strong preferences about the partitions,
which can be seen by looking at the prior odds in favor of partition S1 over S2

P2(S1)

P2(S2)
=
S(N, |S2|)
S(N, |S1|)

Figure 1 plots the logarithm of the above odds for 50 observations, which clearly indicates
that partitions with K close to 1 or N are favored over others.
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We introduced in article (I) an extension to the basic clustering method of BAPS,
where a Voronoi tessellation is constructed based on the sampling coordinates of the
individuals. The tessellation induces a graph G = (V,E) known as Delaunay triangula-
tion. G is defined by letting the set of vertices V to be the individuals [N ] and including
an edge (i, j) in the graph if the polygons corresponding to individuals i and j in the
tessellation are neighbors. A prior distribution on the space of partitions S is then for-
mulated based on G. To facilitate fast computation of the prior, the model considers only
graphs G which are triangulated (Lauritzen, 1996). When the Delaunay triangulation
is not a triangulated graph, edges are added to it to produce a triangulated version G∗

(Heggernes, 2006). A graphical probability model associated with a triangulated graph
G has the property that the joint probability of some variable y[N ] = (y1, . . . , yN) over
the vertices can be computed as

p(y[N ]) =

∏
c∈ p(y

c)∏
s∈P p(ys)

,

where C and P are sets consisting of specific subsets of V known as cliques and sepa-
rators, respectively, and yd denotes the variables associated with the vertices in d ⊂ V .
The prior on partitions is now constructed by letting yi denote the cluster to which indi-
vidual i is assigned and defining probabilities p(yd) to favor subsets with small number
of clusters.

An advantage of this specification over the earlier models is that the posterior prob-
ability of a partition S (4.2) can be analytically computed up to a normalizing constant,
avoiding the need to implement a Markov chain Monte Carlo algorithm as in Guillot et al.
(2005) and Francois, Ancelet and Guillot (2006). The performance of the different meth-
ods has been the topic of several reviews (Frantz et al., 2009; Francois and Durand, 2010;
Safner et al., 2011). The model proposed in article (I) has been found generally com-
petitive to the other methods, when the assumptions behind it are not violated. When
the underlying genetic structure has a continuous form, the methods might occasionally
create artificial clusters.

Constrained spaces of partitions Prior information on the partition may also be
available in terms of constrains, so that instead of the whole space of partitions S the
support of the prior distribution is a subspace S ′ ⊂ S . In the inference of population
structure of diploid organisms, there are usually two measurement vectors associated
with each individual. The partition of N individuals into populations can now also be
seen as a problem of clustering of 2N measurement vectors under the constraint that
the measurements associated with a single individual should belong to same population.
Similarly, if we have knowledge that some individuals belong to the same population this
restricts the space of possible partitions.

Another form of constraint which is often utilized is restriction on the maximum
number of clusters M . It might be deemed impossible, or at least highly unlikely, that N
observations would represent K close to N distinct clusters. Such a constraint is used in
the BAPS program for the uniform prior (4.5) and it usually results in faster computation.
If M is chosen big enough then this restriction should not affect the accuracy of the
results, as only a negligible amount of posterior mass would be assigned to partitions
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with K > M . The effect of M can always be evaluated by analyzing the data with
multiple choices of M .

Sometimes it is preferable to constraint the partition to have exactly K =M clusters.
This might be the case, if the clusters are not assumed to be any real entities, but
represent only an approximation to the unknown structure in the data. Then varying the
value of M and for each searching the partition could reveal more about the underlying
structure than a single search in the unconstrained space S .

In (II) we introduced a possibility to BAPS for analysis with fixed number of pop-
ulations. While mathematically this constraint changes prior distribution in a trivial
way, it makes the search in the partition space more complicated. The stochastic greedy
search algorithm implemented in BAPS takes advantage of the natural neighborhood
structure in the partition space, which is broken by the constraint K =M . For example,
consider that the underlying structure in the data is best represented with four clusters
A1, A2, A3, A4, where A1 and A2 are similar to each other and correspondingly A3 and A4

are also similar. Suppose that we wish to infer the best partition with three clusters. Pos-
sible candidates for this would be S1 = {{A1, A2}, A3, A4} and S2 = {A1, A2, {A3, A4}},
but the search algorithm can traverse between these two only by considering intermediate
partitions {{A1, A2}, {A3, A4}} or {A1, A2, A3, A4}, which have 2 and 4 clusters, respec-
tively. We solved this issue by introducing complicated moves where the algorithm can
temporarily visit in partitions with M − 1 or M + 1 clusters.

4.4 Predictive classification

A more extreme version of constraint is obtained in the case that the correct clustering
is known for a subset of the observations and the remaining observations need to be
assigned to these or other classes. This task is known as classification in the machine
learning literature (Bishop, 2007). Instead of considering constrained partitions of [N ], it
is helpful to denote the observations with known origin with set [M ] and let [N ] denote
the remaining observations. The set [M ] and the measurement vectors associated with
it are often called the training data, and [N ] with corresponding measurements the test
data. The known classification structure of [M ] classification is denoted by T and the
unknown structure of [N ] by S.

Classification can be divided into two different types: supervised classification and
semi-supervised classification (Chapelle, Schlkopf and Zien, 2006). In supervised classi-
fication the classes present in T are assumed to represent an exhaustive set of possible
classes and the observations in [N ] are classified to these. In semi-supervised classification
the observations with unknown origin may be classified to the classes in T or some other
previously unknown classes.

Traditionally classification is done by forming a classification rule based on the training
data and then assigning the observations in [N ] one at a time to the classes. This is often
a computationally efficient way of doing supervised classification when the amount of
training data is large enough. However, it causes information to be lost, which could
result in sub-optimal classification accuracy, when the amount of training data is small.

In article (III) we show that this loss of information can be avoided by considering the
joint classifications of the test data. The classification is now based on the full posterior
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of S similar to (4.2)

p(S|x, z, T ) = p(x|S, z, T )p(S | T )
p(x | z, T )

, (4.9)

where x and z are the measurement vectors associated with observations in [N ] and
[M ], respectively. This is in contrast with marginal classification, where each observation
i ∈ [N ] is classified according to the distribution

p(i ∈ tc|xi, z, T ) =
p(xi|i ∈ tc, z, T )p(i ∈ tc | T )

p(xi | z, T )
, (4.10)

where tc denotes any of the eligible classes. We also show that as the amount of training
data increases, the classifications based on (4.10) and (4.9) will converge to each other
for discrete measurement vectors. This result is intuitive, as the test data contains no
additional information about the class-specific probability distributions when the amount
of training data goes to infinity.
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5 Modeling the history of populations

In the previous section methods for recovering population structure from genetic data
were introduced. These methods are descriptive as they attempt to infer structure in the
data, but do not offer any insight on how this structure has been generated. In this sec-
tion we formulate models for inferring the evolutionary history of populations as a tree.
We assume that at some point in history there has been a single ancestral population,
and that the current populations have emerged after a series of splits from this ancestral
population. The order and timing of these splits is described by a rooted bifurcating tree
T , with leaves representing the observed populations and the root being the common an-
cestral population. Throughout this discussion we assume that the observed populations
are known and we have sampled individuals from them.

We only consider model-based methods for reconstructing the evolutionary history
of populations. There exists a vast literature on methods based on distances and other
statistics computed for population pairs (e.g. Felsenstein, 2004, Chapter 11). A widely
used measure for differentiation between populations is the FST correlation coefficient
defined by Wright (Wright, 1943, 1949; Balding, 2003). FST can be used to estimate the
divergence time of several populations from a common ancestor, as it increases almost
linearly with the scaled time t/N , where t is the number of generations since the split
and N is the population size (Nicholson et al., 2002).

In the following discussion we do not make clear a distinction between a population
tree and a species tree, but use these terms interchangeably. Our motivation stems
from the need to reconstruct the history of several closely related populations from same
species, but the methods could also be applied to data from multiple species. In most of
the models described here, the populations are assumed to evolve in complete isolation
of each other after splits. Thus it could be argued that the difference between species
and populations reflects only the time after split events. With sufficiently long time
after the split, the groups could possibly become distinct species, whereas if the time
spans are short, the groups would still represent a single species. However, it should be
noted that at the species level mutation is usually expected to be the dominant process
describing the evolution of genetic material. With more closely related populations the
role of mutation depends on the genetic marker under study, but genetic drift plays also
an important part.

5.1 Phylogenetic inference

The models developed here belong to the broad class of phylogenetic methods, which
are used to analyze and represent differences between biological units such as species
or populations (Felsenstein, 2004). Phylogenetic methods are perhaps most widely used
in the analysis of differences between species from gene sequences. These are based
on identifying same genes on multiple closely related species, quantifying the differences
between the sequences and building a phylogenetic tree that gives a plausible evolutionary
history to these differences. The methods used to infer the tree vary greatly, but they
share the assumption that the differences in gene sequences between species are result of
mutation events.

The main difficulty when interpreting a phylogenetic tree obtained from analysis of
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single gene is that it describes the evolutionary history of this single gene, not of the
entire species (Pamilo and Nei, 1988; Degnan and Rosenberg, 2009; Edwards, 2009).
These trees, called gene trees, may be very far from the species tree especially if the
species are very closely related, and gene trees computed from two different genes have
completely different topologies. Edwards (2009) argues that the species or population
tree, which describes the evolutionary history of the species or populations under study,
should be the central focus of phylogenetic studies instead of the gene tree.

The analysis of multiple genes simultaneously has the potential to improve the accu-
racy of the estimated species tree if the information from the different genes is properly
combined. However, concatenation of the gene sequences, which has been a common
strategy for multiple gene phylogenetics, has been shown to lead to inconsistent esti-
mates of the species phylogeny (Kubatko and Degnan, 2007).

One important factor creating heterogeneity among gene trees is deep coalescence
caused by genetic drift. Deep coalescence occurs when the ancestral lineages of two genes
coexist the whole length of a branch in the species tree. It is most commonly associated
with short branch lengths in the species tree, but it has the potential to cause bias
in the estimates of the branch lengths even when the topology of the gene tree agrees
with that of the species tree. This variation in gene trees can be taken into account
by using coalescent theory to model the distribution of gene trees given a species tree
(Liu et al., 2009). The basic coalescent process traces the ancestries of several genes
from a population backwards in time until a common ancestor is found (Hein, Schierup
and Wiuf, 2005). The coalescent provides an alternative sample based representation of
the Wright-Fisher model of genetic drift, which will be discussed in the next subsection.
The basic coalescent extends to samples from multiple populations by restricting the
coalescent events which can occur at a given time point (Degnan and Rosenberg, 2009).

The main difficulty when using coalescent in species tree inference is that one has
to consider all possible gene trees compatible with the species tree. In practice, this is
usually done by MCMC simulation on the combined space of all gene trees and species
trees, which is computationally very expensive when the number of individuals under
study is large (Rannala and Yang, 2003; Wilson, Weale and Balding, 2003; Liu et al.,
2008; Heled and Drummond, 2010).

Recently, there has been interest in developing methods which avoid the need to sam-
ple gene trees. Nielsen et al. (1998) showed how to compute the likelihood of a population
tree for biallelic loci without mutation. The method is computationally expensive and
suitable only for data sets with small number of populations and individuals. RoyChoud-
hury, Felsenstein and Thompson (2008) introduced a pruning algorithm for computing the
likelihood of a tree based on dynamic programming that is computationally much more
efficient. While in principle it is applicable to any multiallelic locus without mutation,
the computation of likelihood has complexity O(nr), with r alleles and n individuals. The
pruning algorithm has been generalized to biallelic loci with mutation by Bryant et al.
(2012), who also introduced an MCMC implementation for conducting inference on the
population tree.

In multiallelelic situation with mutation the computation of the coalescent likelihood is
practically intractable. Inference in such cases is possible by using Approximate Bayesian
Computation (ABC) methods, which do not require the evaluation of the likelihood
(Beaumont, Zhang and Balding, 2002; Beaumont, 2010; Marin et al., 2011). Instead,
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these methods proceed by simulating replicate data sets with different parameter values
and comparing some aspects of the replicates to the observed data. Parameter values
which produce replicate data sets similar to the observed data are then considered to have
high posterior probability. ABC methods were first developed for problems in population
genetics and this application field has been central to the development of new methods.
Currently there are multiple software packages implementing ABC methods, which can
be used to infer the population or species tree (Cornuet et al., 2008; Lopes, Balding and
Beaumont, 2009; Wegmann et al., 2010).

5.2 Modeling the change in allele frequencies

An alternative approach to the multispecies coalescent for modeling the population tree is
obtained by considering population level properties such as allele frequencies. Genotypes
of the individuals are in this approach used only to infer the allele frequencies in the ob-
served populations. Such methods have been proposed and applied since the early days of
computational phylogenetics, but have been somewhat overshadowed by the phylogenetic
methods based on molecular evolution (Edwards and Cavalli-Sforza, 1964; Cavalli-Sforza
and Edwards, 1967; Felsenstein, 1973; Thompson, 1975; Felsenstein, 1981). The change
in the allele frequencies over time is modeled using Brownian motion, which is an infinite
dimensional generalization of the Gaussian distribution (Mörters and Peres, 2010).

The biological motivation for using the Brownian motion for modeling the change of
allele frequencies is obtained by considering the Wright-Fisher model first introduced by
R.A. Fisher and further developed by Sewall Wright in the 1920’s and 30’s (Fisher, 1922,
1930; Wright, 1931; Ewens, 2004). The term Wright-Fisher model might refer to several
different models of varying complexity that describe the evolution of gene frequencies
in a population including multiple alleles, mutation and selection. We first describe the
simple Wright-Fisher model with two selectively neutral alleles and no mutation, which
forms the mathematical foundation behind most of the allele frequency based methods.
The multispecies coalescence methods discussed in the previous subsection also assume
that the alleles in the populations follow Wright-Fisher model.

Consider a randomly mating population of N individuals and assume that the pop-
ulation evolves in discrete, non-overlapping generations. Note that many textbooks in
population genetics define the Wright-Fisher model with population size 2N , as it is used
in many applications to diploid organisms for which the number of genes is twice the
number of individuals. Our choice of population size N is consistent with the description
of the models in articles (IV) and (V). We follow a single locus for which there exists two
different types of alleles A and a in the population. At any time point t there are Xt

alleles of type A and N −Xt of type a, 0 ≤ Xt ≤ N . The individuals for generation t+1
are obtained as a random sample with replacement from the previous generation t. This
implies that conditional on Xt the number of A alleles in generation t + 1 has binomial
distribution

Xt+1 | Xt ∼ Binomial(N,Xt/N). (5.1)

From the above equation it is clear that if Xt takes value 0 or N at any generation t it
will stay there, a situation which is known as fixation.

Equation (5.1) provides in principle the way of computing the conditional distribution
of Xt given X0 for any non-negative integer t , but is computationally tractable only for
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small values of t. However, if the population size N is not too small, the binomial
distribution (5.1) may be accurately approximated with a Gaussian distribution. First,
consider a scaling of the process where the time is divided by the population size τ =
t/N and instead of the actual number of A alleles, we consider their relative frequency
θτ = Xτ/N . In the transformed scale we get

θτ+1/N | θτ ≈ N

(
θτ ,

1

N
θτ (1− θτ )

)
.

Notice that in the above formula the population size appears only in the step size and we
may expect the behavior of two Wright-Fisher processes with different but large enough
population sizes to be similar in the transformed scale. This might motivate us to consider
the conditional distribution of θτ+ϵ given θτ for arbitrary ϵ ≥ 0, which would be given by
the diffusion approximation

θτ+ϵ | θτ ≈ N (θτ , ϵθτ (1− θτ ) . (5.2)

The approximation given by Equation (5.2) is good if ϵ small and θτ is not close to
the boundaries. If ϵ is large, then the Gaussian distribution is a poor approximation since
the frequencies are constrained to the interval [0, 1], but the Gaussian distribution has
the whole real line as support. For example consider that θτ = 0.5. Then the probability
mass of the approximation (5.2) which lies outside the interval [0, 1] is 0.025 if ϵ = 0.2,
0.16 if ϵ = 0.5 and 0.32 if ϵ = 1. Another problem associated with the direct use of
the Gaussian approximation is that the variance is dependent on the frequency θτ . This
has the effect that we would get a different result if we first computed the conditional
distributions θτ+ϵ/2 | θτ and θτ+ϵ | θτ+ϵ/2 and then marginalizing out θτ+ϵ/2, instead of
using (5.2).

To reduce the inhomogeneity of the variance, different transformations of the frequen-
cies have been considered. For example, the transformation sin−1 θ stabilizes the variance
for all but extreme frequencies and the resulting variate has variance approximately ϵ/4
over time period of ϵ (Thompson, 1975; Felsenstein, 1981). Another approach to improve
the approximation was suggested by Nicholson et al. (2002), who used the Gaussian ap-
proximation with atoms placed on the boundaries to reflect fixation. Their objective was
to compute divergence times of multiple populations from a single ancestral population.
This can be viewed as learning the branch lengths of a star tree, which is a multifurcating
phylogenetic tree where all the populations have simultaneously diverged from a common
ancestral population.

An alternative approximation known as Balding-Nichols model is obtained by using
a Beta distribution with same mean and variance

θτ+ϵ | θτ ≈ Beta (θτ , ϵθτ (1− θτ ) , (5.3)

where ϕ = (1− ϵ)/ϵ (Balding and Nichols, 1995, 1997; Rannala and Hartigan, 1996). It
was originally developed in the context of equilibrium under migration and drift in island
populations. The model and its multidimensional extension is widely used in learning
population structure to introduce correlation in the allele frequencies between population
(Falush, Stephens and Pritchard, 2003; Guillot, 2008; Gaggiotti and Foll, 2010). Similar

25



to Nicholson et al. (2002) a star tree with unknown branch lengths is assumed in these
methods to describe the evolutionary history of the populations.

It should be noted that the ϵ in the approximations (5.2) and (5.3) does not linearly
correspond to s/N for any number of generations of s. Instead, it is related to the FST

coefficient described earlier, see Nicholson et al. (2002) for details. If we would like to
estimate the number of generations s that would correspond to ϵ, we would need to use
the formula

s = N(1− e−ϵ),

which is nearly linear for small values of ϵ.
In article (IV), we use the approximation (5.3) to model the change in allele frequen-

cies in the history of populations described by the tree T . This possibility was mentioned
by Zhang (2008), but deemed computationally too expensive. We model the allele fre-
quencies in each node c of the tree conditional on the frequency in its parent pa(c) with
(5.3) using the length of the branch between c and pa(c) as the parameter ϵ. An important
advantage of the Balding Nichols model is that the allele frequencies corresponding to
the observed populations can be analytically integrated out, similarly as in the marginal
probability of a locus (4.4) used for learning the population structure described in the
previous section. The inference about T is conducted in a full Bayesian framework in
which the unknown tree T and the allele frequencies in the root node are given prior
distributions. To manage the inference in the complex model, we utilize Laplace’s ap-
proximation (3.3) for the allele frequencies, the AMIS algorithm (3.9) for the branch
lengths of the tree and a greedy search algorithm in the space of tree topologies.

5.3 Generalizations

The discussion of the previous subsection considered the simple Wright-Fisher model
with two selectively neutral alleles and no mutation. This model is suitable for ana-
lyzing SNP data as was done in article (IV), but is inadequate for many other genetic
markers with multiple alleles or mutation. We now extend the basic model and consider
approaches to approximate the extended models. It turns out that the approximations
will be increasingly difficult to obtain as more complexity is added to the model and
their computational complexity increases accordingly. However, it should be noted that
exact coalescent methods in the spirit of those developed by RoyChoudhury, Felsenstein
and Thompson (2008) and Bryant et al. (2012) are practically intractable for loci with
multiple alleles.

Mutation First we introduce mutation to the biallelic Wright-Fisher model. The indi-
viduals of generation t+1 are obtained as a random sample from the previous generation
t, but in addition to that a proportion u of the A alleles mutate to a and proportion v of
the a alleles mutate to A. The conditional distribution of Xt+1 given Xt is still binomial,
but with a different parameter

Xt+1 | Xt ∼ Binomial(N,ψt), (5.4)

where ψt = N−1((1 − u)Xt + v(N − Xt)). If both u and v are positive, then neither of
the two alleles can go to fixation, but instead Xt will fluctuate around Nu/(u+ v). The
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distribution of the Xt given X0 converges to a stationary distribution as t goes to infinity.
The stationary distribution for the relative frequency θτ is approximately given by the
Beta distribution

Beta(Nv,Nu), (5.5)

with the approximation being exact in the infinite population limit (Wright, 1931).
For inferring the population history of several populations, we would like to compute

the conditional distribution of θτ+ϵ given θτ for values ϵ which are too small for the process
to reach stationarity. While we could approximate the distribution in the same spirit as
in (5.2) by basing the approximation on the one generation distribution, it would be less
accurate as mutation alters the process in such way that as functions of ϵ the mean and
variance of θτ+ϵ are not closely linear to the one generation values.

We can, however, compute the mean and variance functions explicitly. As a slight
abuse of notation, we first consider θt, the frequency of A in generation t, and then move
to the continuous scale with θτ . We also drop the condition on θ0 from the following
formulas to simplify the notation. The expectation of θt given θ0 can be computed using
the law of iterated expectations

E(θt) = E(E(θt | θt−1))

= E ((1− u)θt−1 + v(1− θt−1))

= (1− u− v)E(θt−1) + v

= (1− u− v)tθ0 +
t−1∑
i=0

(1− u− v)iv.

Now with large N and denoting m1 = uN and m2 = vN

(1− u− v)t =

(
1− m1 +m2

N

)τN

≈ e−(m1+m2)τ .

The sum term can be approximated as an integral

t−1∑
i=0

(1− u− v)iv ≈ m2

∫ τ

0

e−(m1+m2)γdγ

=
m2

m1 +m2

(
1− e−(m1+m2)τ

)
,

giving

E(θτ ) ≈ e−(m1+m2)τθ0 +
m2

m1 +m2

(
1− e−(m1+m2)τ

)
. (5.6)

Now we turn to the variance function, which we compute similarly using the law of
total variance. We make the simplifying approximation that the variance of θt+1 given
θt is given by N−1θt(1− θt) instead of N−1ψt(1− ψt) as implied by Equation (5.4). This
does not affect the results in the infinite population limit, but makes the derivations much
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more readable. The variance can be calculated as

V ar(θt) = E(V ar(θt | θt−1)) + V ar(E(θt | θt−1))

=
1

N
E(θt−1(1− θt−1)) + V ar((1− u− v)θt−1 + v)

=
1

N
(E(θt−1)− V ar(θt−1)− E(θt−1)

2) + (1− u− v)2V ar(θt−1)

=
1

N
E(θt−1)(1− E(θt−1)) +

(
(1− u− v)2 − 1

N

)
V ar(θt−1)

=
1

N

t−1∑
i=0

(
(1− u− v)2 − 1

N

)t−1−i

E(θt−1)(1− E(θt−1)). (5.7)

With γ = i/N the first term inside the sum can be approximated as(
(1− u− v)2 − 1

N

)t−1−i

=

(
1− 2(u+ v) + (u+ v)2 − 1

N

)t−1−i

=

(
1− 2(m1 +m2) + 1

N
− (m1 +m2)

2

N2

)t−1−i

≈ e−(2(m1+m2)+1)(τ−γ).

We can now approximate the sum (5.7) as an integral

V ar(θτ ) ≈
∫ τ

0

e−(2(m1+m2)+1)(τ−γ)E(θγ)(1− E(θγ))dγ

= e−(2(m1+m2)+1)τ

∫ τ

0

e(2(m1+m2)+1)γE(θγ)(1− E(θγ))dγ (5.8)

Before solving this integral, we rearrange

E(θγ)(1− E(θγ)) =

(
e−(m1+m2)γθ0 +

m2

m1 +m2

(
1− e−(m1+m2)γ

))
×(

1− e−(m1+m2)γθ0 −
m2

m1 +m2

(
1− e−(m1+m2)γ

))
=e−(m1+m2)γθ0 +

m2

m1 +m2

(
1− e−(m1+m2)γ

)
− e−2(m1+m2)γθ20

− 2e−(m1+m2)γθ0
m2

m1 +m2

(
1− e−(m1+m2)γ

)
−
(

m2

m1 +m2

)2 (
1− e−(m1+m2)γ

)2
=

((
θ0 +

m2

m1 +m2

)2

− m1m2

(m1 +m2)2

)
e−(m1+m2)

−
(
θ0 −

m2

m1 +m2

)2

e−2(m1+m2)γ +
m1m2

(m1 +m2)2
.

Since for any real a, b ∫ b

0

eaxdx = a−1(eab − 1),
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the variance (5.8) becomes

V ar(θτ ) ≈ (5.9)

e−(2(m1+m2)+1)τ

(((
θ0 +

m2

m1 +m2

)2

− m1m2

(m1 +m2)2

)
1

m1 +m2 + 1

(
e(m1+m2+1)τ − 1

)
−
(
θ0 −

m2

m1 +m2

)2

(eτ − 1) +
m1m2

(m1 +m2)2
1

2(m1 +m2) + 1

(
e(2(m1+m2)+1)τ − 1

))
.

The conditional distribution of θτ given θ0 can now be now approximated using a
Gaussian or Beta distribution with expectation and variance given by Equations (5.6)
and (5.9), respectively. The parameters of the Beta distribution should be(

E(θτ )(1− E(θτ ))

V ar(θτ )
− 1

)
E(θτ ) and(

E(θτ )(1− E(θτ ))

V ar(θτ )
− 1

)
E((1− θτ )).

If the scaled mutation rates m1 and m2 are big enough and neither dominates the other,
the process should stay clearly away from the boundaries. It could be expected that a
Beta distribution would be a better approximation to the process with mutation, since
the stationary distribution (5.5) is also a Beta distribution, although we have not studied
this.

Multiple alleles Next we consider an extension of the basic model for a locus with r
alleles a1, . . . , ar. At generation t there are Xt,i copies of allele of type ai, i = 1, ..., r.
Denote by θt,i = Xt,i/N the relative frequency of type ai alleles at generation t. If
mutation is not present the Wright-Fisher model generalizes straightforward to multiple
alleles. The individuals of generation t + 1 are still obtained as a random sample with
replacement from the previous generation t, and the allele counts Xi,t, i = 1, . . . r, have
multinomial instead of binomial distributions. Correspondingly, the Beta distribution
of the Balding-Nichols model (5.3) is replaced by a Dirichlet distribution for the allele
frequencies θi,τ .

Computation with multiple alleles poses a much more difficult problem compared to
the biallelic situation. Specifically, Laplace’s approximation which is used to marginalize
out the allele frequencies in (IV) , has a much poorer performance. To see this, one should
note that Laplace’s approximation is based on approximating the full conditional distri-
bution of the frequencies with a Gaussian distribution. With tens or possibly hundreds
of frequency parameters constrained to sum up to 1, their full conditional distribution is
bound to be far from a Gaussian.

However, the main limitation of the multiple allele model without mutation is that
such loci often have mutation rates which can not be ignored in the same way as in the
biallelic case. For example, microsatellites are known to have much higher mutation rates
than for example SNPs (Ellegren, 2004). Similarly, gene sequences such as those obtained
from Multi Locus Sequence Typing (MLST, Maiden et al., 1998) and analyzed in article
(V) are known to mutate frequently.
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General case We now develop results for a general Wright-Fisher model with multiple
alleles and mutation. Let ui,j be the proportion of type j alleles that mutate to type i,
with ui,i indicating the proportion of alleles of type i that do not mutate. This implies
that

∑t
i=1 ui,j = 1. The allele frequencies of generation t+ 1 have now distribution

θt+1 | θt ∼Multinomial(N,Uθt), (5.10)

where θs is the vector of allele frequencies θs,i at generation s and U is a matrix with
elements ui,j. As an example, the biallelic model with mutation (5.4) has the mutation
matrix

U =

[
1− u v
u 1− v

]
. (5.11)

The expectation and variance for θt given θ0 could in principle be calculated similarly
as in the biallelic case. The expectation would be following the same arguments as earlier

E(θt) = E(E(θt | θt−1))

= E(Uθt−1) = U tθ0.

Computation of this expectation would require evaluation of the tth power of the matrix
U , for which analytical formulas do not exist in the general case. A possible solution for
some cases could be obtained from an eigenvalue decomposition of the matrix U , if this
was available. Then it would only be necessary to raise scalars to the required power,
instead of the whole matrix.

In article (V) we developed theory for Wright-Fisher model with a truncated version
of the infinite alleles model (Kimura and Crow, 1964). In the infinite alleles model every
mutation creates a new allele type, and the truncated version is obtained by following
only r− 1 distinct allele types and letting the rth allele type correspond to other alleles.
The model can be represented in the above form with the elements of the mutation matrix
U given by

ui,j =


1− u if i = j, 1 ≤ i ≤ r
1 if i = j = r
u if i = r and 1 ≤ j ≤ r
0 otherwise.

(5.12)

We developed a two-stage Beta-Dirichlet approximation, which had the same first two mo-
ments as the Wright-Fisher model. The Adaptive Metropolis algorithm was implemented
to facilitate the inference with the model. The potential of the model was illustrated
by analyzing the history of world-wide populations of Streptococcus pneumoniae using
MLST data (Enright and Spratt, 1998).
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6 Discussion

Several statistical models and methods have been developed in this work mainly to prob-
lems in population genetics. The proposed methods have been shown to produce accurate
inferences under a wide variety of conditions. Each method is a result of multiple com-
promises between accuracy and computational efficiency and has been designed with a
specific problem in mind. Consequently, the performance of the method might be infe-
rior, when applied to another problem. Perhaps the clearest example of this is the joint
classifier described in (III), which outperforms the traditionally used marginal classifier
with sparse training data, but otherwise increases the computational cost substantially.

Another example is the use of sampling locations of individuals, which may be helpful
when inferring the population structure from genetic data with only few markers as
demonstrated in (I), but only adds complexity to the computations when analyzing huge
data sets such as the human SNP databases (Li et al., 2008). Similarly, the population
allele frequency based approach developed in (IV) and (V) is well suited for the of the
bacterial MLST databases, with large number of samples, but only a few loci. With other
data sets, where the number of individuals is small, coalescent based approaches such as
those suggested by Bryant et al. (2012) might be more sensible.

While the methods were developed for particular problems in population genetics,
they can be used with slight modifications in a wide variety of problems. The clustering
and classification methods discussed in Section 4 are applicable to many different fields of
science. As an example of this, we have successfully applied them to a problem of crime
linking in serial homicide from behavioral patterns (Salo et al., 2012).

The class of stochastic models, which includes the Wright-Fisher model used for in-
ferring population history, is used in ecology, linguistics and physics outside population
genetics (Blythe and McKane, 2007). The approximations developed in this work could
possibly be utilized for some problems in these fields. In population genetics, the approx-
imations could be used for more complicated evolutionary histories of populations than
those, which can be described by a tree, similarly as in Cornuet et al. (2008). Addition-
ally, selection could be incorporated to the Wright-Fisher model and, at least for biallelic
loci, approximated using similar techniques as with mutation.

An important aspect of this work has been software development. When developing
complex statistical methods for applied problems, their usefulness depends whether they
may be easily used by other scientists. Developing dedicated and easy to use software
implementing the methods provides researches in the applied fields an opportunity to
utilize these methods in a straightforward manner.

The methods described in articles (I) and (II) and partially those in (III) are imple-
mented in the computer program BAPS, which is freely available on the Internet 1. The
methods developed in articles (IV) and (V) are currently being implemented and a free
software package will be made available in the near future.

1http://www.helsinki.fi/bsg/software/BAPS/
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