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VERIFICATIONS OF GROUTING MODELS

Calculation errors are estimated within the framework of a model of the standard injection test. Such the
test is conducted to verify simplifying assumptions of the model through comparison of model calculations
with respective laboratory measurements. It is shown that the verification presented in this work as well as
similar verifications presented in recent research, provides a small amount of information.
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Introduction. Before creations of foundations
on weak soil plots, to make better elastic propertics
of soil tracts the grouting operations are performed.
In this technique a cement grout is injected under
high pressure into a porous medium that can be
water saturated or dry. The aim is reached after the
grout hardening [7, p. 227]. The process of cement
grout propagation in a soil is complicated by the fact
that the infiltrate is composed of particles. It gives
rise to the phenomenon called the deep bed filtra-
tion or the depth filtration. Depending on particle
and pore throat sizes, two limiting cases are distin-
guished in the description of this phenomenon. In
the first case, large particles get stuck in small pore
throats. It entails a decrease in “the area allowed for
a fluid flow”. Whereas in the second case, small par-
ticles create the precipitate on large pore bodies and
large pore throats that results in slow decreases of
pore throat sizes [9, p. 1637].

Grouting is rather costly and time consuming. Its
regime is determined by the concentration distribu-
tion evolution [6, p. 1195]. Therefore, a calculation
of this evolution using mathematical modeling is
important.

Various simplifying assumptions were verified
through the standard laboratory test [6; 7]. The set
up of this test is the following. A cement grout is in-
jected in the base of a vertical tube opened at the top
and filled with a water saturated sand at a constant
pumping rate. A comparison of model calculations
with laboratory measurements verifies the set of as-
sumptions used in a model formulation. An amount
of information it provides depends upon values of
uncertainties in compared quantities [2, p. 47]. There
are three types of numerical calculation errors: an er-
ror due to uncertainties in input data, a round off er-
ror, and a truncation error [3, p. 11-13]. If input data
are fixed, then the error of the first type is zero. If the
finite difference scheme according to which the cal-
culations are performed is conditionally stable, then
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the round off error is negligible. This property of the
scheme is usually verified during a numerical solution
analysis. Usually, the main contribution to a method
error comes from an approximation error. In the case
of the above mentioned test modeling, an estimation
of the approximation errors is complicated by the fact
that at any moment of time the functions being sought
contain the high gradient regions that correspond to
the transition from a soil with the maximal cement
concentration to the soil with the zero one. Accord-
ing to the uncertainty uniformity principle [5, p. 35],
to estimate these errors properly calculations on time
layers should be performed on non-uniform grids
with smaller space increments inside such regions
and larger ones outside of them. In our case, positions
of these high gradient regions are changing with time
and not known in advance. Therefore, in existing
models of the standard laboratory test calculation er-
rors are not estimated [8, p. 79].

One of the models of the above mentioned stan-
dard laboratory test is presented in paper [2, p. 49—50].
In this model, boundary conditions conform to in-
itial ones. The results of laboratory measurements
performed during the standard test and the meth-
od of a proper treatment of high gradient regions
in sought functions during numerical calculations
according to the model in hand are presented in
[8, p. 79-81; p. 88-90]. The aim of this work con-
sists in estimating the errors of calculations accord-
ing to this model that are to be compared with these
laboratory measurements.

The Grouting Model Under Consideration. We
assume that the coordinate origin is chosen at the injec-
tionpointand thatthe coordinate axis is directed upward.
In this work we use the following notations. € isasmall
positive parameter, ¢, and o, are large positive pa-
rameters. They are introduced in the model to conform
initial conditions with boundary ones, and their values
will be obtained later in the result of the analysis of the
numerical solutions. / =(-¢, L) is an interval (a set
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of points (x): xe(-e, X)). IT=1x(0, T) isarec-
tangle (a set of points (x, t) : (x)e/, fe (0, X)),
Ari is the bottom side of I T (a set ofpoints (-£, t):
A0, X]), 2isthe top side of IT (a set of points
(X, t): te[0, X]), p(x,t) and c(x,/) denote die
pore fluid pressure and the grout concentration re-
spectively. K is the permeability of the medium,
mis the medium porosity, p isthe fluid phase density,
g is the acceleration of free fall, pland cinp are the
grout viscosity and the grout concentration inside the
injector respectively, p 2is the water viscosity. alL is the
longitudinal dispersion coefficient, D’ is the diffusion
coefficient, p =(p1-p 1)c/cinp+p2, Dh=alV+D\
V =-K(8p/8x +pg)/p/m. f9(a-x) isthe function
that tends to the function

0, ifx<0,
0(x)=- 1/2, if x=0, Q)
1 if x>0,

with a -» +00. S is the area of the interface be-
tween the injector and the porous medium, X is
the tube length, pLfi=(pl-p2)(I-fe(alL))+p2,
Foo=(Pi - P2)*(l - fe (~«0o£)) + P2,
M,0=Pi\b{l -fe{aix) - xdf { aix)/dx)xL/Pip V«=UISIm-
In paper [2, p. 49-50], the mathematical mod-
el of the standard laboratory test described in the
previous section with boundary conditions con-
forming to initial ones has been formulated. In it
the ground skeleton is regarded as absolutely rigid
and the depth filtration is not taken into account.
This model is the following system of two partial

differential equations valid for such values x and
t that (x, t)elT

mdc/8t =-mV mBc/8x + 8{mDh-5¢/Sx)/Sx , (2)
mPp(8p/dt+V8p/dx)-d(K(pp/dx+pg)jp)j8x =0 (3)
with such initial conditions valid if t =0 and xe 7
p=pg(L-x)+*"mFX&((/A(~x)-1)/K, (4)
c=(1-/e(«0™))'ctap ©)

and boundary conditions

dp/dx =-p Im\VO( I mfe(cEjx)- xdfe{apfjjdx~K-p g, (6)
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c=ctap(1l- / e(-«0£)) (7)
where (x, f) e ATX and
P =PfnVOL (f9(alL)-\) 1K, (8)
Sc/8x = -ctap(dfa(ax)/dx) (alMii + D*)/(alV+D*) (9)
where (x, t) e At2.

As it is described in paper [8, pp. 88-90], to
estimate the model calculation errors proper-
ly we need to use two methods to find the numer-
ical solution of problem (2)—9). In the first one,
problem (2)—9) is discretized at once, while in
the second one, we are looking for the numerical

solution in the form p(x,/) =p@Q(x,t) +p@(x,f),
c(x,t) =cQ(x,t) +c@(x,t)
pO)(x,t) and c@(x,t) are modeling respective-

where functions

ly the evolution of the high gradient region of fluid
phase pressure and the evolution of the high gradient
region of cement concentration in the fluid phase. We
assume (assumption #1) that

pm(x,t) =pI{x,t)+fe(ap(x-Vit))(p2A(x,1)-p1(x,1)),(10)

cO(x,t) =[I mf9(ac(x - Fjt))] cinp  (11)

where here and bellow V1=V0-Kpg/ppff,

p2=(p2mVjK +pg)(L-x),
pl=(L-VIt)(pg+p2M/K)-{pg +iilMig/K) (x-VIt).

In turn, constants ac and ap are defined below.
Performing calculations by the second method we
assume (assumption #2) that calculation results ob-

tained when Ptf =(Pi +P2)/2 and \eff = (VO+FJ/2
do not sufficiently deviate from ones obtained when
Peff = yIPi* P 2 Vg =\]VgsM .
To find the numerical solution of problem
(2—4€9) we IT with uniform grid
=(*> xi=~s+i'h tj=j-T,j=0,M)
where h=[L+e)/N and r =X /M . Performing an

cover

analysis of numerical solutions of problem (2)—9),
one can use respectively such the measures of the
differences between two space distributions of the
cement concentration or the pore fluid pressure at a
chosen moment oftime t f(x,t), f2{x,t) and be-
tween two dependencies ofthe injection pressure on
time &(*), g2(t)
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®(OZXJ-§)L(]|/'(*>O'H(*4 ® i[o,TnaX M 'H (0I- (12)

We denote the measure ofthe difference between
the space distribution of the cement concentration
(the pore fluid pressure) at a given moment of time

obtained by the second method on grid Q N N
and the one obtained by the second method on grid
QNN as e
difference between the space distribution of the

. We denote the measure of the

cement concentration (the pore fluid pressure) at a
given moment of time obtained by the first method

on grid Q:NtN2 and the one obtained by the sec-
ond method on the same grid fi2nen2 as sl (e2) m

ac present in (11) is the solution of the following
equation

I-/e(8-af-ac)=IAr (13)
where r is such that r >In(2). Calculating ac from
(13), ideally, we have to use such the value of r at
which ratios "and /£f are maximal. Per-
forming calculations by the second method we as-
sume that if the order of magnitude of the value of
ap in the right hand side of (10) is the same as the
order of magnitude of the value of ac in the right
hand side of (11), then the numerical solution is not
sensitive to the choice of the value of ap (assump-
tion # 3). Therefore, in what follows we assume that

A Resolution Method. In this section the dif-
ferential schemes are written in the same form for
both methods. In formulas of this section we assume

that in the case of the first method p(@Q(x,tj =0,
c(O)(x,t) =0 and in the case of the second one
p(O)(x,t) and cO(x,/) are given by (10) and (11)
respectively. Also inthese formulas c¢( and pf where
i=0,N, /=0,M denote
the case of the first method and c()(xi,/J) and
p (xi,tJ) inthe case ofthe second one respectively.

) and p(x,,/;) in

In this work we use the following discretization of (2)

T +al(VA-VA/I/h)A-(A);Gajfl=w (14)
where
v/ - pQ/2/h .+ (dp™Ndx” +pg”jm!pj .

xr'={ci;;-c™)/2/h,
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ti=(vi-n2)(c +(c9))+Ne,

NI ={em - 2c/A+c£)/h2, T/ =(c/H-c/)/r,

Vh-Yih (df?
2h &,

(No>Y

W= -Fl'+g, uh &0 d +Q, (15)

Q =(1-v)(-V/ +aL(M4-Fft)/2jh)-X> +{Dh)i(I-crd-A”",
and the following discretizations of (5), (7), and (9)

c“=q., CHl=c', (4-2-4<_'1+34+)/2//;="(16)

where
g =(i- f9(a0(-£ +im))) mnp- (cQ);, 17)
cy=(l-/e(-a0£))"-(cQ)*, (18)
d@=-(«/,0 -K H i>(19)

Vn =~k ((p1lri ~aPn-i+ H )1 2h+(Spm/Sx)N+pgj/m liiN .

In(14) i=1,2,...N-1, j=0,1,..M -1, and in (16)
/=0,...N-1, /=0,1,...M -1.

If od * 0, then the system ofequations (14), (16)
in finite differences can be solved by the “progon-
ka” method [1, p. 276]. If od =0, then calculations
are performed by using the first method. In this case,
from (14) it follows that

d4=c/ +to(-V> +al{VA-VU)I21h)(c%-c/1/h+r m}

where w. is calculated according to (15) and
/=1.2,.2V-1, 7=0,1,...M-1. From the second

and the third of equations (16), it follows that

cBd=(2hdcJ- c] \ +4c£!1)/3 where dgJ is calcu-

lated according to (19) and 7=0,1,...21/-1. From
the first of equations (16) and equation (17), it fol-
lows that

Gi =0 - fe (<0 (-£ +/+ A)))-cimp- (c(0)° where

i =02V, . Having found the values of the concen-
tration on time layer 7+1, we find the values of
the pore fluid pressure on this layer, solving the
following system of equations in finite differences
obtained by discretization of equations (3), (4), (6),
and (8). In this work we use the following discreti-
zation of (3)
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TPp[Pi4- P +0Zj [p{/ - pr)/2IA-

where Z{ =T py/ - K(I/y;| - I4IN)/2]A,

KIg4=gj (20)

Nz -ar((pHl pU /21w (sy W +pN)/p/d

A= (8- ) (el @) ) +

K M={pi:l-2pi#+Pp)Ih\

8=-T T -ZI(dpm8xI+KI-yI&Y1ax1l -S', (21)

pL-pL L-oM r L+pt) Kpgf i N
X O re hno  puj

and the following discretizations of equations (4),
(6), and (8)

{-pi++4pr'-3pt)/2/h =d”, p/' =+ (22)
where
& (*iE) ={l ~fe (*i*) - xdfe («ix)/dx)\x=s

dpj =-nImVQge(alf)/K-p-g-(dpi0/dx)d, (23)

pj =(fe(all)-1)LnImVO/ K - (p m)Ni, (24)
N WA (£ 4/ Alela fEHA)- IPSA- (0 (25)

In (20), (22) i=1,2,...N-1,j=0,1,...M-I. If
<P* 0, then the system of equations (20), (22)
in finite differences can be solved by the “pro-
gonka” method. Thus, using known values of
the pore fluid pressure in nodal points on time
layer j and known values of the cement con-
centration in nodal points on time layers j and
j +1, we can calculate the pore fluid pressure
in nodal points on time layer j +1. In its turn,
using known values of the pore fluid pressure
and the cement concentration in nodal points on
time layer j we can calculate such the values on
time layer j +1. Since these values on the zero
time layer can be found from the first equations
of ones (16) and (22), we can find space distri-
butions ofthe pore fluid pressure and the cement
concentration on any time layer. Constants a ,
<I, and cr2 are introduced in (14), (20) to have
an opportunity during a numerical solution anal-
ysis to estimate the round off error and to check
whether the replacement of derivatives in prob-
lem (2)-(9) with their finite difference analogs
is not ill-posed.
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An Analysis of Numerical Solutions. An anal-
ysis of the cement concentration and the pore fluid
pressure distributions in the pore medium at mo-
ments oftime t=100 sec, t =250 sec, and t =400
sec obtained numerically is performed according to
the following scheme. We assign specific values to
all input parameters. In what follows, this set of in-
put parameters is called the main set. To estimate an
uncertainty in the value ofthe cement concentration
(the pore fluid pressure) due to an uncertainty in a
chosen input parameter, we calculate the distribu-
tion of this value first using the main input parame-
ter set and then using the input parameter set distinct
from the main set by the value of the chosen para-
meter. The difference between the assigned value to
the chosen parameter and the respective value in the
main set characterizes the degree of the uncertain-
ty of the chosen parameter value. The measure of a
difference between obtained distributions calculat-
ed according to the first of equations (12) gives the
sought estimation. We distinguish two types of input
parameters. Parameters of the first type are deter-
mined by the calculation method, where as parame-
ters of the second one are determined by laboratory
measurements. The second type parameter values
from the main set and their absolute errors are pre-
sented in Table 1. These errors are determined from
the last significant digits in values ofthese parameters
[4, p. 41]. In the case of the main set, the pore flu-
id pressure and cement concentration distributions
in the pore medium are calculated by the second
method and using such space and time increments
A=(0,7+£)/500 m, t=0,005 sec respectively.
We assume (assumption #4) that the shape of func-
tion fe(a-x) does not influence significantly the
calculated distributions. In the main set, this shape
is determined by the following function

fg(a mc) =0,5+arctgia -x)/7z. (26)

In our model, £ is a small parameter, while a0
and a, are large parameters, and, therefore, in the
main set, we assign to them such values

£=1,0x10"3I/A, a0=5-103Efg(w(0,5-1/e2)j, a, =aQ(27)

where N =500. In this set, constants <, o,
<12, Kff> and pdf have the following va-
lues €=<j=<r2=1, [V ={pi +P2)/2, and

Ve = (VO+ VD) /2 . From (13) and (26) it follows that
ac=tg{n(0,5- 1/V))/%aL . To choose the value of
ac the calculations are performed varying r from

0,7 to 2,5 with the increment A/; =0,2 and from 2,5



Hdemuyk M. Bb. O6rpyHTYBaHHA Mofeneit LeMeHTaLii rpyHTiB

to 4,5 with the increment Ar2=0,1. The dependen-
cies of £2/£{ and :2 /E]" on r are presented on
Figures 1 (a) and 1 (b). They are calculated by using

Table 1. The Values of the Second Type Parameters and
Their Absolute Errors

Parameter Parameter Value  Absolute Error
Porosity 0,335 0,0005
Grout density 1370 kg/m3 5 kg/m3
Grout viscosity 2,9T0'3Pa-sec 5T0's5Pa-sec
Intrinsic . }
permeability 147T0'Im2 5-H0'¥m?2
Diffusion 1,0TO'DmVsec  5-FO2mVsec
coefficient
Longitudinal
dispersion 2,0TO2m 5-FOAmM
coefficient
Compressibility 5 oo gpge» 5-tODPa-1
coefficient
Water viscosity 1,1-kO3Pa-sec 5-HO'5Pa-sec
Pumping rate 1,5TO6m3sec 5-HO'8m3sec
Tube length 0,70 m 5-HO'3m
Tube diameter 0,08 m 5-HO'3m
Acceleration of 9,8 m/sec2 0,05 m/sec2

free fall

input parameter values except for the value of r
from the main set. Lines 1, 2, and 3 on these fi-
gures correspond to the moments of time t =100
sec, t=250 sec, and t =400 sec respectively. Ta-
ble 2 contains the values of r at which these lines
reach their maximums on segment [0,2 4,5]. The
fact that these maximums exist verifies assump-
tion #1. In this table, corresponds to the lines
from Figure 1(a) and corresponds to the lines
from Figure 1 (b). Since in all cases presented in
Table 2 Awv Ar2« \r™-r ™|, the values of Arx
and Ar2 are sufficiently small. The distribution of
the concentration (the pressure) obtained numeri-
cally with the usage of the main set of input data
being compared with the rest of distributions of
the concentration (the pressure) obtained numeri-
cally during the numerical solution analysis is in-
terpolated by the local spline that is most interest-
ing for applications [3, p. 34-38]. We assume
(assumption #5) that the results of numerical anal-

Table 2. Values of T at which ratios £2/ and £2/ £\
calculated for the moments of time t = 100 sec, / = 250
sec, and t = 400 sec reach their maximal values

t =100 sec t =250 sec t =400 sec
re, 2,7 23 19
R, 15 41 3.9
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yses of distributions of the concentration (the
pressure) at the chosen moments of time do not
depend upon a choice of atype of a spline used for
the interpolation. Between the estimations of un-
certainties in the cement concentration (the pore
fluid pressure) at each chosen moment of time and
at any point inside the tube due to uncertainties in
the first type parameter values the largest ones are
the uncertainties due to uncertainties in the space
coordinate grid increment, the choice of the calcula-
tion method, and value of ac. Initsturn, between the
estimations of uncertainties in the cement concentra-
tion (the pore fluid pressure) at each chosen moment
oftime and at any point inside the tube due to uncer-
tainties in the second type parameter values the larg-
est ones are the uncertainties due to uncertainties in
the pumping rate and the diameter of the tube. In
what follows we_denote them respectively as
£j (sf) where /=15 and upperindex c (p) corre-
sponds to cement concentration (pore fluid pressure).
Their values are given in Table 3. The fact that the
total trancation errors of the cement concentration
and the pore fluid pressure at the chosen moments of
time and at any point inside the tube can be estimated as
fc="(e') > =J~(£P) verifies assumption
# j where 7=25 [4, p. 67]. £c and sp that are
given in Table 3 are estimations oftotal errors. First,
they are calculated as the square roots ofthe sums of
squares of estimations of uncertainties in respective
values at chosen moments of time and at any point
inside the tube due to uncertainties in all input pa-
rameters. Then, they are rounded off according to
the rule of error rounding off [4, p. 26]. Sound trans-
ducers g, ¢2, and c3placed respectively at distanc-
es from the injection point 0,2 m, 0,4 m, and 0,6 m
detect the grout front at moments oftime =100 sec,
t2=250sec, and t3=400sec  respectively
[8, p. 80]. The values of the concentration at points
x=0,2 m x=04 m, and x=0,6 m at these mo-
ments of time are the following:

c(x=0,2m, q) =60+120 kg/m3,

c(x=0,4m, /2)=60+170 kg/m3,
c(x=0,6 m, /3)=40+£200 kg/m3.

Their error bars are taken from Table 3. The fact that
these values coincide within error limits means that
the results of laboratory measurements do not contra-
dict to the results of numerical calculations. However,
since the numerical errors are significant, this fact pro-
vides a small amount of information [2, p. 46-47]. The
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Table 3. The uncertainties of the distributions ofthe cement concentration and pore fluid pressure at chosen moments of
time due to uncertainties in the input data of the first type in units kg/m3and Pa respectively

100 sec 250 sec 400 sec
ef , kg/m3 0,653 0,319 0,166
£2, kg/m3 0,246 0,135 0,074
£3, kg/m3 0,222 1,452 1,069
£c, kg/m3 0,772 1,50 1,09
£4, kg/m3 31,7 46,0 56,7
£5 , kg/m3 1137 164,0 201,4
£c, kg/m3 120 170 200
factthat in each considered case sc« ec, sp« ep

indicates that the trancation method and round off
errors are negligible in comparison with the error
due to uncertainties in the second type input data
in all considered cases. Therefore, we calculate the
dependence of the injection pressure upon the time
using the first method and the implicit differential
scheme. The scheme of the analysis of numerical
dependencies ofthe injection pressure upon the time
differs from the scheme ofthe analysis of numerical
distributions of the concentration and the pressure at
the chosen moments of time in the following ways.
The dependencies of the injection pressure upon
the time are compared according to the second of
equations (12). In this analysis the main set of input
data differs from the one ofthe previous analysis by
the fact that calculations are performed by the first
method and the injection time is equal to 800 sec.
Besides, since the calculations are performed by
using the rather small time increment, the numerical
dependence of the injection pressure upon the time
is reconstructed between the nodal points by the
piece-wise quadratic interpolation during this ana-
lysis. Between the estimations ofuncertainties in the
dependence of injection pressure upon time due to

sV'ef elL-'sf

100 sec 250 sec 400 sec
B , Pa 3,358 2,236 1,704
£2 ,Pa 1,340 0,572 0,399
£ >Pa 0,753 2,582 2,223
£p,Pa 3,93 3,68 3,03
£4 ,Pa 964 1379 1793
£p,Pa 3234 4553 5871
£p,Pa 3000 5000 6000

uncertainties in the input parameter values the larg-
est ones are the uncertainties due to uncertainties in
the pumping rate and the diameter of the tube. They
have such values e =2175 Pa and ®2=7438 Pa
respectively. The total error in this case, first, is cal-
culated as the square root of the sum of squares of
estimations of uncertainties in injection pressure at
any moment of time due to uncertainties in all input
parameters. Then, it is rounded offaccording to the
rule of error rounding off [4, p. 26]. It has such the
value ©=7860 Pa. The error bars of the numerical
injection pressure evolution are presented on Figure
1 (c). The experimental dependence of the injection
pressure on time is presented in paper [8, p. 81]. It
coincides within error bars with the numerical one
shown on Figure 1 (c). Since the numerical error as
well as the experimental one is significant, such the
comparison provides a small amount of information
too [2, p. 46-47].

Conclusions. Thus, in all considered cases the
main contribution to the total error comes from
the uncertainty in the calculated value due to the
uncertainty in the diameter of the tube. In papers
[6,p. 1215-1216], [7, p. 230] the standard laboratory

P, 104Pa

Fig. 1,a,b- The dependences of £2/ £i and £2/£p on r :1- t=100 sec,2- t =250 sec,3- t =400 sec;
¢ - The error bars of numerical injection pressure evolution
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investigation same as in this one was modeled and
the tube diameters were equal to 0,07 +0,005 m
and 0,1+0,05 m respectively. Since in the test
discussed in this work the tube diameter is equal
to 0,080,005 m, we can conclude that, in recent
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research [6], [7] as well as in this paper, the compa-
rison of model calculations with results of laborato-
ry measurements provides a small amount of infor-
mation. Consequently, the attention should be paid
to the precision of laboratory measurements.

References

1. Bnactok A. . 3aCTOCYBaHHS YMCNOBUX KOHOPMHUX Bifobpa-
XeHb [0 PO3B’A3aHHA KPainoBoi 3ajayi 3 pyXOMOK Mexero Ans
PiBHAHHA NapabonivyHoOro TUNYy y KpUBOAIHINHOMY YOTUPUKYT-
Huky / A. 1. Bnactok, M. b. flemuyk, M. M. O6e3tok // BicH.
Hau. yH-Ty BOAH. rocn-sa Ta npupogokopucTys. - 2007. -
BuH. 4 (40). - 4. 3.- C. 268-286.

2. [Oemuyk M. B. Y3rogkeHa MoAeNb HarHiTaHHA LEMEeHTHOro
po34MHY B HacuyeHe nopucte cepegosuile / M. b. Nlemuyk //
Haykosi 3anucku HAYKMA. - 2011. - T. 125. Komn’loTepHi
Hayku. - C. 46-51.

3. PsbeHbkuii B. C. BBefieHVe B BbIYMCANTENBHYIO MaTeMaTUKY: yueb-
Hoe noco6ue / B. C. PabeHbKuit. - M .: dusmainut, 2000. - 294 c.

4. Teiinop Ox. BeegeHue B Teoputo owmn6ok / Ax. Telnop - M .:
Mwup, 1985.-272 c.

5. ®epgopeHko P. I. BBefeHue B BblUMCAUTENbHYIO (DU3MKY /
P. M. ®epopeHko. - M. : N3gaTenscTBo MOCKOBCKOI0 (h13nKo-
TEXHWYECKOro UHCTUTYTa, 1994. - 526 c.

Oemuyk M. B.

6. Bouchelaghem F. Mathematical and numerical filtration-
advection-dispersion model of miscible grout propagation in
saturated porous media / F. Bouchelaghem, L. Vulliet //
International journal for numerical and analytical methods in
Geomechanics.-2001.-Vol. 25,Ne 12.-P. 1195-1227.

7. Chupin O. The effects of filtration on the injection of cement-
based grouts in sand columns / O. Chupin, N. Saiyouri,
P.-Y. Hicher // Transport in porous media. - 2008. - Vol. 72,
Ne 2.-P.227-240.

8. Demchuk M. B. A realization of the uncertainty uniformity
principle in a grouting model / M. B. Demchuk, N. Saiyouri //
MaremaTvyHe Ta KOMN'IOTEPHE MOAENOBaHHA : 36. HayK. np.
Cep. (is.-maT. Hayku, 2012. - Bun. 7. - C. 77-92.

9. Sharma M. M. Transport of particulate suspensions in porous
media: model formulation / M. M. Sharma, Y. C. Yortsos //
American Institute of Chemical Engineers Journal, 1987. -
Vol. 33, Ne 10. - P. 1636-1643.

OBIPYHTYBAHHSA MOAENEN LEMEHTALITITPYHTIB

OLiHEHO MOXMOKN YMCNOBMX PO3PaxyHKIB 3rifHO 3 MOAEN0 CTaHAapTHOro nabopaToOpHOro Aochi-
[O>KEHHS1 HarHiTaHHSA LeMEHTHOro PO3YMHY B HacM4eHe NOpUCTE CepefoBuLLe. Y TakoMy LOCHILKEHHI
06I'PYH T 0BYIHO T bCS MOJE/bHI NPUMNYLLIEHHS, NMOPIBHIOIUNPE3YbTaT N MOAEbHUXPO3PAXYHKIB i3pe3ynbTa-
Tamu BiAMOBIAHUX NabopaToOpPHUX BUMIpHOBaHb. MoKasaHo, L0 06rpyHTYBaHHS, MpeAcTaBneHe B AaHii
po60Ti, a Tako>K 06rpyHTYBaHHSA, MpeAcTas/eHi y HefaBHIX NOAIGHMX [OCNIAXKEHHSX LbOro npoLecy,
€ MaJI0iHYOPMa T UBHUMMU.

Knto4yoBi cnosa: HernokpatlllyBaHa noxnbka, noxnbka metomy, NoxmbKa 3a0KpyreHHs, aHasli3 YAC0BUX
PO3B’A3KiB, MPUHLWUM PIBHOMIPHOCTI NOXNOKN.
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