
y^K 624.048-033.26:621.651

M. Demchuk

VERIFICATIONS OF GROUTING MODELS
Calculation errors are estimated within the framework ofa model o f the standard injection test. Such the 

test is conducted to verify simplifying assumptions o f the model through comparison o f model calculations 
with respective laboratory measurements. It is shown that the verification presented in this work as well as 
similar verifications presented in recent research, provides a small amount o f information.

Keywords: error due to uncertainties in input data, truncation error, round off error, numerical solution 
analysis, uncertainty uniformity principle.

Introduction. Before creations of foundations 
on weak soil plots, to make better elastic properties 
of soil tracts the grouting operations are performed. 
In this technique a cement grout is injected under 
high pressure into a porous medium that can be 
water saturated or dry. The aim is reached after the 
grout hardening [7, p. 227]. The process of cement 
grout propagation in a soil is complicated by the fact 
that the infiltrate is composed of particles. It gives 
rise to the phenomenon called the deep bed filtra­
tion or the depth filtration. Depending on particle 
and pore throat sizes, two limiting cases are distin­
guished in the description of this phenomenon. In 
the first case, large particles get stuck in small pore 
throats. It entails a decrease in “the area allowed for 
a fluid flow”. Whereas in the second case, small par­
ticles create the precipitate on large pore bodies and 
large pore throats that results in slow decreases of 
pore throat sizes [9, p. 1637].

Grouting is rather costly and time consuming. Its 
regime is determined by the concentration distribu­
tion evolution [6, p. 1195]. Therefore, a calculation 
of this evolution using mathematical modeling is 
important.

Various simplifying assumptions were verified 
through the standard laboratory test [6; 7]. The set 
up of this test is the following. A cement grout is in­
jected in the base of a vertical tube opened at the top 
and filled with a water saturated sand at a constant 
pumping rate. A comparison of model calculations 
with laboratory measurements verifies the set of as­
sumptions used in a model formulation. An amount 
of information it provides depends upon values of 
uncertainties in compared quantities [2, p. 47]. There 
are three types of numerical calculation errors: an er­
ror due to uncertainties in input data, a round off er­
ror, and a truncation error [3, p. 11-13]. If input data 
are fixed, then the error of the first type is zero. If the 
finite difference scheme according to which the cal­
culations are performed is conditionally stable, then
O/jeMuyK M. E., 2013

the round off error is negligible. This property of the 
scheme is usually verified during a numerical solution 
analysis. Usually, the main contribution to a method 
error comes from an approximation error. In the case 
of the above mentioned test modeling, an estimation 
of the approximation errors is complicated by the fact 
that at any moment of time the functions being sought 
contain the high gradient regions that correspond to 
the transition from a soil with the maximal cement 
concentration to the soil with the zero one. Accord­
ing to the uncertainty uniformity principle [5, p. 35], 
to estimate these errors properly calculations on time 
layers should be performed on non-uniform grids 
with smaller space increments inside such regions 
and larger ones outside of them. In our case, positions 
of these high gradient regions are changing with time 
and not known in advance. Therefore, in existing 
models of the standard laboratory test calculation er­
rors are not estimated [8, p. 79].

One of the models of the above mentioned stan­
dard laboratory test is presented in paper [2, p. 49-50]. 
In this model, boundary conditions conform to in­
itial ones. The results of laboratory measurements 
performed during the standard test and the meth­
od of a proper treatment of high gradient regions 
in sought functions during numerical calculations 
according to the model in hand are presented in 
[8, p. 79-81; p. 88-90]. The aim of this work con­
sists in estimating the errors of calculations accord­
ing to this model that are to be compared with these 
laboratory measurements.

The Grouting Model Under Consideration. We 
assume that the coordinate origin is chosen at the injec- 
tionpoint andthatthe coordinate axis is directedupward. 
Inthisworkweusethefollowingnotations. £ isasmall 
positive parameter, a0 and a, are large positive pa­
rameters. They are introduced in the model to conform 
initial conditions with boundary ones, and their values 
will be obtained later in the result of the analysis of the 
numerical solutions. /  = (-£, L) is an interval (a set
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of points (x): x e ( - e ,  X)). IT = I x (  0, T ) is a rec­
tangle (a set of points (x, t) : (x) e / ,  f e (0, X )), 

^r i  is the bottom side of IT (a set of points (-£, t ) : 
^ [ 0, X]), 2 is the top side of IT (a set of points
(X, t ) : te [0 , X]), p (x ,t) and c(x,/) denote die 

pore fluid pressure and the grout concentration re­
spectively. K  is the permeability of the medium, 
mis the medium porosity, p  is the fluid phase density, 
g is the acceleration of free fall, p 1 and cimp are the 
grout viscosity and the grout concentration inside the 
injector respectively, p2 is the water viscosity. aL is the 
longitudinal dispersion coefficient, D’ is the diffusion 
coefficient, p = (p1- p 1)c/cimp + p2, Dh=aLV + D \  
V = -K(8p/8x + pg) /p /m.  f 9(a-x)  is the function 

that tends to the function

0, if x < 0,
1/2, if x = 0, (1)
1, if x > 0,

with a  -» +oo. S  is the area of the interface be­
tween the injector and the porous medium, X is 
the tube length, pLfi =(p1- p 2) ( l - f e (a0L)) + p2, 

Fo.o = (Pi -  P2) * (l -  fe (~«o£)) + P2, 

Vi,o=PiVo{l -fe{aix) - xdf { aix)/dx)x=L/Pip V«=UlSlm- 
In paper [2, p. 49-50], the mathematical mod­

el of the standard laboratory test described in the 
previous section with boundary conditions con­
forming to initial ones has been formulated. In it 
the ground skeleton is regarded as absolutely rigid 
and the depth filtration is not taken into account. 
This model is the following system of two partial 
differential equations valid for such values x and 
t that (x, t ) e IT

mdc/8t = -mV ■8c/8x + 8{mDh -5c/Sx)/Sx , (2) 

mPp (8p/dt+V8p/dx)-d(K(pp/dx+pg)jp)j8x = 0 (3) 

with such initial conditions valid if  t = 0 and x e 7  

p = p g ( L - x )  + ^m F0x ( /fl (^ x )  -1  ) / K ,  (4) 

c = (1- / e(«o^))'ctap (5)

and boundary conditions

dp/dx = -p lmV0(l■- fe(cEjx)- xdfe{apfjjdx^K- p  g, (6)

0(x)=-

c = ctap(1- / e(-«o£)) (7)

where (x, f) e ATX and

P = PfnV0L(f9(alL ) - \ ) l K , (8)

Sc/8x = -ctap(df9(a0x)/dx)(aLVLfi + D*)/(aLV+D*) (9) 

where (x, t) e At 2 .

As it is described in paper [8, pp. 88-90], to 
estimate the model calculation errors proper­
ly we need to use two methods to find the numer­
ical solution of problem (2)—(9). In the first one, 
problem (2)—(9) is discretized at once, while in 
the second one, we are looking for the numerical
solution in the form p(x,/) = p(0)(x,t) + p(1)(x,f), 
c(x,t) = c(0) (x,t) + c(1) (x,t) where functions 
p (0)(x,t) and c(0)(x,t) are modeling respective­
ly the evolution of the high gradient region of fluid 
phase pressure and the evolution of the high gradient 
region of cement concentration in the fluid phase. We 
assume (assumption #1) that

pm(x,t) = p1{x,t)+fe(ap(x-Vit))(p2(x,t)-p1(x,t)),( 10)

c(0) (x,t) = [l ■- f 9 (ac (x -  Fjt))] • cimp (11)

where here and bellow V1=V0- K p g / p pff,

p2=(p2m V j K  + p g ) ( L - x ) ,

p1=(L-Vlt)(pg+p2mVl/K)-{pg + ii1mVlg/K)(x-Vlt).

In turn, constants ac and ap are defined below. 
Performing calculations by the second method we 
assume (assumption #2) that calculation results ob­
tained when Ptf =(Pi + P2)/2 and Veff = (V0 + F J /2  
do not sufficiently deviate from ones obtained when 

Peff = yl Pi' P 2 V\g = \]Vq ■Vl .
To find the numerical solution of problem 

(2)—(9) we cover IT with uniform grid

=((*,> xi = ~ s + i 'h’ tj = j - T , j = o , M )  
where h = [L + e ) / N  and r  = X /M . Performing an

analysis of numerical solutions of problem (2)—(9), 
one can use respectively such the measures of the 
differences between two space distributions of the 
cement concentration or the pore fluid pressure at a 
chosen moment of time t f ( x , t ) ,  f 2{x,t) and be­
tween two dependencies of the injection pressure on 
time &(*), g2(t)
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® (0=тах |/і(*>0-Л (*4 ® = т а х М 'Н ( 0І- (12)
хє[~£, L] /є[0, Т]

We denote the measure of the difference between 
the space distribution of the cement concentration 
(the pore fluid pressure) at a given moment of time
obtained by the second method on grid Q 2N] 2Ni 
and the one obtained by the second method on grid 
Q NuNi as e[ . We denote the measure of the 
difference between the space distribution of the
cement concentration (the pore fluid pressure) at a 
given moment of time obtained by the first method

on grid Q 2Nlt2N2 and the one obtained by the sec­
ond method on the same grid fi 2nv2n2 as sl (e2 ) ■
ac present in (11) is the solution of the following 
equation

l - / e (8-a£ -ac) = lAr (13)

where r is such that r > ln(2). Calculating ac from 
(13), ideally, we have to use such the value of r at 
which ratios ' and / £f  are maximal. Per­
forming calculations by the second method we as­
sume that if the order of magnitude of the value of 
ap in the right hand side of (10) is the same as the 
order of magnitude of the value of ac in the right 
hand side of (11), then the numerical solution is not 
sensitive to the choice of the value of ap (assump­
tion # 3). Therefore, in what follows we assume that

t i = ( v i - n 2)(c! + (c<0) ) ')+ № ,

Л/’У+1 = {cm - 2c/+1 + c £ ) / h 2 , Т/ = (c/+1 - c / ) / r  ,

w = -Fl'+e,
Vі -Vі'm ri-\

2 h
(df^ 

dx , uhh
(№>Y

dx2 „ . dt , +Q/, (15)

Qj =(l-v)(-V/ +aL(V/+l -Fft)/2jh)-X> +{Dh)i(l-crJ-A^, 

and the following discretizations of (5), (7), and (9) 

c“ =q., C' +1= c ', ( 4 - 2-4<_'1+34+,)/2//; = ̂ ( 1 6 )  

where
q. = (i -  f 9 (a0 (-£  + i ■ h))) ■ clmp -  (c(0)); , 17)

cy = ( l - / e( - a o £ ) ) ^ - ( c <0))^, (18)

dCJ =-(«/,o - K H i > (19)

Vn = ~ k ((p 1n- i ~ aPn-i + H ) l 2/h+(Spm /Sx)1N + p g ]j / m l i i 1N .
In(14) i = l ,2 , . . .N-l ,  j  = 0,1,... M - 1 ,  and in (16) 
/ = 0,1,.. .N-1,  _/ = 0, l , . . .M - l .

If cxl * 0 , then the system of equations (14), (16) 
in finite differences can be solved by the “progon- 
ka” method [1, p. 276]. If  cxl = 0 , then calculations 
are performed by using the first method. In this case, 
from (14) it follows that

c/+1 =c/ +to(-V> +aL{V^-VU)l2lh)(c%-c^/l/h+r ■ w}

A Resolution Method. In this section the dif­
ferential schemes are written in the same form for 
both methods. In formulas of this section we assume
that in the case of the first method p (0) (x,tj = 0,  
c(0)(x,t) = 0 and in the case of the second one 
p (0)(x,t) and c(0)(x,/) are given by (10) and (11) 
respectively. Also in these formulas c( and pf where 
i = 0 , N , ./' = 0,M  denote ) and p(x,,/; ) in 
the case of the first method and c(1)(xi,/J ) and 
p (r> (xi,tJ) in the case of the second one respectively. 
In this work we use the following discretization of (2)

T/ +aL( V ^ - V ^ / l / h ) ^ -(A );CTia;j+1 = w/ (14) 

where

v/  - pQ/2/h  +  (dp^/dx^ + pg^jm!pj  ,

x r '= {c i; ; -c ^ ) /2 /h ,

where w. is calculated according to (15) and 
/ = 1,2,...2V-1, 7 = 0 ,1 ,...M -1 . From the second 
and the third of equations (16), it follows that

cJN+1 = (2hdc’J -  c]; \  + 4c£!1)/3 where dc,J is calcu­

lated according to (19) and 7 = 0,1,...21/-1. From 
the first of equations (16) and equation (17), it fol­
lows that

ci = 0  -  fe («0 (-£  + /• A)))-cimp - (c(0))° where

i = 0,2V, . Having found the values of the concen­
tration on time layer 7 + 1, we find the values of 
the pore fluid pressure on this layer, solving the 
following system of equations in finite differences 
obtained by discretization of equations (3), (4), (6), 
and (8). In this work we use the following discreti­
zation of (3)
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тРр [Рі+1 -  РІ )Д+oZj [р{/ -  рІ*І )/2/А -  К ІД/+1 = gj (20)

where Z{ = т р у /  -  K ( l / y ; l  -  І/Д/IV )/2/А ,

^  = - аг((р/+1- р Ц / 2 / н +  ( зУ Щ  + р ^ ) /д /+1

, Д/+1 = ( ^ - ^  )(с /+1 +  (с (0)) ' ) +  /^  , 

K M = {p i : l -2p i+l + Pĵ ) l h \  

8{ = - т ф тЦ -Zl(dpml8xl+КІ-у1(82УІдх1І -S', (21)

pL - pL Щ - оМ г Щ+р1*) Kpgf і n
2h Д/+| h2 2h №  Puj

and the following discretizations of equations (4), 
(6), and (8)

{-pi+'+4pr'-3pt ) /2 /h  = d^, p/ '  = ~pj (22)

where

& (“ i£ ) = {l ~fe (“ i*) -  xdfe («ix)/dx)\x= s 

dpj = - n lmV0ge(al£ ) / K - p - g - ( d p i0)/dx)Jo, (23) 

p j = ( f e (a1L ) - l ) L n lmV0/ K - ( p m )JNi, (24) 

^ +£-*'■ A)+( - £+/ •  A)(/e (a, {-£+/• A)) - l)/*S/A: - (p(0))“ • (25)

In (20), (22) i = l , 2 , . . .N - l , j  = 0 ,1 , . . .M - l . If  
<J2 * 0 , then the system of equations (20), (22) 
in finite differences can be solved by the “pro- 
gonka” method. Thus, using known values of 
the pore fluid pressure in nodal points on time 
layer j  and known values o f the cement con­
centration in nodal points on time layers j  and 
j  + 1, we can calculate the pore fluid pressure 
in nodal points on time layer j  + 1. In its turn, 
using known values o f the pore fluid pressure 
and the cement concentration in nodal points on 
time layer j  we can calculate such the values on 
time layer j  + l .  Since these values on the zero 
time layer can be found from the first equations 
o f ones (16) and (22), we can find space distri­
butions o f the pore fluid pressure and the cement 
concentration on any time layer. Constants a  , 
<Ji , and cr2 are introduced in (14), (20) to have 
an opportunity during a numerical solution anal­
ysis to estimate the round off error and to check 
whether the replacement o f derivatives in prob­
lem (2)-(9) with their finite difference analogs 
is not ill-posed.

An Analysis of Numerical Solutions. An anal­
ysis of the cement concentration and the pore fluid 
pressure distributions in the pore medium at mo­
ments of time t = 100 sec, t = 250 sec, and t = 400 
sec obtained numerically is performed according to 
the following scheme. We assign specific values to 
all input parameters. In what follows, this set of in­
put parameters is called the main set. To estimate an 
uncertainty in the value of the cement concentration 
(the pore fluid pressure) due to an uncertainty in a 
chosen input parameter, we calculate the distribu­
tion of this value first using the main input parame­
ter set and then using the input parameter set distinct 
from the main set by the value of the chosen para­
meter. The difference between the assigned value to 
the chosen parameter and the respective value in the 
main set characterizes the degree of the uncertain­
ty of the chosen parameter value. The measure of a 
difference between obtained distributions calculat­
ed according to the first of equations (12) gives the 
sought estimation. We distinguish two types of input 
parameters. Parameters of the first type are deter­
mined by the calculation method, where as parame­
ters of the second one are determined by laboratory 
measurements. The second type parameter values 
from the main set and their absolute errors are pre­
sented in Table 1. These errors are determined from 
the last significant digits in values of these parameters 
[4, p. 41]. In the case of the main set, the pore flu­
id pressure and cement concentration distributions 
in the pore medium are calculated by the second 
method and using such space and time increments 
A = (0,7 + £)/500 m , t = 0,005 sec respectively. 
We assume (assumption #4) that the shape of func­
tion f e (a-x)  does not influence significantly the 
calculated distributions. In the main set, this shape 
is determined by the following function

f g (a  ■ jc) = 0,5 + arctgia -x)/7z. (26)

In our model, £ is a small parameter, while a0 
and a, are large parameters, and, therefore, in the 
main set, we assign to them such values

£=1,0x10"3I/A, a0 =5-103/£fg(w(0,5-l/e2)j, a, =aQ (27)

where N  = 500. In this set, constants <r , crl , 

<r2, Kff > and p eff have the following va­

lues <t = <Tj =<r2 = 1, /V  ={pi + P2)/2,  and
Veff = (V0 + V1 ) /2 . From (13) and (26) it follows that 

ac = tg{n(0,5 -  1/V))/%/aL . To choose the value of 

ac the calculations are performed varying r from 

0,7 to 2,5 with the increment A/; =0,2 and from 2,5
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to 4,5 with the increment Ar2 = 0,1. The dependen­
cies of £c2/£{ and £ 2  /£]" on r are presented on 
Figures 1 (a) and 1 (b). They are calculated by using

Table 1. The Values of the Second Type Parameters and 
Their Absolute Errors

Parameter Parameter Value Absolute Error
Porosity 0,335 0,0005

Grout density 1370 kg/m3 5 kg/m3
Grout viscosity 2,9T0'3 Pa-sec 5T0'5 Pa-sec

Intrinsic
permeability 1Д7Т0'11 m2 5-Ю'14 m2

Diffusion
coefficient 1,.0T0'10 mVsec 5-Ю12 mVsec

Longitudinal
dispersion
coefficient

2,ОТО2 m 5-Ю Am

Compressibility
coefficient 3,0T08 Pa"' 5-Ю10 Pa-1

Water viscosity 1,1-Ю'3 Pa-sec 5-Ю'5 Pa-sec
Pumping rate 1,5 TO'6 m3/sec 5-Ю'8 m3/sec
Tube length 0,70 m 5-Ю'3 m

Tube diameter 0,08 m 5-Ю'3 m
Acceleration of 

free fall 9,8 m/sec2 0,05 m/sec2

input parameter values except for the value of r 
from the main set. Lines 1, 2, and 3 on these fi­
gures correspond to the moments of time t = 100 
sec, t = 250 sec, and t = 400 sec respectively. Ta­
ble 2 contains the values of r at which these lines 
reach their maximums on segment [0,2 4,5]. The 
fact that these maximums exist verifies assump­
tion #1. In this table, corresponds to the lines 
from Figure 1 (a) and corresponds to the lines 
from Figure 1 (b). Since in all cases presented in 
Table 2 Arv  Ar2 « \r^  - r ^ | , the values of Ar x 
and Ar 2 are sufficiently small. The distribution of 
the concentration (the pressure) obtained numeri­
cally with the usage of the main set of input data 
being compared with the rest of distributions of 
the concentration (the pressure) obtained numeri­
cally during the numerical solution analysis is in­
terpolated by the local spline that is most interest­
ing for applications [3, p. 34-38]. We assume 
(assumption #5) that the results of numerical anal­

Table 2. Values of T at which ratios £c2 / and £2 / £\ 
calculated for the moments of time t  = 100 sec, /  = 250 
sec, and t  = 400 sec reach their maximal values

t = 100 sec t  = 250 sec t  = 400 sec
rcm a x 2,7 2,3 1,9
rpm a x 1,5 4,1 3,9

yses of distributions o f the concentration (the 
pressure) at the chosen moments o f time do not 
depend upon a choice of a type of a spline used for 
the interpolation. Between the estimations of un­
certainties in the cement concentration (the pore 
fluid pressure) at each chosen moment of time and 
at any point inside the tube due to uncertainties in 
the first type parameter values the largest ones are 
the uncertainties due to uncertainties in the space 
coordinate grid increment, the choice of the calcula­
tion method, and value of ac . In its turn, between the 
estimations of uncertainties in the cement concentra­
tion (the pore fluid pressure) at each chosen moment 
of time and at any point inside the tube due to uncer­
tainties in the second type parameter values the larg­
est ones are the uncertainties due to uncertainties in 
the pumping rate and the diameter of the tube. In 
what follows we_denote them respectively as 
£j ( s f ) where / = 1,5 and upper index c (p) corre­
sponds to cement concentration (pore fluid pressure). 
Their values are given in Table 3. The fact that the 
total trancation errors of the cement concentration 
and the pore fluid pressure at the chosen moments of 
time and at any point inside the tube can be estimated as

£c = ^ ( e ' )  > = J ^ ( £,P) verifies assumption

# j  where 7 = 2,5 [4, p. 67]. £c and s p that are 
given in Table 3 are estimations of total errors. First, 
they are calculated as the square roots of the sums of 
squares of estimations of uncertainties in respective 
values at chosen moments of time and at any point 
inside the tube due to uncertainties in all input pa­
rameters. Then, they are rounded off according to 
the rule of error rounding off [4, p. 26]. Sound trans­
ducers q , c2, and c3 placed respectively at distanc­
es from the injection point 0,2 m, 0,4 m, and 0,6 m 
detect the grout front at moments of time = 100 sec, 
t2 = 250 sec, and t3 = 400 sec respectively 
[8, p. 80]. The values of the concentration at points 
x = 0,2 m, x = 0,4 m, and x = 0,6 m at these mo­
ments of time are the following:

c(x = 0,2 m, q ) = 60±120 kg/m3 ,

c(x = 0,4 m, /2) = 60±170 kg/m3,

c(x = 0,6 m, /3) = 40 ±200 kg/m3 .

Their error bars are taken from Table 3. The fact that 
these values coincide within error limits means that 
the results of laboratory measurements do not contra­
dict to the results of numerical calculations. However, 
since the numerical errors are significant, this fact pro­
vides a small amount of information [2, p. 46-47]. The
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Table 3. The uncertainties of the distributions of the cement concentration and pore fluid pressure at chosen moments of
time due to uncertainties in the input data of the first type in units kg/m3 and Pa respectively

100 sec 250 sec 400 sec 100 sec 250 sec 400 sec

ef , kg/m3 0,653 0,319 0,166 E\ , Pa 3,358 2,236 1,704

£2 , kg/m3 0,246 0,135 0,074 £2 , Pa 1,340 0,572 0,399

£3 , kg/m3 0,222 1,452 1,069 £ъ > Pa 0,753 2,582 2,223

£ c , kg/m3 0,772 1,50 1,09 £ p , Pa 3,93 3,68 3,03

£ 4 , kg/m3 31,7 46,0 56,7 £4 , Pa 964 1379 1793

£5 , kg/m3 113,7 164,0 201,4 £p , Pa 3234 4553 5871

£ c , kg/m3 120 170 200 £ p , Pa 3000 5000 6000

fact that in each considered case s c «  e c, s p «  e p 
indicates that the trancation method and round off 
errors are negligible in comparison with the error 
due to uncertainties in the second type input data 
in all considered cases. Therefore, we calculate the 
dependence of the injection pressure upon the time 
using the first method and the implicit differential 
scheme. The scheme of the analysis of numerical 
dependencies of the injection pressure upon the time 
differs from the scheme of the analysis of numerical 
distributions of the concentration and the pressure at 
the chosen moments of time in the following ways. 
The dependencies of the injection pressure upon 
the time are compared according to the second of 
equations (12). In this analysis the main set of input 
data differs from the one of the previous analysis by 
the fact that calculations are performed by the first 
method and the injection time is equal to 800 sec. 
Besides, since the calculations are performed by 
using the rather small time increment, the numerical 
dependence of the injection pressure upon the time 
is reconstructed between the nodal points by the 
piece-wise quadratic interpolation during this ana­
lysis. Between the estimations of uncertainties in the 
dependence of injection pressure upon time due to

uncertainties in the input parameter values the larg­
est ones are the uncertainties due to uncertainties in 
the pumping rate and the diameter of the tube. They 
have such values eo, =2175 Pa and ®2 =7438 Pa 
respectively. The total error in this case, first, is cal­
culated as the square root of the sum of squares of 
estimations of uncertainties in injection pressure at 
any moment of time due to uncertainties in all input 
parameters. Then, it is rounded off according to the 
rule of error rounding off [4, p. 26]. It has such the 
value co = 7860 P a . The error bars of the numerical 
injection pressure evolution are presented on Figure 
1 (c). The experimental dependence of the injection 
pressure on time is presented in paper [8, p. 81]. It 
coincides within error bars with the numerical one 
shown on Figure 1 (c). Since the numerical error as 
well as the experimental one is significant, such the 
comparison provides a small amount of information 
too [2, p. 46-47].

Conclusions. Thus, in all considered cases the 
main contribution to the total error comes from 
the uncertainty in the calculated value due to the 
uncertainty in the diameter of the tube. In papers 
[6, p. 1215-1216], [7, p. 230] the standard laboratory

sV'ef eL-'sf P, 104Pa

Fig. 1 , a , b -  The dependences of £2 / £i and £2 /  £ p on r : 1 -  t = 100 sec, 2 -  t  = 250 sec, 3 -  t = 400 sec; 
c -  The error bars of numerical injection pressure evolution
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investigation same as in this one was modeled and 
the tube diameters were equal to 0,07 ± 0,005 m 
and 0,1 + 0,05 m respectively. Since in the test 
discussed in this work the tube diameter is equal 
to 0,08 ±0,005 m , we can conclude that, in recent

research [6], [7] as well as in this paper, the compa­
rison of model calculations with results of laborato­
ry measurements provides a small amount of infor­
mation. Consequently, the attention should be paid 
to the precision of laboratory measurements.
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Демчук M. Б.

О Б Ґ Р У Н Т У В А Н Н Я  М О Д Е Л Е Й  Ц Е М Е Н Т А Ц ІЇ Ґ Р У Н Т ІВ

Оцінено похибки числових розрахунків згідно з моделлю стандартного лабораторного дослі­
дження нагнітання цементного розчину в насичене пористе середовище. У такому дослідженні 
обґрунтовуються модельні припущення, порівнюючи результати модельних розрахунків із результа­
тами відповідних лабораторних вимірювань. Показано, що обґрунтування, представлене в даній 
роботі, а також обґрунтування, представлені у  недавніх подібних дослідженнях цього процесу, 
є малоінформативними.

Ключові слова: непокращувана похибка, похибка методу, похибка заокруглення, аналіз числових 
розв’язків, принцип рівномірності похибки.
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